1
|
Guo P, Zhou J, Su Y, Wang W, Hua H, Zhao P, Wang Y, Kang S, Liu M. Altered functional connectivity of the default mode network in non-arteritic anterior ischaemic optic neuropathy. Brain Commun 2024; 6:fcae186. [PMID: 38873004 PMCID: PMC11170661 DOI: 10.1093/braincomms/fcae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
The functional connectivity of the default mode network is important in understanding the neuro-pathophysiological abnormalities in patients with non-arteritic anterior ischaemic optic neuropathy. Independent component analysis can effectively determine within and between network connectivity of different brain components. Therefore, in order to explore the association between the default mode network and other brain regions, we utilized independent component analysis to investigate the alteration of functional connectivity of the default mode network. Thirty-one patients with non-arteritic anterior ischaemic optic neuropathy and 31 healthy controls, matched for age, sex and years of education, were recruited. For patients and healthy controls, functional connectivity within and between the default mode network and other brain regions were evaluated by independent component analysis. Compared with healthy controls, patients with non-arteritic anterior ischaemic optic neuropathy showed reduced functional connectivity within the default mode network in the right cerebellar tonsil and left cerebellum posterior lobe and increased functional connectivity in the left inferior temporal and right middle frontal gyri. Furthermore, patients with non-arteritic anterior ischaemic optic neuropathy showed reduced functional connectivity between the default mode network and other brain regions in the left cerebellar tonsil and increased functional connectivity in the right putamen, left thalamus, right middle temporal and left middle frontal gyri. In conclusion, negative correlations between several clinical parameters and functional connectivity of the default mode network were observed. The study contributes to understanding the mechanism of functional reorganization in non-arteritic anterior ischaemic optic neuropathy.
Collapse
Affiliation(s)
- Pengde Guo
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Jian Zhou
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Yan Su
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Weixin Wang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Haiqin Hua
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Pengbo Zhao
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Yan Wang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Shaohong Kang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Ming Liu
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| |
Collapse
|
2
|
Shimochi S, Ihalainen J, Parikka V, Kudomi N, Tolvanen T, Hietanen A, Kokkomäki E, Johansson S, Tsuji M, Kanaya S, Yatkin E, Grönroos TJ, Iida H. Small animal PET with spontaneous inhalation of 15O-labelled oxygen gases: Longitudinal assessment of cerebral oxygen metabolism in a rat model of neonatal hypoxic-ischaemic encephalopathy. J Cereb Blood Flow Metab 2024; 44:1024-1038. [PMID: 38112197 PMCID: PMC11318403 DOI: 10.1177/0271678x231220691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Perinatal hypoxic-ischaemic encephalopathy (HIE) is the leading cause of irreversible brain damage resulting in serious neurological dysfunction among neonates. We evaluated the feasibility of positron emission tomography (PET) methodology with 15O-labelled gases without intravenous or tracheal cannulation for assessing temporal changes in cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) in a neonatal HIE rat model. Sequential PET scans with spontaneous inhalation of 15O-gases mixed with isoflurane were performed over 14 days after the hypoxic-ischaemic insult in HIE pups and age-matched controls. CBF and CMRO2 in the injured hemispheres of HIE pups remarkably decreased 2 days after the insult, gradually recovering over 14 days in line with their increase found in healthy controls according to their natural maturation process. The magnitude of hemispheric tissue loss histologically measured after the last PET scan was significantly correlated with the decreases in CBF and CMRO2.This fully non-invasive imaging strategy may be useful for monitoring damage progression in neonatal HIE and for evaluating potential therapeutic outcomes.
Collapse
Affiliation(s)
- Saeka Shimochi
- Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Nara Institute of Science and Technology, Ikoma City, Japan
| | - Jukka Ihalainen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Vilhelmiina Parikka
- Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Nobuyuki Kudomi
- Department of Medical Physics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tuula Tolvanen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Ari Hietanen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Esa Kokkomäki
- Turku PET Centre, University of Turku, Turku, Finland
| | - Stefan Johansson
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Masahiro Tsuji
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | | | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Hidehiro Iida
- Turku PET Centre, University of Turku, Turku, Finland
- Nara Institute of Science and Technology, Ikoma City, Japan
| |
Collapse
|
3
|
Cheng PC, Cheng RC, Huang RC. Glutamate-Evoked Ca2+ Responses in the Rat Suprachiasmatic Nucleus: Involvement of Na+/K+-ATPase and Na+/Ca2+-Exchanger. Int J Mol Sci 2023; 24:ijms24076444. [PMID: 37047417 PMCID: PMC10095050 DOI: 10.3390/ijms24076444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Glutamate mediates photic entrainment of the central clock in the suprachiasmatic nucleus (SCN) by evoking intracellular Ca2+ signaling mechanisms. However, the detailed mechanisms of glutamate-evoked Ca2+ signals are not entirely clear. Here, we used a ratiometric Ca2+ and Na+ imaging technique to investigate glutamate-evoked Ca2+ responses. The comparison of Ca2+ responses to glutamate (100 μM) and high (20 mM) K+ solution indicated slower Ca2+ clearance, along with rebound Ca2+ suppression for glutamate-evoked Ca2+ transients. Increasing the length of exposure time in glutamate, but not in 20 mM K+, slowed Ca2+ clearance and increased rebound Ca2+ suppression, a result correlated with glutamate-induced Na+ loads. The rebound Ca2+ suppression was abolished by ouabain, monensin, Na+-free solution, or nimodipine, suggesting an origin of activated Na+/K+-ATPase (NKA) by glutamate-induced Na+ loads. Ouabain or Na+-free solution also slowed Ca2+ clearance, apparently by retarding Na+/Ca2+-exchanger (NCX)-mediated Ca2+ extrusion. Together, our results indicated the involvement of glutamate-induced Na+ loads, NKA, and NCX in shaping the Ca2+ response to glutamate. Nevertheless, in the absence of external Na+ (NMDG substituted), Ca2+ clearance was still slower for the Ca2+ response to glutamate than for 20 mM K+, suggesting participation of additional Ca2+ handlers to the slower Ca2+ clearance under this condition.
Collapse
|
4
|
Barros LF, Ruminot I, Sotelo-Hitschfeld T, Lerchundi R, Fernández-Moncada I. Metabolic Recruitment in Brain Tissue. Annu Rev Physiol 2023; 85:115-135. [PMID: 36270291 DOI: 10.1146/annurev-physiol-021422-091035] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Information processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active neurons harvest resources from their surroundings. The primary event is the neuronal release of K+ that mirrors workload. Astrocytes sense K+ in exquisite fashion thanks to their unique coexpression of NBCe1 and α2β2 Na+/K+ ATPase, and within seconds switch to Crabtree metabolism, involving GLUT1, aerobic glycolysis, transient suppression of mitochondrial respiration, and lactate export. The lactate surge serves as a secondary recruiter by inhibiting glucose consumption in distant cells. Additional recruiters are glutamate, nitric oxide, and ammonium, which signal over different spatiotemporal domains. The net outcome of these events is that more glucose, lactate, and oxygen are made available. Metabolic recruitment works alongside neurovascular coupling and various averaging strategies to support the inordinate dynamic range of individual neurons.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - T Sotelo-Hitschfeld
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - R Lerchundi
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, Fontenay-aux-Roses, France
| | - I Fernández-Moncada
- NeuroCentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Gallic acid abates cadmium chloride toxicity via alteration of neurotransmitters and modulation of inflammatory markers in Wistar rats. Sci Rep 2023; 13:1577. [PMID: 36709339 PMCID: PMC9884205 DOI: 10.1038/s41598-023-28893-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 01/29/2023] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that disrupts membranes and causes oxidative stress in the brain. The study aimed to investigate the neuroprotective effect of gallic acid on oxidative damage in the brains of Wistar rats exposed to cadmium chloride (CdCl2). Male Wistar rats were divided into four groups of five rats each. Group 1 was administered distilled water only throughout the study. Throughout the study, Group 2 received CdCl2 alone (5 mg/kg b.w./day), Group 3 received gallic acid (20 mg/kg b.w./day), and Group 4 received CdCl2 + gallic acid (20 mg/kg). Treatments were oral with distilled water as a vehicle. The study lasted 21 days. In the brain, the activities of cholinesterase and antioxidant enzymes were evaluated, as well as the levels of reduced glutathione, malondialdehyde, neurotransmitters, Na+/K+ ATPase, myeloperoxidase activity, nitric oxide, and interleukin-6. CdCl2-induced brain impairments in experimental animals and gallic acid prevents the following CdCl2-induced activities: inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), elevated neurotransmitters (serotonin and dopamine), decreased antioxidant enzymes (superoxide dismutase, catalase), decreased glutathione, Na+/K+ ATPases, and increased MDA and neuroinflammatory markers (myeloperoxidase (MPO), nitric oxide, and interleukin-6 in the brain of experimental rats exposed to CdCl2 (p < 0.05). Taken together, the neuroprotective effects of gallic acid on CdCl2-induced toxicity in the brains of rats suggest its potent antioxidant and neurotherapeutic properties.
Collapse
|
6
|
Bonvento G, Bolaños JP. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab 2021; 33:1546-1564. [PMID: 34348099 DOI: 10.1016/j.cmet.2021.07.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/11/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
The brain has almost no energy reserve, but its activity coordinates organismal function, a burden that requires precise coupling between neurotransmission and energy metabolism. Deciphering how the brain accomplishes this complex task is crucial to understand central facets of human physiology and disease mechanisms. Each type of neural cell displays a peculiar metabolic signature, forcing the intercellular exchange of metabolites that serve as both energy precursors and paracrine signals. The paradigm of this biological feature is the astrocyte-neuron couple, in which the glycolytic metabolism of astrocytes contrasts with the mitochondrial oxidative activity of neurons. Astrocytes generate abundant mitochondrial reactive oxygen species and shuttle to neurons glycolytically derived metabolites, such as L-lactate and L-serine, which sustain energy needs, conserve redox status, and modulate neurotransmitter-receptor activity. Conversely, early disruption of this metabolic cooperation may contribute to the initiation or progression of several neurological diseases, thus requiring innovative therapies to preserve brain energetics.
Collapse
Affiliation(s)
- Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Lin HY, Huang RC. Glycolytic metabolism and activation of Na + pumping contribute to extracellular acidification in the central clock of the suprachiasmatic nucleus: Differential glucose sensitivity and utilization between oxidative and non-oxidative glycolytic pathways. Biomed J 2021; 45:143-154. [PMID: 35341719 PMCID: PMC9133309 DOI: 10.1016/j.bj.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The central clock of the suprachiasmatic nucleus (SCN) controls the metabolism of glucose and is sensitive to glucose shortage. However, it is only beginning to be understood how metabolic signals such as glucose availability regulate the SCN physiology. We previously showed that the ATP-sensitive K+ channel plays a glucose-sensing role in regulating SCN neuronal firing at times of glucose shortage. Nevertheless, it is unknown whether the energy-demanding Na+/K+-ATPase (NKA) is also sensitive to glucose availability. Furthermore, we recently showed that the metabolically active SCN constantly extrudes H+ to acidify extracellular pH (pHe). This study investigated whether the standing acidification is associated with Na+ pumping activity, energy metabolism, and glucose utilization, and whether glycolysis- and mitochondria-fueled NKAs may be differentially sensitive to glucose shortage. METHODS Double-barreled pH-selective microelectrodes were used to determine the pHe in the SCN in hypothalamic slices. RESULTS NKA inhibition with K+-free (0-K+) solution rapidly and reversibly alkalinized the pHe, an effect abolished by ouabain. Mitochondrial inhibition with cyanide acidified the pHe but did not inhibit 0-K+-induced alkalinization. Glycolytic inhibition with iodoacetate alkalinized the pHe, completely blocked cyanide-induced acidification, and nearly completely blocked 0-K+-induced alkalinization. The results indicate that glycolytic metabolism and activation of Na+ pumping contribute to the standing acidification. Glucoprivation also alkalinized the pHe, nearly completely eliminated cyanide-induced acidification, but only partially reduced 0-K+-induced alkalinization. In contrast, hypoglycemia preferentially and partially blocked cyanide-induced acidification. The result indicates sensitivity to glucose shortage for the mitochondria-associated oxidative glycolytic pathway. CONCLUSION Glycolytic metabolism and activation of glycolysis-fueled NKA Na+ pumping activity contribute to the standing acidification in the SCN. Furthermore, the oxidative and non-oxidative glycolytic pathways differ in their glucose sensitivity and utilization, with the oxidative glycolytic pathway susceptible to glucose shortage, and the non-oxidative glycolytic pathway able to maintain Na+ pumping even in glucoprivation.
Collapse
Affiliation(s)
- Hsin-Yi Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rong-Chi Huang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Nadeau SE. Neural Population Dynamics and Cognitive Function. Front Hum Neurosci 2020; 14:50. [PMID: 32226366 PMCID: PMC7080985 DOI: 10.3389/fnhum.2020.00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/04/2020] [Indexed: 12/27/2022] Open
Abstract
Representations in the brain are encoded as patterns of activity of large populations of neurons. The science of population encoded representations, also known as parallel distributed processing (PDP), achieves neurological verisimilitude and has been able to account for a large number of cognitive phenomena in normal people, including reaction times (and reading latencies), stimulus recognition, the effect of stimulus salience on attention, perceptual invariance, simultaneous egocentric and allocentric visual processing, top-down/bottom-up processing, language errors, the effect of statistical regularities of experience, frequency, and age of acquisition, instantiation of rules and symbols, content addressable memory and the capacity for pattern completion, preservation of function in the face of noisy or distorted input, inference, parallel constraint satisfaction, the binding problem and gamma coherence, principles of hippocampal function, the location of knowledge in the brain, limitations in the scope and depth of knowledge acquired through experience, and Piagetian stages of cognitive development. PDP studies have been able to provide a coherent account for impairment in a variety of language functions resulting from stroke or dementia in a large number of languages and the phenomenon of graceful degradation observed in such studies. They have also made important contributions to our understanding of attention (including hemispatial neglect), emotional function, executive function, motor planning, visual processing, decision making, and neuroeconomics. The relationship of neural network population dynamics to electroencephalographic rhythms is starting to emerge. Nevertheless, PDP approaches have scarcely penetrated major areas of study of cognition, including neuropsychology and cognitive neuropsychology, as well as much of cognitive psychology. This article attempts to provide an overview of PDP principles and applications that addresses a broader audience.
Collapse
Affiliation(s)
- Stephen E. Nadeau
- Research Service and the Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Dopamine Evokes a Trace Amine Receptor-dependent Inward Current that is Regulated by AMP Kinase in Substantia Nigra Dopamine Neurons. Neuroscience 2019; 427:77-91. [PMID: 31883822 DOI: 10.1016/j.neuroscience.2019.11.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
We reported recently that activators of AMP-activated protein kinase (AMPK) slow the rundown of current evoked by the D2 autoreceptor agonist quinpirole in rat substantia nigra compacta (SNC) dopamine neurons. The present study examined the effect of AMPK on current generated by dopamine, which unlike quinpirole, is a substrate for the dopamine transporter (DAT). Using whole-cell patch-clamp, we constructed current-voltage (I-V) plots while superfusing brain slices with dopamine (100 μM) for 25 min. Two minutes after starting superfusion, dopamine evoked a peak current with an average slope conductance of 0.97 nS and an estimated reversal potential (Erev) of -113 mV, which is near that expected for K+. But after 10 min of superfusion, dopamine-evoked currents had shifted to more depolarized values with a slope conductance of 0.64 nS and an Erev of -83 mV. This inward shift in current was completely blocked by the DAT inhibitor GBR12935. However, an AMPK blocking agent (dorsomorphin) permitted the emergence of inward current despite the continued presence of the DAT inhibitor. When D2 autoreceptors were blocked by sulpiride, I-V plots showed that dopamine evoked an inward current with an estimated slope conductance of 0.45 nS with an Erev of -57 mV. Moreover, this inward current was completely blocked by the trace amine-associated receptor 1 (TAAR1) antagonist EPPTB. These results suggest that dopamine activates a TAAR1-dependent non-selective cation current that is regulated by AMPK.
Collapse
|
10
|
Mitochondrial respiratory chain inhibition and Na +K +ATPase dysfunction are determinant factors modulating the toxicity of nickel in the brain of indian catfish Clarias batrachus L. Interdiscip Toxicol 2019; 11:306-315. [PMID: 31762682 PMCID: PMC6853015 DOI: 10.2478/intox-2018-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
Nickel is a potential neurotoxic pollutant inflicting damage in living organisms, including fish, mainly through oxidative stress. Previous studies have demonstrated the impact of nickel toxicity on mitochondrial function, but there remain lacunae on the damage inflicted at mitochondrial respiratory level. Deficient mitochondrial function usually affects the activities of important adenosinetriphosphatases responsible for the maintenance of normal neuronal function, namely Na+K+ATPase, as explored in our study. Previous reports demonstrated the dysfunction of this enzyme upon nickel exposure but the contributing factors for the inhibition of this enzyme remained unexplored. The main purpose of this study was to elucidate the impact of nickel neurotoxicity on mitochondrial respiratory complexes and Na+K+ATPase in the piscine brain and to determine the contributing factors that had an impact on the same. Adult Clarias batrachus were exposed to nickel treated water at 10% and 20% of the 96 h LC50 value (41 mg.l–1) respectively and sampled on 20, 40 and 60 days. Exposure of fish brain to nickel led to partial inhibition of complex IV of mitochondrial respiratory chain, however, the activities of complex I, II and III remained unaltered. This partial inhibition of mitochondrial respiratory chain might have been sufficient to lower mitochondrial energy production in mitochondria that contributed to the partial dysfunction of Na+K+ATPase. Besides energy depletion other contributing factors were involved in the dysfunction of this enzyme, like loss of thiol groups for enzyme activity and lipid peroxidation-derived end products that might have induced conformational and functional changes. However, providing direct evidence for such conformational and functional changes of Na+K+ATPase was beyond the scope of the present study. In addition, immunoblotting results also showed a decrease in Na+K+ATPase protein expression highlighting the impact of nickel neurotoxicity on the expression of the enzyme itself. The implication of the inhibition of mitochondrial respiration and Na+K+ATPase dysfunction was the neuronal death as evidenced by enhanced caspase-3 and caspase-9 activities. Thus, this study established the deleterious impact of nickel neurotoxicity on mitochondrial functions in the piscine brain and identified probable contributing factors that can act concurrently in the inhibition of Na+K+ATPase. This study also provided a vital clue about the specific areas that the therapeutic agents should target to counter nickel neurotoxicity.
Collapse
|
11
|
Lamtai M, Chaibat J, Ouakki S, Zghari O, Mesfioui A, El Hessni A, Rifi EH, Marmouzi I, Essamri A, Ouichou A. Effect of Chronic Administration of Nickel on Affective and Cognitive Behavior in Male and Female Rats: Possible Implication of Oxidative Stress Pathway. Brain Sci 2018; 8:brainsci8080141. [PMID: 30065183 PMCID: PMC6119950 DOI: 10.3390/brainsci8080141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/24/2023] Open
Abstract
Nickel (Ni) toxicity has been reported to produce biochemical and behavioral dysfunction. The present study was undertaken to examine whether Ni chronic administration can induce alterations of affective and cognitive behavior and oxidative stress in male and female rats. Twenty-four rats, for each gender, divided into control and three test groups (n = 6), were injected intraperitoneally with saline (0.9% NaCl) or NiCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After treatment period, animals were tested in the open-field, elevated plus maze tests for anxiety-like behavior, and forced swimming test for depression-like behavior. The Morris Water Maze was used to evaluate the spatial learning and memory. The hippocampus of each animal was taken for biochemical examination. The results showed that Ni administration dose dependently increased anxiety-like behavior in both tests. A significant increase in depression-like symptoms was also exhibited by Ni treated rats. In the Morris Water Maze test, the spatial learning and memory were significantly impaired just in males treated with 1 mg/kg of Ni. With regard to biochemical analysis, activity of catalase (CAT) and superoxide dismutase (SOD) were significantly decreased, while the levels of nitric oxide (NO) and lipid peroxidation (LPO) in the hippocampus were significantly increased in the Ni-treated groups. Consequently, chronic Ni administration induced behavioral and biochemical dysfunctions.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Jihane Chaibat
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Sihame Ouakki
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Oussama Zghari
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Abdelhalem Mesfioui
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Aboubaker El Hessni
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - El-Housseine Rifi
- Laboratory of Synthesis Organic and Extraction Processes, Department of Chemistry, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médecine et de Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - Azzouz Essamri
- Laboratory of Agro-Resources and Process Engineering, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| | - Ali Ouichou
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofail, Kenitra 14000, Morocco.
| |
Collapse
|
12
|
Homocysteine Induces Glial Reactivity in Adult Rat Astrocyte Cultures. Mol Neurobiol 2017; 55:1966-1976. [PMID: 28255907 DOI: 10.1007/s12035-017-0463-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 02/08/2023]
Abstract
Astrocytes are dynamic glial cells associated to neurotransmitter systems, metabolic functions, antioxidant defense, and inflammatory response, maintaining the brain homeostasis. Elevated concentrations of homocysteine (Hcy) are involved in the pathogenesis of age-related neurodegenerative disorders, such as Parkinson and Alzheimer diseases. In line with this, our hypothesis was that Hcy could promote glial reactivity in a model of cortical primary astrocyte cultures from adult Wistar rats. Thus, cortical astrocytes were incubated with different concentrations of Hcy (10, 30, and 100 μM) during 24 h. After the treatment, we analyzed cell viability, morphological parameters, antioxidant defenses, and inflammatory response. Hcy did not induce any alteration in cell viability; however, it was able to induce cytoskeleton rearrangement. The treatment with Hcy also promoted a significant decrease in the activities of Na+, K+ ATPase, superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as in the glutathione (GSH) content. Additionally, Hcy induced an increase in the pro-inflammatory cytokine release. In an attempt to elucidate the putative mechanisms involved in the Hcy-induced glial reactivity, we measured the nuclear factor kappa B (NFκB) transcriptional activity and heme oxygenase 1 (HO-1) expression, which were activated and inhibited by Hcy, respectively. In summary, our findings provide important evidences that Hcy modulates critical astrocyte parameters from adult rats, which might be associated to the aging process.
Collapse
|
13
|
Shagirtha K, Bashir N, MiltonPrabu S. Neuroprotective efficacy of hesperetin against cadmium induced oxidative stress in the brain of rats. Toxicol Ind Health 2016; 33:454-468. [PMID: 27803291 DOI: 10.1177/0748233716665301] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study was designed to investigate the neuroprotective effect of hesperetin (Hp) against cadmium (Cd)-induced neurotoxicity in rats. Cadmium (3 mg/kg body weight (b.w.), subcutaneous) administration for 3 weeks demonstrated neurotoxicity in rats by the decreased activity of acetylcholinesterase in the brain. The oxidative stress markers (thiobarbituric acid reactive substances and protein carbonyls) were significantly increased with decreased enzymatic (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase) and non-enzymatic antioxidants (reduced glutathione, total sulphydryl groups and vitamin C). The proteolytic and membrane-bound enzymes (Na+ K+-ATPase, Mg2+-ATPase and Ca2+-ATPase) were also decreased with increased apoptotic markers (Bcl2 Associated X Protein (Bax), cytochrome C, caspase 3 and 9) and decreased anti-apoptotic marker (B-cell lymphoma 2 (Bcl2)) in the brain of Cd-treated rats. Moreover, Cd administration significantly decreased the mitochondrial electron transport chain complexes (I, II, III and IV) in the brain of rats. Preadministration of Hp (40 mg/kg b.w., oral) significantly attenuated the Cd-induced oxidative stress and mitochondrial dysfunction, restored the antioxidant and membrane-bound enzyme activities and decreased apoptosis in the brain of rats.
Collapse
Affiliation(s)
- Kalist Shagirtha
- 1 Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Nazima Bashir
- 2 Department of Zoology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Selvaraj MiltonPrabu
- 2 Department of Zoology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| |
Collapse
|
14
|
Chaâbane M, Ghorbel I, Elwej A, Mnif H, Boudawara T, Chaâbouni SE, Zeghal N, Soudani N. Penconazole alters redox status, cholinergic function, and membrane-bound ATPases in the cerebrum and cerebellum of adult rats. Hum Exp Toxicol 2016; 36:854-866. [DOI: 10.1177/0960327116672911] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pesticides exposure causes usually harmful effects to the environment and human health. The present study aimed to investigate the potential toxic effects of penconazole, a triazole fungicide, on the cerebrum and cerebellum of adult rats. Penconazole was administered intraperitoneally to male Wistar rats at a dose of 67 mg kg−1 body weight every 2 days during 9 days. Results showed that penconazole induced oxidative stress in rat cerebrum and cerebellum tissues. In fact, we have found a significant increase in malondialdehyde, hydrogen peroxide, and advanced oxidation protein product levels, as well as an alteration of the antioxidant status, enzymatic (superoxide dismutase and catalase) and nonenzymatic (glutathione), the cholinergic function, and membrane-bound ATPases (Na+/K+-ATPase and Mg2+-ATPase). Penconazole also provoked histological alterations marked by pyknotic and vacuolated neurons in the cerebrum and apoptosis and edema in the cerebellum Purkinje cells’ layer. Therefore, the use of this neurotoxicant fungicide must be regularly monitored in the environment.
Collapse
Affiliation(s)
- M Chaâbane
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty, University of Sfax, Tunisia
- Enzymes and Bioconversion Unit, National Engineering School of Sfax, University of Sfax, Tunisia
| | - I Ghorbel
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty, University of Sfax, Tunisia
| | - A Elwej
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty, University of Sfax, Tunisia
| | - H Mnif
- Histopathology Laboratory, University of Sfax, CHU Habib Bourguiba, Sfax, Tunisia
| | - T Boudawara
- Histopathology Laboratory, University of Sfax, CHU Habib Bourguiba, Sfax, Tunisia
| | - S Ellouze Chaâbouni
- Enzymes and Bioconversion Unit, National Engineering School of Sfax, University of Sfax, Tunisia
| | - N Zeghal
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty, University of Sfax, Tunisia
| | - N Soudani
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty, University of Sfax, Tunisia
| |
Collapse
|
15
|
Abstract
Various biochemical and physiological processes that undergo maturational changes during human brain development can be now studied in vivo using PET. The distribution of local cerebral glucose utilization shows regional alterations in the first year of life in agreement with behavioral, neurophysiological, and anatomical changes known to occur during development of the infant. Measurement of the absolute rates of glucose utilization with PET reveals that during the major portion of the first decade, the human brain has a higher energy (glucose) demand compared with both the newborn and adult brains. With adolescence, glucose utilization rates decline to reach adult values by age 16-18 years. This nonlinear course of cerebral glucose 'metabolic' maturation is also seen in a number of animal models and coincides with the develop mental course of transient synaptic exuberance associated with enhanced brain plasticity and efficient learn ing. Evidence of brain reorganization detected with PET is discussed in children with unilateral brain injury and early sensory deprivation. NEUROSCIENTIST 5:29-40, 1999
Collapse
Affiliation(s)
- Harry T. Chugani
- Departments of Neurology, Pediatrics, and Radiology
Children's Hospital of Michigan Wayne State University School of Medicine
Detroit, Michigan
| |
Collapse
|
16
|
Long-term characterization of the Flinders Sensitive Line rodent model of human depression: Behavioral and PET evidence of a dysfunctional entorhinal cortex. Behav Brain Res 2016; 300:11-24. [DOI: 10.1016/j.bbr.2015.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
|
17
|
Killing Me Softly: Connotations to Unfolded Protein Response and Oxidative Stress in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1805304. [PMID: 26881014 PMCID: PMC4736771 DOI: 10.1155/2016/1805304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
Abstract
This review is focused on the possible causes of mitochondrial dysfunction in AD, underlying molecular mechanisms of this malfunction, possible causes and known consequences of APP, Aβ, and hyperphosphorylated tau presence in mitochondria, and the contribution of altered lipid metabolism (nonsterol isoprenoids) to pathological processes leading to increased formation and accumulation of the aforementioned hallmarks of AD. Abnormal protein folding and unfolded protein response seem to be the outcomes of impaired glycosylation due to metabolic disturbances in geranylgeraniol intermediary metabolism. The origin and consecutive fate of APP, Aβ, and tau are emphasized on intracellular trafficking apparently influenced by inaccurate posttranslational modifications. We hypothesize that incorrect intracellular processing of APP determines protein translocation to mitochondria in AD. Similarly, without obvious reasons, the passage of Aβ and tau to mitochondria is observed. APP targeted to mitochondria blocks the activity of protein translocase complex resulting in poor import of proteins central to oxidative phosphorylation. Besides, APP, Aβ, and neurofibrillary tangles of tau directly or indirectly impair mitochondrial biochemistry and bioenergetics, with concomitant generation of oxidative/nitrosative stress. Limited protective mechanisms are inadequate to prevent the free radical-mediated lesions. Finally, neuronal loss is observed in AD-affected brains typically by pathologic apoptosis.
Collapse
|
18
|
FDG-PET Contributions to the Pathophysiology of Memory Impairment. Neuropsychol Rev 2015; 25:326-55. [PMID: 26319237 DOI: 10.1007/s11065-015-9297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
19
|
Hao ML, Pan N, Zhang QH, Wang XH. Therapeutic efficacy of chlorogenic acid on cadmium-induced oxidative neuropathy in a murine model. Exp Ther Med 2015; 9:1887-1894. [PMID: 26136910 DOI: 10.3892/etm.2015.2367] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 02/11/2015] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to determine whether chlorogenic acid (CA) is able to modulate cadmium (Cd)-induced oxidative brain damage. Cd-treated rats displayed numerous pathological effects, including the inhibition of acetylcholinesterase, elevated lipid peroxidation, the depletion of enzymatic and non-enzymatic antioxidants, the reduction of membrane-bound ATPase activity, mitochondrial dysfunction and DNA fragmentation. Pretreatment of the rats with CA significantly attenuated these effects. These results lead to the hypothesis that the mechanisms by which CA attenuates the effects of Cd-induced oxidative brain damage include the maintenance of antioxidant homeostasis, inhibition of the membrane effects and the perpetuation of mitochondrial dysfunction. These data support the potential of CA as a beneficial intervention in the prevention of heavy metal poisoning due to Cd exposure.
Collapse
Affiliation(s)
- Mao-Lin Hao
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250031, P.R. China
| | - Ning Pan
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250031, P.R. China
| | - Qing-Hua Zhang
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250031, P.R. China
| | - Xiao-Hong Wang
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
20
|
Abstract
By re-examining the neuronal activity energy model, we show the inadequacies in the current understanding of the energy consumption associated with neuron activity. Specifically, we show computationally that a neuron first absorbs and then consumes energy during firing action potential, and this result cannot be produced from any current neuron models or biological neural networks. Based on this finding, we provide an explanation for the observation that when neurons are excited in the brain, blood flow increases significantly while the incremental oxygen consumption is very small. We can also explain why external stimulation and perception emergence are synchronized. We also show that negative energy presence in neurons at the sub-threshold state is an essential reason that leads to blood flow incremental response time in the brain rather than neural excitation to delay.
Collapse
Affiliation(s)
- Rubin Wang
- Institute for Cognitive Neurodynamics, School of Science, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
- School of Information Science and Engineering, East China University of Science and Technology, Meilong 130, Shanghai 200237, P. R. China
- Research Institute for Electronic Science, Hokkaido University, N12 W7 Kita-ku, Sapporo, Hokkaido, Japan 001-0012, Japan
| | - Ichiro Tsuda
- Research Institute for Electronic Science, Hokkaido University, N12 W7 Kita-ku, Sapporo, Hokkaido, Japan 001-0012, Japan
| | - Zhikang Zhang
- Institute for Cognitive Neurodynamics, School of Science, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
- School of Information Science and Engineering, East China University of Science and Technology, Meilong 130, Shanghai 200237, P. R. China
| |
Collapse
|
21
|
Koromilas C, Liapi C, Zarros A, Tsela S, Zissis KM, Kalafatakis K, Skandali N, Voumvourakis K, Carageorgiou H, Tsakiris S. Inhibition of Na(+),K(+)-ATPase in the hypothalamus, pons and cerebellum of the offspring rat due to experimentally-induced maternal hypothyroidism. J Matern Fetal Neonatal Med 2014; 28:1438-44. [PMID: 25123521 DOI: 10.3109/14767058.2014.955003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurodevelopment is known to be particularly susceptible to thyroid hormone insufficiency and can result in extensive structural and functional deficits within the central nervous system (CNS), subsequently leading to the establishment of cognitive impairment and neuropsychiatric symptomatology. The current study evaluated the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism (as a suggestive multilevel experimental approach to the study of hypothyroidism-induced changes that has been developed and characterized by the authors) on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a CNS region-specific manner. The activities of acetylcholinesterase (AChE), Na(+),K(+)-ATPase and Mg(2+)-ATPase in the offspring hypothalamus, cerebellum and pons were assessed. The study demonstrated that maternal exposure to PTU (0.05% w/v in the drinking water) during the critical periods of neurodevelopment can result in an inhibition of hypothalamic, pontine and cerebellar Na(+),K(+)-ATPase; a major marker of neuronal excitability and metabolic energy production as well as an important regulator of important systems of neurotransmission. On the other hand, no significant changes in the activities of the herein offspring CNS regions' AChE and Mg(2+)-ATPase were recorded. The observed Na(+),K(+)-ATPase inhibition: (i) is region-specific (and non-detectable in whole brain homogenetes), (ii) could constitute a central event in the pathophysiology of clinically-relevant hypothyroidism-associated developmental neurotoxicity, (iii) occurs under all examined experimental schemes, and (iv) certainly deserves further clarification at a molecular and histopathological level. As these findings are analyzed and compared to the available literature, they also underline the need for the adoption and further study of Na(+),K(+)-ATPase activity as a consistent neurochemical marker within the context of a systematic comparative study of existing (and novel) simulation approaches to congenital and early age hypothyroidism.
Collapse
|
22
|
Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci U S A 2014; 111:5385-90. [PMID: 24706914 DOI: 10.1073/pnas.1403576111] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.
Collapse
|
23
|
Contextual fear conditioning in maternal separated rats: the amygdala as a site for alterations. Neurochem Res 2013; 39:384-93. [PMID: 24368626 DOI: 10.1007/s11064-013-1230-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 11/23/2013] [Accepted: 12/13/2013] [Indexed: 12/16/2022]
Abstract
The first 2 weeks of life are a critical period for neural development in rats. Repeated long-term separation from the dam is considered to be one of the most potent stressors to which rat pups can be exposed, and permanently modifies neurobiological and behavioral parameters. Prolonged periods of maternal separation (MS) usually increase stress reactivity during adulthood, and enhance anxiety-like behavior. The aim of this study was to verify the effects of maternal separation during the neonatal period on memory as well as on biochemical parameters (Na(+), K(+)-ATPase and antioxidant enzymes activities) in the amygdala of adult rats. Females and male Wistar rats were subjected to repeated maternal separation (incubator at 32 °C, 3 h/day) during postnatal days 1-10. At 60 days of age, the subjects were exposed to a Contextual fear conditioning task. One week after the behavioral task, animals were sacrificed and the amygdala was dissected for evaluation of Na(+), K(+)-ATPase and antioxidant enzymes activities. Student-t test showed significant MS effect, causing an increase of freezing time in the three exposures to the aversive context in both sexes. Considering biochemical parameters Student-t test showed significant MS effect causing an increase of Na(+), K(+)-ATPase activity in both sexes. On the other hand, no differences were found among the groups on the antioxidant enzymes activities [superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT)] in male rats, but in females, we found a significant MS effect, causing an increase of CAT activity and no differences were found among the groups on SOD and GPx activities. Our results suggest a role of early rearing environment in programming fear learning and memory in adulthood. An early stress experience such as maternal separation may increase activity in the amygdala (as pointed by the increased activity of Na(+), K(+)-ATPase), affecting behaviors related to fear in adulthood, and this effect could be task-specific.
Collapse
|
24
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
25
|
Stolakis V, Tsakiris S, Kalafatakis K, Zarros A, Skandali N, Gkanti V, Kyriakaki A, Liapi C. Developmental neurotoxicity of cadmium on enzyme activities of crucial offspring rat brain regions. Biometals 2013; 26:1013-21. [PMID: 24065572 DOI: 10.1007/s10534-013-9678-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/16/2013] [Indexed: 11/24/2022]
Abstract
Cadmium (Cd) is an environmental contaminant known to exert significant neurotoxic effects on both humans and experimental animals. The aim of this study was to shed more light on the effects of gestational (in utero) and lactational maternal exposure to Cd (50 ppm of Cd as Cd-chloride in the drinking water) on crucial brain enzyme activities in important rat offspring brain regions (frontal cortex, hippocampus, hypothalamus, pons and cerebellum). Our study provides a brain region-specific view of the changes in the activities of three crucial brain enzymes as a result of the developmental neurotoxicity of Cd. Maternal exposure to Cd during both gestation and lactation results into significant changes in the activities of acetylcholinesterase and Na(+),K(+)-ATPase in the frontal cortex and the cerebellum of the offspring rats, as well as in a significant increase in the hippocampal Mg(2+)-ATPase activity. These brain-region-specific findings underline the need for further research in the field of Cd-induced developmental neurotoxicity. Deeper understanding of the mechanisms underlying the neurodevelopmental deficits taking place due to in utero and early age exposure to Cd could shed more light on the causes of its well-established cognitive implications.
Collapse
Affiliation(s)
- Vasileios Stolakis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Villa R, Ferrari F, Gorini A. ATP-ases of synaptic plasma membranes in striatum: Enzymatic systems for synapses functionality by in vivo administration of l-acetylcarnitine in relation to Parkinson’s Disease. Neuroscience 2013; 248:414-26. [DOI: 10.1016/j.neuroscience.2013.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/13/2013] [Indexed: 11/17/2022]
|
27
|
Bimpis A, Papalois A, Tsakiris S, Kalafatakis K, Zarros A, Gkanti V, Skandali N, Al-Humadi H, Kouzelis C, Liapi C. Modulation of crucial adenosinetriphosphatase activities due to U-74389G administration in a porcine model of intracerebral hemorrhage. Metab Brain Dis 2013; 28:439-46. [PMID: 23344690 DOI: 10.1007/s11011-013-9380-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) represents a partially-understood cerebrovascular disease of high incidence, morbidity and mortality. We, herein, report the findings of our study concerning the role of two important adenosinetriphosphatases (ATPases) in a porcine model of spontaneous ICH that we have recently developed (by following recent references as well as previously-established models and techniques), with a focus on the first 4 and 24 h following the lesion's induction, in combination with a study of the effectiveness of the lazaroid antioxidant U-74389G administration. Our study demonstrates that the examined ICH model does not cause a decrease in Na(+),K(+)-ATPase activity (the levels of which are responsible for a very large part of neuronal energy expenditure) in the perihematomal basal ganglia territory, nor a change in the activity of Mg(2+)-ATPase. This is the first report focusing on these crucial ATPases in the experimental setting of ICH and differs from the majority of the findings concerning the behavior of these (crucial for central nervous system cell survival) enzymes under stroke-related ischemic conditions. The administration of U-74389G (an established antioxidant) in this ICH model revealed an injury specific type of behavior, that could be considered as neuroprotective provided that one considers that Na(+),K(+)- and Mg(2+)-ATPase inhibition might in this case diminish the local ATP consumption.
Collapse
Affiliation(s)
- Alexios Bimpis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics. Int J Neuropsychopharmacol 2013; 16:1695-706. [PMID: 23473040 DOI: 10.1017/s1461145713000084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcranial direct current stimulation is an emerging treatment for brain disorders but its mode of action is not well understood. We applied 10 min 1 mA anodal transcranial direct current stimulation (tDCS) inside the bore of a 3 T MRI scanner to the left dorsolateral prefrontal cortex of 13 healthy volunteers (aged 19-28 yr) in a blinded, sham-controlled, cross-over design. Brain bioenergetics were measured from the left temporo-frontal region using 31P magnetic resonance spectroscopy before, during and for 20 min following tDCS. Brain pH rose during tDCS and remained elevated afterwards. Phosphomonoesters were significantly decreased while inorganic phosphate (Pi) also fell. Partial-least squares discriminant analysis of the data revealed two significantly different subject groups: one where phosphocreatine (PCr), ATP and Pi fell along with a larger increase in pH and one where PCr and ATP increased along with a smaller increase in pH and a slower and more sustained decrease in Pi. Group membership was predicted by baseline pH and ATP. We interpreted the effects of tDCS as driving two biochemical processes: cellular consumption of ATP causing hydrolysis of PCr via the creatine kinase reaction driving the increase in pH; synthesis of ATP and PCr by mitochondria with concomitant drop in Pi and phosphomonoester levels.
Collapse
|
29
|
Craiu D. What is special about the adolescent (JME) brain? Epilepsy Behav 2013; 28 Suppl 1:S45-51. [PMID: 23756479 DOI: 10.1016/j.yebeh.2012.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/09/2012] [Indexed: 01/23/2023]
Abstract
Juvenile myoclonic epilepsy (JME) involves cortico-thalamo-cortical networks. Thalamic, frontal gray matter, connectivity, and neurotransmitter disturbances have been demonstrated by structural/functional imaging studies. Few patients with JME show mutations in genes coding ion channels or GABAA (gamma-aminobutyric acid) receptor subunits. Recent research points to EFHC1 gene mutations leading to microdysgenesis and possible aberrant circuitry. Imaging studies have shown massive structural/functional changes of normally developing adolescent brain structures maturing at strikingly different rates and times. Gray matter (GM) volume diminishes in cortical areas (frontal and parietal) and deep structures (anterior thalamus, putamen, and caudate). Diffusion tensor imaging (DTI) findings support continued microstructural change in WM (white matter) during late adolescence with robust developmental changes in thalamocortical connectivity. The GABAA receptor distribution and specific receptor subunits' expression patterns change with age from neonate to adolescent/adult, contributing to age-related changes in brain excitability. Hormonal influence on brain structure development during adolescence is presented. Possible implications of brain changes during adolescence on the course of JME are discussed.
Collapse
Affiliation(s)
- Dana Craiu
- Pediatric Neurology Clinic, Alexandru Obregia Clinical Hospital, Carol Davila University of Medicine, Bucharest, Romania.
| |
Collapse
|
30
|
Taki Y, Kawashima R. Brain development in childhood. Open Neuroimag J 2012; 6:103-10. [PMID: 23166579 PMCID: PMC3499734 DOI: 10.2174/1874440001206010103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/28/2012] [Accepted: 09/02/2012] [Indexed: 01/31/2023] Open
Abstract
Although human brain development continues throughout childhood and adolescence, it is a non-linear process both structurally and functionally. Here we review studies of brain development in healthy children from the viewpoint of structure and the perfusion of gray and white matter. Gray matter volume increases and then decreases with age, with the developmental time of the peak volume differing among brain regions in the first and second decades of life. On the other hand, white matter volume increase is mostly linear during those periods. As regards fractional anisotropy, most regions show an exponential trajectory with aging. In addition, cerebral blood flow and gray matter volume are proportional at similar developmental ages. Moreover, we show that several lifestyle choices, such as sleeping habits and breakfast staple, affect gray matter volume in healthy children. There are a number of uninvestigated important issues that require future study.
Collapse
Affiliation(s)
- Yasuyuki Taki
- Division of Meidcal Image Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan ; Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan ; Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | |
Collapse
|
31
|
Johar K, Priya A, Wong-Riley MTT. Regulation of Na(+)/K(+)-ATPase by nuclear respiratory factor 1: implication in the tight coupling of neuronal activity, energy generation, and energy consumption. J Biol Chem 2012; 287:40381-90. [PMID: 23048038 DOI: 10.1074/jbc.m112.414573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND NRF-1 regulates mediators of neuronal activity and energy generation. RESULTS NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. CONCLUSION NRF-1 functionally regulates mediators of energy consumption in neurons. SIGNIFICANCE NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.
Collapse
Affiliation(s)
- Kaid Johar
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
32
|
Gonçalves JF, Nicoloso FT, da Costa P, Farias JG, Carvalho FB, da Rosa MM, Gutierres JM, Abdalla FH, Pereira JSF, Dias GRM, Barbosa NBV, Dressler VL, Rubin MA, Morsch VM, Schetinger MRC. Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food Chem Toxicol 2012; 50:3709-18. [PMID: 22819775 DOI: 10.1016/j.fct.2012.07.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/30/2012] [Accepted: 07/11/2012] [Indexed: 12/28/2022]
Abstract
This study investigated the cadmium (Cd) intoxication on cognitive, motor and anxiety performance of rats subjected to long-term exposure to diet with Cd salt or with Cd from contaminated potato tubers. Potato plantlets were micropropagated in MS medium and transplanted to plastic trays containing sand. Tubers were collected, planted in sand boxes and cultivated with 0 or 10 μM Cd and, after were oven-dried, powder processed and used for diet. Rats were divided into six groups and fed different diets for 5 months: control, potato, potato+Cd, 1, 5 or 25 mg/kg CdCl2. Cd exposure increased Cd concentration in brain regions. There was a significant decrease in the step-down latency in Cd-intoxicated rats and, elevated plus maze task revealed an anxiolytic effect in rats fed potato diet per se, and an anxiogenic effect in rats fed 25 mg/kg Cd. The brain structures of rats exposed to Cd salt or Cd from tubers showed an increased AChE activity, but Na+,K+-ATPase decreased in cortex, hypothalamus, and cerebellum. Therefore, we suggest an association between the long-term diet of potato tuber and a clear anxiolytic effect. Moreover, we observed an impaired cognition and enhanced anxiety-like behavior displayed by Cd-intoxicated rats coupled with a marked increase of brain Cd concentration, and increase and decrease of AChE and Na+,K+-ATPase activities, respectively.
Collapse
Affiliation(s)
- Jamile F Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcellos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jupp B, Williams J, Binns D, Hicks RJ, Cardamone L, Jones N, Rees S, O’Brien TJ. Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia 2012; 53:1233-44. [DOI: 10.1111/j.1528-1167.2012.03525.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Govil N, Chaudhary S, Waseem M, Parvez S. Postnuclear supernatant: an in vitro model for assessing cadmium-induced neurotoxicity. Biol Trace Elem Res 2012; 146:402-9. [PMID: 22101474 DOI: 10.1007/s12011-011-9263-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 11/03/2011] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal commonly found in industrial workplaces, a food contaminant and a major constituent of cigarette smoke. Most of the organs are susceptible to Cd-induced toxicity, including brain. Postnuclear supernatant (PNS) has been accepted as an in vitro model for assessing xenobiotic induced toxicity. The goal of the present study was to validate PNS as an in vitro model for investigating the effect of Cd-induced neurotoxicity. Neurotoxic induction by Cd was established in a dose-dependent manner in PNS in vitro. Enzymatic and non-enzymatic antioxidants were used as biomarkers of exposure. Antioxidant enzymatic activity was measured as a significant increase in activities of catalase, superoxide dismutase, and glutathione S-transferase. On exposure to Cd, a significant increase in acetylcholinesterase and decrease in sodium-potassium ATPase activity was also observed. Non-enzymatic effect was also demonstrated as a significant elevation in reduced glutathione and non-protein thiol activity, but there was no significant increase or decrease in the concentrations of protein thiol. In accordance with the toxicity of Cd towards the studied brain structure, Cd-induced oxidative stress has been a focus of toxicological research as a possible mechanism of neurotoxicity. Our results suggest that PNS preparations can be used as a model for future investigation of xenobiotic-induced neurotoxicity under in vitro conditions.
Collapse
Affiliation(s)
- Namrata Govil
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | | | | | | |
Collapse
|
35
|
Rosengarten B, Deppe M, Kaps M, Klingelhöfer J. Methodological aspects of functional transcranial Doppler sonography and recommendations for simultaneous EEG recording. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:989-996. [PMID: 22502885 DOI: 10.1016/j.ultrasmedbio.2012.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 02/17/2012] [Accepted: 02/28/2012] [Indexed: 05/31/2023]
Abstract
The neurovascular coupling describes a vasoregulative principle of the brain that adapts local cerebral blood flow in accordance with the underlying neuronal activity. It is the basis of modern indirect brain imaging techniques. Because of its wide availability and high tolerability the functional transcranial Doppler has been often used to assess brain function in clinical conditions. In the present paper we will give an overview of the current understanding of the coupling, explain basic principles of the Doppler technique and summarize relevant findings of functional Doppler tests in the different vascular territories of the brain. Finally, the concept of a combined functional electroencephalogram and transcranial Doppler technique will be outlined, which allows simultaneous investigation of the neuronal and vascular responses of neurovascular coupling.
Collapse
|
36
|
Rosen SD. From heart to brain: the genesis and processing of cardiac pain. Can J Cardiol 2012; 28:S7-19. [PMID: 22424286 DOI: 10.1016/j.cjca.2011.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 01/12/2023] Open
Abstract
Angina pectoris is important because of its association with heart disease and risk of death. Historically after Heberden's account of angina in 1772, the association of pain with coronary artery disease quickly followed. Within a few years, Burns suggested an etiological role for ischemia. Subsequently, theories of differential myocardial stretch dominated thinking until Lewis' chemical hypothesis in 1932, in which the local release of chemical substances during ischemia was seen as the cause of pain. This review considers how ischemia at the tissue level triggers activation of afferent nociceptive pain fibres. The afferent projections of sympathetic and vagal afferent fibres are described, with a number of methodologies cited (eg, injection of pseudorabies virus into the heart with mapping of the retrograde viral transport pathways; and elevation of neuronal c-fos synthesis in brain regions activated by capsaicin application to the heart). Our own functional neuroimaging studies of angina are also reviewed. There are 2 intriguing features of angina. The first is the poor correlation between symptoms and extent of coronary disease. The spectrum ranges from entirely silent myocardial ischemia to that of a functional pain syndrome--the 'sensitive heart'--of cardiac syndrome X. An even more difficult aspect is the wide variability in symptoms experienced by an individual patient. A new paradigm is presented which, besides considering myocardial oxygen supply/demand imbalance, also draws insights from the broader field of pain research. Neuromodulation applies at multiple levels of the neuraxis--peripheral nerves, spinal cord, and brain--and it invites exploitation, whether pharmacological or electrical, for the benefit of the cardiac patient in pain.
Collapse
Affiliation(s)
- Stuart D Rosen
- National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|
37
|
Liapi C, Zarros A, Theocharis S, Voumvourakis K, Anifantaki F, Gkrouzman E, Mellios Z, Skandali N, Al-Humadi H, Tsakiris S. Short-term exposure to nickel alters the adult rat brain antioxidant status and the activities of crucial membrane-bound enzymes: neuroprotection by L-cysteine. Biol Trace Elem Res 2011; 143:1673-81. [PMID: 21360057 DOI: 10.1007/s12011-011-9006-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Nickel (Ni) is an environmental pollutant towards which human exposure can be both occupational (mainly through inhalation) and dietary (through water and food chain-induced bioaccumulation). The aim of this study was to investigate the effects of short-term Ni-administration (as NiCl(2), 13 mg/kg) on the adult rat whole brain total antioxidant status (TAS) and the activities of acetylcholinesterase (AChE), Na(+),K(+)-ATPase, and Mg(2+)-ATPase; in addition, the potential effect of the co-administration of the antioxidant L-cysteine (Cys, 7 mg/kg) on the above parameters was studied. Twenty-eight male Wistar rats were divided into four groups: A (saline-treated control), B (Ni), C (Cys), and D (Ni and Cys). All rats were treated once daily with intraperitoneal injections of the tested compounds, for 1-week. Rats were sacrificed by decapitation and the above-mentioned parameters were measured spectrophotometrically. Rats treated with Ni exhibited a significant reduction in brain TAS (-47%, p < 0.001, BvsA) that was efficiently limited by the co-administration of Cys (-4%, p > 0.05, DvsA; +83%, p < 0.001, DvsB), while Cys (group C) had no effect on TAS. The rat brain AChE activity was found significantly increased by both Ni (+30%, p < 0.001, BvsA) and Cys (+62%, p < 0.001, CvsA), while it tended to adjust to control levels by the co-administration of Ni and Cys (+13%, p < 0.001, DvsA; -13%, p < 0.001, DvsB). The activity of rat brain Na(+),K(+)-ATPase was significantly decreased by Ni-administration (-49%, p < 0.001, BvsA), while Cys supplementation could not reverse this decrease (-44%, p < 0.001, DvsA). The activity of Mg(2+)-ATPase was not affected by Ni-administration (-3%, p > 0.05, BvsA), but was significantly reduced when combined with Cys administration (-17%, p < 0.001, DvsA). The above findings suggest that Ni short-term in vivo administration causes a statistically significant decrease in the rat brain TAS and an increase in AChE activity. Both effects can be, partially or totally, reversed to control levels by Cys co-administration; Cys could thus be considered (for future applications) as a potential neuroprotective agent against chronic exposure to Ni. The activity of Na(+),K(+)-ATPase that was inhibited by Ni, could not be reversed by Cys co-administration. The matter requires further investigation in order to fully elucidate the spectrum of the neurotoxic effects of Ni.
Collapse
Affiliation(s)
- Charis Liapi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pancani T, Anderson KL, Porter NM, Thibault O. Imaging of a glucose analog, calcium and NADH in neurons and astrocytes: dynamic responses to depolarization and sensitivity to pioglitazone. Cell Calcium 2011; 50:548-58. [PMID: 21978418 DOI: 10.1016/j.ceca.2011.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/24/2011] [Accepted: 09/10/2011] [Indexed: 11/19/2022]
Abstract
Neuronal Ca(2+) dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca(2+) sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca(2+) signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca(2+) dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including Fura-2 and NADH imaging, provides results that are consistent with the idea that Ca(2+) levels may rapidly alter glycolytic activity, and that downstream events beyond Ca(2+) dysregulation with aging, may alter cellular metabolism in the brain.
Collapse
Affiliation(s)
- Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, United States.
| | | | | | | |
Collapse
|
39
|
Shagirtha K, Pari L. Hesperetin, a citrus flavonone, protects potentially cadmium induced oxidative testicular dysfunction in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2105-2111. [PMID: 21719105 DOI: 10.1016/j.ecoenv.2011.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/29/2011] [Accepted: 06/01/2011] [Indexed: 05/31/2023]
Abstract
The present study was aimed to evaluate the protective effect of hesperetin (Hp) on cadmium (Cd) induced oxidative testicular toxicity in rats. Subcutaneous administration of Cd (3mg/kg body weight) for 21 days significantly elevated the levels of oxidative stress markers, Cd concentration in testis and lowered the levels of enzymatic, non-enzymatic antioxidants and membrane bound enzymes in the testicular tissue. Hp administrated orally along with Cd injection for 21 days, significantly revert back the status of oxidative stress markers, Cd concentration in testis, improved status of antioxidant markers and membrane bound enzymes in the testis to near normal level. The histopathological studies in the testis of rats also supported that Hp (40 mg/kg) markedly reduced the toxicity of Cd and preserved the normal histoarchitecture pattern of the testis. Thus, the results suggest that Hp acts as a potent antioxidative agent against Cd induced testicular toxicity in rats.
Collapse
Affiliation(s)
- Kalist Shagirtha
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamilnadu, India
| | | |
Collapse
|
40
|
Taki Y, Hashizume H, Sassa Y, Takeuchi H, Wu K, Asano M, Asano K, Fukuda H, Kawashima R. Gender differences in partial-volume corrected brain perfusion using brain MRI in healthy children. Neuroimage 2011; 58:709-15. [PMID: 21782958 DOI: 10.1016/j.neuroimage.2011.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/15/2010] [Accepted: 07/08/2011] [Indexed: 10/17/2022] Open
Abstract
To investigate gender differences in brain perfusion, this study utilized pulsed arterial spin-labeling magnetic resonance imaging (MRI) in a large number of healthy children. Data on structural and perfusion MRI in the brain were collected from 202 healthy children aged 5-18 years. Gender differences in brain perfusion using partial volume correction (PVC), which was calculated by dividing the normalized perfusion MRI by the normalized gray-matter segments, were analyzed by applying voxel-based analysis and region-of-interest (ROI) analysis. Girls showed significantly higher brain perfusion with PVC in the bilateral medial aspect of the parietal lobes, including the posterior cingulate cortex and precuneus, as compared to boys using voxel-based analysis. In addition, brain perfusion with PVC in the bilateral posterior cingulate cortex, bilateral precuneus, and left thalamus was significantly higher in girls than in boys in the ROI analysis. In contrast, no regions were seen in which boys exhibited higher brain perfusion with PVC than girls in both analyses. The findings showed significant differences between boys and girls in brain perfusion with PVC, and these differences may contribute to gender differences in the cognitive ability of healthy children.
Collapse
Affiliation(s)
- Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mackedanz V, Mattos CB, Feksa LR, Wannmacher CMD, Wyse ATS. Ovariectomy alters energy metabolism in rat striatum: effect of supplementation with soy diet rich in isoflavones. Metab Brain Dis 2011; 26:97-105. [PMID: 21072576 DOI: 10.1007/s11011-010-9216-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/27/2010] [Indexed: 12/28/2022]
Abstract
In the present study we investigated the effect of ovariectomy on some parameters of energy metabolism, namely Na(+),K(+)-ATPase and pyruvate kinase activities, as well as the mitochondrial respiratory chain enzymes activities succinate dehydrogenase, complex II and cytochrome c oxidase in rat striatum. The influence of soy diet rich in isoflavones on the effects elicited by ovariectomy on enzyme activities was also evaluated. Female adult Wistar rats were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries) and ovariectomized. Seven days after surgery animals were fed for 30 days on a special diet with soy protein or a standard diet with casein (control). Rats were sacrificed after treatment and the striatum was dissected. Results showed that rats subjected to ovariectomy presented a significant increase in Na(+),K(+)-ATPase, succinate dehydrogenase and complex II activities. Treatment with isoflavones-rich soy diet was able to reverse the increase of Na(+),K(+)-ATPase activity, but was not effective in reversing the changes caused by ovariectomy on succinate dehydrogenase and complex II activities. Since ovariectomy mimics postmenopausal changes, our findings suggest that dysfunction of brain energy metabolism may be related to neurological symptoms observed in some postmenopausal women.
Collapse
Affiliation(s)
- Vanize Mackedanz
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
42
|
Effect of In Vivo l-Acetylcarnitine Administration on ATP-ases Enzyme Systems of Synaptic Plasma Membranes from Rat Cerebral Cortex. Neurochem Res 2011; 36:1372-82. [DOI: 10.1007/s11064-011-0462-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2011] [Indexed: 12/27/2022]
|
43
|
de Freitas RM, Feng D, Jordán J. Neuropharmacological effects of lipoic acid and ubiquinone on δ-aminolevulinic dehydratase, Na+, K+-ATPase, and Mg2+-ATPase activities in rat hippocampus after pilocarpine-induced seizures. Fundam Clin Pharmacol 2011; 25:211-6. [DOI: 10.1111/j.1472-8206.2010.00841.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Figley CR, Stroman PW. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 2011; 33:577-88. [DOI: 10.1111/j.1460-9568.2010.07584.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Relationships between hippocampal microstructure, metabolism, and function in early Alzheimer's disease. Brain Struct Funct 2011; 216:219-26. [PMID: 21318476 DOI: 10.1007/s00429-011-0302-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/22/2011] [Indexed: 10/18/2022]
Abstract
Abnormal microstructural integrity and glucose metabolism of the hippocampus are common in subjects with Alzheimer's disease (AD) that typically manifest as episodic memory impairment. The above-tissue alterations can be captured in vivo using diffusion tensor imaging (DTI) and positron emission tomography with [18F]fluorodeoxyglucose (FDG-PET). Here, we explored relationships between the above neuroimaging and cognitive markers of early AD-specific hippocampal damage. Twenty patients with early AD (MMSE 25.7 ± 1.7) were studied using DTI and FDG-PET. Episodic memory performance was assessed using the free delayed verbal recall task (DVR). In the between-modality correlation analysis, FDG uptake was strongly associated with diffusivity in the left anterior hippocampus only (r = -0.81, p < 0.05 Bonferroni's corrected for multiple tests). Performance on DVR significantly correlated with left anterior (r = -0.80, p < 0.05) and left mean (r = -0.72, p < 0.05) hippocampal diffusivity, while the correlation with left anterior FDG uptake did not reach statistical significance (r = 0.52, n.s.). DTI-derived diffusivity of the anterior hippocampus might be a sensitive early marker of hippocampal dysfunction as reflected at the synaptic and cognitive levels. This neurobiological distinction of the anterior hippocampus might be related to the disruption of the perforant pathway that is known to occur early in the course of AD.
Collapse
|
46
|
Khadrawy YA, Nour NA, Aboul Ezz HS. Effect of oxidative stress induced by paradoxical sleep deprivation on the activities of Na+, K+-ATPase and acetylcholinesterase in the cortex and hippocampus of rat. Transl Res 2011; 157:100-7. [PMID: 21256462 DOI: 10.1016/j.trsl.2010.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/19/2022]
Abstract
Several studies revealed the importance of paradoxical sleep as a homeostatic mechanism by which the brain can control oxidative stress. The aim of the present study is to investigate the effect of 72 h of paradoxical sleep deprivation on the oxidative stress markers and its insults on the activities of Na(+), K(+)-ATPase and acetylcholinesterase in the cortex and hippocampus of albino rat. Animals were subjected to paradoxical sleep deprivation for 72 h. At the end of the experiment, the rats were sacrificed, and catalase activity, levels of reduced glutathione, lipid peroxidation, and nitric oxide were assayed together with the activities of Na(+), K(+)-ATPase and acetylcholinesterase in the cortex and hippocampus. The present study revealed a significant increase in lipid peroxidation accompanied by a significant decrease in reduced glutathione in the cortex and hippocampus. Na(+), K(+)-ATPase decreased significantly in both areas. However, acetylcholinesterase showed a significant increase in the investigated brain regions. The present data showed that 72 h of paradoxical sleep deprivation induced oxidative stress in the cortex and hippocampus. It could be suggested that the inhibition of Na(+), K(+)-ATPase and the increased acetylcholinesterase activity may underlie memory impairment, increased brain excitability, and anxiety induced by paradoxical sleep deprivation.
Collapse
Affiliation(s)
- Yasser A Khadrawy
- Department of Medical Physiology, Medical Division, National Research Center, Egypt.
| | | | | |
Collapse
|
47
|
Giovacchini G, Squitieri F, Esmaeilzadeh M, Milano A, Mansi L, Ciarmiello A. PET translates neurophysiology into images: A review to stimulate a network between neuroimaging and basic research. J Cell Physiol 2011; 226:948-61. [DOI: 10.1002/jcp.22451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Taki Y, Hashizume H, Sassa Y, Takeuchi H, Wu K, Asano M, Asano K, Fukuda H, Kawashima R. Correlation between gray matter density-adjusted brain perfusion and age using brain MR images of 202 healthy children. Hum Brain Mapp 2011; 32:1973-85. [PMID: 21259384 DOI: 10.1002/hbm.21163] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/08/2010] [Accepted: 08/17/2010] [Indexed: 11/09/2022] Open
Abstract
We examined the correlation between brain perfusion and age using pulsed arterial spin-labeling (ASL) magnetic resonance images (MRI) in a large number of healthy children. We collected data on brain structural and ASL perfusion MRI in 202 healthy children aged 5-18 years. Structural MRI data were segmented and normalized, applying a voxel-based morphometric analysis. Perfusion MRI was normalized using the normalization parameter of the corresponding structural MRI. We calculated brain perfusion with an adjustment for gray matter density (BP-GMD) by dividing normalized ASL MRI by normalized gray matter segments in 22 regions. Next, we analyzed the correlation between BP-GMD and age in each region by estimating linear, quadratic, and cubic polynomial functions, using the Akaike information criterion. The correlation between BP-GMD and age showed an inverted U shape followed by a U-shaped trajectory in most regions. In addition, age at which BP-GMD was highest was different among the lobes and gray matter regions, and the BP-GMD association with age increased from the occipital to the frontal lobe via the temporal and parietal lobes. Our results indicate that higher order association cortices mature after the lower order cortices, and may help clarify the mechanisms of normal brain maturation from the viewpoint of brain perfusion.
Collapse
Affiliation(s)
- Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Aobaku, Senda, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Taki Y, Hashizume H, Sassa Y, Takeuchi H, Asano M, Asano K, Kawashima R. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children. PLoS One 2010; 5:e15213. [PMID: 21170334 PMCID: PMC2999543 DOI: 10.1371/journal.pone.0015213] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/31/2010] [Indexed: 12/22/2022] Open
Abstract
Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.
Collapse
Affiliation(s)
- Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience at the Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|