1
|
Ames S, Adams K, Geisen ME, Stirling DP. Ca 2+-induced myelin pathology precedes axonal spheroid formation and is mediated in part by store-operated Ca 2+ entry after spinal cord injury. Neural Regen Res 2023; 18:2720-2726. [PMID: 37449636 DOI: 10.4103/1673-5374.373656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The formation of axonal spheroid is a common feature following spinal cord injury. To further understand the source of Ca2+ that mediates axonal spheroid formation, we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca2+. We performed two-photon excitation imaging of spinal cords isolated from Thy1YFP+ transgenic mice and applied the lipophilic dye, Nile red, to record dynamic changes in dorsal column axons and their myelin sheaths respectively. We selectively released Ca2+ from internal stores using the Ca2+ ionophore ionomycin in the presence or absence of external Ca2+. We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 mM Ca2+ artificial cerebrospinal fluid. In contrast, removal of external Ca2+ significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment. Using mice that express a neuron-specific Ca2+ indicator in spinal cord axons, we confirmed that ionomycin induced significant increases in intra-axonal Ca2+, but not in the absence of external Ca2+. Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation. Pretreatment with YM58483 (500 nM), a well-established blocker of store-operated Ca2+ entry, significantly decreased myelin injury and axonal spheroid formation. Collectively, these data reveal that ionomycin-induced depletion of internal Ca2+ stores and subsequent external Ca2+ entry through store-operated Ca2+ entry contributes to pathological changes in myelin and axonal spheroid formation, providing new targets to protect central myelinated fibers.
Collapse
Affiliation(s)
- Spencer Ames
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Kia Adams
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Mariah E Geisen
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery; Anatomical Sciences and Neurobiology; Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
2
|
Comparison of ion channel inhibitor combinations for limiting secondary degeneration following partial optic nerve transection. Exp Brain Res 2018; 237:161-171. [DOI: 10.1007/s00221-018-5414-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/21/2018] [Indexed: 11/25/2022]
|
3
|
Chen SX, Wang SK, Yao PW, Liao GJ, Na XD, Li YY, Zeng WA, Liu XG, Zang Y. Early CALP2 expression and microglial activation are potential inducers of spinal IL-6 up-regulation and bilateral pain following motor nerve injury. J Neurochem 2018; 145:154-169. [DOI: 10.1111/jnc.14317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Shao-Xia Chen
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
- Department of Anesthesiology; Cancer Center, Sun Yat-Sen University; State Key Laboratory of Oncology in South China; Collaborative, Innovation Center for Cancer Medicine; Guangzhou China
| | - Shao-Kun Wang
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Pei-Wen Yao
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Guang-Jie Liao
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Xiao-Dong Na
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
- Department of Pathophysiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Wei-an Zeng
- Department of Anesthesiology; Cancer Center, Sun Yat-Sen University; State Key Laboratory of Oncology in South China; Collaborative, Innovation Center for Cancer Medicine; Guangzhou China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Ying Zang
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| |
Collapse
|
4
|
Ingwersen J, De Santi L, Wingerath B, Graf J, Koop B, Schneider R, Hecker C, Schröter F, Bayer M, Engelke AD, Dietrich M, Albrecht P, Hartung HP, Annunziata P, Aktas O, Prozorovski T. Nimodipine confers clinical improvement in two models of experimental autoimmune encephalomyelitis. J Neurochem 2018; 146:86-98. [PMID: 29473171 DOI: 10.1111/jnc.14324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis is characterised by inflammatory neurodegeneration, with axonal injury and neuronal cell death occurring in parallel to demyelination. Regarding the molecular mechanisms responsible for demyelination and axonopathy, energy failure, aberrant expression of ion channels and excitotoxicity have been suggested to lead to Ca2+ overload and subsequent activation of calcium-dependent damage pathways. Thus, the inhibition of Ca2+ influx by pharmacological modulation of Ca2+ channels may represent a novel neuroprotective strategy in the treatment of secondary axonopathy. We therefore investigated the effects of the L-type voltage-gated calcium channel blocker nimodipine in two different models of mouse experimental autoimmune encephalomyelitis (EAE), an established experimental paradigm for multiple sclerosis. We show that preventive application of nimodipine (10 mg/kg per day) starting on the day of induction had ameliorating effects on EAE in SJL/J mice immunised with encephalitic myelin peptide PLP139-151 , specifically in late-stage disease. Furthermore, supporting these data, administration of nimodipine to MOG35-55 -immunised C57BL/6 mice starting at the peak of pre-established disease, also led to a significant decrease in disease score, indicating a protective effect on secondary CNS damage. Histological analysis confirmed that nimodipine attenuated demyelination, axonal loss and pathological axonal β-amyloid precursor protein accumulation in the cerebellum and spinal cord in the chronic phase of disease. Of note, we observed no effects of nimodipine on the peripheral immune response in EAE mice with regard to distribution, antigen-specific proliferation or activation patterns of lymphocytes. Taken together, our data suggest a CNS-specific effect of L-type voltage-gated calcium channel blockade to inflammation-induced neurodegeneration.
Collapse
Affiliation(s)
- Jens Ingwersen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lorenzo De Santi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Britta Wingerath
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jonas Graf
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Barbara Koop
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Reiner Schneider
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Friederike Schröter
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mary Bayer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anna Dorothee Engelke
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Pasquale Annunziata
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tim Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
5
|
Podbielska M, Das A, Smith AW, Chauhan A, Ray SK, Inoue J, Azuma M, Nozaki K, Hogan EL, Banik NL. Neuron-microglia interaction induced bi-directional cytotoxicity associated with calpain activation. J Neurochem 2016; 139:440-455. [PMID: 27529445 DOI: 10.1111/jnc.13774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/30/2016] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Activated microglia release pro-inflammatory factors and calpain into the extracellular milieu, damaging surrounding neurons. However, mechanistic links to progressive neurodegeneration in disease such as multiple sclerosis (MS) remain obscure. We hypothesize that persistent damaged/dying neurons may also release cytotoxic factors and calpain into the media, which then activate microglia again. Thus, inflammation, neuronal damage, and microglia activation, i.e., bi-directional interaction between neurons and microglia, may be involved in the progressive neurodegeneration. We tested this hypothesis using two in vitro models: (i) the effects of soluble factors from damaged primary cortical neurons upon primary rat neurons and microglia and (ii) soluble factors released from CD3/CD28 activated peripheral blood mononuclear cells of MS patients on primary human neurons and microglia. The first model indicated that neurons due to injury with pro-inflammatory agents (IFN-γ) release soluble neurotoxic factors, including COX-2, reactive oxygen species, and calpain, thus activating microglia, which in turn released neurotoxic factors as well. This repeated microglial activation leads to persistent inflammation and neurodegeneration. The released calpain from neurons and microglia was confirmed by the use of calpain inhibitor calpeptin or SNJ-1945 as well as μ- and m-calpain knock down using the small interfering RNA (siRNA) technology. Our second model using activated peripheral blood mononuclear cells, a source of pro-inflammatory Th1/Th17 cytokines and calpain released from auto-reactive T cells, corroborated similar results in human primary cell cultures and confirmed calpain to be involved in progressive MS. These insights into reciprocal paracrine regulation of cell injury and calpain activation in the progressive phase of MS, Parkinson's disease, and other neurodegenerative diseases suggest potentially beneficial preventive and therapeutic strategies, including calpain inhibition.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.,Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Arabinda Das
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amena W Smith
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ashok Chauhan
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jun Inoue
- Senju Pharmaceutical, Co LTD, Kobe, Japan
| | | | - Kenkichi Nozaki
- Department of Neurology, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Naren L Banik
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA. .,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.
| |
Collapse
|
6
|
Smith AW, Rohrer B, Wheless L, Samantaray S, Ray SK, Inoue J, Azuma M, Banik NL. Calpain inhibition reduces structural and functional impairment of retinal ganglion cells in experimental optic neuritis. J Neurochem 2016; 139:270-284. [PMID: 27513991 DOI: 10.1111/jnc.13770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Optic neuritis (ON), inflammation of the optic nerve, is strongly associated with multiple sclerosis. ON pathology is characterized by attack of autoreactive T cells against optic nerve antigens, resulting in demyelination, death of retinal ganglion cells, and cumulative visual impairment. A model of experimental autoimmune encephalomyelitis (EAE) was utilized to study the onset and progression of ON and the neuroprotective efficacy of oral treatment with the calpain inhibitor SNJ 1945. EAE was actively induced in B10.PL mice with myelin basic protein on Days 0 and 2, and mice received twice daily oral dosing of SNJ 1945 from Day 9 until sacrificing (Day 26). Visual function was determined by electroretinogram recordings and daily measurement of optokinetic responses (OKR) to a changing pattern stimulus. Optic nerve and retinal histopathology was investigated by immunohistochemical and luxol fast blue staining. EAE mice manifested losses in OKR thresholds, a measurement of visual acuity, which began early in the disease course. There was a significant bias toward unilateral OKR impairment among EAE-ON eyes. Treatment with SNJ 1945, initiated after the onset of OKR threshold decline, improved visual acuity, pattern electroretinogram amplitudes, and paralysis, with attenuation of retinal ganglion cell death. Furthermore, calpain inhibition spared oligodendrocytes, prevented degradation of axonal neurofilament protein, and attenuated reactive astrocytosis. The trend of early, unilateral visual impairment in EAE-ON parallels the clinical presentation of ON exacerbations associated with multiple sclerosis. Calpain inhibition may represent an ideal candidate therapy for the preservation of vision in clinical ON. As in multiple sclerosis (MS) patients, optic neuritis (ON) and early, primarily monocular loss in spatial acuity is observed in a rodent model (EAE, experimental autoimmune encephalomyelitis). Daily oral treatment with the calpain inhibitor SNJ 1945 preserves visual acuity and preserves retinal ganglion cells (Brn3a, brain-specific homeobox/POU domain protein 3A) and their axons (MOSP, myelin oligodendrocyte-specific protein). Calpain inhibition may represent a candidate therapy for the preservation of vision in ON.
Collapse
Affiliation(s)
- Amena W Smith
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Baerbel Rohrer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA. .,Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA. .,Alexion Pharmaceuticals, Cheshire, Connecticut, USA. .,Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA.
| | - Lee Wheless
- Medicine-Division of Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Supriti Samantaray
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jun Inoue
- Senju Pharmaceutical Co Ltd, Kobe, Japan
| | | | - Naren L Banik
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA. .,Alexion Pharmaceuticals, Cheshire, Connecticut, USA. .,Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA. .,Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.
| |
Collapse
|
7
|
Samantaray S, Knaryan VH, Patel KS, Mulholland PJ, Becker HC, Banik NL. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition. Brain Res 2015; 1622:7-21. [PMID: 26100335 DOI: 10.1016/j.brainres.2015.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/17/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60%), myelin proteins (myelin basic protein, 20-40% proteolipid protein, 25%) and enzyme (2', 3'-cyclic-nucleotide 3'-phosphodiesterase, 21-55%) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy against EtOH associated CNS degeneration.
Collapse
Affiliation(s)
- Supriti Samantaray
- Department of Neurology and Neurosurgery, Medical University of South Carolina, MSC 606, Charleston, SC, USA.
| | - Varduhi H Knaryan
- Department of Neurology and Neurosurgery, Medical University of South Carolina, MSC 606, Charleston, SC, USA.
| | - Kaushal S Patel
- Department of Neurology and Neurosurgery, Medical University of South Carolina, MSC 606, Charleston, SC, USA.
| | - Patrick J Mulholland
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Charleston, SC, USA.
| | - Howard C Becker
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Charleston, SC, USA; Department of Veterans Affairs, Ralph H. Johnson Medical Center, Charleston, SC, USA.
| | - Naren L Banik
- Department of Neurology and Neurosurgery, Medical University of South Carolina, MSC 606, Charleston, SC, USA; Department of Veterans Affairs, Ralph H. Johnson Medical Center, Charleston, SC, USA.
| |
Collapse
|
8
|
Rodríguez-Zayas AE, Torrado AI, Miranda JD. P2Y2 receptor expression is altered in rats after spinal cord injury. Int J Dev Neurosci 2010; 28:413-21. [PMID: 20619335 DOI: 10.1016/j.ijdevneu.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/22/2010] [Accepted: 07/01/2010] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury increases inhibitory factors that may restrict neurite outgrowth after trauma. The expression of repulsive molecules in reactive astrocytes and the formation of the glial scar at the injury site produce the non-permissive environment for axonal regeneration. However, the mechanism that triggers this astrogliotic response is unknown. The release of nucleotides has been linked to this hypertrophic state. Our goal is to investigate the temporal profile of P2Y(2) nucleotide receptor after spinal cord injury in adult female Sprague-Dawley rats. Molecular biology, immunofluorescence studies, and Western Blots were used to evaluate the temporal profile (2, 4, 7, 14, and 28 days post-injury) of this receptor in rats injured at the T-10 level using the NYU impactor device. Real time RT-PCR showed a significant increase of P2Y(2) mRNA after 2 days post-injury that continues throughout 28 days post-injury. Double labeling studies localized P2Y(2) immunoreactivity in neuronal cell bodies, axons, macrophages, oligodendrocytes and reactive astrocytes. Immunofluorescence studies also demonstrated a low level of P2Y(2) receptor in sham samples, which increased after injury in glial fibrillary acidic protein positive cells. Western Blot performed with contused spinal cord protein samples revealed an upregulation in the P2Y(2) 42 kDa protein band expression after 4 days post-injury that continues until 28 days post-injury. However, a downregulation of the 62 kDa receptor protein band after 2 days post-injury that continues up to 28 days post-injury was observed. Therefore, the spatio-temporal pattern of P2Y(2) gene expression after spinal cord injury suggests a role in the pathophysiology response generated after trauma.
Collapse
Affiliation(s)
- Ana E Rodríguez-Zayas
- Department of Physiology, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | | | | |
Collapse
|
9
|
Guyton MK, Brahmachari S, Das A, Samantaray S, Inoue J, Azuma M, Ray SK, Banik NL. Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells. J Neurochem 2009; 110:1895-907. [PMID: 19627443 DOI: 10.1111/j.1471-4159.2009.06287.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a T-cell mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing-remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain : calpastatin ratio, production of truncated Bid, and Bax : Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS.
Collapse
Affiliation(s)
- Mary K Guyton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fu Y, Wang H, Huff TB, Shi R, Cheng JX. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. J Neurosci Res 2008; 85:2870-81. [PMID: 17551984 PMCID: PMC2277477 DOI: 10.1002/jnr.21403] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy, which allows vibrational imaging of myelin sheath in its natural state, was applied to characterize lysophosphatidylcholine (lyso-PtdCho)-induced myelin degradation in tissues and in vivo. After the injection of lyso-PtdCho into ex vivo spinal tissues or in vivo mouse sciatic nerves, myelin swelling characterized by the decrease of CARS intensity and loss of excitation polarization dependence was extensively observed. The swelling corresponds to myelin vesiculation and splitting observed by electron microscopy. The demyelination dynamics were quantified by the increase of g ratio measured from the CARS images. Treating spinal tissues with Ca2+ ionophore A23187 resulted in the same kind of myelin degradation as lyso-PtdCho. Moreover, the demyelination lesion size was significantly reduced upon preincubation of the spinal tissue with Ca2+ free Krebs' solution or a cytosolic phospholipase A2 (cPLA(2)) inhibitor or a calpain inhibitor. In accordance with the imaging results, removal of Ca2+ or addition of cPLA(2) inhibitor or calpain inhibitor in the Krebs' solution remarkably increased the mean compound action potential amplitude in lyso-PtdCho treated spinal tissues. Our results suggest that lyso-PtdCho induces myelin degradation via Ca(2+) influx into myelin and subsequent activation of cPLA(2) and calpain, which break down the myelin lipids and proteins. The current work also shows that CARS microscopy is a potentially powerful tool for the study of demyelination.
Collapse
Affiliation(s)
- Yan Fu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Haifeng Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Terry B. Huff
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Basic Medical Sciences, Institute for Applied Neurology, and Center for Paralysis Research, Purdue University, West Lafayette, Indiana
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Chemistry, Purdue University, West Lafayette, Indiana
- *Correspondence to: Ji-Xin Cheng, Weldon School of Biomedical Engineering, Purdue University, 206 South Intramural Drive, West Lafayette, IN 47907. E-mail:
| |
Collapse
|
11
|
The multiple sclerosis degradome: enzymatic cascades in development and progression of central nervous system inflammatory disease. Curr Top Microbiol Immunol 2008; 318:133-75. [PMID: 18219817 DOI: 10.1007/978-3-540-73677-6_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An array of studies implicate different classes of protease and their endogenous inhibitors in multiple sclerosis (MS) pathogenesis based on expression patterns in MS lesions, sera, and/or cerebrospinal fluid (CSF). Growing evidence exists regarding their mechanistic roles in inflammatory and neurodegenerative aspects of this disease. Proteolytic events participate in demyelination, axon injury, apoptosis, and development of the inflammatory response including immune cell activation and extravasation, cytokine and chemokine activation/inactivation, complement activation, and epitope spreading. The potential significance of proteolytic activity to MS therefore relates not only to their potential use as important biomarkers of disease activity, but additionally as prospective therapeutic targets. Experimental data indicate that understanding the net physiological consequence of altered protease levels in MS development and progression necessitates understanding protease activity in the context of substrates, endogenous inhibitors, and proteolytic cascade interactions, which together make up the MS degradome. This review will focus on evidence regarding the potential physiologic role of those protease families already identified as markers of disease activity in MS; that is, the metallo-, serine, and cysteine proteases.
Collapse
|
12
|
Hassen GW, Feliberti J, Kesner L, Stracher A, Mokhtarian F. A novel calpain inhibitor for the treatment of acute experimental autoimmune encephalomyelitis. J Neuroimmunol 2006; 180:135-46. [PMID: 17007940 DOI: 10.1016/j.jneuroim.2006.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/08/2006] [Accepted: 08/14/2006] [Indexed: 02/06/2023]
Abstract
Aberrant activation of calpain plays a key role in the pathophysiology of several neurodegenerative disorders. Calpain is increasingly expressed in inflammatory cells in EAE and is significantly elevated in the white matter of patients with multiple sclerosis, thus calpain inhibition could be a target for therapeutic intervention. The experiments reported here employed a myelin oligodendrocyte glycoprotein-induced disease model in C57Bl/6 mice (EAE) and a novel calpain inhibitor, targeted to nervous tissue. CYLA was found to reduce clinical signs of EAE and prevent demyelination and inflammatory infiltration in a dose- and time-dependent manner. Oral administration of the diacetal prodrug was equally effective.
Collapse
MESH Headings
- Acute Disease/therapy
- Animals
- Autoimmunity/drug effects
- Autoimmunity/immunology
- Calpain/antagonists & inhibitors
- Calpain/immunology
- Calpain/metabolism
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/physiopathology
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Female
- Immunosuppression Therapy/methods
- Inflammation Mediators/immunology
- Inflammation Mediators/pharmacology
- Mice
- Mice, Inbred C57BL
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Associated Glycoprotein/pharmacology
- Myelin-Oligodendrocyte Glycoprotein
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/pathology
- Oligopeptides/pharmacology
- Oligopeptides/therapeutic use
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Time Factors
- Treatment Outcome
Collapse
|
13
|
Liu MC, Akle V, Zheng W, Kitlen J, O'Steen B, Larner SF, Dave JR, Tortella FC, Hayes RL, Wang KKW. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem 2006; 98:700-12. [PMID: 16893416 DOI: 10.1111/j.1471-4159.2006.03882.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Axonal injury is one of the key features of traumatic brain injury (TBI), yet little is known about the integrity of the myelin sheath. We report that the 21.5 and 18.5-kDa myelin basic protein (MBP) isoforms degrade into N-terminal fragments (of 10 and 8 kDa) in the ipsilateral hippocampus and cortex between 2 h and 3 days after controlled cortical impact (in a rat model of TBI), but exhibit no degradation contralaterally. Using N-terminal microsequencing and mass spectrometry, we identified a novel in vivo MBP cleavage site between Phe114 and Lys115. A MBP C-terminal fragment-specific antibody was then raised and shown to specifically detect MBP fragments in affected brain regions following TBI. In vitro naive brain lysate and purified MBP digestion showed that MBP is sensitive to calpain, producing the characteristic MBP fragments observed in TBI. We hypothesize that TBI-mediated axonal injury causes secondary structural damage to the adjacent myelin membrane, instigating MBP degradation. This could initiate myelin sheath instability and demyelination, which might further promote axonal vulnerability.
Collapse
Affiliation(s)
- Ming Cheng Liu
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainsville, Florida 32610, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Excitotoxicity describes the process of neuronal injury by excess stimulation of amino acid receptors. This form of insult was first described in the retina, and subsequently has been shown to be an important component of the pathogenesis of ischaemic and traumatic injury in the central nervous system. Furthermore, there is increasing evidence that excitotoxicity is involved in several chronic neurological conditions, and anti-excitotoxic treatment has already been approved for some of these conditions. A large-scale trial is currently underway that will determine the efficacy of an anti-excitotoxic drug (memantine) in the management of glaucoma. This review provides an overview of neurotransmission and the mechanisms of excitotoxicity. The evidence for excitotoxicity as a component of certain neurological diseases, including glaucoma, is discussed.
Collapse
Affiliation(s)
- Robert J Casson
- Department of Ophthalmology and Visual Science, Royal Adelaide Hospital, North Tce., Adelaide, SA 5000, Australia.
| |
Collapse
|
15
|
Haskins WE, Kobeissy FH, Wolper RA, Ottens AK, Kitlen JW, McClung SH, O'Steen BE, Chow MM, Pineda JA, Denslow ND, Hayes RL, Wang KKW. Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry. J Neurotrauma 2005; 22:629-44. [PMID: 15941373 DOI: 10.1089/neu.2005.22.629] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the rapid discovery of putative protein biomarkers of traumatic brain injury (TBI) by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry (SDS-PAGE-Capillary LC-MS(2)). Ipsilateral hippocampus (IH) samples were collected from naive rats and rats subjected to controlled cortical impact (a rodent model of TBI). Protein database searching with 15,558 uninterpreted MS(2) spectra, collected in 3 days via data-dependent capillary LC-MS(2) of pooled cyanine dye-labeled samples separated by SDS-PAGE, identified more than 306 unique proteins. Differential proteomic analysis revealed differences in protein sequence coverage for 170 mammalian proteins (57 in naive only, 74 in injured only, and 39 of 64 in both), suggesting these are putative biomarkers of TBI. Confidence in our results was obtained by the presence of several known biomarkers of TBI (including alphaII-spectrin, brain creatine kinase, and neuron-specific enolase) in our data set. These results show that SDS-PAGE prior to in vitro proteolysis and capillary LC-MS(2) is a promising strategy for the rapid discovery of putative protein biomarkers associated with a specific physiological state (i.e., TBI) without a priori knowledge of the molecules involved.
Collapse
Affiliation(s)
- William E Haskins
- Center of Neuroproteomics and Biomarkers Research, Department of Neuroscience, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ray SK, Hogan EL, Banik NL. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:169-85. [PMID: 12738057 DOI: 10.1016/s0165-0173(03)00152-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spinal cord injury (SCI) evokes an increase in intracellular free Ca(2+) level resulting in activation of calpain, a Ca(2+)-dependent cysteine protease, which cleaves many cytoskeletal and myelin proteins. Calpain is widely expressed in the central nervous system (CNS) and regulated by calpastatin, an endogenous calpain-specific inhibitor. Calpastatin degraded by overactivation of calpain after SCI may lose its regulatory efficiency. Evidence accumulated over the years indicates that uncontrolled calpain activity mediates the degradation of many cytoskeletal and membrane proteins in the course of neuronal death and contributes to the pathophysiology of SCI. Cleavage of the key cytoskeletal and membrane proteins by calpain is an irreversible process that perturbs the integrity and stability of CNS cells leading to cell death. Calpain in conjunction with caspases, most notably caspase-3, can cause apoptosis of the CNS cells following trauma. Aberrant Ca(2+) homeostasis following SCI inevitably activates calpain, which has been shown to play a crucial role in the pathophysiology of SCI. Therefore, calpain appears to be a potential therapeutic target in SCI. Substantial research effort has been focused upon the development of highly specific inhibitors of calpain and caspase-3 for therapeutic applications. Administration of cell permeable and specific inhibitors of calpain and caspase-3 in experimental animal models of SCI has provided significant neuroprotection, raising the hope that humans suffering from SCI may be treated with these inhibitors in the near future.
Collapse
Affiliation(s)
- Swapan K Ray
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309, P.O. Box 250606, Charleston, SC 29425, USA
| | | | | |
Collapse
|
17
|
Sloane JA, Hinman JD, Lubonia M, Hollander W, Abraham CR. Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem 2003; 84:157-68. [PMID: 12485412 DOI: 10.1046/j.1471-4159.2003.01541.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myelin provides important insulating properties to axons allowing for propagation of action potentials over large distances at high velocity. Disruption of the myelin sheath could therefore contribute to cognitive impairment, such as that observed during the normal aging process. In the present study, age-related changes in myelin, myelin proteins and oligodendrocyte proteins were assessed in relationship to calpain-1 expression and cognition in the rhesus monkey. Isolation of myelin fractions from brain white matter revealed that as the content of the intact myelin fraction decreased with age, there was a corresponding increase in the floating or degraded myelin fraction, suggesting an increased breakdown of intact myelin with age. Of the myelin proteins examined, only the myelin-associated glycoprotein decreased with age. Levels of the oligodendrocyte-specific proteins 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin/oligodendrocyte-specific protein (MOSP) increased dramatically in white matter homogenates and myelin with age. Age-related increases in degraded CNPase also were demonstrable in white matter in association with increases in activated calpain-1. Degraded CNPase was also detectable in myelin fractions, with only the floating fraction containing activated calpain-1. The increases in the activated enzyme in white matter were much greater than those found in myelin fractions suggesting a source other than the myelin membrane for the marked overexpression of activated calpain-1 with age. In addition, CNPase was demonstrated to be a substrate for calpain in vitro. In summary, changes in myelin and oligodendrocyte proteins occur with age, and they appear to have a significant relationship to cognitive impairment. The overexpression of CNPase and MOSP suggests new formation of myelin by oligodendrocytes, which may occur in response to myelin degradation and injury caused by proteolytic enzymes such as calpain.
Collapse
Affiliation(s)
- J A Sloane
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
18
|
Schaecher K, Rocchini A, Dinkins J, Matzelle DD, Banik NL. Calpain expression and infiltration of activated T cells in experimental allergic encephalomyelitis over time: increased calpain activity begins with onset of disease. J Neuroimmunol 2002; 129:1-9. [PMID: 12161014 DOI: 10.1016/s0165-5728(02)00142-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calpain activity and expression at the protein level were examined in inflammatory cells, activated microglia, and astrocytes prior to or at onset of symptomatic experimental allergic encephalomyelitis (EAE), an animal model for the human demyelinating disease multiple sclerosis (MS). EAE was induced in Lewis rats by injection of guinea pig spinal cord homogenate and myelin basic protein (MBP) emulsified with Complete Freund's Adjuvant (CFA). Calpain translational expression, determined by Western blot and immunocytochemistry, was correlated with calpain activity, infiltration of inflammatory cells, and myelin loss at 2-11 days following challenge with antigen. Controls (CFA only) did not show any changes over time in these parameters and very few changes (CD11+ microglia/mononuclear phagocytes) were seen in either group from days 2 to 8 post-induction. In contrast, from days 9 to 11, the animals that developed the disease (at least grade 1) demonstrated extensive cellular infiltration (CD4+, CD25+, and CD11+ as well as increased calpain expression (content) and activity. This study demonstrates that cell infiltration and increased calpain activity do not begin in the CNS until the onset of clinical signs.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Avian Proteins
- Basigin
- Blood Proteins
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Calpain/immunology
- Calpain/metabolism
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/physiopathology
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Fluorescent Antibody Technique
- Freund's Adjuvant/pharmacology
- Male
- Membrane Glycoproteins/metabolism
- Myelin Basic Protein/immunology
- Myelin Basic Protein/metabolism
- Neurofilament Proteins/immunology
- Neurofilament Proteins/metabolism
- Neuroglia/immunology
- Neuroglia/metabolism
- Phagocytes/immunology
- Phagocytes/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Interleukin-2/immunology
- Spectrin/immunology
- Spectrin/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- K Schaecher
- Department of Neurology, Medical University of South Carolina (MUSC), Box 250606, Suite 307, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
19
|
Ding DL, McFadden SL, Salvi RJ. Calpain immunoreactivity and morphological damage in chinchilla inner ears after carboplatin. J Assoc Res Otolaryngol 2002; 3:68-79. [PMID: 12083725 PMCID: PMC3202361 DOI: 10.1007/s101620020004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Carboplatin produces an unusual pattern of damage in the chinchilla inner ear, characterized by early destruction of type I afferent fibers and preferential loss of type I hair cells in the vestibular end organs and inner hair cells (IHCs) in the cochlea. In the present study, we investigated a potential role of calpains, a family of calcium-activated proteases, in carboplatin ototoxicity. Chinchillas received carboplatin (100 mg/kg IP) and were sacrificed 12, 24, 48, or 72 h later for morphological evaluation or immunocytochemistry. Nerve fibers and myelin were the initial sites of increased calpain immunoreactivity (IR) and morphological damage. At 12 h, granular immunoreactive puncta were present within nerve fibers and their myelin sheaths in the spiral ganglion. In the habenula perforata, dense reaction product was present in large vacuoles in the myelin surrounding the nerve fibers. At 24 h, nerve fibers and myelin were destroyed in the habenula, and those in the spiral ganglion showed increased calpain IR and morphological damage. At 72 h, nerve fibers and myelin were completely destroyed. Calpain IR was not a prominent feature of IHCs, type I vestibular hair cells, or ganglion cells at any time after carboplatin. The results show a correlation between calpain IR and carboplatin-induced axon and myelin degeneration. We propose that calpain-induced axonopathy and myelinopathy are primary features of carboplatin ototoxicity in chinchilla.
Collapse
Affiliation(s)
- Da Lian Ding
- Center for Hearing and Deafness, University of Buffalo, Buffalo, NY 14214, USA
| | - Sandra L. McFadden
- Center for Hearing and Deafness, University of Buffalo, Buffalo, NY 14214, USA
| | - Richard J. Salvi
- Center for Hearing and Deafness, University of Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
20
|
Abstract
Oligodendrocytes and Schwann cells are the glia principally responsible for the synthesis and maintenance of myelin. Damage may occur to these cells in a number of conditions, but perhaps the most studied are the idiopathic inflammatory demyelinating diseases, multiple sclerosis in the CNS, and Guillain-Barré syndrome and its variants in the peripheral nervous system (PNS). This article explores the effects on these cells of cytotoxic immunological and inflammatory mediators: similarities are revealed, of which perhaps the most important is the sensitivity of both Schwann cells and oligodendrocytes to many such agents. This area of research is, however, characterised and complicated by numerous and often very substantial inter-observer discrepancies. Marked variability in cell culture techniques, and in assays of cell damage and death, provide artifactual explanations for some of this variability; true inter-species differences also contribute. Not the least important conclusion centres on the limited capacity of in vitro studies to reveal disease mechanisms: cell culture findings merely illustrate possibilities which must then be tested ex vivo using human tissue samples affected by the relevant disease.
Collapse
Affiliation(s)
- T Benn
- Department of Neurology, Institute of Clinical Neurosciences, University of Bristol, Frenchay Hospital, Bristol, United Kingdom
| | | | | |
Collapse
|
21
|
Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL. Inhibition of calpain-mediated apoptosis by E-64 d-reduced immediate early gene (IEG) expression and reactive astrogliosis in the lesion and penumbra following spinal cord injury in rats. Brain Res 2001; 916:115-26. [PMID: 11597598 DOI: 10.1016/s0006-8993(01)02874-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Upregulation of calpain, a Ca(2+)-activated cysteine protease, has been implicated in apoptosis and tissue degeneration in spinal cord injury (SCI) that over time spreads from the site of injury to the surrounding regions. We examined calpain content and activity, regulation of immediate early genes (IEGs) such as c-jun and c-fos, reactive astrogliosis as the expression of glial fibrillary acidic protein (GFAP), and apoptosis-related features such as caspase-3 mRNA expression and internucleosomal DNA fragmentation in 1-cm long spinal cord segments (S1, distant rostral; S2, adjacent rostral; S3, lesion or injury; S4, adjacent caudal; and S5, distant caudal) following SCI in rats. Calpain content and production of 150 kD calpain-cleaved alpha-fodrin fragment, expression of IEGs, reactive astrogliosis, and apoptotic features were highly increased in the lesion (S3), moderately in adjacent areas (S2 and S4), and slightly in distant areas (S1 and S5) in SCI rats when compared to sham animals. Administration of the calpain-specific inhibitor E-64-d (1 mg/kg) to SCI rats continuously for 24 h inhibited calpain activity and other factors contributing to apoptosis in the lesion and surrounding areas, indicating that calpain played a key role in the pathophysiology of SCI. The results obtained from this animal model of SCI suggest that calpain inhibitor can provide neuroprotection in patients with SCI.
Collapse
Affiliation(s)
- S K Ray
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309, P.O. Box 250606, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
22
|
Schaecher KE, Shields DC, Banik NL. Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem Res 2001; 26:731-7. [PMID: 11519732 DOI: 10.1023/a:1010903823668] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although calpain has been extensively studied, its physiological function is poorly understood. In contrast, its role in the pathophysiology of various diseases has been implicated, including that of experimental allergic encephalomyelitis (EAE), an animal model of the demyelinating disease multiple sclerosis (MS). In EAE, calpain degrades myelin proteins, including myelin basic protein (MBP), suggesting a role for calpain in the breakdown of myelin in this disease. Subsequent studies revealed increased calpain activity and expression in the glial and inflammatory cells concomitant with loss of axon and myelin proteins. This suggested a crucial role for calpain in demyelinating diseases.
Collapse
Affiliation(s)
- K E Schaecher
- Department of Neurology, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|
23
|
Sloane JA, Hollander W, Rosene DL, Moss MB, Kemper T, Abraham CR. Astrocytic hypertrophy and altered GFAP degradation with age in subcortical white matter of the rhesus monkey. Brain Res 2000; 862:1-10. [PMID: 10799662 DOI: 10.1016/s0006-8993(00)02059-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive astrocytosis is a well known phenomenon that occurs in the normal aging process of the brain. While many studies indicate astrocytic hypertrophy and glial fibrillary acidic protein (GFAP) content increase with age in the hippocampal formation of certain animal models, it is unclear whether these findings are generalizable to the primate and to other areas of the brain. In this study, we quantitatively assessed age-related changes in astrocytic cell size and density in a rhesus monkey model of normal aging. By GFAP immunohistochemistry, we observed an increase in GFAP(+) cell size but not density in all subcortical white matter areas of the frontal, temporal, and parietal cortices. No significant increases in astrocyte hypertrophy were observed in any gray matter area examined. In addition, Western blotting experiments showed increases in total and degraded GFAP content with age, suggesting altered degradation and possibly production of GFAP occur with age.
Collapse
Affiliation(s)
- J A Sloane
- Department of Pathology, Boston University School of Medicine, 715 Albany, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
24
|
Merrill JE, Scolding NJ. Mechanisms of damage to myelin and oligodendrocytes and their relevance to disease. Neuropathol Appl Neurobiol 1999; 25:435-58. [PMID: 10632895 DOI: 10.1046/j.1365-2990.1999.00200.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Oligodendrocytes synthesize and maintain myelin in the central nervous system (CNS). Damage may occur to these cells in a number of conditions, including infections, exposure to toxins, injury, degeneration, or autoimmune disease, arising both in the course of human disease and in experimental animal models of demyelination and dysmyelination; multiple sclerosis is the commonest human demyelinating disorder. Conventional classical accounts of the pathology of this and other myelin diseases have given great insights into their core features, but there remain considerable uncertainties concerning the timing, means and cause(s) of oligodendrocyte and myelin damage. At present, therapeutic efforts largely concentrate on immune manipulation and damage limitation, an approach that has produced only modest effects in multiple sclerosis. One reason for this must be the limited understanding of the mechanisms underlying cell damage - clearly, successful therapeutic strategies for preserving the oligodendrocyte-myelin unit must depend on knowledge of how oligodendrocyte damage and death occurs. In this review, mechanisms of oligodendrocyte and myelin damage are considered, and attempts made to relate them to disease processes, clinical and experimental. The hallmarks of different cell death processes are described, and oligodendrocyte-myelin injury by cellular and soluble mediators is discussed, both in vitro and invivo. Recent developments concerning the pathological involvement of oligodendrocytes in neurodegenerative disease are summarized. Finally, these neuropathological and applied neurobiological observations are drawn together in the context of multiple sclerosis.
Collapse
Affiliation(s)
- J E Merrill
- CNS Division, Hoechst Marion Rousse, Bridgewater, NJ, USA
| | | |
Collapse
|
25
|
Deng G, Matute C, Kumar CK, Fogarty DJ, Miledi R. Cloning and expression of a P2y purinoceptor from the adult bovine corpus callosum. Neurobiol Dis 1998; 5:259-70. [PMID: 9848096 DOI: 10.1006/nbdi.1998.0197] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have isolated an ATP receptor clone by screening a bovine corpus callosum cDNA library. The clone includes one open reading frame encoding for a protein of 373 amino acid residues (42 kDa) which belongs to the G-protein-coupled receptor superfamily. In Xenopus oocytes, this clone expressed an ATP receptor that triggered an oscillatory current in response to ATP (EC50 approximately 20 microM). This current may have resulted from the activation of phospholipase C, the formation of inositol trisphosphate, and the release of Ca2+, which then opens Cl- channels. The order of potency for ATP receptor agonists was 2-MeSATP approximately ATP >> alpha, beta-MeATP > adenosine, and UTP was ineffective, a pharmacological profile consistent with that of a P2y purinoceptor. Northern blot analysis of mRNAs from various bovine brain tissues showed that the gene is expressed in the cerebellum, medulla, corpus callosum, hippocampus, superior colliculus, frontal cortex, and retina. In situ RT-PCR showed transcripts of the gene in many glial cells and endothelial cells of the corpus callosum. The cloned receptor may play an important role in neuron-glial signaling under normal and pathological conditions.
Collapse
Affiliation(s)
- G Deng
- Department of Psychobiology, University of California at Irvine 92697, USA
| | | | | | | | | |
Collapse
|
26
|
Shields DC, Banik NL. Putative role of calpain in the pathophysiology of experimental optic neuritis. Exp Eye Res 1998; 67:403-10. [PMID: 9820787 DOI: 10.1006/exer.1998.0537] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since myelin proteins are degraded in autoimmune demyelinating diseases such as optic neuritis, proteinases are believed to participate in myelinolysis. Calpain (calcium activated neutral proteinase) degrades myelin proteins at physiological pH and is found in glial and inflammatory cells involved in demyelination. To examine the putative role of calpain in myelinolysis, the activity and expression (translational and transcriptional) of this enzyme and endogenous inhibitor, calpastatin were examined in optic nerves of Lewis rats with experimental allergic encephalomyelitis (EAE), an animal model of optic neuritis. Calpain activity was examined via Western blotting by measuring the extent of myelin protein degradation and calpain-specific fodrin proteolysis in optic nerves from controls versus rats with experimental optic neuritis. RT-PCR studies demonstrated no significant change in millicalpain, microcalpain, or calpastatin expression at the mRNA level in optic nerves from animals with experimental optic neuritis compared to controls. However, myelin associated glycoprotein (MAG) levels were decreased by 25.5% while calpain translational expression and calpain-autolyzed fodrin levels were increased by 72.1% and 462.8% respectively, in experimental optic neuritis compared to controls. Translational expression of calpastatin isoforms (80, 68 and 55 KD) was not significantly different in rats with experimental optic neuritis compared to controls. Thus, increased activity and translational expression of calpain in experimental optic neuritis suggests this proteinase may participate in the degradation of myelin and cytoskeletal proteins in demyelinating diseases such as optic neuritis.
Collapse
Affiliation(s)
- D C Shields
- Department of Neurology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, S.C., 29425, USA
| | | |
Collapse
|
27
|
Haas U, Berlet HH. Weak binding and removal of extrinsic proteinase activities of myelin membranes. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 34:179-95. [PMID: 10327417 DOI: 10.1007/bf02815079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The concurrent release of myelin basic protein (MBP) and extrinsic proteinases from isolated myelin membranes by aqueous solvents of high ionic strength is considered circumstantial evidence of a presumptive mutual interaction in situ. The joint release of proteins and proteinases from myelin membranes of bovine brain, depending on the ionic strength of aqueous solvents, was therefore examined; 25 mM Tris buffer released an average 1.4% of total myelin protein. It was attributable to about 25 different electrophoretic bands, but no apparent MBP. However, the extract potently mediated the limited proteolysis of added MBP at pH 4.0, 5.6, and 9.0. Because of the pH and the effects of specific inhibitors, proteolysis appears to be owing to activities of cathepsin B and D, and an alkaline metalloproteinase. The subsequent extraction of myelin membranes with buffered 300 mM NaCl released an additional 20% of total myelin protein, mainly MBP. The extracts, unlike those of untreated myelin membranes, no longer cleaved MBP at pH 5.6 and 9.0, and did so only slightly at pH 4.0. The results indicate that the bulk of soluble myelin-associated proteinases is much less tightly bound than MBP. The weak binding of the former and the prevalence of lysosomal cathepsin B- and D-like activities suggest that during their isolation, myelin membranes may adsorb soluble cellular proteins of tissue homogenates. At any rate the washing of myelin membranes with dilute buffer was found to largely remove soluble proteinase activities that are otherwise associated with salt-soluble MBP of myelin.
Collapse
Affiliation(s)
- U Haas
- Department of Pathochemistry and General Neurochemistry, University of Heidelberg, Germany
| | | |
Collapse
|
28
|
Shields DC, Tyor WR, Deibler GE, Hogan EL, Banik NL. Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A 1998; 95:5768-72. [PMID: 9576959 PMCID: PMC20454 DOI: 10.1073/pnas.95.10.5768] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Accepted: 03/04/1998] [Indexed: 02/07/2023] Open
Abstract
In demyelinating diseases such as multiple sclerosis (MS), myelin membrane structure is destabilized as myelin proteins are lost. Calcium-activated neutral proteinase (calpain) is believed to participate in myelin protein degradation because known calpain substrates [myelin basic protein (MBP); myelin-associated glycoprotein] are degraded in this disease. In exploring the role of calpain in demyelinating diseases, we examined calpain expression in Lewis rats with acute experimental allergic encephalomyelitis (EAE), an animal model for MS. Using double-immunofluorescence labeling to identify cells expressing calpain, we labeled rat spinal cord sections for calpain with a polyclonal millicalpain antibody and with mAbs for glial (GFAP, OX42, GalC) and inflammatory (CD2, ED2, interferon gamma) cell-specific markers. Calpain expression was increased in activated microglia (OX42) and infiltrating macrophages (ED2) compared with controls. Oligodendrocytes (galactocerebroside) and astrocytes (GFAP) had constitutive calpain expression in normal spinal cords whereas reactive astrocytes in spinal cords from animals with EAE exhibited markedly increased calpain levels compared with astrocytes in adjuvant controls. Oligodendrocytes in spinal cords from rats with EAE expressed increased calpain levels in some areas, but overall the increases in calpain expression were small. Most T cells in grade 4 EAE expressed low levels of calpain, but interferon gamma-positive cells demonstrated markedly increased calpain expression. These findings suggest that increased levels of calpain in activated glial and inflammatory cells in EAE may contribute to myelin destruction in demyelinating diseases such as MS.
Collapse
Affiliation(s)
- D C Shields
- Department of Neurology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Myelin-associated glycoprotein (MAG) is susceptible to proteolysis by a calcium-activated neutral protease which is located in myelin. The conversion of MAG (M(r) 100,000) to its soluble derivative dMAG (M(r) 90,000) occurs much more rapidly in myelin from human white matter than in myelin from rat brain, and the rate of formation of dMAG is increased even more in myelin from white matter of patients with multiple sclerosis (MS). The MAG to dMAG conversion was studied in several species, ranging from mice to non-human primates and humans to determine what animal model would be the most appropriate for investigating the MAG to dMAG reaction in demyelinating disorders. Myelin fractions from brains of these species were prepared and incubated at 37 degrees C in 0.2 M NH4HCO3, pH 7.4 for time periods ranging from 5 min to 24 h. Western blot analysis of the samples, taken at the end points of the different incubation periods, showed that the time required for a 50% conversion of MAG to dMAG was 18-24 h in myelin from rodents to bovine. The non-human primate studies revealed a 50% conversion at 2 h for marmoset samples and rhesus monkey samples, 20 min for gorilla samples and 10 min for chimpanzee samples. Human myelin samples needed only 5 min for a 50% conversion of MAG to dMAG. The reason for the significantly faster formation of dMAG in primate myelin is unknown and currently is being investigated.
Collapse
Affiliation(s)
- J R Möller
- Demyelinating Disorders Unit, NINDS, NIH, Bethesda, MD 20892-4440, USA
| |
Collapse
|
30
|
Wang KK, Yuen PW. Development and therapeutic potential of calpain inhibitors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 37:117-52. [PMID: 8891101 DOI: 10.1016/s1054-3589(08)60949-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- K K Wang
- Department of Neuroscience Therapeutics Parke-Davis Pharmaceutical Research Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| | | |
Collapse
|
31
|
Li Z, Banik NL. The localization of mcalpain in myelin: immunocytochemical evidence in different areas of rat brain and nerves. Brain Res 1995; 697:112-21. [PMID: 8593567 DOI: 10.1016/0006-8993(95)00949-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A major part of brain mcalpain activity has been found associated with myelin, but its presence in the myelin sheath has not been clearly demonstrated by microscopic (morphological) means. Using myelin mcalpain antisera the localization of mcalpain has been investigated in tissue of rat CNS and PNS by immunohistochemical methods. These experiments also have been carried out by double labeling studies using antibodies to myelin basic protein (MBP) and neurofilament protein (NFP). Our results indicate calpain/MBP immunoreactivity in the myelin sheath surrounding the axon while NFP antibody stained inside the axon in spinal cord; pons, cerebellum, trigeminal nerve, and sciatic nerve. Patches of light immunoreactivity of calpain were also seen in the axonal cytoplasm. The calpain immunostaining of myelin was similar to that of MBP staining indicating the presence of calpain in myelin. This finding supports the view that calpain is a constituent of myelin, may be involved in the normal turnover of myelin proteins. In pathological situations such as in demyelinating and other brain degenerative diseases, myelin may be autodigestive.
Collapse
Affiliation(s)
- Z Li
- Department of Neurology, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
32
|
Deshpande RV, Goust JM, Hogan EL, Banik NL. Calpain secreted by activated human lymphoid cells degrades myelin. J Neurosci Res 1995; 42:259-65. [PMID: 8568927 DOI: 10.1002/jnr.490420214] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calpain secreted by lymphoid (MOLT-3, M.R.) or monocytic (U-937, THP-1) cell lines activated with PMA and A23187 degraded myelin antigens. The degradative effect of enzymes released in the extracellular medium was tested on purified myelin basic protein and rat central nervous system myelin in vitro. The extent of protein degradation was determined by SDS-PAGE and densitometric analysis. Various proteinase inhibitors were used to determine to what extent protein degradation was mediated by calpain and/or other enzymes. Lysosomal and serine proteinase inhibitors inhibited 20-40% of the myelin-degradative activity found in the incubation media of cell lines, whereas the calcium chelator (EGTA), the calpain-specific inhibitor (calpastatin), and a monoclonal antibody to m calpain blocked myelin degradation by 60-80%. Since breakdown products of MBP generated by calpain may include fragments with antigenic epitopes, this enzyme may play an important role in the initiation of immune-mediated demyelination.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Calcimycin/pharmacology
- Calcium/metabolism
- Calcium-Binding Proteins/pharmacology
- Calpain/antagonists & inhibitors
- Calpain/immunology
- Calpain/metabolism
- Calpain/pharmacology
- Chelating Agents/pharmacology
- Culture Media, Conditioned/pharmacology
- Demyelinating Diseases/enzymology
- Egtazic Acid/pharmacology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/enzymology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Monocytes/drug effects
- Monocytes/enzymology
- Monocytes/metabolism
- Myelin Basic Protein/metabolism
- Myelin Sheath/drug effects
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/pharmacology
- Protease Inhibitors/pharmacology
- Rabbits
- Rats
- T-Lymphocytes/drug effects
- T-Lymphocytes/enzymology
- T-Lymphocytes/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R V Deshpande
- Department of Neurology, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
33
|
Bongarzone ER, Soto EF, Pasquini JM. Increased susceptibility to degradation by trypsin and subtilisin of in vitro peroxidized myelin proteins. Neurochem Res 1995; 20:421-6. [PMID: 7651579 DOI: 10.1007/bf00973097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the possibility that the peroxidative damage to central nervous system myelin produced by reactive oxygen species (ROS), could modify the susceptibility of its proteins to the proteolytic action of proteases such as trypsin and subtilisin. Purified myelin membranes obtained from adult rat brains were "in vitro" peroxidized by two non-enzymatic systems: Fe3+ plus ascorbic acid and Cu2+ plus hydrogen peroxide. Myelin proteins were severely affected by peroxidation. There was an increase in the amount of carbonyl groups (CO), accompanied by an enhanced susceptibility to degradation by trypsin and subtilisin of myelin basic proteins (MBP) and of the major proteolipid protein (PLP). The effect upon the degradation of myelin protein is a possible consequence of the appearance in the structure of myelin proteins of peroxidative modifications that contribute to the recognition by proteolytic enzymes. This hypothesis is supported by the fact that if peroxidation of myelin membranes is done in the presence of EDTA, both CO formation and increased sensitivity to enzymatic breakdown disappear. These results suggest that the appearance of abnormal post-translational modifications in the myelin membrane produced by peroxidation could constitute a putative mechanism of modulating the capacity of myelin proteins to be metabolized by proteases.
Collapse
Affiliation(s)
- E R Bongarzone
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|
34
|
Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A. Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol 1995; 483 ( Pt 1):41-57. [PMID: 7776240 PMCID: PMC1157870 DOI: 10.1113/jphysiol.1995.sp020566] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The subcellular characteristics of an ATP-induced elevation of the cytoplasmic free calcium concentration ([Ca2+]i) were studied in cultured cells of the oligodendrocyte lineage obtained from mouse cortex and rabbit retina, as well as in oligodendrocytes from mouse corpus callosum slices, using laser scanning confocal microfluorometry. 2. With the stage- and lineage-specific antibodies O4 and O10, three developmental stages within the oligodendrocyte lineage were distinguished prior to Ca2+ recording. 3. Bath application of 1-100 microM ATP induced a transient increase of [Ca2+]i in late precursors and oligodendrocytes but not in early glial precursor cells from retinal and cortical cultures and from corpus callosum slices. This effect of ATP was observed in Ca(2+)-free extracellular solution, suggesting that the ATP-mediated elevation of [Ca2+]i is due to a Ca2+ liberation from intracellular stores. 4. In both late precursors and oligodendrocytes from retina, the amplitude of ATP-induced [Ca2+]i transients was significantly higher in processes as compared with the soma; in cortical cultures such an uneven response was only observed in oligodendrocytes, while in immature cells responses in soma and processes were of similar amplitude. 5. The rank order of potency for the purine and pyrimidine nucleotides was UTP > or = ATP > ADP >> AMP = adenosine = Me-ATP for retinal oligodendrocytes, and ADP > or = ATP >> UTP = AMP = adenosine = Me-ATP for cortical oligodendrocytes. The response to ATP and related nucleotides was blocked by suramin, indicating the involvement of a P2-purinoreceptor in the ATP-mediated [Ca2+]i response. 6. ATP-induced elevation of the cytosolic Ca2+ concentration was inhibited by incubating cells with thapsigargin (10 microM) and by intracellular administration of heparin (1 microM). These findings indicate that ATP triggers a release of Ca2+ ions from InsP3-sensitive internal stores. 7. The ATP receptors may play a role in neuron-glial signal transfer; ATP is released as neurotransmitter, but also under pathological conditions from damaged cells.
Collapse
Affiliation(s)
- S Kirischuk
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
Increasing evidence now suggests that excessive activation of the Ca(2+)-dependent protease calpain could play a key or contributory role in the pathology of a variety of disorders, including cerebral ischaemia, cataract, myocardial ischaemia, muscular dystrophy and platelet aggregation. In this review, Kevin Wang and Po-Wai Yuen discuss the evidence linking these disorders to calpain overactivation. At present, it is difficult to confirm the exact role of calpain in these disorders because of the lack of potent, selective and cell-permeable calpain inhibitors. However, given the multiple therapeutic indications for calpain, it appears that achievement of selective calpain inhibition is an important pharmacological goal.
Collapse
Affiliation(s)
- K K Wang
- Department of Neuroscience Pharmacology, Parke-Davis Pharmaceutical Research, Warner-Lambert Company, Ann Arbor, MI 48105
| | | |
Collapse
|
36
|
Abstract
This review summarizes current knowledge relating intracellular calcium and glial function. During steady state, glia maintain a low cytosolic calcium level by pumping calcium into intracellular stores and by extruding calcium across the plasma membrane. Glial Ca2+ increases in response to a variety of physiological stimuli. Some stimuli open membrane calcium channels, others release calcium from intracellular stores, and some do both. The temporal and spatial complexity of glial cytosolic calcium changes suggest that these responses may form the basis of an intracellular or intercellular signaling system. Cytosolic calcium rises effect changes in glial structure and function through protein kinases, phospholipases, and direct interaction with lipid and protein constituents. Ultimately, calcium signaling influence glial gene expression, development, metabolism, and regulation of the extracellular milieu. Disturbances in glial calcium homeostasis may have a role in certain pathological conditions. The discovery of complex calcium-based glial signaling systems, capable of sensing and influencing neural activity, suggest a more integrated neuro-glial model of information processing in the central nervous system.
Collapse
Affiliation(s)
- S M Finkbeiner
- Department of Medicine, University of California, San Francisco 94143-0114
| |
Collapse
|
37
|
Deshpande RV, Goust JM, Banik NL. Differential distribution of calpain in human lymphoid cells. Neurochem Res 1993; 18:767-73. [PMID: 7690115 DOI: 10.1007/bf00966771] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calpain, a calcium-activated neutral proteinase, is ubiquitously present in human tissues. To determine if lymphoid cells implicated in pathogenesis of demyelination may harbor calpain in a functionally active form, we determined both muCalpain and mCalpain activities in human lymphoid cell lines. DEAE-cellulose and phenylsepharose column chromatography were used to isolate the enzyme from the natural inhibitor, calpastatin. Lymphocytic lines (CCRF-CEM, MOLT-3, MOLT-4, M.R.) showed predominance of muCalpain (55-80%) whereas the monocytic line (U-937) showed predominance of mCalpain (77%). Proportion and subcellular distribution of both isoforms varied among cell lines. Calpains isolated from U-937 cells degraded myelin basic protein. These results indicate that human lymphoid cells harbor functionally active calpain that can degrade myelin components in vitro. The study suggests a degradative role for calpain in demyelinating diseases.
Collapse
Affiliation(s)
- R V Deshpande
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425
| | | | | |
Collapse
|
38
|
Soliven B, Takeda M, Shandy T, Nelson DJ. Arachidonic acid and its metabolites increase Cai in cultured rat oligodendrocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C632-40. [PMID: 8384786 DOI: 10.1152/ajpcell.1993.264.3.c632] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fluorescence measurements of intracellular calcium (Cai) were made on cultured rat spinal cord oligodendrocytes (OLGs) using the dye fura-2. Exposure of OLGs to arachidonic acid (AA) (5-50 microM) elicited a concentration-dependent increase in Cai that was derived mainly from extracellular Ca2+. AA at 50 microM also released Ca2+ from intracellular stores. The response to AA was not decreased by nifedipine or by inhibition of Na(+)-Ca2+ exchange. AA-induced Ca2+ influx pathway was permeable to Mn2+ and Co2+ but not to Ba2+ and was not markedly influenced by depolarization, suggesting that AA activates a voltage-independent, not strictly selective, Ca2+ channel. The Cai response to AA was partially attenuated in the presence of indomethacin, indicating that the Cai response was mediated in part by cyclooxygenase products of AA. However, the AA-induced Cai response far exceeded that induced by prostaglandins and was mimicked by linoleic acid. We conclude that AA modulates Cai of OLGs via two mechanisms: 1) indirectly via cyclooxygenase pathway and 2) directly via membrane lipid-protein interaction.
Collapse
Affiliation(s)
- B Soliven
- Department of Neurology, University of Chicago, Illinois 60637
| | | | | | | |
Collapse
|
39
|
ter Beest MB, Hoekstra D. Interaction of myelin basic protein with artificial membranes. Parameters governing binding, aggregation and dissociation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:689-96. [PMID: 7679637 DOI: 10.1111/j.1432-1033.1993.tb17597.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of myelin basic protein (MBP) with large unilamellar vesicles, composed of phosphatidylserine (PtdSer), phosphatidylserine/phosphatidylcholine (PtdSer/Ole2GroPCho) and phosphatidylcholine/cholesterol (Ole2GroPCho/cholesterol) was examined. Binding of MBP to the bilayers as well as the kinetics of this process were determined by a resonance energy transfer procedure. The ability of the protein to aggregate the vesicles subsequently was monitored continuously by absorbance measurements. The interaction was further characterized by determining the ability of MBP to induce membrane perturbations, as reflected by release of aqueous vesicle contents, and lipid mixing. The results demonstrate that Ole2GroPCho inhibits, while PtdSer and cholesterol strongly facilitate MBP-induced membrane aggregation. Furthermore, binding of MBP to vesicles and the subsequent aggregation event are separate processes, i.e. the extent of binding does not necessarily reflect the aggregation susceptibility. Overall, aggregation appears to be the rate-limiting step. Interaction of MBP with PtdSer bilayers results in a limited degree of lipid mixing, which is accompanied by extensive release of vesicle contents. For all other compositions, no lipid mixing occurs, while cholesterol effectively prevents release of vesicle contents. pH-dependent experiments indicate distinct mechanisms to be operative in MBP-induced aggregation of PtdSer and Ole2GroPCho/cholesterol bilayers. At neutral pH, protein-protein interactions appear relevant, while at acidic pH intervesicular bridges, established by monomers that may cause aggregation of PtdSer vesicles, but not of Ole2GroPCho/cholesterol vesicles. The observation that divalent cations reverse MBP-induced vesicle aggregation may have physiological relevance.
Collapse
Affiliation(s)
- M B ter Beest
- Laboratory of Physiological Chemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
40
|
Affiliation(s)
- R Siman
- Cephalon, Inc., West Chester, Pennsylvania 19380
| |
Collapse
|
41
|
Chantry A, Gregson N, Glynn P. Degradation of myelin basic protein by a membrane-associated metalloprotease: neural distribution of the enzyme. Neurochem Res 1992; 17:861-7. [PMID: 1383841 DOI: 10.1007/bf00993261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A metalloprotease activity associated with myelin membrane preparations degrades myelin basic protein (MBP), generating a characteristic fragment designated peptide C (MBP 74-170). Using an immunoblotting assay, peptide C-generating activity was detected in mammalian, avian, reptilian, and amphibian brains. The activity was present in rat brain as early as postnatal day 1 and also in adult rat peripheral nerve. Immunohistochemistry with a monoclonal antibody to the purified enzyme revealed that the metalloprotease was present in oligodendrocytes of optic nerve, of both white and grey matter of spinal cord, and also in the cytoplasm of both myelinating and nonmyelinating Schwann cells of peripheral nerve.
Collapse
Affiliation(s)
- A Chantry
- Department of Neurochemistry, Institute of Neurology, London, UK
| | | | | |
Collapse
|
42
|
Liuzzi GM, Ventola A, Riccio P, Quagliariello E. Identification of water-soluble proteases in myelin preparations. Biochem Biophys Res Commun 1992; 186:89-94. [PMID: 1378733 DOI: 10.1016/s0006-291x(05)80779-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sodium chloride extracts obtained from purified bovine brain myelin were found to contain proteolytic activity capable of degrading isolated myelin basic protein as assessed by SDS gel electrophoresis. Using gels copolymerized with gelatin as substrate, two bands at about 54 and 117-125 KDa, respectively, were detected. Activity corresponding to the 54 KDa band was inhibited by zinc. Data presented in this article suggest that proteolytic activity can be released from the myelin sheath in water-soluble form and recognize MBP as substrate.
Collapse
Affiliation(s)
- G M Liuzzi
- Dipartimento di Biochimica e Biologia Molecolare, Universita di Bari, Italy
| | | | | | | |
Collapse
|
43
|
Domańska-Janik K, de Nechaud B, Inomata M, Kawashima S, Zalewska T. Calcium-activated neutral protease (CANP) in normal and dysmyelinating mutant paralytic tremor rabbit myelin. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1992; 16:273-88. [PMID: 1418220 DOI: 10.1007/bf03159974] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Calcium-activated neutral protease (CANP) in normal and dysmyelinating mutant, paralytic tremor (PT) rabbit myelin and premyelin fractions was studied using immature (4-5 wk) or adult animals. The enzyme was estimated by determination of its catalytic activity as well as by using immunoblot analysis after SDS-PAGE separation. The presence of two forms of CANP--one activated by calcium in the micromolar concentration (mu CANP) range and the other exhibiting low calcium sensitivity in the millimolar concentration range (m-CANP)--was found in the myelin and premyelin fractions. The developmental pattern of the enzyme activity was different for each of these two enzyme isoforms depending on the fraction studied. The higher activity on CANP (both isoforms) found in PT myelin and premyelin could be related to delayed myelination and/or to the higher turnover rate of already formed myelin. These results suggest complex and specific roles for these isoenzymes during myelin formation as is discussed further in this article. Our results confirm the extensive degradation of myelin basic protein (MBP), proteolipid protein (PLP), and, to a lesser extent, the other myelin proteins by endo- and exogenous CANP. This degradation process was significantly elevated in PT rabbit myelin. Moreover as was shown by two-dimensional gel electrophoresis, calcium-controlled proteolysis in nonmutant rabbits affected the net-charge of MBP in a manner similar to that reported for PT myelin, suggesting the possible involvement of CANP in the generation of charge isomers of MBP.
Collapse
Affiliation(s)
- K Domańska-Janik
- Department of Neurochemistry, Polish Academy of Sciences, Warsaw
| | | | | | | | | |
Collapse
|
44
|
Banik NL, Chakrabarti AK, Konat GW, Gantt-Wilford G, Hogan EL. Calcium-activated neutral proteinase (calpain) activity in C6 cell line: compartmentation of mu and m calpain. J Neurosci Res 1992; 31:708-14. [PMID: 1315874 DOI: 10.1002/jnr.490310414] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Calcium-activated neutral proteinase (calpain) activity was determined, including in cytosol and membrane fractions, in rat glioma C6 cell line. The mu and m forms of calpain were separated by DEAE and phenylsepharose column chromatography and with removal of the endogenous inhibitor calpastatin. C6 cells contained more mcalpain than the mu isoform. More than 70% of mcalpain activity was membrane-associated and 20% was cytosolic. Isolated plasma membrane also contained 69% of the mcalpain activity. In contrast, approximately 80% of mucalpain activity was cytosolic and 16% was membranous. Half-maximal activity for mu and mcalpain was obtained at 1 microM and 0.2 mM CaCl2, respectively. Trypsin dissociation of cells reduced activity. Triton X-100 stimulated mcalpain activity of the whole homogenate and the membrane pellet but not of the cytosol. Activity of the myelin marker enzyme adenosine 2'3'-cyclic nucleotide 3'-phosphohydrolase (CNPase), was also found in C6 cells. The identification of calpain and CNPase in C6 cells is in keeping with an interpretation that C6 differentiation resembles, at least in part, that of the myelin-forming oligodendroglial cells.
Collapse
Affiliation(s)
- N L Banik
- Department of Neurology, Medical University of South Carolina, Charleston 29425
| | | | | | | | | |
Collapse
|
45
|
Bizzozero O, Leyba J, Nuñez D. Characterization of proteolipid protein fatty acylesterase from rat brain myelin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42596-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Scolding NJ, Morgan BP, Campbell AK, Compston DA. The role of calcium in rat oligodendrocyte injury and repair. Neurosci Lett 1992; 135:95-8. [PMID: 1542444 DOI: 10.1016/0304-3940(92)90144-v] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of intracellular calcium in oligodendrocyte injury is investigated using cultured rat oligodendrocytes. Calcium ionophores A23187 and ionomycin mimic both complement and perforin attack, causing oligodendrocyte lysis at concentrations which do not lyse other glia. Membrane vesiculation, the mechanism by which oligodendrocytes resist and recover from complement and perforin attack, is also induced by A23187. Oligodendrocytes are more susceptible to complement attack in the presence of a calmodulin inhibitor (W7), which also inhibits vesiculation. These results imply that calmodulin is involved in membrane repair from complement attack, and indicate that changes in intracellular calcium play an important yet paradoxical role in the oligodendrocyte response to injury, dictating both susceptibility and cellular recovery.
Collapse
Affiliation(s)
- N J Scolding
- University of Cambridge Neurology Unit, Addenbrooke's Hospital, U.K
| | | | | | | |
Collapse
|
47
|
Taft WC, Yang K, Dixon CE, Hayes RL. Microtubule-associated protein 2 levels decrease in hippocampus following traumatic brain injury. J Neurotrauma 1992; 9:281-90. [PMID: 1474611 DOI: 10.1089/neu.1992.9.281] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We examined microtubule-associated protein 2 (MAP2) levels in hippocampal and cortical tissue 3 h following moderate traumatic brain injury (TBI) in the rat. MAP2 levels were assayed by quantitative immunoreactivity in tissue fractions obtained from naive, sham-injured, or fluid percussion-injured animals. Tissues were homogenized in the presence of protease inhibitors (0.3 mM phenylmethylsulfonyl fluoride, PMSF), a specific calpain inhibitors (0.1 mM leupeptin), and chelators (2 mM ethylene glycol-bis-tetraacetic acid, EGTA; 1 mM ethylenedinitrilo-tetraacetic acid, EDTA) to eliminate in vitro MAP2 proteolysis during tissue processing. Compared to naive rats, sham injury had no effect on soluble MAP2 levels in either cortex (105.0 +/- 4.4% of naive value) or hippocampus (106.6 +/- 5.2% of naive value). However, TBI caused a significant (p < 0.005) decrease in hippocampal MAP2 levels (55.7 +/- 5.9% of sham-injured controls). The effect appeared to be regionally selective, since the MAP2 decrease did not occur in cortex (89.1 +/- 1.4%). The degree of MAP2 decrease in hippocampus was similar in both membrane (57.8%) and cytosolic (55.7%) fractions, ruling out the possibility of partitioning artifacts. The data suggest that sublethal alterations of neuronal structure and function caused by MAP2 degradation may play an important role in the development of TBI-induced functional deficits. Since MAP2 is exclusively associated with the cytoskeleton in somal and dendritic compartments of neurons, the pathophysiology of sublethal magnitudes of TBI may also involve dendritic and somal dysfunction.
Collapse
Affiliation(s)
- W C Taft
- Department of Neurosurgery, University of Texas Health Sciences Center, Houston
| | | | | | | |
Collapse
|
48
|
Abstract
We used a polyclonal antiserum directed against calpain II to study the distribution of that enzyme in rat sciatic nerve. Western blot of nerve homogenate showed that the antibody reacted with a single protein band of 80 kDa, corresponding to the catalytic subunit of calpain II. By light microscopy, immunoreactivity appeared predominantly in Schwann cell cytoplasm. By electron microscopy, calpain II was especially dense along the plasmalemma of Schwann cells, and was also seen in axoplasm.
Collapse
Affiliation(s)
- M Mata
- Department of Neurology, University of Michigan, Ann Arbor
| | | | | |
Collapse
|
49
|
Persson H. Degradation products of myelin-oligodendrocyte-associated proteins in a light CNS subcellular fraction. Neurochem Res 1991; 16:1113-20. [PMID: 1724552 DOI: 10.1007/bf00966588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The presence of degradation products of the myelin/oligodendrocyte glycoprotein (MOG) and a new myelin/oligodendrocyte associated protein, FD1, defined by a monoclonal antibody was established in a subfraction (the floating fraction, or FF) of adult rabbit CNS. The histochemical distribution of FD1 was determined by indirect immunofluorescence using conventional and confocal microscopy. FD1 was found to be present in oligodendrocytes, and at the outer rim of CNS myelin sheaths. Strong antibody reactivity was noted at nodes of Ranvier, as well as in regions with a high nodal density. No staining of compact myelin was seen. In the PNS, inner and outer cytoplasmic compartments of the Schwann cells as well as their cell bodies were stained, with no staining of compact myelin. The FF has previously been shown to be highly enriched in Marchi-positive bodies. These structures are situated paranodally in the CNS of myelinated nerve fibers, and their presence has been interpreted as reflections of myelin breakdown and turnover occurring in association with myelin sheath segments situated close to nodes at Ranvier in adult, normal vertebrate CNS. The present findings extend previous observations of partially degraded myelin-associated proteins in the FF, and give further results indicating that Marchi-positive bodies are aspects of intermediate stages in myelin catabolism.
Collapse
Affiliation(s)
- H Persson
- University of Göteborg, Department of Anatomy, Sweden
| |
Collapse
|
50
|
Persson H, Karlsson JO. Calpain activity in a subcellular fraction enriched in partially degraded CNS myelin fragments compared with myelin. Neurosci Lett 1991; 130:81-4. [PMID: 1721112 DOI: 10.1016/0304-3940(91)90232-i] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Marchi-positive bodies are structures present paranodally in large myelinated nerve fibers. They have morphological and biochemical characteristics closely resembling the partially degraded myelin fragments formed during the early phases of Wallerian degeneration. Levels of calcium-activated neutral proteases (calpains) and their endogenous specific inhibitor calpastatin were measured in highly purified rabbit myelin and a spinal cord subcellular light ('floating') fraction heavily enriched in Marchi-positive bodies. Calpain levels were found to be significantly higher in the floating fraction as compared to myelin. No calpastatin was detectable in either fraction.
Collapse
Affiliation(s)
- H Persson
- University of Gothenburg, Department of Anatomy, Sweden
| | | |
Collapse
|