1
|
Liao J, Xie L, Shi H, Cui S, Lan F, Luo Z, Ma X. Development of an efficient transient expression system for Siraitia grosvenorii fruit and functional characterization of two NADPH-cytochrome P450 reductases. PHYTOCHEMISTRY 2021; 189:112824. [PMID: 34102591 DOI: 10.1016/j.phytochem.2021.112824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Siraitia grosvenorii (Luo hanguo or monk fruit) is a valuable medicinal herb for which the market demand has increased dramatically worldwide. As promising natural sweeteners, mogrosides have received much attention from researchers because of their extremely high sweetness and lack of calories. Nevertheless, owing to the absence of genetic transformation methods, the molecular mechanisms underlying the regulation of mogroside biosynthesis have not yet been fully elucidated. Therefore, an effective method for gene function analysis needs to be developed for S. grosvenorii fruit. As a powerful approach, transient expression has become a versatile method to elucidate the biological functions of genes and proteins in various plant species. In this study, PBI121 with a β-glucuronidase (GUS) marker and tobacco rattle virus (TRV) were used as vectors for overexpression and silencing, respectively, of the SgCPR1 and SgCPR2 genes in S. grosvenorii fruit. The effectiveness of transient expression was validated by GUS staining in S. grosvenorii fruit, and the expression levels of SgCPR1 and SgCPR2 increased significantly after infiltration for 36 h. In addition, TRV-induced gene silencing suppressed the expression of SgCPR1 and SgCPR2 in S. grosvenorii fruit. More importantly, the production of the major secondary metabolites mogrol, mogroside IIE (MIIE) and mogroside III (MIII) was activated by the overexpression of SgCPR1 and SgCPR2 in S. grosvenorii fruit, with levels 1-2 times those in the control group. Moreover, the accumulation of mogrol, MIIE and MIII was decreased in the SgCPR1 and SgCPR2 gene silencing assays. Therefore, this transient expression approach was available for S. grosvenorii fruit, providing insight into the expression of the SgCPR1 and SgCPR2 genes involved in the mogroside biosynthesis pathway. Our study also suggests that this method has potential applications in the exploration of the molecular mechanisms, biochemical hypotheses and functional characteristics of S. grosvenorii genes.
Collapse
Affiliation(s)
- Jingjing Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Fusheng Lan
- Guilin GFS Monk Fruit Corp, Guilin, 541006, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
2
|
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.
Collapse
Affiliation(s)
- Reinmar Eggers
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Alexandra Jammer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Bianca Kerschbaumer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Majd Lahham
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Emilia Strandback
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria.
| |
Collapse
|
3
|
Schall P, Marutschke L, Grimm B. The Flavoproteome of the Model Plant Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21155371. [PMID: 32731628 PMCID: PMC7432721 DOI: 10.3390/ijms21155371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes, which catalyze a broad spectrum of vital reactions. This paper intends to compile all potential FAD/FMN-binding proteins encoded by the genome of Arabidopsis thaliana. Several computational approaches were applied to group the entire flavoproteome according to (i) different catalytic reactions in enzyme classes, (ii) the localization in subcellular compartments, (iii) different protein families and subclasses, and (iv) their classification to structural properties. Subsequently, the physiological significance of several of the larger flavoprotein families was highlighted. It is conclusive that plants, such as Arabidopsis thaliana, use many flavoenzymes for plant-specific and pivotal metabolic activities during development and for signal transduction pathways in response to biotic and abiotic stress. Thereby, often two up to several homologous genes are found encoding proteins with high protein similarity. It is proposed that these gene families for flavoproteins reflect presumably their need for differential transcriptional control or the expression of similar proteins with modified flavin-binding properties or catalytic activities.
Collapse
|
4
|
Nakai Y, Maruyama-Nakashita A. Biosynthesis of Sulfur-Containing Small Biomolecules in Plants. Int J Mol Sci 2020; 21:ijms21103470. [PMID: 32423011 PMCID: PMC7278922 DOI: 10.3390/ijms21103470] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/25/2023] Open
Abstract
Sulfur is an essential element required for plant growth. It can be found as a thiol group of proteins or non-protein molecules, and as various sulfur-containing small biomolecules, including iron-sulfur (Fe/S) clusters, molybdenum cofactor (Moco), and sulfur-modified nucleotides. Thiol-mediated redox regulation has been well investigated, whereas biosynthesis pathways of the sulfur-containing small biomolecules have not yet been clearly described. In order to understand overall sulfur transfer processes in plant cells, it is important to elucidate the relationships among various sulfur delivery pathways as well as to investigate their interactions. In this review, we summarize the information from recent studies on the biosynthesis pathways of several sulfur-containing small biomolecules and the proteins participating in these processes. In addition, we show characteristic features of gene expression in Arabidopsis at the early stage of sulfate depletion from the medium, and we provide insights into sulfur transfer processes in plant cells.
Collapse
Affiliation(s)
- Yumi Nakai
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki 569-8686, Japan
- Correspondence: ; Fax: +81-72-684-6516
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
5
|
Zhang B, Shang L, Ruan B, Zhang A, Yang S, Jiang H, Liu C, Hong K, Lin H, Gao Z, Hu J, Zeng D, Guo L, Qian Q. Development of Three Sets of High-Throughput Genotyped Rice Chromosome Segment Substitution Lines and QTL Mapping for Eleven Traits. RICE (NEW YORK, N.Y.) 2019; 12:33. [PMID: 31076960 PMCID: PMC6510774 DOI: 10.1186/s12284-019-0293-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/22/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Detecting and mapping chromosomal regions that are related to quantitative phenotypic variation in chromosome segment substitution lines (CSSLs) provides an effective means to characterize the genetic basis of complex agronomic trait. CSSLs are also powerful tools for studying the effects of quantitative trait loci (QTLs) pyramiding and interaction on phenotypic variation. RESULTS Here, we developed three sets of CSSLs consisting of 81, 55, and 61 lines, which were derived from PA64s × 9311, Nipponbare × 9311 and PA64s × Nipponbare crosses, respectively. All of the 197 CSSLs were subjected to high-throughput genotyping by whole-genome resequencing to obtain accurate physical maps for the 3 sets of CSSLs. The 3 sets of CSSLs were used to analyze variation for 11 major agronomic traits in Hangzhou and Shenzhen and led to the detection of 71 QTLs with phenotypic effect that ranged from 7.6% to 44.8%. Eight QTLs were commonly detected under two environments for the same phenotype, and there were also 8 QTL clusters that were found. Combined with GWAS on grain length and expression profiles on young panicle tissues, qGL1 detected in CSSLs was fine mapped within a 119 kb region on chromosome 1 and LOC_Os01g53140 and LOC_Os01g53250 were the two most likely candidate genes. CONCLUSIONS Our results indicate that developing CSSLs genotyped by whole-genome resequencing are powerful tools for basic genetic research and provide a platform for the rational design of rice breeding. Meanwhile, the conjoint analysis of different CSSLs, natural population and expression profiles can facilitate QTL fine mapping.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Lianguang Shang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Anpeng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Shenglong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Hongzhen Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Kai Hong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hai Lin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| |
Collapse
|
6
|
Wang X, Chen X, Sun L, Qian W. Canonical cytosolic iron-sulfur cluster assembly and non-canonical functions of DRE2 in Arabidopsis. PLoS Genet 2019; 15:e1008094. [PMID: 31034471 PMCID: PMC6508740 DOI: 10.1371/journal.pgen.1008094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/09/2019] [Accepted: 03/16/2019] [Indexed: 11/17/2022] Open
Abstract
As a component of the Cytosolic Iron-sulfur cluster Assembly (CIA) pathway, DRE2 is essential in organisms from yeast to mammals. However, the roles of DRE2 remain incompletely understood largely due to the lack of viable dre2 mutants. In this study, we successfully created hypomorphic dre2 mutants using the CRISPR/Cas9 technology. Like other CIA pathway mutants, the dre2 mutants have accumulation of DNA lesions and show constitutive DNA damage response. In addition, the dre2 mutants exhibit DNA hypermethylation at hundreds of loci. The mutant forms of DRE2 in the dre2 mutants, which bear deletions in the linker region of DRE2, lost interaction with GRXS17 but have stronger interaction with NBP35, resulting in the CIA-related defects of dre2. Interestingly, we find that DRE2 is also involved in auxin response that may be independent of its CIA role. DRE2 localizes in both the cytoplasm and the nucleus and nuclear DRE2 associates with euchromatin. Furthermore, DRE2 directly associates with multiple auxin responsive genes and maintains their normal expression. Our study highlights the importance of the linker region of DRE2 in coordinating CIA-related protein interactions and identifies the canonical and non-canonical roles of DRE2 in maintaining genome stability, epigenomic patterns, and auxin response. The Cytosolic Iron-sulfur cluster Assembly (CIA) pathway is essential for the maturation of Fe-S proteins localized in the cytosol and the nucleus. As an important component of the CIA pathway, DRE2 is essential from yeast to mammals. To study the CIA-related functions of DRE2 and further explore novel non-CIA roles of DRE2 in Arabidopsis, we for the first time created two homozygous dre2 hypomorphic mutants using the CRISPR/Cas9 technology. The dre2 mutants exhibit hallmark features of the CIA pathway mutants indicating CIA-dependent functions of DRE2 in Arabidopsis. Unexpectedly, we find that DRE2 participates in auxin response and nuclear DRE2 directly binds multiple auxin responsive genes and regulates their expression, suggesting that DRE2 plays CIA-independent roles. Our findings significantly expand our understanding of the biological functions of DRE2 in eukaryotes.
Collapse
Affiliation(s)
- Xiaokang Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xudong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Linhua Sun
- Academy for Advanced Interdisciplinary Studies, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Insights into the functional properties of the marneral oxidase CYP71A16 from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:2-10. [PMID: 28734978 DOI: 10.1016/j.bbapap.2017.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The Arabidopsis thaliana gene encoding CYP71A16 is part of the gene cluster for the biosynthesis and modification of the triterpenoid marneral. Previous investigations of A. thaliana have revealed that CYP71A16 catalyzes marneral oxidation, while it also can accept marnerol as substrate. The aim of the present study was to investigate functional properties of CYP71A16 in vitro. For this purpose, heterologous expression of a N-terminally modified version of CYP71A16 was established in Escherichia coli, which yielded up to 50mgL-1 recombinant enzyme. The enzyme was purified and activity was reconstituted in vitro with different redox partners. A heterologous bacterial redox partner system consisting of the flavodoxin YkuN from Bacillus subtilis and the flavodoxin reductase Fpr from E. coli clearly outperformed the cytochrome P450 reductase ATR2 from A. thaliana in supporting the CYP71A16-mediated hydroxylation of marnerol. Substrate binding experiments with CYP71A16 revealed a dissociation constant KD of 225μM for marnerol. CYP71A16 catalyzed the hydroxylation of marnerol to 23-hydroxymarnerol with a KM of 142μM and a kcat of 3.9min-1. Furthermore, GC/MS analysis revealed an as of yet unidentified overoxidation product of this in vitro reaction. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
|
8
|
Maniga A, Ghisaura S, Perrotta L, Marche MG, Cella R, Albani D. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana. PLoS One 2017; 12:e0179338. [PMID: 28594957 PMCID: PMC5464667 DOI: 10.1371/journal.pone.0179338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/26/2017] [Indexed: 01/16/2023] Open
Abstract
In plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular activities.
Collapse
Affiliation(s)
- Antonio Maniga
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Stefania Ghisaura
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | - Lara Perrotta
- Department of Agriculture, University of Sassari, Sassari, Italy
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | | | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Diego Albani
- Department of Agriculture, University of Sassari, Sassari, Italy
- Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
9
|
Niu G, Zhao S, Wang L, Dong W, Liu L, He Y. Structure of the
Arabidopsis thaliana
NADPH
‐cytochrome P450 reductase 2 (ATR2) provides insight into its function. FEBS J 2017; 284:754-765. [DOI: 10.1111/febs.14017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Guoqi Niu
- College of Life Sciences Capital Normal University Beijing China
| | - Shun Zhao
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lei Wang
- College of Life Sciences Capital Normal University Beijing China
| | - Wei Dong
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lin Liu
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
| | - Yikun He
- College of Life Sciences Capital Normal University Beijing China
| |
Collapse
|
10
|
Bastow EL, Bych K, Crack JC, Le Brun NE, Balk J. NBP35 interacts with DRE2 in the maturation of cytosolic iron-sulphur proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:590-600. [PMID: 27801963 PMCID: PMC5324674 DOI: 10.1111/tpj.13409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Accepted: 10/27/2016] [Indexed: 05/23/2023]
Abstract
Proteins of the cytosolic pathway for iron-sulphur (FeS) cluster assembly are conserved, except that plants lack a gene for CFD1 (Cytosolic FeS cluster Deficient 1). This poses the question of how NBP35 (Nucleotide-Binding Protein 35 kDa), the heteromeric partner of CFD1 in metazoa, functions on its own in plants. Firstly, we created viable mutant alleles of NBP35 in Arabidopsis to overcome embryo lethality of previously reported knockout mutations. RNAi knockdown lines with less than 30% NBP35 protein surprisingly showed no developmental or biochemical differences to wild-type. Substitution of Cys14 to Ala, which destabilized the N-terminal Fe4 S4 cluster in vitro, caused mild growth defects and a significant decrease in the activity of cytosolic FeS enzymes such as aconitase and aldehyde oxidases. The DNA glycosylase ROS1 was only partially decreased in activity and xanthine dehydrogenase not at all. Plants with strongly depleted NBP35 protein in combination with Cys14 to Ala substitution had distorted leaf development and decreased FeS enzyme activities. To find protein interaction partners of NBP35, a yeast-two-hybrid screen was carried out that identified NBP35 and DRE2 (Derepressed for Ribosomal protein S14 Expression). NBP35 is known to form a dimer, and DRE2 acts upstream in the cytosolic FeS protein assembly pathway. The NBP35-DRE2 interaction was not disrupted by Cys14 to Ala substitution. Our results show that NBP35 has a function in the maturation of FeS proteins that is conserved in plants, and is closely allied to the function of DRE2.
Collapse
Affiliation(s)
- Emma L. Bastow
- John Innes CentreNorwichNR4 7UHUK
- University of East AngliaNorwichNR4 7TJUK
| | - Katrine Bych
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Present address: Glycom A/SDK – 2800 Kgs.LyngbyDenmark
| | | | | | | |
Collapse
|
11
|
Liu F, Yang H, Wang L, Yu B. Biosynthesis of the High-Value Plant Secondary Product Benzyl Isothiocyanate via Functional Expression of Multiple Heterologous Enzymes in Escherichia coli. ACS Synth Biol 2016; 5:1557-1565. [PMID: 27389525 DOI: 10.1021/acssynbio.6b00143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plants produce a wide variety of secondary metabolites that are highly nutraceutically and pharmaceutically important. Isothiocyanates, which are found abundantly in cruciferous vegetables, are believed to reduce the risk of several types of cancers and cardiovascular diseases. The challenges arising from the structural diversity and complex chemistry of these compounds have spurred great interest in producing them in large amounts in microbes. In this study, we aimed to synthesize benzyl isothiocyanate in Escherichia coli via gene mining, pathway engineering, and protein modification. Two chimeric cytochrome P450 enzymes were constructed and functionally expressed in E. coli. The E. coli cystathionine β-lyase was used to replace the plant-derived C-S lyase; its active form cannot be expressed in E. coli. Suitable desulfoglucosinolate:PAPS sulfotransferase from Arabidopsis thaliana ecotype Col-0 and myrosinase from Brevicoryne brassicae were successfully mined from the database. Biosynthesis of benzyl isothiocyanate by the combined expression of the optimized enzymes in vitro was confirmed by gas chromatography-mass spectrometry analysis. This study provided a proof of concept for the production of benzyl isothiocyanate by microbially produced enzymes and, importantly, laid the groundwork for further metabolic engineering of microbial cells for the production of isothiocyanates.
Collapse
Affiliation(s)
- Feixia Liu
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Yang
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Wang
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Zhang C. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Genome Integr 2015; 6:2. [PMID: 27330736 PMCID: PMC4911903 DOI: 10.4103/2041-9414.155953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
13
|
Sundin L, Vanholme R, Geerinck J, Goeminne G, Höfer R, Kim H, Ralph J, Boerjan W. Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification. PLANT PHYSIOLOGY 2014; 166:1956-71. [PMID: 25315601 PMCID: PMC4256863 DOI: 10.1104/pp.114.245548] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/08/2014] [Indexed: 05/17/2023]
Abstract
ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production.
Collapse
Affiliation(s)
- Lisa Sundin
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Jan Geerinck
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Geert Goeminne
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - René Höfer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Hoon Kim
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - John Ralph
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| |
Collapse
|
14
|
Epigenetic role for the conserved Fe-S cluster biogenesis protein AtDRE2 in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2014; 111:13565-70. [PMID: 25197096 DOI: 10.1073/pnas.1404058111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
On fertilization in Arabidopsis thaliana, one maternal gamete, the central cell, forms a placenta-like tissue, the endosperm. The DNA glycosylase DEMETER (DME) excises 5-methylcytosine via the base excision repair pathway in the central cell before fertilization, creating patterns of asymmetric DNA methylation and maternal gene expression across DNA replications in the endosperm lineage (EDL). Active DNA demethylation in the central cell is essential for transcriptional activity in the EDL of a set of genes, including FLOWERING WAGENINGEN (FWA). A DME-binding motif for iron-sulfur (Fe-S) cluster cofactors is indispensable for its catalytic activity. We used an FWA-GFP reporter to find mutants defective in maternal activation of FWA-GFP in the EDL, and isolated an allele of the yeast Dre2/human antiapoptotic factor CIAPIN1 homolog, encoding an enzyme previously implicated in the cytosolic Fe-S biogenesis pathway (CIA), which we named atdre2-2. We found that AtDRE2 acts in the central cell to regulate genes maternally activated in the EDL by DME. Furthermore, the FWA-GFP expression defect in atdre2-2 was partially suppressed genetically by a mutation in the maintenance DNA methyltransferase MET1; the DNA methylation levels at four DME targets increased in atdre2-2 seeds relative to WT. Although atdre2-2 shares zygotic seed defects with CIA mutants, it also uniquely manifests dme phenotypic hallmarks. These results demonstrate a previously unidentified epigenetic function of AtDRE2 that may be separate from the CIA pathway.
Collapse
|
15
|
Abstract
Iron is an essential element for all photosynthetic organisms. The biological use of this transition metal is as an enzyme cofactor, predominantly in electron transfer and catalysis. The main forms of iron cofactor are, in order of decreasing abundance, iron-sulfur clusters, heme, and di-iron or mononuclear iron, with a wide functional range. In plants and algae, iron-sulfur cluster assembly pathways of bacterial origin are localized in the mitochondria and plastids, where there is a high demand for these cofactors. A third iron-sulfur cluster assembly pathway is present in the cytosol that depends on the mitochondria but not on plastid assembly proteins. The biosynthesis of heme takes place mainly in the plastids. The importance of iron-sulfur cofactors beyond photosynthesis and respiration has become evident with recent discoveries of novel iron-sulfur proteins involved in epigenetics and DNA metabolism. In addition, increased understanding of intracellular iron trafficking is opening up research into how iron is distributed between iron cofactor assembly pathways and how this distribution is regulated.
Collapse
Affiliation(s)
- Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| | | |
Collapse
|
16
|
Nakamura M, Buzas DM, Kato A, Fujita M, Kurata N, Kinoshita T. The role of Arabidopsis thaliana NAR1, a cytosolic iron-sulfur cluster assembly component, in gametophytic gene expression and oxidative stress responses in vegetative tissue. THE NEW PHYTOLOGIST 2013; 199:925-935. [PMID: 23734982 DOI: 10.1111/nph.12350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Iron-sulfur proteins have iron-sulfur clusters as a prosthetic group and are responsible for various cellular processes, including general transcriptional regulation, photosynthesis and respiration. The cytosolic iron-sulfur assembly (CIA) pathway of yeast has been shown to be responsible for regulation of iron-sulfur cluster assembly in both the cytosol and the nucleus. However, little is known about the roles of this pathway in multicellular organisms. In a forward genetic screen, we identified an Arabidopsis thaliana mutant with impaired expression of the endosperm-specific gene Flowering Wageningen (FWA). To characterize this mutant, we carried out detailed phenotypic and genetic analyses during reproductive and vegetative development. The mutation affects NAR1, which encodes a homolog of a yeast CIA pathway component. Comparison of embryo development in nar1-3 and other A. thaliana mutants affected in the CIA pathway showed that the embryos aborted at a similar stage, suggesting that this pathway potentially functions in early seed development. Transcriptome analysis of homozygous viable nar1-4 seedlings showed transcriptional repression of a subset of genes involved in 'iron ion transport' and 'response to nitrate'. nar1-4 also exhibited resistance to the herbicide paraquat. Our results indicate that A. thaliana NAR1 has various functions including transcriptional regulation in gametophytes and abiotic stress responses in vegetative tissues.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Plant Reproductive Genetics Group, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Diana Mihaela Buzas
- Plant Reproductive Genetics Group, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Akira Kato
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Tetsu Kinoshita
- Plant Reproductive Genetics Group, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
17
|
Bernard DG, Netz DJA, Lagny TJ, Pierik AJ, Balk J. Requirements of the cytosolic iron-sulfur cluster assembly pathway in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120259. [PMID: 23754812 DOI: 10.1098/rstb.2012.0259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The assembly of iron-sulfur (Fe-S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe-S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe-4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe-S cluster assembly pathway, dre2, with the Arabidopsis homologue AtDRE2, but only when expressed together with the diflavin reductase AtTAH18. Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe-S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe-S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids.
Collapse
Affiliation(s)
- Delphine G Bernard
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | | | |
Collapse
|
18
|
Rana S, Lattoo SK, Dhar N, Razdan S, Bhat WW, Dhar RS, Vishwakarma R. NADPH-cytochrome P450 reductase: molecular cloning and functional characterization of two paralogs from Withania somnifera (L.) dunal. PLoS One 2013; 8:e57068. [PMID: 23437311 PMCID: PMC3578826 DOI: 10.1371/journal.pone.0057068] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/17/2013] [Indexed: 02/04/2023] Open
Abstract
Withania somnifera (L.) Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in withanolide biosynthesis. Present investigation so far is the only report of characterization of CPR paralogs from W. somnifera.
Collapse
Affiliation(s)
- Satiander Rana
- Plant Biotechnology, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Surrinder K. Lattoo
- Plant Biotechnology, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Niha Dhar
- Plant Biotechnology, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Sumeer Razdan
- Plant Biotechnology, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Wajid Waheed Bhat
- Plant Biotechnology, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Rekha S. Dhar
- Plant Biotechnology, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Ram Vishwakarma
- Medicinal Chemistry, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| |
Collapse
|
19
|
Couturier J, Touraine B, Briat JF, Gaymard F, Rouhier N. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. FRONTIERS IN PLANT SCIENCE 2013; 4:259. [PMID: 23898337 PMCID: PMC3721309 DOI: 10.3389/fpls.2013.00259] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/25/2013] [Indexed: 05/18/2023]
Abstract
Many metabolic pathways and cellular processes occurring in most sub-cellular compartments depend on the functioning of iron-sulfur (Fe-S) proteins, whose cofactors are assembled through dedicated protein machineries. Recent advances have been made in the knowledge of the functions of individual components through a combination of genetic, biochemical and structural approaches, primarily in prokaryotes and non-plant eukaryotes. Whereas most of the components of these machineries are conserved between kingdoms, their complexity is likely increased in plants owing to the presence of additional assembly proteins and to the existence of expanded families for several assembly proteins. This review focuses on the new actors discovered in the past few years, such as glutaredoxin, BOLA and NEET proteins as well as MIP18, MMS19, TAH18, DRE2 for the cytosolic machinery, which are integrated into a model for the plant Fe-S cluster biogenesis systems. It also discusses a few issues currently subjected to an intense debate such as the role of the mitochondrial frataxin and of glutaredoxins, the functional separation between scaffold, carrier and iron-delivery proteins and the crosstalk existing between different organelles.
Collapse
Affiliation(s)
- Jérémy Couturier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
| | - Brigitte Touraine
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Jean-François Briat
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
- *Correspondence: Nicolas Rouhier, Université de Lorraine, UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, Faculté des Sciences, Bd des aiguillettes, BP 239,54506 Vandoeuvre, France e-mail:
| |
Collapse
|
20
|
Schückel J, Rylott EL, Grogan G, Bruce NC. A gene-fusion approach to enabling plant cytochromes p450 for biocatalysis. Chembiochem 2012; 13:2758-63. [PMID: 23129550 DOI: 10.1002/cbic.201200572] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Indexed: 11/08/2022]
Abstract
Cytochromes P450 from plants have the potential to be valuable catalysts for industrial hydroxylation reactions, but their application is hindered by poor solubility, the lack of suitable expression systems and the requirement of P450s for auxiliary redox-transport proteins for the delivery of reducing equivalents from NAD(P)H. In the interests of enabling useful P450 activity from plants, we have developed a suite of vectors for the expression of plant P450s as non-natural genetic fusions with reductase proteins. First, we have fused the P450 isoflavone synthase (IFS) from Glycine max with the bacterial P450 reductase domain (Rhf-RED) from Rhodococcus sp., by using our LICRED vector developed previously (F. Sabbadin, R. Hyde, A. Robin, E.-M. Hilgarth, M. Delenne, S. Flitsch, N. Turner, G. Grogan, N. C. Bruce, ChemBioChem 2010, 11, 987-994) creating the first active bacterial-plant fusion P450 enzyme. We have then created a complementary vector, ACRyLIC for the fusion of selected plant P450 enzymes to the P450 reductase ATR2 from Arabidopsis thaliana. The applicability of this vector to the creation of active P450 fusion enzymes was demonstrated using both IFS1 and the cinnamate-4-hydroxylase (C4H) from A. thaliana. Overall the fusion vector systems will allow the rapid creation of libraries of plant P450s with the aim of identifying enzyme activities with possible applications in industrial biocatalysis.
Collapse
Affiliation(s)
- Julia Schückel
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, UK
| | | | | | | |
Collapse
|
21
|
Abstract
Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases.
Collapse
Affiliation(s)
- Louise Aigrain
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; E-Mail:
| | - Fataneh Fatemi
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Oriane Frances
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Gilles Truan
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-567048813; Fax: +33-567048814
| |
Collapse
|
22
|
Huang FC, Sung PH, Do YY, Huang PL. Differential expression and functional characterization of the NADPH cytochrome P450 reductase genes from Nothapodytes foetida. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:16-23. [PMID: 22608516 DOI: 10.1016/j.plantsci.2012.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 06/01/2023]
Abstract
Three unique NADPH:cytochrome P450 reductase (CPR) cDNAs have been isolated from a Nothapodytes foetida cDNA library and characterized. Phylogenetic analysis showed that NfCPR1 is a class I isoform, whereas NfCPR2 and NfCPR3 are class II isoforms. Both NfCPR1 and NfCPR2 transcripts were detected in all examined organs of N. foetida, with the highest level for NfCPR1 being in the seeds whereas for NfCPR2 predominantly in leaves. In contrast, NfCPR3 transcripts were only detected in flower buds and seeds at almost equal expression levels. Moreover, NfCPR1 expression did not change during wounding treatment, whereas NfCPR2 and NfCPR3 were induced in response to wounding. Microsomes isolated from insect cells co-expressing NfCPR2 and cytochrome P450 enzyme geraniol 10-hydroxylase (G10H) enhanced the production of eriodictyol from naringenin approximately 11-fold relative to control G10H-only insect cells, indicating the supportive role of NfCPR2 for G10H activity in insect cells.
Collapse
Affiliation(s)
- Fong-Chin Huang
- Department of Horticulture and Landscape Architecture, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan, ROC
| | | | | | | |
Collapse
|
23
|
Wang H, Wang S, Lu Y, Alvarez S, Hicks LM, Ge X, Xia Y. Proteomic analysis of early-responsive redox-sensitive proteins in Arabidopsis. J Proteome Res 2011; 11:412-24. [PMID: 22050424 PMCID: PMC3253204 DOI: 10.1021/pr200918f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Regulation of protein function through oxidative modification has emerged as an important molecular mechanism modulating various biological processes. Here, we report a proteomic study of redox-sensitive proteins in Arabidopsis cells subjected to H2O2 treatment. Four gel-based approaches were employed, leading to the identification of four partially overlapping sets of proteins whose thiols underwent oxidative modification in the H2O2-treated cells. Using a method based on differential labeling of thiols followed by immunoprecipitation and Western blotting, five of the six selected putative redox-sensitive proteins were confirmed to undergo oxidative modification following the oxidant treatment in Arabidopsis leaves. Another method, which is based on differential labeling of thiols coupled with protein electrophoretic mobility shift assay, was adopted to reveal that one of the H2O2-sensitive proteins, a homologue of cytokine-induced apoptosis inhibitor 1 (AtCIAPIN1), also underwent oxidative modification in Arabidopsis leaves after treatments with salicylic acid or the peptide elicitor flg22, two inducers of defense signaling. The redox-sensitive proteins identified from the proteomic study are involved in various biological processes such as metabolism, the antioxidant system, protein biosynthesis and processing, and cytoskeleton organization. The identification of novel redox-sensitive proteins will be helpful toward understanding of cellular components or pathways previously unknown to be redox-regulated. Through four redox proteomic methods, we identified a number of Arabidopsis proteins that underwent rapid oxidative modifications in Arabidopsis cells upon H2O2 treatment. We also established two methods for detailed analysis of individual putative redox-sensitive proteins. The identification of the oxidant-sensitive proteins would be greatly helpful toward in-depth characterization of other signaling pathways previously unknown to be redox-regulated.
Collapse
Affiliation(s)
- Hai Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Balk J, Pilon M. Ancient and essential: the assembly of iron-sulfur clusters in plants. TRENDS IN PLANT SCIENCE 2011; 16:218-26. [PMID: 21257336 DOI: 10.1016/j.tplants.2010.12.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 05/18/2023]
Abstract
In plants iron-sulfur (Fe-S) proteins are found in the plastids, mitochondria, cytosol and nucleus, where they are essential for numerous physiological and developmental processes. Recent mutant studies, mostly in Arabidopsis thaliana, have identified three pathways for the assembly of Fe-S clusters. The plastids harbor the SUF (sulfur mobilization) pathway and operate independently, whereas cluster assembly in the cytosol depends on the emerging CIA (cytosolic iron-sulfur cluster assembly) pathway and mitochondria. The latter organelles use the ISC (iron-sulfur cluster) assembly pathway. In all three pathways the assembly process can be divided into a first stage where S and Fe are combined on a scaffold protein, and a second stage in which the Fe-S cluster is transferred to a target protein. The second stage might involve different carrier proteins with specialized functions.
Collapse
Affiliation(s)
- Janneke Balk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | |
Collapse
|