1
|
Harders AR, Watermann P, Karger G, Denieffe SC, Weller A, Dannemann AC, Willker JE, Köhler Y, Arend C, Dringen R. Consequences of a 2-Deoxyglucose Exposure on the ATP Content and the Cytosolic Glucose Metabolism of Cultured Primary Rat Astrocytes. Neurochem Res 2024; 49:3244-3262. [PMID: 38898248 PMCID: PMC11502578 DOI: 10.1007/s11064-024-04192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
The glucose analogue 2-deoxyglucose (2DG) has frequently been used as a tool to study cellular glucose uptake and to inhibit glycolysis. Exposure of primary cultured astrocytes to 2DG caused a time- and concentration-dependent cellular accumulation of 2-deoxyglucose-6-phosphate (2DG6P) that was accompanied by a rapid initial decline in cellular ATP content. Inhibitors of mitochondrial respiration as well as inhibitors of mitochondrial uptake of pyruvate and activated fatty acids accelerated the ATP loss, demonstrating that mitochondrial ATP regeneration contributes to the partial maintenance of the ATP content in 2DG-treated astrocytes. After a 30 min exposure to 10 mM 2DG the specific content of cellular 2DG6P had accumulated to around 150 nmol/mg, while cellular ATP was lowered by 50% to around 16 nmol/mg. Following such a 2DG6P-loading of astrocytes, glycolytic lactate production from applied glucose was severely impaired during the initial 60 min of incubation, but was reestablished during longer incubation concomitant with a loss in cellular 2DG6P content. In contrast to glycolysis, the glucose-dependent NADPH regeneration via the pentose phosphate pathway (PPP) was only weakly affected in 2DG6P-loaded astrocytes and in cells that were coincubated with glucose in the presence of an excess of 2DG. Additionally, in the presence of 2DG PPP-dependent WST1 reduction was found to have doubled compared to hexose-free control incubations, indicating that cellular 2DG6P can serve as substrate for NADPH regeneration by the astrocytic PPP. The data presented provide new insights on the metabolic consequences of a 2DG exposure on the energy and glucose metabolism of astrocytes and demonstrate the reversibility of the inhibitory potential of a 2DG-treatment on the glucose metabolism of cultured astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Patrick Watermann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Gabriele Karger
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Sadhbh Cynth Denieffe
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Alina Weller
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Annika Carina Dannemann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Johanna Elisabeth Willker
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Yvonne Köhler
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
2
|
Chen J, Li G, Sun D, Li H, Chen L. Research progress of hexokinase 2 in inflammatory-related diseases and its inhibitors. Eur J Med Chem 2024; 264:115986. [PMID: 38011767 DOI: 10.1016/j.ejmech.2023.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Hexokinase 2 (HK2) is a crucial enzyme involved in glycolysis, which converts glucose into glucose-6-phosphate and plays a significant role in glucose metabolism. HK2 can mediate glycolysis, which is linked to the release of inflammatory factors. The over-expression of HK2 increases the production of pro-inflammatory cytokines, exacerbating the inflammatory reaction. Consequently, HK2 is closely linked to various inflammatory-related diseases affecting multiple systems, including the digestive, nervous, circulatory, respiratory, reproductive systems, as well as rheumatoid arthritis. HK2 is regarded as a novel therapeutic target for inflammatory-related diseases, and this article provides a comprehensive review of its roles in these conditions. Furthermore, the development of potent HK2 inhibitors has garnered significant attention in recent years. Therefore, this review also presents a summary of potential HK2 inhibitors, offering promising prospects for the treatment of inflammatory-related diseases in the future.
Collapse
Affiliation(s)
- Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guirong Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
3
|
Aronica E, Binder DK, Drexel M, Ikonomidou C, Kadam SD, Sperk G, Steinhäuser C. A companion to the preclinical common data elements and case report forms for neuropathology studies in epilepsy research. A report of the TASK3 WG2 Neuropathology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35938285 DOI: 10.1002/epi4.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Meinrad Drexel
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guenther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Wu L, Wong CP, Swanson RA. Methodological considerations for studies of brain glycogen. J Neurosci Res 2019; 97:914-922. [PMID: 30892752 DOI: 10.1002/jnr.24412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/02/2023]
Abstract
Glycogen stores in the brain have been recognized for decades, but the underlying physiological function of this energy reserve remains elusive. This uncertainty stems in part from several technical challenges inherent in the study of brain glycogen metabolism. These include low glycogen content in the brain, non-homogeneous labeling of glycogen by radiotracers, rapid glycogenolysis during postmortem tissue handling, and effects of the stress response on brain glycogen turnover. Here we briefly review the aspects of the glycogen structure and metabolism that bear on these technical challenges and present ways they can be addressed.
Collapse
Affiliation(s)
- Long Wu
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Candance P Wong
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Raymond A Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
5
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
6
|
Wu L, Butler NJM, Swanson RA. Technical and Comparative Aspects of Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:169-185. [DOI: 10.1007/978-3-030-27480-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhao Q, Chu Z, Zhu L, Yang T, Wang P, Liu F, Huang Y, Zhang F, Zhang X, Ding W, Zhao Y. 2-Deoxy-d-Glucose Treatment Decreases Anti-inflammatory M2 Macrophage Polarization in Mice with Tumor and Allergic Airway Inflammation. Front Immunol 2017; 8:637. [PMID: 28620389 PMCID: PMC5451502 DOI: 10.3389/fimmu.2017.00637] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/15/2017] [Indexed: 01/10/2023] Open
Abstract
As important effector cells in inflammation, macrophages can be functionally polarized into either inflammatory M1 or alternatively activated anti-inflammatory M2 phenotype depending on surroundings. The key roles of glycolysis in M1 macrophage polarization have been well defined. However, the relationship between glycolysis and M2 polarized macrophages is still poorly understood. Here, we report that 2-deoxy-d-glucose (2-DG), an inhibitor of the glycolytic pathway, markedly inhibited the expressions of Arg, Ym-1, Fizz1, and CD206 molecules, the hall-markers for M2 macrophages, during macrophages were stimulated with interleukin 4. The impacted M2 macrophage polarization by 2-DG is not due to cell death but caused by the impaired cellular glycolysis. Molecular mechanism studies indicate that the effect of 2-DG on M2 polarized macrophages relies on AMPK-Hif-1α-dependent pathways. Importantly, 2-DG treatment significantly decreases anti-inflammatory M2 macrophage polarization and prevents disease progression in a series of mouse models with chitin administration, tumor, and allergic airway inflammation. Thus, the identification of the master role of glycolysis in M2 macrophage polarization offers potential molecular targets for M2 macrophages-mediated diseases. 2-DG therapy may have beneficial effects in patients with tumors or allergic airway inflammation by its negative regulation on M2 macrophage polarization.
Collapse
Affiliation(s)
- Qingjie Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhulang Chu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linnan Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fang Liu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J Cereb Blood Flow Metab 2013; 33:1270-8. [PMID: 23673434 PMCID: PMC3734779 DOI: 10.1038/jcbfm.2013.79] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 01/09/2023]
Abstract
2-Deoxy-D-glucose (2DG) is a known surrogate molecule that is useful for inferring glucose uptake and metabolism. Although (13)C-labeled 2DG can be detected by nuclear magnetic resonance (NMR), its low sensitivity for detection prohibits imaging to be performed. Using chemical exchange saturation transfer (CEST) as a signal-amplification mechanism, 2DG and the phosphorylated 2DG-6-phosphate (2DG6P) can be indirectly detected in (1)H magnetic resonance imaging (MRI). We showed that the CEST signal changed with 2DG concentration, and was reduced by suppressing cerebral metabolism with increased general anesthetic. The signal changes were not affected by cerebral or plasma pH, and were not correlated with altered cerebral blood flow as demonstrated by hypercapnia; neither were they related to the extracellular glucose amounts as compared with injection of D- and L-glucose. In vivo (31)P NMR revealed similar changes in 2DG6P concentration, suggesting that the CEST signal reflected the rate of glucose assimilation. This method provides a new way to use widely available MRI techniques to image deoxyglucose/glucose uptake and metabolism in vivo without the need for isotopic labeling of the molecules.
Collapse
|
9
|
Functional Recovery after Scutellarin Treatment in Transient Cerebral Ischemic Rats: A Pilot Study with (18) F-Fluorodeoxyglucose MicroPET. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:507091. [PMID: 23737833 PMCID: PMC3659649 DOI: 10.1155/2013/507091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 11/17/2022]
Abstract
Objective. To investigate neuroprotective effects of scutellarin (Scu) in a rat model of cerebral ischemia with use of 18F-fluorodeoxyglucose (18F-FDG) micro positron emission tomography (microPET). Method. Middle cerebral artery occlusion was used to establish cerebral ischemia. Rats were divided into 5 groups: sham operation, cerebral ischemia-reperfusion untreated (CIRU) group, Scu-25 group (Scu 25 mg/kg/d), Scu-50 group (Scu 50 mg/kg/d), and nimodipine (10 mg/Kg/d). The treatment groups were given for 2 weeks. The therapeutic effects in terms of cerebral infarct volume, neurological deficit scores, and cerebral glucose metabolism were evaluated. Levels of vascular density factor (vWF), glial marker (GFAP), and mature neuronal marker (NeuN) were assessed by immunohistochemistry. Results. The neurological deficit scores were significantly decreased in the Scu-50 group compared to the CIRU group (P < 0.001). 18F-FDG accumulation in the ipsilateral cerebral infarction increased steadily over time in Scu-50 group compared with CIRU group (P < 0.01) and Scu-25 group (P < 0.01). Immunohistochemical analysis demonstrated Scu-50 enhanced neuronal maturation. Conclusion. 18F-FDG microPET imaging demonstrated metabolic recovery after Scu-50 treatment in the rat model of cerebral ischemia. The neuroprotective effects of Scu on cerebral ischemic injury might be associated with increased regional glucose activity and neuronal maturation.
Collapse
|
10
|
Abstract
Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.
Collapse
|
11
|
Dienel GA, Cruz NF. Imaging brain activation: simple pictures of complex biology. Ann N Y Acad Sci 2009; 1147:139-70. [PMID: 19076439 DOI: 10.1196/annals.1427.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elucidation of biochemical, physiological, and cellular contributions to metabolic images of brain is important for interpretation of images of brain activation and disease. Discordant brain images obtained with [(14)C]deoxyglucose and [1- or 6-(14)C]glucose were previously ascribed to increased glycolysis and rapid [(14)C]lactate release from tissue, but direct proof of [(14)C]lactate release from activated brain structures is lacking. Analysis of factors contributing to images of focal metabolic activity evoked by monotonic acoustic stimulation of conscious rats reveals that labeled metabolites of [1- or 6-(14)C]glucose are quickly released from activated cells as a result of decarboxylation reactions, spreading via gap junctions, and efflux via lactate transporters. Label release from activated tissue accounts for most of the additional [(14)C]glucose consumed during activation compared to rest. Metabolism of [3,4-(14)C]glucose generates about four times more [(14)C]lactate compared to (14)CO(2) in extracellular fluid, suggesting that most lactate is not locally oxidized. In brain slices, direct assays of lactate uptake from extracellular fluid demonstrate that astrocytes have faster influx and higher transport capacity than neurons. Also, lactate transfer from a single astrocyte to other gap junction-coupled astrocytes exceeds astrocyte-to-neuron lactate shuttling. Astrocytes and neurons have excess capacities for glycolysis, and oxidative metabolism in both cell types rises during sensory stimulation. The energetics of brain activation is quite complex, and the proportion of glucose consumed by astrocytes and neurons, lactate generation by either cell type, and the contributions of both cell types to brain images during brain activation are likely to vary with the stimulus paradigm and activated pathways.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
12
|
Ball KK, Gandhi GK, Thrash J, Cruz NF, Dienel GA. Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [(14)C]glucose metabolite trafficking. J Neurosci Res 2008; 85:3267-83. [PMID: 17600824 PMCID: PMC2819729 DOI: 10.1002/jnr.21376] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inferior colliculus has the highest rates of blood flow and metabolism in brain, and functional metabolic activity increases markedly in response to acoustic stimulation. However, brain imaging with [1- and 6-(14)C]glucose greatly underestimates focal metabolic activation that is readily detected with [(14)C]deoxyglucose, suggesting that labeled glucose metabolites are quickly dispersed and released from highly activated zones of the inferior colliculus. To evaluate the role of coupling of astrocytes via gap junctions in dispersal of molecules within the inferior colliculus, the present study assessed the distribution of connexin (Cx) proteins in the inferior colliculus and spreading of Lucifer yellow from single microinjected astrocytes in slices of adult rat brain. Immunoreactive Cx43, Cx30, and Cx26 were heterogeneously distributed; the patterns for Cx43 and Cx 30 differed and were similar to those of immunoreactive GFAP and S100beta, respectively. Most Cx43 was phosphorylated in resting and acoustically stimulated rats. Dye spreading revealed an extensive syncytial network that included thousands of cells and perivasculature endfeet; with 8% Lucifer yellow VS and a 5-min diffusion duration, about 6,100 astrocytes (range 2,068-11,939) were labeled as far as 1-1.5 mm from the injected cell. The relative concentration of Lucifer yellow fell by 50% within 0.3-0.8 mm from the injected cell with a 5-min diffusion interval. Perivascular dye labeling was readily detectable and often exceeded dye levels in nearby neuropil. Thus, astrocytes have the capability to distribute intracellular molecules quickly from activated regions throughout the large, heterogeneous syncytial volume of the inferior colliculus, and rapid trafficking of labeled metabolites would degrade resolution of focal metabolic activation.
Collapse
Affiliation(s)
- Kelly K. Ball
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Gautam K. Gandhi
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jarrod Thrash
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nancy F. Cruz
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Gerald A. Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Correspondence to: Gerald A. Dienel, PhD, Department of Neurology, Slot 830, University of Arkansas for Medical Sciences, 4301 W. Markham St., Shorey Bldg., Room 715, Little Rock, AR 72205.
| |
Collapse
|
13
|
Southworth R, Parry CR, Parkes HG, Medina RA, Garlick PB. Tissue-specific differences in 2-fluoro-2-deoxyglucose metabolism beyond FDG-6-P: a 19F NMR spectroscopy study in the rat. NMR IN BIOMEDICINE 2003; 16:494-502. [PMID: 14696007 DOI: 10.1002/nbm.856] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
2-Fluoro-[(18)F]-2-deoxy-glucose (FDG) is a positron-emitting analogue of glucose used clinically in positron emission tomography (PET) to assess glucose utilization in diseased and healthy tissue. Originally developed to measure local cerebral glucose utilization rates, it has now found applications in tumour diagnosis and in the study of myocardial glucose uptake. Once taken up into the cell, FDG is phosphorylated to FDG-6-phosphate (FDG-6-P) by hexokinase and was originally believed to be trapped as a terminal metabolite. This 'metabolic trapping' of FDG-6-P forms the basis of the analysis of PET data. In this study, we have used (19)F NMR spectroscopy to investigate FDG metabolism following the injection of a bolus of the glucose tracer into the rat (n=6). Ninety minutes after the (19)FDG injection, the brain, heart, liver and kidneys were removed and the (19)FDG metabolites in each were extracted and quantified. We report that significant metabolism of FDG occurs beyond FDG-6-P in all organs examined and that the extent of this metabolism varies from tissue to tissue (degree of metabolism beyond FDG-6-P, expressed as percentage of total organ FDG content, was brain 45 +/- 3%; heart 29 +/- 2%; liver 22+/-3% and kidney 17 +/- 3%, mean +/- SEM n=6). Furthermore, we demonstrate that the relative accumulation of each metabolite was tissue-dependent and reflected the metabolic and regulatory characteristics of each organ. Such inter-tissue differences may have implications for the mathematical modelling of glucose uptake and phosphorylation using FDG as a glucose tracer.
Collapse
Affiliation(s)
- Richard Southworth
- Radiological Sciences, Guy's Hospital, Guy's, King's and St Thomas' Medical School, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
14
|
Oz G, Henry PG, Seaquist ER, Gruetter R. Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 2003; 43:323-9. [PMID: 12742076 DOI: 10.1016/s0197-0186(03)00019-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The concentration and metabolism of the primary carbohydrate store in the brain, glycogen, is unknown in the conscious human brain. This study reports the first direct detection and measurement of glycogen metabolism in the human brain, which was achieved using localized 13C NMR spectroscopy. To enhance the NMR signal, the isotopic enrichment of the glucosyl moieties was increased by administration of 80 g of 99% enriched [1-13C]glucose in four subjects. 3 h after the start of the label administration, the 13C NMR signal of brain glycogen C1 was detected (0.36+/-0.07 micromol/g, mean+/-S.D., n=4). Based on the rate of 13C label incorporation into glycogen and the isotopic enrichment of plasma glucose, the flux through glycogen synthase was estimated at 0.17+/-0.05 micromol/(gh). This study establishes that brain glycogen can be measured in humans and indicates that its metabolism is very slow in the conscious human. The noninvasive detection of human brain glycogen opens the prospect of understanding the role and function of this important energy reserve under various physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Gülin Oz
- Department of Radiology, Center for MR Research, University of Minnesota, 2021 6th St. S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
15
|
Véga C, Martiel JL, Drouhault D, Burckhart MF, Coles JA. Uptake of locally applied deoxyglucose, glucose and lactate by axons and Schwann cells of rat vagus nerve. J Physiol 2003; 546:551-64. [PMID: 12527741 PMCID: PMC2342518 DOI: 10.1113/jphysiol.2002.029751] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/30/2002] [Accepted: 10/24/2002] [Indexed: 12/31/2022] Open
Abstract
We asked whether, in a steady state, neurons and glial cells both take up glucose sufficient for their energy requirements, or whether glial cells take up a disproportionate amount and transfer metabolic substrate to neurons. A desheathed rat vagus nerve was held crossways in a laminar flow perfusion chamber and stimulated at 2 Hz. (14)C-labelled substrate was applied from a micropipette for 5 min over a < 0.6 mm band of the surface of the nerve. After 10-55 min incubation, the nerve was lyophilized and the longitudinal distribution of radioactivity measured. When the weakly metabolizable analogue of glucose, 2-deoxy-[U-(14)C]D-glucose (*DG), was applied, the profiles of the radioactivity broadened with time, reaching distances several times the mean length of the Schwann cells (0.32 mm; most of the Schwann cells are non-myelinating). The profiles were well fitted by curves calculated for diffusion in a single compartment, the mean diffusion coefficient being 463 +/- 34 microm(2) s(-1) (+/- S.E.M., n = 16). Applications of *DG were repeated in the presence of the gap junction blocker, carbenoxolone (100 microM). The profiles were now narrower and better fitted with two compartments. One compartment had a coefficient not significantly different from that in the absence of the gap junction blocker (axons), the other compartment had a coefficient of 204 +/- 24 microm(2) s(-1), n = 4. Addition of the gap junction blocker 18-alpha-glycyrrhetinic acid, or blocking electrical activity with TTX, also reduced longitudinal diffusion. Ascribing the compartment in which diffusion was reduced by these treatments to non-myelinating Schwann cells, we conclude that 78.0 +/- 3.6 % (n = 9) of the uptake of *DG was into Schwann cells. This suggests that there was transfer of metabolic substrate from Schwann cells to axons. Local application of [(14)C]glucose or [(14)C]lactate led to variable labelling along the length of the nerve, but with both substrates narrow peaks were often present at the application site; these were greatly reduced by subsequent treatment with amylase, a glycogen-degrading enzyme.
Collapse
Affiliation(s)
- Céline Véga
- INSERM U394, Institut François Magendie, Bordeaux, France
| | | | | | | | | |
Collapse
|
16
|
Cruz NF, Dienel GA. High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 2002; 22:1476-89. [PMID: 12468892 DOI: 10.1097/01.wcb.0000034362.37277.c0] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The concentration of glycogen, the major brain energy reserve localized mainly in astrocytes, is generally reported as about 2 or 3 micromol/g, but sometimes as high as 3.9 to 8 micromol/g, in normal rat brain. The authors found high but very different glycogen levels in two recent studies in which glycogen was determined by the routine amyloglucosidase procedure in 0.03N HCl digests either of frozen powders (4.8 to 6 micromol/g) or of ethanol-insoluble fractions (8 to 12 micromol/g). To evaluate the basis for these discrepant results, glycogen was assayed in parallel extracts of the same samples. Glycogen levels in ethanol extracts were twice those in 0.03N HCl digests, suggesting incomplete enzyme inactivation even with very careful thawing. The very high glycogen levels were biologically active and responsive to physiologic and pharmacological challenge. Glycogen levels fell after brief sensory stimulation, and metabolic labeling indicated its turnover under resting conditions. About 95% of the glycogen was degraded under in vitro ischemic conditions, and its "carbon equivalents" recovered mainly as glc, glc-P, and lactate. Resting glycogen stores were reduced by about 50% by chronic inhibition of nitric oxide synthase. Because neurotransmitters are known to stimulate glycogenolysis, stress or sensory activation due to animal handling and tissue-sampling procedures may stimulate glycogenolysis during an experiment, and glycogen lability during tissue sampling and extraction can further reduce glycogen levels. The very high glycogen levels in normal rat brain suggest an unrecognized role for astrocytic energy metabolism during brain activation.
Collapse
Affiliation(s)
- Nancy F Cruz
- Department of Neurology, Slot 500, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Shorey Building, Room 7S/15, Little Rock, AR 72205, U.S.A
| | | |
Collapse
|
17
|
Abstract
Localized 13C nuclear magnetic resonance (NMR) spectroscopy provides a unique window for studying cerebral carbohydrate metabolism through, e.g. the completely non-invasive measurement of cerebral glucose and glycogen metabolism. In addition, label incorporation into amino acid neurotransmitters such as glutamate (Glu), GABA and aspartate can be measured providing information on Krebs cycle flux and oxidative metabolism. Given the compartmentation of key enzymes such as pyruvate carboxylase and glutamine synthetase, the detection of label incorporation into glutamine indicated that neuronal and glial metabolism can be measured in vivo. The purpose of this paper is to provide a critical overview of these recent advances into measuring compartmentation of brain energy metabolism using localized in vivo 13C NMR spectroscopy. The studies reviewed herein showed that anaplerosis is significant in brain, as is oxidative ATP generation in glia and the rate of glial glutamine synthesis attributed to the replenishment of the neuronal Glu pool and that brain glycogen metabolism is slow under resting conditions. This new modality promises to provide a new investigative tool to study aspects of normal and diseased brain hitherto unaccessible, such as the interplay between glutamatergic action, glucose and glycogen metabolism during brain activation, and the derangements thereof in patients with hepatic encephalopathy, neurodegenerative diseases and diabetes.
Collapse
Affiliation(s)
- Rolf Gruetter
- Department of Radiology, Center for MR Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Xu YZ, Krnjevic K. Unlike 2-deoxy-D-glucose, 3-O-methyl-D-glucose does not induce long-term potentiation in rat hippocampal slices. Brain Res 2001; 895:250-2. [PMID: 11259785 DOI: 10.1016/s0006-8993(01)02077-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Equimolar replacement of 10 mM glucose by 2-deoxy-D-glucose (2-DG) causes substantial depression followed by a sharp and sustained potentiation of CA1 field EPSPs. In the present experiments, similar applications of 3-O-methyl-D-glucose, which is also taken up by cells but is not phosphorylated, had only a weak blocking action and elicited no potentiation. Possible explanations for the marked effects of 2-DG include a more rapid block of glycolysis and the production of phosphorylated derivatives of 2-DG.
Collapse
Affiliation(s)
- Y Z Xu
- Department of Biology, University of Science and Technology, Hefei, Anhui 23002, China
| | | |
Collapse
|
19
|
Gotoh J, Itoh Y, Kuang TY, Cook M, Law MJ, Sokoloff L. Negligible glucose-6-phosphatase activity in cultured astroglia. J Neurochem 2000; 74:1400-8. [PMID: 10737595 DOI: 10.1046/j.1471-4159.2000.0741400.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
2-Deoxy[14C]glucose-6-phosphate (2-[14C]DG-6-P) dephosphorylation and glucose-6-phosphatase (G-6-Pase) activity were examined in cultured rat astrocytes under conditions similar to those generally used in assays of glucose utilization. Astrocytes were loaded with 2-[14C]DG-6-P by preincubation for 15 min in medium containing 2 mM glucose and 50 microM 2-deoxy[14C]glucose (2-[14C]DG). The medium was then replaced with identical medium including 2 mM glucose but lacking 2-[14C]DG, and incubation was resumed for 5 min to diminish residual free 2-[14C]DG levels in the cells by either efflux or phosphorylation. The medium was again replaced with fresh 2-[14C]DG-free medium, and the incubation was continued for 5, 15, or 30 min. Intracellular and extracellular 14C contents were measured at each time point, and the distribution of 14C between 2-[14C]DG and 2-[14C]DG-6-P was characterized by paper chromatography. The results showed little if any hydrolysis of 2-[14C]DG-6-P or export of free 2-[14C]DG from cells to medium; there were slightly increasing losses of 2-[14C]DG and 2-[14C]DG-6-P into the medium with increasing incubation time, but they were in the same proportions found in the cells, suggesting they were derived from nonadherent or broken cells. Experiments carried out with medium lacking glucose during the assay for 2-deoxyglucose-6-phosphatase activity yielded similar results. Evidence for G-6-Pase activity was also sought by following the selective detritiation of glucose from the 2-C position when astrocytes were incubated with [2-3H]glucose and [U-14C]glucose in the medium. No change in the 3H/14C ratio was found in incubations for as long as 15 min. These results indicate negligible G-6-Pase activity in cultured astrocytes.
Collapse
Affiliation(s)
- J Gotoh
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
20
|
Choi IY, Tkác I, Ugurbil K, Gruetter R. Noninvasive measurements of [1-(13)C]glycogen concentrations and metabolism in rat brain in vivo. J Neurochem 1999; 73:1300-8. [PMID: 10461925 DOI: 10.1046/j.1471-4159.1999.0731300.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a specific 13C NMR localization method, 13C label incorporation into the glycogen C1 resonance was measured while infusing [1-(13)C]glucose in intact rats. The maximal concentration of [1-(13)C]glycogen was 5.1 +/- 0.6 micromol g(-1) (mean +/- SE, n = 8). During the first 60 min of acute hyperglycemia, the rate of 13C label incorporation (synthase flux) was 2.3 +/- 0.7 micromol g(-1) h(-1) (mean +/- SE, n = 9 rats), which was higher (p < 0.01) than the rate of 0.49 +/- 0.14 micromol g(-1) h(-1) measured > or = 2 h later. To assess whether the incorporation of 13C label was due to turnover or net synthesis, the infusion was continued in seven rats with unlabeled glucose. The rate of 13C label decline (phosphorylase flux) was lower (0.33 +/- 0.10 micromol g(-1) h(-1)) than the initial rate of label incorporation (p < 0.01) and appeared to be independent of the duration of the preceding infusion of [1-(13)C]glucose (p > 0.05 for correlation). The results implied that net glycogen synthesis of approximately 3 micromol g(-1) had occurred, similar to previous reports. When infusing unlabeled glucose before [1-(13)C]glucose in three studies, the rate of glycogen C1 accumulation was 0.46 +/- 0.08 micromol g(-1) h(-1). The results suggest that steady-state glycogen turnover rates during hyperglycemia are approximately 1% of glucose consumption.
Collapse
Affiliation(s)
- I Y Choi
- Department of Radiology, Center for MR Research, University of Minnesota, Minneapolis, USA
| | | | | | | |
Collapse
|
21
|
Aureli T, Di Cocco ME, Puccetti C, Ricciolini R, Scalibastri M, Miccheli A, Manetti C, Conti F. Acetyl-L-carnitine modulates glucose metabolism and stimulates glycogen synthesis in rat brain. Brain Res 1998; 796:75-81. [PMID: 9689456 DOI: 10.1016/s0006-8993(98)00319-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of acetyl-L-carnitine on cerebral glucose metabolism were investigated in rats injected with differently 14C- and 13C-labelled glucose and sacrificed after 15, 30, 45, and 60 min. Acetyl-L-carnitine was found to reduce total 14CO2 release from [U-14C]glucose along with the decrease in [1-13C]glucose incorporation into cerebral amino acids and tricarboxylic acid cycle intermediates. However the 13C labelling pattern within different carbon positions of glutamate, glutamine, GABA, and aspartate was unaffected by acetyl-L-carnitine administration. Furthermore, the cerebral levels of newly-synthesized proglycogen were higher in rats treated with acetyl-L-carnitine than in untreated ones. These results suggest that acetyl-L-carnitine was able to modulate cerebral glucose utilization and provide new insights on the mechanisms of action of this molecule in the central nervous system.
Collapse
Affiliation(s)
- T Aureli
- Department of Biochemistry, Sigma-Tau Research Labs, Pomezia (RM), Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Brain slice glucose utilization (SGU) can be measured by methods analogous to those used for in vivo cerebral glucose utilization. In order to make this technique more accessible and applicable to a broad range of experimental conditions, we have derived a simplified operational rate equation and generated the table of apparent rate coefficients necessary to apply the equation under different experimental situations. Calculations of the apparent rate coefficients were based upon an eight-parameter kinetic model combined with Michaelis-Menten theory to account for changes in the rate constants as a function of buffer glucose concentration. The theory was tested with a series of experiments using rat brain slices. [14C]-2-deoxyglucose (2DG) and [14C]-3-O-methylglucose (3OMG). The errors involved in the simplified technique were estimated by a variety of techniques and found to be acceptable over a broad range of conditions. A detailed, practical protocol for the simplified method is presented.
Collapse
Affiliation(s)
- G C Newman
- Neurology Service, Veterans Administration Medical Center at Northport, New York, USA
| | | | | | | |
Collapse
|
23
|
Colwell DR, Higgins JA, Denyer GS. Incorporation of 2-deoxy-D-glucose into glycogen. Implications for measurement of tissue-specific glucose uptake and utilisation. Int J Biochem Cell Biol 1996; 28:115-21. [PMID: 8624840 DOI: 10.1016/1357-2725(95)00110-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Estimation of glucose uptake in vivo using 2-deoxy-D-[2,6-3H]glucose (2DG) relies upon the assumption that the phosphorylated form, 2-deoxy-D-2,6-3H]glucose 6-phosphate (2DGP), cannot be further metabolised. We aimed to determine whether this assumption leads to underestimation of glucose uptake due to the incorporation of 2DGP into glycogen. Rats were infused with [U-14C]glucose and 2-[3H]DG, and the incorporation into glycogen was measured. These were compared to the accumulation of 2-[3H]DGP in heart, liver, muscle, white adipose tissue and brown adipose tissue. 2DG was incorporated into glycogen in an insulin-dependent manner (e.g. in soleus, at basal, physiological and supraphysiological insulin concentrations, glycogen synthesis rates from 2DG were 17.81 +/- 3.07, 64.47 +/- 7.47 and 203.23 +/- 44.52 nmol glycogen incorporated/g min-1, respectively). The rate of glycogen synthesis from 2-[3H]DG was identical to that for [U-14C]glucose in all tissues studied except for heart and brown adipose tissue (e.g. in soleus at physiological insulin concentration, 2-[3H]DG incorporation was 64.47 +/- 7.47 and [U-14C]glucose incorporation was 61.87 +/- 7.56 nmol glucose/g min-1). Furthermore, the proportion of 2DG incorporated into glycogen was significant with respect to total glucose uptake at all plasma insulin concentrations (10.7% +/- 0.9, 14.0 +/- 1.9 and 25.6% +/- 5.6 at basal, physiological and supraphysiological insulin concentrations, respectively). 2DG was metabolised to glycogen in all tissues studied causing an underestimation of the rate of glucose uptake by measurement of 2DGP accumulation alone. In addition, use of 2DG could provide a method for assessing the rate of direct glycogen synthesis in the rat.
Collapse
Affiliation(s)
- D R Colwell
- Department of Biochemistry, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
24
|
Abstract
The olfactory bulb exhibits high glycogen phosphorylase activity, the rate-limiting enzyme in the mobilization of glycogen. The bulb also receives dense noradrenergic innervation and noradrenaline is known to stimulate glycogen breakdown. We determined the levels of glycogen in the bulb over the course of development and then determined the ability of noradrenaline to mobilize bulb glycogen. At birth, olfactory bulbs have very high levels of glycogen, with levels declining as the pups develop. Picomolar levels of noradrenaline mobilize glycogen in the bulb,. Initially, beta-adrenergic receptors mediate teh glycogenolysis and subsequently, the alpha-noradrenergic receptors in the bulb stimulate the breakdown of glycogen. Carnosine is involved in the repletion of bulb glycogen levels. The stimulation of glycogen breakdown by noradrenaline may play a role in allowing the increased activity that accompanies early olfactory stimulation.
Collapse
Affiliation(s)
- R Coopersmith
- Department of Psychobiology, University of California, Irvine 92717, USA
| | | |
Collapse
|
25
|
Jiang PJ, Terashima S. Selective labeling of [3H]2-deoxy-D-glucose in the snake trigeminal system: basal and infrared-stimulated conditions. Somatosens Mot Res 1995; 12:299-307. [PMID: 8834303 DOI: 10.3109/08990229509093663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[3H]2-Deoxy-D-glucose (2-DG) and high-resolution autoradiography were employed to investigate labeling patterns of the trigeminal and infrared sensory system in a crotaline snake, the pit viper (Trimeresurus flavoviridis). Following intracardiac injection of 9.25 MBq [3H]2-DG, neurons in the nucleus of the lateral descending trigeminal tract (LTTD), nucleus reticularis caloris (RC), nucleus trigemini mesencephalicus, nucleus trigemini motorius, and trigeminal ganglia were labeled in various degrees after the pit organ had been removed (basal condition). This revealed that a higher rate of glucose utilization occurred in these nuclei than in the common sensory trigeminal nuclei, which lacked labeling entirely. When a pit was stimulated periodically with an infrared stimulus for 45 min, the difference in percentage of labeled cells was ipsilaterally increased by 12.84% in large cells of the LTTD and by 7.55% in the RC, as compared with the contralateral, basal-condition side. These slight changes indicate a small increase of glucose consumption during infrared reception. On the other hand, the small cells in the LTTD showed labeling that did not change with stimulation, suggesting that 2-DG uptake in inhibitory interneurons is relatively constant.
Collapse
Affiliation(s)
- P J Jiang
- Department of Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan
| | | |
Collapse
|
26
|
Fedders G, Kock R, Van de Leur E, Greiling H. The metabolism of 2-fluoro-2-deoxy-D-glucose in human chondrocytes and its incorporation into keratan sulfate proteoglycans. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:1063-71. [PMID: 8112319 DOI: 10.1111/j.1432-1033.1994.tb18589.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The incorporation of 2-fluoro-2-deoxy-D-[14C]glucose in proteoglycans was investigated in a cell culture system, where human articular chondrocytes were cultured in high-cell-density thin-layer soft agarose. The proteoglycans were solubilized from the culture medium and the cell layer fraction by extracting with a guanidine hydrochloride buffer and purified by an ion-exchange-chromatography (DEAE-Sepharose CL-6B). With enzymic decomposition experiments concerning the glycosaminoglycan side-chains it could be shown that 65-69% were digestible by keratanase, whereas 21-29% of the 14C-labeled proteoglycans were digested with chondroitinase AC/ABC. The main constituent of the 2-fluoro-2-deoxy-D-[14C]glucose-metabolites present in the glycosaminoglycan side chains of the proteoglycans was 2-fluoro-2-deoxy-D-[14C]galactose. Therefore, 2-fluoro-2-deoxy-D-glucose was preferentially incorporated into keratan sulfate. We investigated the effect of non-radioactive 2-fluoro-2-deoxy-D-glucose on UDP-sugar and proteoglycan biosynthesis after incubation periods of 1-30 h. A high 2-fluoro-2-deoxy-D-glucose concentration in the culture medium did not influence the pool size of UDP-N-acetylhexosamines, but UDP-D-glucose, UDP-D-galactose, UDP-D-glucuronic acid, UDP-2-fluoro-2-deoxy-D-glucose, UDP-2-fluoro-2-deoxy-D-galactose and UDP-2-fluoro-2-deoxy-D-glucuronic acid accumulated in the chondrocytes time dependently. In a pulse/chase experiment the retarded synthesis of fluorinated UDP-sugars was proved. The half-lives (t1/2) for UDP-2-fluoro-2-deoxy-D-glucose and UDP-2-fluoro-2-deoxy-D-galactose were about 7.7 h and 13.3 h, respectively. UDP-2-fluoro-2-deoxy-D-glucuronic acid could be found with delay. The incubation with 2-fluoro-2-deoxy-D-glucose and [14C]glucosamine resulted in a decreased radioactive labelling of chondroitin sulfate and keratan sulfate.
Collapse
Affiliation(s)
- G Fedders
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, University of Technology Aachen, Germany
| | | | | | | |
Collapse
|
27
|
Melzer P, Crane AM, Smith CB. Mouse barrel cortex functionally compensates for deprivation produced by neonatal lesion of whisker follicles. Eur J Neurosci 1993; 5:1638-52. [PMID: 8124517 DOI: 10.1111/j.1460-9568.1993.tb00232.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the murine somatosensory pathway, the metabolic whisker map in barrel cortex derived with the autoradiographic deoxyglucose method is spatially in register with the morphological whisker map represented by the barrels. The barrel cortex of adult mice, in which we had removed three whisker follicles from the middle row of whiskers shortly after birth, contained a disorganized zone surrounded by enlarged barrels with partially disrupted borders. With the fully quantitative autoradiographic deoxyglucose method, we investigated in barrel cortex of such mice the magnitude and the pattern of metabolic responses evoked by the deflection of whiskers. Most remarkably, the simultaneous deflection of six whiskers neighbouring the lesion activated not only the territory of the corresponding barrels, but also the unspecifiable area intercalated between the clearly identified barrels. This metabolic whisker map, unpredictable from the morphological 'barrel' map, may reflect a functional compensation for the deficit in input.
Collapse
Affiliation(s)
- P Melzer
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, MD 20892
| | | | | |
Collapse
|
28
|
Dienel GA, Cruz NF. Synthesis of deoxyglucose-1-phosphate, deoxyglucose-1,6-bisphosphate, and other metabolites of 2-deoxy-D-[14C]glucose in rat brain in vivo: influence of time and tissue glucose level. J Neurochem 1993; 60:2217-31. [PMID: 8492127 DOI: 10.1111/j.1471-4159.1993.tb03508.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
When the kinetics of interconversion of deoxy[14C]glucose ([14C]DG) and [14C]DG-6-phosphate ([14C]DG-6-P) in brain in vivo are estimated by direct chemical measurement of precursor and products in acid extracts of brain, the predicted rate of product formation exceeds the experimentally measured rate. This discrepancy is due, in part, to the fact that acid extraction regenerates [14C]DG from unidentified labeled metabolites in vitro. In the present study, we have attempted to identify the 14C-labeled compounds in ethanol extracts of brains of rats given [14C]DG. Six 14C-labeled metabolites, in addition to [14C]DG-6-P, were detected and separated. The major acid-labile derivatives, DG-1-phosphate (DG-1-P) and DG-1,6-bisphosphate (DG-1,6-P2), comprised approximately 5 and approximately 10-15%, respectively, of the total 14C in the brain 45 min after a pulse or square-wave infusion of [14C]DG, and their levels were influenced by tissue glucose concentration. Both of these acid-labile compounds could be synthesized from DG-6-P by phosphoglucomutase in vitro. DG-6-P, DG-1-P, DG-1,6-P2, and ethanol-insoluble compounds were rapidly labeled after a pulse of [14C]DG, whereas there was a 10-30-min lag before there was significant labeling of minor labeled derivatives. During the time when there was net loss of [14C]DG-6-P from the brain (i.e., between 60 and 180 min after the pulse), there was also further metabolism of [14C]DG-6-P into other ethanol-soluble and ethanol-insoluble 14C-labeled compounds. These results demonstrate that DG is more extensively metabolized in rat brain than commonly recognized and that hydrolysis of [14C]DG-1-P can explain the overestimation of the [14C]DG content and underestimation of the metabolite pools of acid extracts of brain. Further metabolism of DG does not interfere with the autoradiographic DG method.
Collapse
Affiliation(s)
- G A Dienel
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, MD 20892
| | | |
Collapse
|
29
|
Dienel GA, Cruz NF, Sokoloff L. Metabolites of 2-deoxy-[14C]glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. J Cereb Blood Flow Metab 1993; 13:315-27. [PMID: 8436625 DOI: 10.1038/jcbfm.1993.40] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The [14C]deoxyglucose ([14C]DG) method depends upon quantitative trapping of metabolites in brain at the site of phosphorylation, and in the usual procedure it is assumed that all the label in plasma is in free DG. Our previous finding of labeled nonacidic derivatives of DG in plasma raised the possibility that some metabolites of DG might not be fully retained in body tissues and therefore cause overestimation of the integrated specific activity of the precursor pool determined from assay of label in plasma and/or underestimation of the true size of the metabolite fraction in brain. In the present study, metabolism of DG in rat tissues by secondary pathways was examined and found to be more extensive than previously recognized. When 14C-labeled compounds in ethanol extracts of either plasma or brain were separated by anion exchange HPLC, eight fractions were obtained. 14C-labeled metabolites in plasma were detected after a 35-min lag and gradually increased in amount with time after an intravenous pulse. In brain, deoxyglucose-6-phosphate was further metabolized, mainly to deoxyglucose-1-phosphate and deoxyglucose-1,6-phosphate. These are acid-labile compounds and accounted for approximately 20% of the 14C in the metabolite pool in brain. The rate constants for net loss of 14C from the metabolite pool between 45 and 180 min after a pulse were similar (0.4-0.5%/min) in vivo and in intact postmortem brain. The rate constant for loss of deoxyglucose-6-phosphate (DG-6-P) in vivo (approximately 0.7%/min) was, however, about twice that for postmortem brain, suggesting that a significant fraction of the DG-6-P lost in vivo is due to its further metabolism by energy-dependent reactions. 14C-labeled metabolites of [14C]DG in plasma and brain do not interfere with determination of local rates of glucose utilization in brain in normal, conscious rats by the autoradiographic method if the prescribed procedures and a 45-min experimental period are used.
Collapse
Affiliation(s)
- G A Dienel
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
30
|
Swanson RA, Morton MM, Sagar SM, Sharp FR. Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 1992; 51:451-61. [PMID: 1465204 DOI: 10.1016/0306-4522(92)90329-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain glycogen stores are localized primarily to glia and undergo continuous utilization and resynthesis. To study the function of glycogen under normal conditions in brain, we developed an autoradiographic method of demonstrating local-glycogen utilization in the awake rat. The method employs labeling of brain glycogen with 14C(3,4)glucose, in situ microwave fixation of brain metabolism, and anhydrous tissue preparation. With this technique, tactile stimulation of the rat face and vibrissae was found to accelerate the utilization of labeled glycogen in brain regions known to receive sensory input from face and vibrissae: the contralateral somatosensory cortex and the ipsilateral trigeminal, sensory and motor nuclei. These findings demonstrate a link between neuronal activity and local glycogen utilization in mammalian brain and suggest that, like other tissues, brain may respond to sudden increases in energy demand in part by rapid glycolytic metabolism of glycogen. As cerebral glycogen is restricted primarily to glia, these observations also support a close coupling of glial energy metabolism with neuronal activity.
Collapse
Affiliation(s)
- R A Swanson
- Department of Neurology, University of California, San Francisco
| | | | | | | |
Collapse
|
31
|
Pouremad R, Wyrwicz AM. Cerebral metabolism of fluorodeoxyglucose measured with 19F NMR spectroscopy. NMR IN BIOMEDICINE 1991; 4:161-6. [PMID: 1931555 DOI: 10.1002/nbm.1940040402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brain extracts from rats given various doses of 2-fluoro-2-deoxy-D-glucose ranging from 20 to 300 mg/kg were examined with 19F NMR spectroscopy for fluorinated metabolic products and compared with the in vivo 19F spectra. Based on the analysis of these spectra and comparison with synthetic reference compounds, 2-fluoro-2-deoxy-D-glucose 6-phosphate and 2-fluoro-2-deoxy-D-mannose 6-phosphate were identified as the major metabolites present. 2-Fluoro-2-deoxy-D-6-phosphogluconate was detected only at high doses of 2-fluoro-2-deoxy-D-glucose administered, along with non-phosphorylated 2-fluoro-2-deoxy-D-glucose and 2-fluoro-2-deoxy-D-mannose. Small amounts of two other compounds, which were not identified, were also observed. Presence of the 2-fluoro-2-deoxy-D-mannose 6-phosphate is the result of 2-fluoro-2-deoxy-D-glucose 6-phosphate isomerization at the C2 position catalyzed by phosphoglucose isomerase. Results from the in vitro enzymatic reaction provide support for this hypothesis. Presence of 2-fluoro-2-deoxy-D-mannose may be the result of 2-fluoro-2-deoxy-D-glucose isomerization at the C2 position catalyzed by glucose isomerase or the result of the dephosphorylation of the 2-fluoro-2-deoxy-D-glucose 6-phosphate.
Collapse
Affiliation(s)
- R Pouremad
- Department of Chemistry, University of Illinois, Chicago 60680
| | | |
Collapse
|
32
|
Woo CC, Leon M. Increase in a focal population of juxtaglomerular cells in the olfactory bulb associated with early learning. J Comp Neurol 1991; 305:49-56. [PMID: 2033124 DOI: 10.1002/cne.903050106] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Young rats learn to approach an odor that had been experienced in the presence of reinforcing tactile stimulation. Subsequent presentation of the conditioned odor also evokes an enhanced focal uptake of 2-deoxyglucose (2-DG) in the glomerular layer of the olfactory bulb, and the glomerular-layer width of such foci increases in conditioned pups. In the present study, we determined whether an increase in the glomerular-layer cell population contributes to this structural and functional change. We therefore counted and measured glomerular-layer cells in Nissl-stained sections from focal regions of radiolabeled 2-DG uptake. While cell size did not differ between groups, conditioned pups had a 19% increase in the number of glomerular-layer cells associated with the 2-DG foci compared to controls. The increase in cell number may contribute to the enhanced 2-DG uptake in glomerular-layer foci.
Collapse
Affiliation(s)
- C C Woo
- Department of Psychobiology, University of California, Irvine 92717
| | | |
Collapse
|
33
|
Sokoloff L. Measurement of local cerebral glucose utilization and its relation to local functional activity in the brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 291:21-42. [PMID: 1927683 DOI: 10.1007/978-1-4684-5931-9_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- L Sokoloff
- National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
34
|
Abstract
A six-compartment, nine-parameter kinetic model of 2-deoxyglucose (2DG) metabolism, which includes bidirectional tissue transport, phosphorylation, two-step dephosphorylation, phosphoisomerization, and conjugation to UDP and macromolecules, has been derived. Data for analysis were obtained from 540- and 1,000-microns-thick hippocampal and hypothalamic brain slices, which were incubated in buffer containing [14C]2DG, frozen, extracted with perchlorate, and separated on anion-exchange columns. Solutions of the equations of the model were fit to the data by means of nonlinear least-squares analysis. These studies suggest that dephosphorylation is adequately described by a single reaction so that the model reduces to eight parameters. The in vitro rate constants for transport, phosphorylation, and dephosphorylation are very similar to prior in vivo results. The phosphoisomerization rate constant is similar to dephosphorylation, so glycosylated macromolecules slowly accumulate and gradually assume larger relative importance as other compounds disappear more rapidly. Rate constants for 540-microns slices from hypothalamus and hippocampus are similar, while 1,000-microns slices have smaller tissue transport constants and larger phosphorylation constants. The rate equation for glucose utilization of this model is relatively insensitive to uncertainties regarding the rate constants. Including later metabolic components in kinetic models improves the calculations of glucose utilization with long isotope exposures.
Collapse
Affiliation(s)
- G C Newman
- Department of Neurology, SUNY, Stony Brook 11794
| | | | | |
Collapse
|
35
|
Dienel GA, Cruz NF, Mori K, Sokoloff L. Acid lability of metabolites of 2-deoxyglucose in rat brain: implications for estimates of kinetic parameters of deoxyglucose phosphorylation and transport between blood and brain. J Neurochem 1990; 54:1440-8. [PMID: 2156023 DOI: 10.1111/j.1471-4159.1990.tb01981.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The steady-state brain/plasma distribution ratios of [14C]deoxyglucose ([14C]DG) for hypoglycemic rats previously determined by measurement of DG concentrations in neutralized acid extracts of freeze-blown brain and plasma exceeded those predicted by simulations of kinetics of the DG model. Overestimation of the true size of the precursor pool of [14C]DG for transport and phosphorylation could arise from sequestration of [14C]DG within brain compartments and/or instability of metabolites of [14C]DG and regeneration of free [14C]DG during the experimental period or extraction procedure. In the present study, the concentrations of [14C]DG and glucose were compared in samples of rat brain and plasma extracted in parallel with perchloric acid or 65% ethanol containing phosphate-buffered saline. The concentrations of both hexoses in acid extracts of brain were higher than those in ethanol, whereas hexose contents of plasma were not dependent on the extraction procedure. The magnitude of overestimation of DG content (about 1.2-to fourfold) varied with glucose level and was highest in extracts isolated from hypoglycemic rats; contamination of the [14C]DG fraction with 14C-labeled nonacidic metabolites also contributed to this overestimation. Glucose concentrations in acid extracts of brain exceeded those of the ethanol extracts by less than 40% for normal and hypoglycemic rats.
Collapse
Affiliation(s)
- G A Dienel
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
36
|
Kotyk JJ, Rust RS, Ackerman JJ, Deuel RK. Simultaneous in vivo monitoring of cerebral deoxyglucose and deoxyglucose-6-phosphate by 13C[1H] nuclear magnetic resonances spectroscopy. J Neurochem 1989; 53:1620-8. [PMID: 2795021 DOI: 10.1111/j.1471-4159.1989.tb08560.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The capacity of brain to dephosphorylate glucose-6-phosphate has been established, but the magnitude and significance of this capacity in vivo are debated, particularly in regard to dephosphorylation of the glucose analog 2-deoxyglucose. We now report results of external measurement in the brains of conscious rats with simultaneous resolution and quantification of both 2-deoxyglucose and its phosphorylated product by nuclear magnetic resonance (NMR) techniques that used 2-[6-13]deoxyglucose together with proton-decoupled 13C surface-coil spectroscopy. As NMR techniques require large doses of 2-deoxyglucose, a dose comparison was first made using decay curves of total label after tracer doses of 2-[14C]deoxyglucose without versus with unlabeled deoxyglucose at 500 mg/kg (the NMR dose). Similar cerebral half-lives for the two doses were found, and no behavioral evidence for toxicity of the NMR dose was seen. In vivo NMR monitoring of conscious rats showed that the analog reached maximal cerebral concentration within 10 min of the intravenous bolus and decayed with a half-life of 29 +/- 7 min (n = 4; mean +/- SEM), whereas 2-deoxyglucose-6-phosphate reached peak concentration between 30 and 40 min and decayed with a half-life of 2.1 +/- 0.3 h, equivalent to a fractional loss of 0.8%/min. Thirty-one percent (+/- 5%) of the total analog pool (which showed a half-life of 1.4 h) consisted of 2-deoxyglucose at 45 min after the bolus. The results support an active but limited role for dephosphorylation by normal brain in glucose analog (and potentially glucose) metabolism in the unstimulated conscious rat and a wide concentration range for the metabolic operations involved.
Collapse
Affiliation(s)
- J J Kotyk
- Department of Chemistry, Washington University, St. Louis, Missouri
| | | | | | | |
Collapse
|
37
|
Yarowsky PJ, Boyne AF. Ultrastructural metabolic activity following quick-freezing and freeze-substitution in tetrahydrofuran in the superior cervical ganglion. JOURNAL OF NEUROCYTOLOGY 1989; 18:121-35. [PMID: 2709047 DOI: 10.1007/bf01188431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A method of quick-freezing and freeze-substitution has been developed for localizing diffusible substances such as 2-deoxyglucose-6-phosphate (2-DG-6-P) ultrastructurally in neural tissue. Quick-freezing under pressure provides well preserved tissue down to 30-35 microns from the surface. This allows blocks of neural tissue to be quick-frozen and analysed for diffusible substances in areas removed from the freezing face. Freeze-substitution in tetrahydrofuran following quick-freezing was found to dissolve and remove 2-deoxyglucose (2-DG) but not 2-DG-6-P. Consequently, this technique extends the ability to analyse localization of glucose utilization to postsynaptic as well as presynaptic sites. We have applied the technique to isolated superior cervical ganglion while provoking selective increases in energy metabolism. Exposure to an elevated extracellular potassium (12 mM) concentration produced a pattern of metabolic activity with enhanced neuropil labelling (neuronal and glial processes). With antidromic stimulation of the external carotid nerves, deoxyglucose uptake in neuronal and glial soma in the caudal portion of the ganglion was enhanced more than neuropil labelling. This caudal region corresponds to the region of origin of the cell bodies of the external carotid nerve. Results from this technique suggest that the contribution of glia to overall rate of energy metabolism may be significant and that this is a promising method for correlating the relationship between functional activity and cellular electrical activity.
Collapse
Affiliation(s)
- P J Yarowsky
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201
| | | |
Collapse
|
38
|
McCasland JS, Woolsey TA. New high-resolution 2-deoxyglucose method featuring double labeling and automated data collection. J Comp Neurol 1988; 278:543-54. [PMID: 3068265 DOI: 10.1002/cne.902780406] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new approach to high-resolution 2-deoxy-D-glucose (2DG) emulsion-autoradiography which combines improved retention of 2DG labeling, staining with immunohistochemical and other specific markers, and automated data collection and analysis of local silver grain and stain densities is described. The Durham et al. (J. Neurosci. 1:519-526, '81) procedure for fixation of 2DG with periodate-lysine-paraformaldehyde (PLP, McLean and Nakane: J. Histochem. Cytochem. 22:1077-1083, '74) was adapted to increase retained label roughly tenfold. Phenobarbital anesthesia is induced 45 minutes after 2DG injection. Barbiturate anesthesia increases brain glycogen (Nelson et al.: J. Neurochem. 15:1271-1279, '68) and presumably increases the incorporation of intracellular 2DG from 2DG-6P into brain glycogen and other molecules (Nelson et al.: J. Neurochem. 43:949-956, '84; Pentreath et al.: Neuroscience 7:759-767, '82). Iodoacetate is added to cold fixative to prevent glycogen breakdown (Cammermeyer and Fenton: Histochemistry 76:339-356, '82). This high-resolution 2DG protocol is directly compatible with many other neuroanatomical techniques. We demonstrate 2DG emulsion autoradiography combined with cytochrome oxidase (CO) histochemistry, markers for axonal pathway tracing, plastic embedding for semithin sections, and immunohistochemical staining for glutamate decarboxylase (GAD). The method should be compatible with antibodies for other antigens and with other neuroanatomical stains. To collect the data directly from microscope slides, a computer-controlled microscope was integrated with image-processing software to eliminate the need for manual counting and scoring of autoradiograms. Regions of interest are scanned automatically at high resolution to map regional labeling and/or stain density. There is excellent correspondence between computer-enhanced two-dimensional maps of the data and the original autoradiograms. Automated counts for five specimens were compared to counts of labeled cells by trained observer. The correlation between the two sets of measurements is high (r = .93). Automated data collection has been generalized to measure regional stain densities on the autoradiographed sections for direct comparison with silver grain density. The method is extremely flexible, especially since new image-processing strategies can be developed in software to extract the desired information from materials labeled by other methods (e.g., HRP).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J S McCasland
- James L. O'Leary Division of Experimental Neurology and Neurosurgery, Washington University School of Medicine, St. Louis 63110
| | | |
Collapse
|
39
|
Wree A, Schleicher A. The determination of the local cerebral glucose utilization with the 2-deoxyglucose method. HISTOCHEMISTRY 1988; 90:109-21. [PMID: 3068213 DOI: 10.1007/bf00500975] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the adult mammalian brain, the energy metabolism is almost entirely dependent on glucose. Furthermore, a close relationship between the energy metabolism and the functional activity could be shown. Thus, the functional activity of the brain or parts thereof can be quantified by measuring the cerebral metabolic rate for glucose. Studying in vivo the fate of a radioactive labeled analogue of glucose, the 2-deoxy-D-[1-14C]glucose, and using quantitative autoradiographic techniques, it is possible to estimate the cerebral glucose utilization of every discrete brain region. The advantage of the 2-deoxyglucose method is, that the local cerebral glucose utilization represents a "metabolic encephalography" (Sokoloff 1982).
Collapse
Affiliation(s)
- A Wree
- Anatomisches Institut der Universität Würzburg, Federal Republic of Germany
| | | |
Collapse
|
40
|
Nelson T, Dienel GA, Mori K, Cruz NF, Sokoloff L. Deoxyglucose-6-Phosphate Stability In Vivo and the Deoxyglucose Method: Response to Comments of Hawkins and Miller. J Neurochem 1987. [DOI: 10.1111/j.1471-4159.1987.tb02458.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Bass L, Bodsch W, Robinson PJ, Young MO. Metabolites of 2-deoxyglucose in rat brain at 12-24 h: bounds on kinetic constants. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:E453-60. [PMID: 3661702 DOI: 10.1152/ajpendo.1987.253.4.e453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activities of 2-deoxy-D-glucose and its metabolites in rat brain were examined at 12, 16, 20, and 24 h after intraperitoneal injection of 14C-labeled 2-deoxy-D-glucose. Plasma radioactivity was monitored for 2 h before each of these determinations. As proportion of total brain radioactivity, 2-deoxy-D-glucose decreased monotonically from the unexpectedly high value of 22% at 12 h to 11% at 24 h after injection, 2-deoxy-D-glucose 6-phosphate decreased monotonically from 69% at 12 h to 23% at 24 h, and unphosphorylated products (of high and low molecular weight) increased from 10% at 12 h to 64% at 24 h. The data were analyzed in terms of a four-compartment model. Secure lower and upper bounds on the rate constant, k4*, for the dephosphorylation of 2-deoxy-D-glucose 6-phosphate were established: k4* was at least 0.0158 +/- 0.0014 . min-1 and at most 0.0385 +/- 0.0037 . min-1. If k4* is constant in time, then appreciable dephosphorylation occurs within the 45-min experimental period commonly used in the standard 2-deoxy-D-glucose method for estimating local cerebral glucose utilization. The possibility that the effective k4* is lower at such early times is reviewed in the light of a reanalysis of previously published data. Implications of these results for the 2-deoxy-D-glucose method are discussed from the points of view of numerical analysis and capillary heterogeneity.
Collapse
Affiliation(s)
- L Bass
- Department of Mathematics, University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
42
|
Coopersmith R, Leon M. Glycogen phosphorylase activity in the olfactory bulb of the young rat. J Comp Neurol 1987; 261:148-54. [PMID: 3624541 DOI: 10.1002/cne.902610113] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The activity of glycogen phosphorylase, the enzyme that controls glycogen breakdown, was histochemically mapped in the olfactory bulbs of 19-day-old rats. The effect of early odor experience on subsequent olfactory bulb phosphorylase activity was also examined. The highest level of phosphorylase staining in the bulb (and seemingly the highest in the brain) was in the glomerular layer, followed by the external plexiform, internal plexiform, granule cell, and olfactory nerve layers. Virtually no activity was visible in the large output neurons of the bulb, mitral, and tufted cells. Early peppermint odor experience, previously shown to increase metabolic activity in specific glomerular foci as measured by 2-deoxyglucose uptake, had no apparent effect on glomerular-layer phosphorylase activity. In some odor-familiar animals, however, patches of activity were seen in the internal plexiform layer in the area of the bulb where foci of high deoxyglucose uptake are seen in response to peppermint. The patches were directly in line with modified glomerular clusters often seen to underlie foci of enhanced deoxyglucose uptake. The existence of particularly heavy activity in the peripheral third of the glomerular layer, where glycogen-containing modified Schwann cells have been localized, raises the possibility that the glomerular-layer activity is at least partially glial in origin. Finally, because of its rich noradrenaline and serotonin innervation and high density of insulin receptors, the olfactory bulb is proposed as a model system to study the interaction of glycogen/glucose metabolism with neural activity in a relatively well-defined neuronal circuit.
Collapse
|
43
|
|
44
|
|
45
|
Mies G, Bodsch W, Paschen W, Hossmann KA. Triple-tracer autoradiography of cerebral blood flow, glucose utilization, and protein synthesis in rat brain. J Cereb Blood Flow Metab 1986; 6:59-70. [PMID: 3944217 DOI: 10.1038/jcbfm.1986.8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A triple-tracer autoradiographic technique is described that permits the simultaneous measurement of cerebral blood flow, glucose consumption, and protein synthesis using 131I-iodoantipyrine (131I-IAP), [14C]deoxyglucose ([14C]DG), and 3H-amino acids as radioactive tracers. Autoradiographic differentiation between isotopes was performed by taking advantage of different half-lives, solubility of labeled tracers in a wash solution, and sensitivity of the photographic material to disintegrations of the radionuclides. Blood flow autoradiograms using 131I-IAP were obtained by immediate exposure of brain sections to Kodak NMB film for 24 h. During 131I autoradiography contamination by 3H was absent and by 14C was negligible at tissue concentrations of less than 0.45 microCi/g brain tissue. After complete decay of 131I, reexposure of brain sections to Kodak NMB film for 2 weeks provided autoradiograms that stemmed exclusively from 14C disintegrations without contamination by either 131I or 3H and that represented regional glucose utilization. Brain sections were then wash-incubated for 12 h to remove [14C]DG, [14C]DG-6-phosphate, and free 3H-amino acids from the tissue, and exposed to 3H-sensitive LKB Ultrofilm for 2 weeks for autoradiography of 3H-amino acid incorporation into proteins. 14C radioactivity remaining in the tissue section after wash-incubation was determined by exposing sections again for 2 weeks to Kodak NMB film; the resulting contribution to the blackening of 3H-autoradiograms was corrected for by means of digital subtraction using an image-processing system. The triple-tracer autoradiographic technique was validated in rats under various physiological and pathophysiological conditions. In intact animals extinction correction was necessary only for 3H-autoradiograms. Under pathophysiological conditions, however, significant contamination of 131I by 14C occurred in regions with low blood flow and increased glucose utilization rate; this also required correction by digital subtraction. The interpretation of triple-tracer autoradiographic results is limited by the same restrictions as single-tracer autoradiography, but the simultaneous assessment of the three parameters considerably facilitates the interpretation of the flow/metabolic relationship, particularly under pathological conditions.
Collapse
|
46
|
Cataldo AM, Broadwell RD. Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions: I. Neurons and glia. ACTA ACUST UNITED AC 1986. [DOI: 10.1002/jemt.1060030406] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Suolinna EM, Haaparanta M, Paul R, Härkönen P, Solin O, Sipilä H. Metabolism of 2-[18F]fluoro-2-deoxyglucose in tumor-bearing rats: chromatographic and enzymatic studies. INTERNATIONAL JOURNAL OF RADIATION APPLICATIONS AND INSTRUMENTATION. PART B, NUCLEAR MEDICINE AND BIOLOGY 1986; 13:577-81. [PMID: 3818323 DOI: 10.1016/0883-2897(86)90141-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The activities of hexokinase and glucose-6-phosphatase, as well as the in vivo metabolic products of 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) (45 min after an i.v. injection), were determined from several tissues of Rous sarcoma implanted rats. The HK/G-6-Pase ratio was found to be high in brain and tumor, and low in liver with intermediate values for kidney and muscle. In accordance with the measured enzyme activities about 90% of the 18F was found as [18F]FDG-6-P in brain, heart and tumor, whereas most of its was as [18F]FDG in liver and kidney. In addition three minor metabolites, tentatively identified as nucleotide-derivatives of [18F]FDG, were formed. Our results suggest that at least Rous sarcoma tumor effectively converts [18F]FDG to [18F]FDG-6-P and thus PET studies with [18F]FDG can be applied to tumor diagnosis and to quantitative measurement of glucose utilization in tumor tissue according to the model of Sokoloff.
Collapse
|
48
|
Deuel RK, Yue GM, Sherman WR, Schickner DJ, Ackerman JJ. Monitoring the time course of cerebral deoxyglucose metabolism by 31P nuclear magnetic resonance spectroscopy. Science 1985; 228:1329-31. [PMID: 4001946 DOI: 10.1126/science.4001946] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phosphorylation of 2-deoxyglucose by the mammalian brain is used as an index of the brain's energy metabolism. The results of phosphorus-31 nuclear magnetic resonance (31P NMR) monitoring of conscious animals in vivo showed rapid phosphorylation of 2-deoxyglucose by brain tissue. The rate of phosphorylation as determined by 31P NMR was consistent with results achieved by tracer methods using carbon-14-labeled 2-deoxyglucose. However, the disappearance of 2-deoxyglucose-6-phosphate was shown to be faster than that reported by tracer studies and occurred without alterations of intracellular pH and energy homeostasis. These results were confirmed by gas chromatography and mass spectroscopy. It is postulated that 2-deoxyglucose may be metabolized in several ways, including dephosphorylation by a hexose phosphatase.
Collapse
|
49
|
Durham D, Woolsey TA. Functional organization in cortical barrels of normal and vibrissae-damaged mice: a (3H) 2-deoxyglucose study. J Comp Neurol 1985; 235:97-110. [PMID: 2985659 DOI: 10.1002/cne.902350108] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The large mystacial vibrissae on the faces of rodents have punctate representations in all stations in the central trigeminal pathway, including layer IV of the somatosensory cortex (SmI). The cortical whisker correlates, multicellular units termed barrels, are not present at birth, and damage to the vibrissae during the first postnatal week results in altered adult cytoarchitectonics. The anatomical effects of vibrissae damage in the cortex have been well documented; here, we investigated the functional organization of altered SmI barrels with a high-resolution 2-deoxyglucose (2-DG) technique (Durham et al., '81, J. Neurosci. 1:519). The middle row of vibrissae was cauterized in 1-, 2-, 3-, 4-, or 5-day-old mice, and the animals were allowed to survive to sexual maturity. Various combinations of vibrissae were clipped acutely 24 hours prior to injection of 2-4 mCi of (3H)2-DG. Mice actively explored an empty cage for 60 minutes, stimulating the remaining vibrissae. The mice then were perfused and their brains prepared for paraffin histology and emulsion autoradiography. In tangential sections through layer IV, patterns of neuropil and cell body labeling were analyzed with respect to barrel cytoarchitecture in normal and vibrissae-damaged mice. In both control and experimental animals, patterns of neuropil and cell somata label corresponded exactly to barrel boundaries, whether normal or altered by vibrissae damage. Only those barrels for which vibrissae were intact had high levels of label, with anterior barrels more heavily labeled. Many neurons in the septa between these barrels and the adjacent barrels were labeled also. We found slightly higher neuropil label in the cortical zone corresponding to the damaged zone on the face in animals lesioned at any time. These data indicate that physiological somatotopy in vibrissae-damaged animals matches the anatomical cytoarchitecture.
Collapse
|