1
|
Liang Y, Xie S, He Y, Xu M, Qiao X, Zhu Y, Wu W. Kynurenine Pathway Metabolites as Biomarkers in Alzheimer's Disease. DISEASE MARKERS 2022; 2022:9484217. [PMID: 35096208 PMCID: PMC8791723 DOI: 10.1155/2022/9484217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that deteriorates cognitive function. Patients with AD generally exhibit neuroinflammation, elevated beta-amyloid (Aβ), tau phosphorylation (p-tau), and other pathological changes in the brain. The kynurenine pathway (KP) and several of its metabolites, especially quinolinic acid (QA), are considered to be involved in the neuropathogenesis of AD. The important metabolites and key enzymes show significant importance in neuroinflammation and AD. Meanwhile, the discovery of changed levels of KP metabolites in patients with AD suggests that KP metabolites may have a prominent role in the pathogenesis of AD. Further, some KP metabolites exhibit other effects on the brain, such as oxidative stress regulation and neurotoxicity. Both analogs of the neuroprotective and antineuroinflammation metabolites and small molecule enzyme inhibitors preventing the formation of neurotoxic and neuroinflammation compounds may have potential therapeutic significance. This review focused on the KP metabolites through the relationship of neuroinflammation in AD, significant KP metabolites, and associated molecular mechanisms as well as the utility of these metabolites as biomarkers and therapeutic targets for AD. The objective is to provide references to find biomarkers and therapeutic targets for patients with AD.
Collapse
Affiliation(s)
- Yuqing Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Shan Xie
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yanyun He
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Manru Xu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xi Qiao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yue Zhu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Wenbin Wu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
2
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bumbu AG, Andronie-Cioara FL, Nechifor AC, Gitea D, Bungau AF, Toma MM, Bungau SG. The Footprint of Kynurenine Pathway in Neurodegeneration: Janus-Faced Role in Parkinson's Disorder and Therapeutic Implications. Int J Mol Sci 2021; 22:6737. [PMID: 34201647 PMCID: PMC8268239 DOI: 10.3390/ijms22136737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Progressive degeneration of neurons and aggravation of dopaminergic neurons in the substantia nigra pars compacta results in the loss of dopamine in the brain of Parkinson's disease (PD) patients. Numerous therapies, exhibiting transient efficacy have been developed; however, they are mostly accompanied by side effects and limited reliability, therefore instigating the need to develop novel optimistic treatment targets. Significant therapeutic targets have been identified, namely: chaperones, protein Abelson, glucocerebrosidase-1, calcium, neuromelanin, ubiquitin-proteasome system, neuroinflammation, mitochondrial dysfunction, and the kynurenine pathway (KP). The role of KP and its metabolites and enzymes in PD, namely quinolinic acid (QUIN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranillic acid (3-HAA), kunurenine-3-monooxygenase (KMO), etc. has been reported. The neurotoxic QUIN, N-methyl-D-aspartate (NMDA) receptor agonist, and neuroprotective KYNA-which antagonizes QUIN actions-primarily justify the Janus-faced role of KP in PD. Moreover, KP has been reported to play a biomarker role in PD detection. Therefore, the authors detail the neurotoxic, neuroprotective, and immunomodulatory neuroactive components, alongside the upstream and downstream metabolic pathways of KP, forming a basis for a therapeutic paradigm of the disease while recognizing KP as a potential biomarker in PD, thus facilitating the development of a suitable target in PD management.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122412, India;
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
| | | | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
3
|
Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021; 10:1548. [PMID: 34205235 PMCID: PMC8235708 DOI: 10.3390/cells10061548] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Danielle Santana-Coelho
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Grace A. Porter
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Jason C. O’Connor
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
- Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Mor A, Kalaska B, Pawlak D. Kynurenine Pathway in Chronic Kidney Disease: What’s Old, What’s New, and What’s Next? Int J Tryptophan Res 2020; 13:1178646920954882. [PMID: 35210786 PMCID: PMC8862190 DOI: 10.1177/1178646920954882] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Impaired kidney function and increased inflammatory process occurring in the course of Chronic Kidney Disease (CKD) contribute to the development of complex amino-acid alterations. The essential amino-acid tryptophan (TRP) undergoes extensive metabolism along several pathways, resulting in the production of many biologically active compounds. The results of many studies have shown that its metabolism via the kynurenine pathway is potently increased in the course of CKD. Metabolites of this pathway exhibit differential, sometimes opposite, roles in several biological processes. Their accumulation in the course of CKD may induce oxidative cell damage which stimulates inflammatory processes. They can also modulate the activity of numerous cellular signaling pathways through activation of the aryl hydrocarbon receptor, leading to the disruption of homeostasis of various organs. As a result, they can contribute to the development of the systemic disorders accompanying the course of chronic renal failure. This review gathers and systematizes reports concerning the knowledge connecting the kynurenine pathway metabolites to systemic disorders accompanying the development of CKD.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Pidugu LSM, Neu H, Wong TL, Pozharski E, Molloy JL, Michel SLJ, Toth EA. Crystal structures of human 3-hydroxyanthranilate 3,4-dioxygenase with native and non-native metals bound in the active site. Acta Crystallogr D Struct Biol 2017; 73:340-348. [PMID: 28375145 PMCID: PMC8493610 DOI: 10.1107/s2059798317002029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
3-Hydroxyanthranilate 3,4-dioxygenase (3HAO) is an enzyme in the microglial branch of the kynurenine pathway of tryptophan degradation. 3HAO is a non-heme iron-containing, ring-cleaving extradiol dioxygenase that catalyzes the addition of both atoms of O2 to the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3-HANA) to form quinolinic acid (QUIN). QUIN is a highly potent excitotoxin that has been implicated in a number of neurodegenerative conditions, making 3HAO a target for pharmacological downregulation. Here, the first crystal structure of human 3HAO with the native iron bound in its active site is presented, together with an additional structure with zinc (a known inhibitor of human 3HAO) bound in the active site. The metal-binding environment is examined both structurally and via inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence spectroscopy (XRF) and electron paramagnetic resonance spectroscopy (EPR). The studies identified Met35 as the source of potential new interactions with substrates and inhibitors, which may prove useful in future therapeutic efforts.
Collapse
Affiliation(s)
- Lakshmi Swarna Mukhi Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Heather Neu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tin Lok Wong
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - John L. Molloy
- Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8391, Gaithersburg, MD 20899-8391, USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Eric A. Toth
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
6
|
Fujigaki H, Yamamoto Y, Saito K. L-Tryptophan-kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: Focus on cell type differences. Neuropharmacology 2017; 112:264-274. [DOI: 10.1016/j.neuropharm.2016.01.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
|
7
|
Larkin PB, Sathyasaikumar KV, Notarangelo FM, Funakoshi H, Nakamura T, Schwarcz R, Muchowski PJ. Tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase 1 make separate, tissue-specific contributions to basal and inflammation-induced kynurenine pathway metabolism in mice. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:2345-2354. [PMID: 27392942 PMCID: PMC5808460 DOI: 10.1016/j.bbagen.2016.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/25/2016] [Accepted: 07/04/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. METHODS Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. RESULTS AND CONCLUSIONS Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system.
Collapse
Affiliation(s)
- Paul B Larkin
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hiroshi Funakoshi
- Center for Advanced Research and Education (CARE), Asahikawa Medical University, 1-1-1- Higashinijo Midorigaoka, Asahikawa 078-8510, Japan
| | | | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul J Muchowski
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA; The Taube-Koret Center for Huntington's Disease Research, San Francisco, CA, USA.
| |
Collapse
|
8
|
Mazarei G, Leavitt BR. Indoleamine 2,3 Dioxygenase as a Potential Therapeutic Target in Huntington's Disease. J Huntingtons Dis 2016; 4:109-18. [PMID: 26397892 PMCID: PMC4923717 DOI: 10.3233/jhd-159003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Within the past decade, there has been increasing interest in the role of tryptophan (Trp) metabolites and the kynurenine pathway (KP) in diseases of the brain such as Huntington’s disease (HD). Evidence is accumulating to suggest that this pathway is imbalanced in neurologic disease states. The KP diverges into two branches that can lead to production of either neuroprotective or neurotoxic metabolites. In one branch, kynurenine (Kyn) produced as a result of tryptophan (Trp) catabolism is further metabolized to neurotoxic metabolites such as 3-hydroxykunurenine (3-HK) and quinolinic acid (QA). In the other branch, Kyn is converted to the neuroprotective metabolite kynurenic acid (KA). The enzyme Indoleamine 2,3 dioxygenase (IDO1) catalyzes the conversion of Trp into Kyn, the first and rate-limiting enzymatic step of the KP. This reaction takes place throughout the body in multiple cell types as a required step in the degradation of the essential amino acid Trp. Studies of IDO1 in brain have focused primarily on a potential role in depression, immune tolerance associated with brain tumours, and multiple sclerosis; however the role of this enzyme in neurodegenerative disease has garnered significant attention in recent years. This review will provide a summary of the current understanding of the role of IDO1 in Huntington’s disease and will assess this enzyme as a potential therapeutic target for HD.
Collapse
Affiliation(s)
- Gelareh Mazarei
- Centre for Molecular Medicine & Therapeutics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine & Therapeutics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Zádori D, Veres G, Szalárdy L, Klivényi P, Fülöp F, Toldi J, Vécsei L. Inhibitors of the kynurenine pathway as neurotherapeutics: a patent review (2012–2015). Expert Opin Ther Pat 2016; 26:815-32. [DOI: 10.1080/13543776.2016.1189531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Schwarcz R. Kynurenines and Glutamate: Multiple Links and Therapeutic Implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:13-37. [PMID: 27288072 PMCID: PMC5803753 DOI: 10.1016/bs.apha.2016.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamate is firmly established as the major excitatory neurotransmitter in the mammalian brain and is actively involved in most aspects of neurophysiology. Moreover, glutamatergic impairments are associated with a wide variety of dysfunctional states, and both hypo- and hyperfunction of glutamate have been plausibly linked to the pathophysiology of neurological and psychiatric diseases. Metabolites of the kynurenine pathway (KP), the major catabolic route of the essential amino acid tryptophan, influence glutamatergic activity in several distinct ways. This includes direct effects of these "kynurenines" on ionotropic and metabotropic glutamate receptors or vesicular glutamate transport, and indirect effects, which are initiated by actions at various other recognition sites. In addition, some KP metabolites affect glutamatergic functions by generating or scavenging highly reactive free radicals. This review summarizes these phenomena and discusses implications for brain physiology and pathology.
Collapse
Affiliation(s)
- R Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
11
|
Abstract
The endocannabinoid system (ECS) comprises a complex of receptors, enzymes, and endogenous agonists that are widely distributed in the central nervous system of mammals and participates in a considerable number of neuromodulatory functions, including neurotransmission, immunological control, and cell signaling. In turn, the kynurenine pathway (KP) is the most relevant metabolic route for tryptophan degradation to form the metabolic precursor NAD(+). Recent studies demonstrate that the control exerted by the pharmacological manipulation of the ECS on the glutamatergic system in the brain may offer key information not only on the development of psychiatric disorders like psychosis and schizophrenia-like symptoms, but it also may constitute a solid basis for the development of therapeutic strategies to combat excitotoxic events occurring in neurological disorders like Huntington's disease (HD). Part of the evidence pointing to the last approach is based on experimental protocols demonstrating the efficacy of cannabinoids to prevent the deleterious actions of the endogenous neurotoxin and KP metabolite quinolinic acid (QUIN). These findings intuitively raise the question about what is the precise role of the ECS in tryptophan metabolism through KP and vice versa. In this chapter, we will review basic concepts on the physiology of both the ECS and the KP to finally describe those recent findings combining the components of these two systems and hypothesize the future course that the research in this emerging field will take in the next years.
Collapse
|
12
|
Maddison DC, Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 2015; 40:134-41. [PMID: 25773161 DOI: 10.1016/j.semcdb.2015.03.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 11/30/2022]
Abstract
Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been closely linked to the pathogenesis of several neurodegenerative diseases. Tryptophan is an essential amino acid required for protein synthesis, and in higher eukaryotes is also converted into the key neurotransmitters serotonin and tryptamine. However, in mammals >95% of tryptophan is metabolized through the KP, ultimately leading to the production of nicotinamide adenosine dinucleotide (NAD(+)). A number of the pathway metabolites are neuroactive; e.g. can modulate activity of several glutamate receptors and generate/scavenge free radicals. Imbalances in absolute and relative levels of KP metabolites have been strongly associated with neurodegenerative disorders including Huntington's, Alzheimer's, and Parkinson's diseases. The KP has also been implicated in the pathogenesis of other brain disorders (e.g. schizophrenia, bipolar disorder), as well as several cancers and autoimmune disorders such as HIV. Pharmacological and genetic manipulation of the KP has been shown to ameliorate neurodegenerative phenotypes in a number of model organisms, suggesting that it could prove to be a viable target for the treatment of such diseases. Here, we provide an overview of the KP, its role in neurodegeneration and the current strategies for therapeutic targeting of the pathway.
Collapse
Affiliation(s)
- Daniel C Maddison
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Flaviano Giorgini
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| |
Collapse
|
13
|
Brkić H, Kovačević B, Tomić S. Human 3-hydroxyanthranilate 3,4-dioxygenase () dynamics and reaction, a multilevel computational study. MOLECULAR BIOSYSTEMS 2015; 11:898-907. [PMID: 25588817 DOI: 10.1039/c4mb00668b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3-Hydroxyanthranilate 3,4-dioxygenase () is a non-heme iron dependent enzyme. It catalyses the cleavage of the benzene ring of 3-hydroxyanthranilic acid (3-Ohaa), an intermediate in the kynurenine pathway, and therefore represents a potential target in treating numerous disorders related to the concentration of quinolinic acid (QUIN), the kynurenine pathway product, in tissues. The stability and behaviour of the enzyme in nearly physiological conditions, studied by the empirical molecular modelling methods enabled us to determine the influence of several, for the enzyme activity relevant, point mutations (Arg43Ala, Arg95Ala and Glu105Ala) on the protein structure, particularly on the active site architecture and the metal ion environment, as well as on the substrate, 3-Ohaa, binding. Besides, the water population of the active site, and the protein flexibility as well as the amino acid residues interaction networks relevant for the enzyme activity were determined for the 3-Ohaa complexes with the native and mutated enzyme variants. Finally, using the hybrid quantum-mechanics/molecular-mechanics (QM/MM) calculations the catalysed 3-Ohaa oxidation into 2-amino-3-carboxymuconic acid semialdehyde was elucidated.
Collapse
Affiliation(s)
- H Brkić
- Faculty of Medicine, J. Huttlera 4, HR-31000 Osijek, Croatia
| | | | | |
Collapse
|
14
|
Parrott JM, O'Connor JC. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology. Front Psychiatry 2015; 6:116. [PMID: 26347662 PMCID: PMC4542134 DOI: 10.3389/fpsyt.2015.00116] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are upregulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s) by which alterations in KMO activity are able to impair neuronal function, and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Parrott
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA
| | - Jason C O'Connor
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Mood Disorders Translational Research Core, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health System , San Antonio, TX , USA
| |
Collapse
|
15
|
Reyes Ocampo J, Lugo Huitrón R, González-Esquivel D, Ugalde-Muñiz P, Jiménez-Anguiano A, Pineda B, Pedraza-Chaverri J, Ríos C, Pérez de la Cruz V. Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:646909. [PMID: 24693337 PMCID: PMC3945746 DOI: 10.1155/2014/646909] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022]
Abstract
The kynurenine pathway (KP) is the main route of tryptophan degradation whose final product is NAD(+). The metabolism of tryptophan can be altered in ageing and with neurodegenerative process, leading to decreased biosynthesis of nicotinamide. This fact is very relevant considering that tryptophan is the major source of body stores of the nicotinamide-containing NAD(+) coenzymes, which is involved in almost all the bioenergetic and biosynthetic metabolism. Recently, it has been proposed that endogenous tryptophan and its metabolites can interact and/or produce reactive oxygen species in tissues and cells. This subject is of great importance due to the fact that oxidative stress, alterations in KP metabolites, energetic deficit, cell death, and inflammatory events may converge each other to enter into a feedback cycle where each one depends on the other to exert synergistic actions among them. It is worth mentioning that all these factors have been described in aging and in neurodegenerative processes; however, has so far no one established any direct link between alterations in KP and these factors. In this review, we describe each kynurenine remarking their redox properties, their effects in experimental models, their alterations in the aging process.
Collapse
Affiliation(s)
- Jazmin Reyes Ocampo
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Rafael Lugo Huitrón
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Dinora González-Esquivel
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Perla Ugalde-Muñiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Anabel Jiménez-Anguiano
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., 14269 México, DF, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| |
Collapse
|
16
|
Vallerini GP, Amori L, Beato C, Tararina M, Wang XD, Schwarcz R, Costantino G. 2-Aminonicotinic acid 1-oxides are chemically stable inhibitors of quinolinic acid synthesis in the mammalian brain: a step toward new antiexcitotoxic agents. J Med Chem 2013; 56:9482-95. [PMID: 24274468 DOI: 10.1021/jm401249c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Hydroxyanthranilic acid 3,4-dioxygenase (3-HAO) is the enzyme responsible for the production of the neurotoxic tryptophan metabolite quinolinic acid (QUIN). Elevated brain levels of QUIN are observed in several neurodegenerative diseases, but pharmacological investigation on its role in the pathogenesis of these conditions is difficult because only one class of substrate-analogue 3-HAO inhibitors, with poor chemical stability, has been reported so far. Here we describe the design, synthesis, and biological evaluation of a novel class of chemically stable inhibitors based on the 2-aminonicotinic acid 1-oxide nucleus. After the preliminary in vitro evaluation of newly synthesized compounds using brain tissue homogenate, we selected the most active inhibitor and showed its ability to acutely reduce the production of QUIN in the rat brain in vivo. These findings provide a novel pharmacological tool for the study of the mechanisms underlying the onset and propagation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gian Paolo Vallerini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Majláth Z, Tajti J, Vécsei L. Kynurenines and other novel therapeutic strategies in the treatment of dementia. Ther Adv Neurol Disord 2013; 6:386-97. [PMID: 24228074 DOI: 10.1177/1756285613494989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dementia is a common neuropsychological disorder with an increasing incidence. The most prevalent type of dementia is Alzheimer's disease. The underlying pathophysiological features of the cognitive decline are neurodegenerative processes, a cerebrovascular dysfunction and immunological alterations. The therapeutic approaches are still limited, although intensive research is being conducted with the aim of finding neuroprotective strategies. The widely accepted cholinesterase inhibitors and glutamate antagonists did not meet expectations of preventing disease progression, and research is therefore currently focusing on novel targets. Nonsteroidal anti-inflammatory drugs, secretase inhibitors and statins are promising drug candidates for the prevention and management of different forms of dementia. The kynurenine pathway has been associated with various neurodegenerative disorders and cerebrovascular diseases. This pathway is also closely related to neuroinflammatory processes and it has been implicated in the pathomechanisms of certain kinds of dementia. Targeting the kynurenine system may be of therapeutic value in the future.
Collapse
Affiliation(s)
- Zsófia Majláth
- Department of Neurology, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
18
|
Zanisi M, Messi E, Galbiati M. Excitatory amino acids as modulators of gonadotropin secretion. Amino Acids 2013; 6:47-56. [PMID: 24190742 DOI: 10.1007/bf00808122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1992] [Accepted: 06/11/1993] [Indexed: 10/26/2022]
Abstract
The effects of quinolinic acid (QUIN) and quisqualate (QA) on the secretion of GnRH from MBH and LH and FSH from AP of 50 day old male rats have been evaluated by means of an "in vitro" perifusion technique.QUIN (100µM) is able to increase GnRH secretion with an action mediated by an NMDA receptor type, as shown by the inhibitory effect exerted by both a competitive (AP-5) and a non-competitive (MK-801) specific antagonist.QA "per se" at the concentrations tested (1-100µM) does not modify GnRH and gonadotropin secretion, but in the presence of a specific KA/QA receptor antagonist (DNQX) exerts a stimulatory effect at both levels.This observation might indicate that of the two QA receptor subtypes (ionotropic and metabotropic), this agonist binds to the metabotropic one with very low affinity: thus it is likely that a higher dose is required in order to have any effect on gonadotropin secretion. However, in the presence of DNQX, which binds to the ionotropic receptor, all the available QA can bind to the metabotropic one and can exert its action at MBH AP levels.
Collapse
Affiliation(s)
- M Zanisi
- Department of Endocrinology, University of Milan, Via Balzaretti, 9, I-20133, Milano, Italy
| | | | | |
Collapse
|
19
|
Giorgini F, Huang SY, Sathyasaikumar KV, Notarangelo FM, Thomas MAR, Tararina M, Wu HQ, Schwarcz R, Muchowski PJ. Targeted deletion of kynurenine 3-monooxygenase in mice: a new tool for studying kynurenine pathway metabolism in periphery and brain. J Biol Chem 2013; 288:36554-66. [PMID: 24189070 DOI: 10.1074/jbc.m113.503813] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.
Collapse
Affiliation(s)
- Flaviano Giorgini
- From the Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Quinolinic acid: an endogenous neurotoxin with multiple targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:104024. [PMID: 24089628 PMCID: PMC3780648 DOI: 10.1155/2013/104024] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022]
Abstract
Quinolinic acid (QUIN), a neuroactive metabolite of the kynurenine pathway, is normally presented in nanomolar concentrations in human brain and cerebrospinal fluid (CSF) and is often implicated in the pathogenesis of a variety of human neurological diseases. QUIN is an agonist of N-methyl-D-aspartate (NMDA) receptor, and it has a high in vivo potency as an excitotoxin. In fact, although QUIN has an uptake system, its neuronal degradation enzyme is rapidly saturated, and the rest of extracellular QUIN can continue stimulating the NMDA receptor. However, its toxicity cannot be fully explained by its activation of NMDA receptors it is likely that additional mechanisms may also be involved. In this review we describe some of the most relevant targets of QUIN neurotoxicity which involves presynaptic receptors, energetic dysfunction, oxidative stress, transcription factors, cytoskeletal disruption, behavior alterations, and cell death.
Collapse
|
21
|
Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 2012; 13:465-77. [PMID: 22678511 DOI: 10.1038/nrn3257] [Citation(s) in RCA: 1033] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper-or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.
Collapse
Affiliation(s)
- Robert Schwarcz
- University of Maryland School of Medicine, Baltimore, Maryland 21228, USA. rschwarc@mprc. umaryland.edu
| | | | | | | |
Collapse
|
22
|
Sathyasaikumar KV, Stachowski EK, Wonodi I, Roberts RC, Rassoulpour A, McMahon RP, Schwarcz R. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull 2011; 37:1147-56. [PMID: 21036897 PMCID: PMC3196941 DOI: 10.1093/schbul/sbq112] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the branched kynurenine pathway (KP) of tryptophan degradation and antagonist of α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors, are elevated in the prefrontal cortex (PFC) of individuals with schizophrenia (SZ). Because endogenous KYNA modulates extracellular glutamate and acetylcholine levels in the PFC, these increases may be pathophysiologically significant. Using brain tissue from SZ patients and matched controls, we now measured the activity of several KP enzymes (kynurenine 3-monooxygenase [KMO], kynureninase, 3-hydroxyanthranilic acid dioxygenase [3-HAO], quinolinic acid phosphoribosyltransferase [QPRT], and kynurenine aminotransferase II [KAT II]) in the PFC, ie, Brodmann areas (BA) 9 and 10. Compared with controls, the activities of KMO (in BA 9 and 10) and 3-HAO (in BA 9) were significantly reduced in SZ, though there were no significant differences between patients and controls in kynureninase, QPRT, and KAT II. In the same samples, we also confirmed the increase in the tissue levels of KYNA in SZ. As examined in rats treated chronically with the antipsychotic drug risperidone, the observed biochemical changes were not secondary to medication. A persistent reduction in KMO activity may have a particular bearing on pathology because it may signify a shift of KP metabolism toward enhanced KYNA synthesis. The present results further support the hypothesis that the normalization of cortical KP metabolism may constitute an effective new treatment strategy in SZ.
Collapse
Affiliation(s)
- Korrapati V. Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Erin K. Stachowski
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Ikwunga Wonodi
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Rosalinda C. Roberts
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore,Present address: Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294
| | - Arash Rassoulpour
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Robert P. McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore,To whom correspondence should be addressed; Maryland Psychiatric Research Center, PO Box 21247, Baltimore, MD 21228; tel: 410-402-7635, fax: 410-747-2434, e-mail:
| |
Collapse
|
23
|
Nagy K, Plangár I, Tuka B, Gellért L, Varga D, Demeter I, Farkas T, Kis Z, Marosi M, Zádori D, Klivényi P, Fülöp F, Szatmári I, Vécsei L, Toldi J. Synthesis and biological effects of some kynurenic acid analogs. Bioorg Med Chem 2011; 19:7590-6. [PMID: 22079867 DOI: 10.1016/j.bmc.2011.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
The overactivation of excitatory amino acid receptors plays a key role in the pathomechanism of several neurodegenerative disorders and in ischemic and post-ischemic events. Kynurenic acid (KYNA) is an endogenous product of the tryptophan metabolism and, as a broad-spectrum antagonist of excitatory amino acid receptors, may serve as a protective agent in neurological disorders. The use of KYNA is excluded, however, because it hardly crosses the blood-brain barrier. Accordingly, new KYNA analogs which can readily cross this barrier and exert their complex anti-excitatory activity are generally needed. During the past 6 years, we have developed several KYNA derivatives, among others KYNA amides. These new analogs included one, N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KYNA-1), that has proved to be neuroprotective in several models. This paper reports on the synthesis of 10 new KYNA amides (KYNA-1-KYNA-10) and on the effectiveness of these molecules as inhibitors of excitatory synaptic transmission in the CA1 region of the hippocampus. The molecular structure and functional effects of KYNA-1 are compared with those of other KYNA amides. Behavioral studies with these KYNA amides demonstrated that they do not exert significant nonspecific general side-effects. KYNA-1 may therefore be considered a promising candidate for clinical studies.
Collapse
Affiliation(s)
- K Nagy
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Subchronic elevation of brain kynurenic acid augments amphetamine-induced locomotor response in mice. J Neural Transm (Vienna) 2011; 119:155-63. [PMID: 21904895 DOI: 10.1007/s00702-011-0706-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
The neuromodulating tryptophan metabolite kynurenic acid (KYNA) is increased in the brain of patients with schizophrenia. In the present study we investigate the spontaneous locomotor activity as well as the locomotor response to d-amphetamine [5 mg/kg, administered intraperitoneal (i.p.)] after increasing endogenous levels of brain KYNA in mice by acute (10 mg/kg, i.p., 60 min) or subchronic (100 mg/kg i.p., twice daily for 6 days) pretreatment with the blood-brain crossing precursor, L: -kynurenine. We found that an acute increase in the brain KYNA levels caused increased corner time and percent peripheral activity but did not change the d-amphetamine-induced locomotor response. In contrast, subchronic elevation of KYNA did not change the spontaneous locomotor activity but produced an exaggerated d-amphetamine-induced hyperlocomotion. These results cohere with clinical studies of patients with schizophrenia, where a potentiated DA release associated with exacerbation of positive symptoms has been observed following d-amphetamine administration. Present results further underscore KYNA as a possible mediator of the aberrant dopaminergic neurotransmission seen in schizophrenia.
Collapse
|
25
|
Zádori D, Klivényi P, Plangár I, Toldi J, Vécsei L. Endogenous neuroprotection in chronic neurodegenerative disorders: with particular regard to the kynurenines. J Cell Mol Med 2011; 15:701-17. [PMID: 21155972 PMCID: PMC3922661 DOI: 10.1111/j.1582-4934.2010.01237.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) and Huntington's disease (HD) are progressive chronic neurodegenerative disorders that are accompanied by a considerable impairment of the motor functions. PD may develop for familial or sporadic reasons, whereas HD is based on a definite genetic mutation. Nevertheless, the pathological processes involve oxidative stress and glutamate excitotoxicity in both cases. A number of metabolic routes are affected in these disorders. The decrease in antioxidant capacity and alterations in the kynurenine pathway, the main pathway of the tryptophan metabolism, are features that deserve particular interest, because the changes in levels of neuroactive kynurenine pathway compounds appear to be strongly related to the oxidative stress and glutamate excitotoxicity involved in the disease pathogenesis. Increase of the antioxidant capacity and pharmacological manipulation of the kynurenine pathway are therefore promising therapeutic targets in these devastating disorders.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
26
|
Zádori D, Klivényi P, Toldi J, Fülöp F, Vécsei L. Kynurenines in Parkinson's disease: therapeutic perspectives. J Neural Transm (Vienna) 2011; 119:275-83. [PMID: 21858430 DOI: 10.1007/s00702-011-0697-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder the pathomechanism of which is not yet fully known. With regard to the molecular mechanism of development of the disease, oxidative stress/mitochondrial impairment, glutamate excitotoxicity and neuroinflammation are certainly involved. Alterations in the kynurenine pathway, the main pathway of the tryptophan metabolism, can contribute to the complex pathomechanism. There are several possibilities for therapeutic intervention involving targeting of this altered metabolic route. The development of synthetic molecules that would shift the altered balance towards the achievement of neuroprotective effects would be of great promise for future clinical studies on PD.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | | | | | | | | |
Collapse
|
27
|
Stachowski EK, Schwarcz R. Regulation of quinolinic acid neosynthesis in mouse, rat and human brain by iron and iron chelators in vitro. J Neural Transm (Vienna) 2011; 119:123-31. [PMID: 21833493 DOI: 10.1007/s00702-011-0694-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/22/2011] [Indexed: 12/30/2022]
Abstract
Several lines of evidence indicate that excess iron may play an etiologically significant role in neurodegenerative disorders. This idea is supported, for example, by experimental studies in animals demonstrating significant neuroprotection by iron chelation. Here, we tested whether this effect might be related to a functional link between iron and the endogenous excitotoxin quinolinic acid (QUIN), a presumed pathogen in several neurological disorders. In particular, the present in vitro study was designed to examine the effects of Fe(2+), a known co-factor of oxygenases, on the activity of QUIN's immediate biosynthetic enzyme, 3-hydroxyanthranilic acid dioxygenase (3HAO), in the brain. In crude tissue homogenate, addition of Fe(2+) (2-40 μM) stimulated 3HAO activity 4- to 6-fold in all three species tested (mouse, rat and human). The slope of the iron curve was steepest in rat brain where an increase from 6 to 14 μM resulted in a more than fivefold higher enzyme activity. In all species, the Fe(2+)-induced increase in 3HAO activity was dose-dependently attenuated by the addition of ferritin, the main iron storage protein in the brain. The effect of iron was also readily prevented by N,N'-bis(2-hydroxybenzyl) ethylenediamine-N,N'-diacetic acid (HBED), a synthetic iron chelator with neuroprotective properties in vivo. All these effects were reproduced using neostriatal tissue obtained postmortem from normal individuals and patients with end-stage Huntington's disease. Our results suggest that QUIN levels and function in the mammalian brain might be tightly controlled by endogenous iron and proteins that regulate the bioavailability of iron.
Collapse
Affiliation(s)
- Erin K Stachowski
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, Maryland 21228, USA
| | | |
Collapse
|
28
|
Sathyasaikumar KV, Stachowski EK, Amori L, Guidetti P, Muchowski PJ, Schwarcz R. Dysfunctional kynurenine pathway metabolism in the R6/2 mouse model of Huntington's disease. J Neurochem 2010; 113:1416-25. [PMID: 20236387 DOI: 10.1111/j.1471-4159.2010.06675.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Elevated concentrations of neurotoxic metabolites of the kynurenine pathway (KP) of tryptophan degradation may play a causative role in Huntington's disease (HD). The brain levels of one of these compounds, 3-hydroxykynurenine (3-HK), are increased in both HD and several mouse models of the disease. In the present study, we examined this impairment in greater detail using the R6/2 mouse, a well-established animal model of HD. Initially, mutant and age-matched wild-type mice received an intrastriatal injection of (3)H-tryptophan to assess the acute, local de novo production of kynurenine, the immediate bioprecursor of 3-HK, in vivo. No effect of genotype was observed between 4 and 12 weeks of age. In contrast, intrastriatally applied (3)H-kynurenine resulted in significantly increased neosynthesis of (3)H-3-HK, but not other tritiated KP metabolites, in the R6/2 striatum. Subsequent ex vivo studies in striatal, cortical and cerebellar tissue revealed substantial increases in the activity of the biosynthetic enzyme of 3-HK, kynurenine 3-monooxygenase and significant reductions in the activity of its degradative enzyme, kynureninase, in HD mice starting at 4 weeks of age. Decreased kynureninase activity was most evident in the cortex and preceded the increase in kynurenine 3-monooxygenase activity. The activity of other KP enzymes showed no consistent brain abnormalities in the mutant mice. These findings suggest that impairments in its immediate metabolic enzymes jointly account for the abnormally high brain levels of 3-HK in the R6/2 model of HD.
Collapse
Affiliation(s)
- Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | | | | | | | | | | |
Collapse
|
29
|
Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ. Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington's disease. Prog Neurobiol 2010; 90:230-45. [PMID: 19394403 PMCID: PMC2829333 DOI: 10.1016/j.pneurobio.2009.04.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/17/2009] [Indexed: 12/31/2022]
Abstract
The neurodegenerative disease Huntington's disease (HD) is caused by an expanded polyglutamine (polyQ) tract in the protein huntingtin (htt). Although the gene encoding htt was identified and cloned more than 15 years ago, and in spite of impressive efforts to unravel the mechanism(s) by which mutant htt induces nerve cell death, these studies have so far not led to a good understanding of pathophysiology or an effective therapy. Set against a historical background, we review data supporting the idea that metabolites of the kynurenine pathway (KP) of tryptophan degradation provide a critical link between mutant htt and the pathophysiology of HD. New studies in HD brain and genetic model organisms suggest that the disease may in fact be causally related to early abnormalities in KP metabolism, favoring the formation of two neurotoxic metabolites, 3-hydroxykynurenine and quinolinic acid, over the related neuroprotective agent kynurenic acid. These findings not only link the excitotoxic hypothesis of HD pathology to an impairment of the KP but also define new drug targets and therefore have direct therapeutic implications. Thus, pharmacological normalization of the imbalance in brain KP metabolism may provide clinical benefits, which could be especially effective in early stages of the disease.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
30
|
Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm (Vienna) 2009; 116:1403-9. [PMID: 19618107 DOI: 10.1007/s00702-009-0263-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Parkinson's, Alzheimer's and Huntington's diseases are chronic neurodegenerative disorders of a progressive nature which lead to a considerable deterioration of the quality of life. Their pathomechanisms display some common features, including an imbalance of the tryptophan metabolism. Alterations in the concentrations of neuroactive kynurenines can be accompanied by devastating excitotoxic injuries and metabolic disturbances. From therapeutic considerations, possibilities that come into account include increasing the neuroprotective effect of kynurenic acid, or decreasing the levels of neurotoxic 3-hydroxy-L-kynurenine and quinolinic acid. The experimental data indicate that neuroprotection can be achieved by both alternatives, suggesting opportunities for further drug development in this field.
Collapse
|
31
|
Abstract
L-kynurenine is an intermediate in the pathway of the metabolism of L-tryptophan to nicotinic acid. L-kynurenine is formed in the mammalian brain (40%) and is taken up from the periphery (60%), indicating that it can be transported across the BBB. It was discovered some 30 years ago that compounds in the kynurenine family have neuroactive properties. L-kynurenine, the central agent of this pathway, can be converted into two other important compounds: the neuroprotective kynurenic acid and the neurotoxic quinolinic acid. Kynurenines have been shown to be involved in many diverse physiological and pathological processes. There are a number of neurodegenerative disorders whose pathogenesis has been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism. This review summarizes the main steps of the kynurenine pathway under normal conditions, discusses the metabolic disturbances and changes in this pathway in certain neurodegenerative disorders, and finally introduces the therapeutic possibilities with kynurenines.
Collapse
Affiliation(s)
- Hermina Robotka
- University of Szeged, Department of Physiology, Anatomy & Neuroscience, POB 533, and,Department of Neurology, POB 427, H-6701 Szeged, Hungary
| | - József Toldi
- University of Szeged, Department of Physiology, Anatomy & Neuroscience, POB 533, H-6701 Szeged, Hungary
| | - László Vécsei
- University of Szeged, Department of Neurology, POB 427, H-6701 Szeged, Hungary
| |
Collapse
|
32
|
Ceresoli-Borroni G, Guidetti P, Amori L, Pellicciari R, Schwarcz R. Perinatal kynurenine 3-hydroxylase inhibition in rodents: pathophysiological implications. J Neurosci Res 2007; 85:845-54. [PMID: 17279543 DOI: 10.1002/jnr.21183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The kynurenine pathway (KP) of tryptophan degradation contains three neuroactive metabolites: the neuroinhibitory agent kynurenic acid (KYNA) and, in a competing branch, the free radical generator 3-hydroxykynurenine (3-HK) and the excitotoxin quinolinic acid (QUIN). These three "kynurenines" derive from a common precursor, L-kynurenine, and are recognized for their role in brain physiology and pathophysiology. Inhibition of kynurenine 3-hydroxylase, the enzyme responsible for 3-HK formation, shifts KP metabolism in the mature brain toward enhanced KYNA formation. We now tested the cerebral effects of kynurenine 3-hydroxylase inhibition in immature rodents. Rat pups treated with the kynurenine 3-hydroxylase inhibitor UPF 648 (30 mg/kg, i.p.) 10 min after birth showed substantial increases in cerebral and liver kynurenine and KYNA levels up to 24 hr later, whereas 3-HK and QUIN levels were simultaneously decreased. Administered to pregnant rats or mice on the last day of gestation, UPF 648 (50 mg/kg, i.p.) produced qualitatively similar changes (i.e., large increases in kynurenine and KYNA and reductions in 3-HK and QUIN) in the brain and liver of the offspring. Rat pups delivered by UPF 648-treated mothers and immediately exposed to neonatal asphyxia showed further enhanced brain KYNA levels. These studies demonstrate that acute kynurenine 3-hydroxylase inhibition effectively shifts cerebral KP metabolism in neonatal rodents toward increased KYNA formation. Selective inhibitors of this enzyme may therefore provide neuroprotection in newborns and will also be useful for the experimental evaluation of the long-term effects of perinatal KP impairment.
Collapse
Affiliation(s)
- Gianpiera Ceresoli-Borroni
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, USA
| | | | | | | | | |
Collapse
|
33
|
Müller AC, Dairam A, Limson JL, Daya S. Mechanisms by which acyclovir reduces the oxidative neurotoxicity and biosynthesis of quinolinic acid. Life Sci 2006; 80:918-25. [PMID: 17174341 DOI: 10.1016/j.lfs.2006.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/02/2006] [Accepted: 11/13/2006] [Indexed: 11/25/2022]
Abstract
The concentration of the endogenous neurotoxin quinolinic acid (QA) is increased in the central nervous system of mice with herpes simplex encephalitis. We have previously shown that the antiherpetic agent acyclovir (AC) has the ability to reduce QA-induced neuronal damage in rat brain, by attenuating lipid peroxidation. The mechanism by which QA induces lipid peroxidation includes the enhancement of the iron (Fe)-mediated Fenton reaction and the generation of free radicals, such as the superoxide anion (O(2)(-)). Thus, the present study determined whether AC has the ability to reduce Fe(2+)-induced lipid peroxidation, O(2)(-) generation and QA-induced superoxide anion generation, and to bind free Fe. O(2)(-) and Fe(2+) are also cofactors of the enzymes, indoleamine-2,3-dioxygenase (IDO) and 3-hydroxyanthranilate-3,4-dioxygenase (3-HAO) respectively. These enzymes catalyse steps in the biosynthesis of QA; thus, the effect of AC on their activity was also investigated. AC significantly attenuates Fe(2+)-induced lipid peroxidation and O(2)(-) generation. AC reduces O(2)(-) generation in the presence of QA and strongly binds Fe(2+) and Fe(3+). It also reduces the activity of both IDO and 3-HAO, which could be attributed to the superoxide anion scavenging and iron binding properties, respectively, of this drug.
Collapse
Affiliation(s)
- Adrienne C Müller
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, 6140, Grahamstown, South Africa
| | | | | | | |
Collapse
|
34
|
Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, Begley TP. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. ACTA ACUST UNITED AC 2004; 10:1195-204. [PMID: 14700627 DOI: 10.1016/j.chembiol.2003.11.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies have demonstrated two different biosynthetic pathways to quinolinate, the universal de novo precursor to the pyridine ring of NAD. In prokaryotes, quinolinate is formed from aspartate and dihydroxyacetone phosphate; in eukaryotes, it is formed from tryptophan. It has been generally believed that the tryptophan to quinolinic acid biosynthetic pathway is unique to eukaryotes; however, this paper describes the use of comparative genome analysis to identify likely candidates for all five genes involved in the tryptophan to quinolinic acid pathway in several bacteria. Representative examples of each of these genes were overexpressed, and the predicted functions are confirmed in each case using unambiguous biochemical assays.
Collapse
Affiliation(s)
- Oleg Kurnasov
- Integrated Genomics, 2201 West Campbell Park Drive, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
BLINDER KARENJ, PUMPLIN DAVIDW, PAUL D, KELLER ASAF. Intercellular interactions in the mammalian olfactory nerve. J Comp Neurol 2003; 466:230-9. [PMID: 14528450 PMCID: PMC2800131 DOI: 10.1002/cne.10872] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The small, unmyelinated axons of olfactory sensory neurons project to the olfactory bulb in densely packed fascicles, an arrangement conducive to axo-axonal interactions. We recently demonstrated ephaptic interactions between these axons in the olfactory nerve layer, the layer of the olfactory bulb in which the axon fascicles interweave and rearrange extensively. In the present study, we hypothesized that the axons, which express connexins, may have another mode of communication: gap junctions. Previous transmission electron microscopy (TEM) studies have failed to demonstrate such junctions. However, the definitive method for detecting gap junctions, freeze fracture, has not been used to examine the interaxonal connections of the olfactory nerve layer. Here, we apply a combined approach of TEM and freeze fracture to determine if gap junctions are present between the olfactory axons. Gap junctions involving olfactory axons were not found. However, by freeze fracture, P faces of both the axons and ensheathing cells (glia that surround the axon fascicles) contained distinctive linear arrays of particles, aligned along the small columns of extracellular space. In axons, few intramembranous particles were present outside of these arrays. Multi-helix proteins, including ion channels and connexin hemichannels, have been shown to be visible as particles by freeze fracture. This suggests that the proteins important for signal transmission are confined to the linear arrays. Such an arrangement would facilitate ephaptic transmission, calcium waves, current oscillations, and paracrine communication and may be important for olfactory neural code processing.
Collapse
Affiliation(s)
- KAREN J. BLINDER
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059
| | - DAVID W. PUMPLIN
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - D.L. PAUL
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - ASAF KELLER
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
36
|
Schröder HC, Brümmer F, Fattorusso E, Aiello A, Menna M, de Rosa S, Batel R, Müller WEG. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 37:163-97. [PMID: 15825644 DOI: 10.1007/978-3-642-55519-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sponges [phylum Porifera] are a rich source for the isolation of biologically active and pharmacologically valuable compounds with a high potential to become effective drugs for therapeutic use. However, until now, only one compound has been introduced into clinics because of the limited amounts of starting material available for extraction. To overcome this serious problem in line with the rules for a sustainable use of marine resources, the following routes can be pursued; first, chemical synthesis, second, cultivation of sponges in the sea (mariculture), third, growth of sponge specimens in a bioreactor, and fourth, cultivation of sponge cells in vitro in a bioreactor. The main efforts to follow the latter strategy have been undertaken with the marine sponge Suberites domuncula. This species produces compounds that affect neuronal cells, such as quinolinic acid, a well-known neurotoxin, and phospholipids. A sponge cell culture was established after finding that single sponge cells require cell-cell contact in order to retain their telomerase activity, one prerequisite for continuous cell proliferation. The sponge cell culture system, the primmorphs, comprises proliferating cells that have the potency to differentiate. While improving the medium it was found that, besides growth factors, certain ions (e.g. silicate and iron) are essential. In the presence of silicate several genes required for the formation of the extracellular matrix are expressed (silicatein, collagen and myotrophin). Fe3+ is essential for the synthesis of the spicules, and causes an increased expression of the ferritin-, septin- and scavenger receptor genes. Furthermore, high water current is required for growth and canal formation in the primmorphs. The primmorph system has already been successfully used for the production of pharmacologically useful, bioactive compounds, such as avarol or (2'-5')oligoadenylates. Future strategies to improve the sponge cell culture are discussed; these include the elucidation of those genes which control the proliferation phase and the morphogenesis phase, two developmental phases which the cells in primmorphs undergo. In addition, immortalization of sponge cells by transfection with genomic DNA appears to be a promising way, since recent studies underscore the applicability of this technique for sponges.
Collapse
Affiliation(s)
- H C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Calderone V, Trabucco M, Menin V, Negro A, Zanotti G. Cloning of human 3-hydroxyanthranilic acid dioxygenase in Escherichia coli: characterisation of the purified enzyme and its in vitro inhibition by Zn2+. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:283-92. [PMID: 12007609 DOI: 10.1016/s0167-4838(02)00216-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
3-hydroxyanthranilic acid oxygenase (3-HAO) catalyses the conversion of 3-hydroxyanthranilic acid to quinolinic acid. Because of the involvement of quinolinic acid in the initiation of neurodegenerative phenomena, we have cloned human 3-HAO in Escherichia coli, overexpressed and purified it with the aim of studying its enzymatic activity and for future structural studies. The recombinant human protein, obtained in E. coli, retains its enzymatic activity which can occur only in the presence of Fe(II); several other metals have been tested but in no case the formation of the product has been observed. On the contrary, two of the ions tested inhibit the catalytic reaction and one of them, Zn2+, could be of physiological relevance. A circular dichroism analysis has also been performed, showing that the secondary structure is mainly of the beta type, with a minority of alpha.
Collapse
Affiliation(s)
- Vito Calderone
- Department of Organic Chemistry and Biopolymer Research Center, University of Padua, via Marzolo 1, 35131, Padua, Italy.
| | | | | | | | | |
Collapse
|
38
|
Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 2001; 78:842-53. [PMID: 11520905 DOI: 10.1046/j.1471-4159.2001.00498.x] [Citation(s) in RCA: 378] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is good evidence that the kynurenine pathway (KP) and one of its products, quinolinic acid (QUIN), play a role in the pathogenesis of neurological diseases, in particular AIDS dementia complex. Although QUIN has been shown to be produced in neurotoxic concentrations by macrophages and microglia, the role of astrocytes in QUIN production is controversial. Using cytokine-stimulated cultures of human astrocytes, we assayed key enzymes and products of the KP. We found that human astrocytes lack kynurenine hydroxylase so that large amounts of kynurenine and the QUIN antagonist kynurenic acid were produced. However, the amounts of QUIN that were synthesized were subsequently completely degraded. We then showed that kynurenine in concentrations comparable with those produced by astrocytes led to significant production of QUIN by macrophages. These results suggest that astrocytes alone are neuroprotective by minimizing QUIN production and maximizing synthesis of kynurenic acid. However, it is likely that, in the presence of macrophages and/or microglia, astrocytes become indirectly neurotoxic by the production of large concentrations of kynurenine that can be secondarily metabolized by neighbouring or infiltrating monocytic cells to form the neurotoxin QUIN.
Collapse
Affiliation(s)
- G J Guillemin
- Centre for Immunology, St. Vincent's Hospital, Sydney, Australia. g.guillemin.@cfi.UNSW.edu.au
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zanoli P, Cannazza G, Baraldi M. Prenatal exposure to methyl mercury in rats: focus on changes in kynurenine pathway. Brain Res Bull 2001; 55:235-8. [PMID: 11470321 DOI: 10.1016/s0361-9230(01)00460-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Previous studies showed learning and memory deficits following prenatal exposure to methyl mercury (MMC) in rats. Considering the described dysfunction in several neurotransmission systems after MMC exposure, one can surmise that changes in the kynurenine pathway could also be involved in an altered brain functional development. Thus we focused our attention on the potential alteration in the production of tryptophan metabolites by prenatal MMC exposure. For this purpose, brains were removed, at postnatal days 21 and 60, from rats treated, at gestational day 8, with saline or a single dose of MMC (8 mg/kg). The levels of tryptophan, glutamic, aspartic, kynurenic, anthranilic, and quinolinic acids were determined in hippocampal tissues of both groups of rats. No change was detected in the concentration of aspartic, glutamic, and kynurenic acids in 21- and 60-day-old exposed rats in comparison with age-matched controls. On the contrary, at 21 days of age but not at 60 days, we found a very significant reduction of anthranilic acid and, in parallel, an increase of quinolinic acid levels in MMC-exposed rats in comparison with control animals. Finally in the same brain area, tryptophan levels were significantly increased both at 21 and 60 days of postnatal life. These results suggest that an imbalance in the kynurenine pathway could be involved in the toxic effects induced by MMC on brain development.
Collapse
Affiliation(s)
- P Zanoli
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | |
Collapse
|
40
|
Guillemin GJ, Kerr SJ, Smythe GA, Armati PJ, Brew BJ. Kynurenine pathway metabolism in human astrocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 467:125-31. [PMID: 10721049 DOI: 10.1007/978-1-4615-4709-9_18] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The involvement of astrocytes in Kynurenine pathway (KP) metabolism is still poorly understood. In the present study, we investigated the ability of human fetal astrocytes in vitro to produce quinolinic and picolinic acids using mass spectrometry. In parallel, we estimated the level of expression of five major KP enzymes using RT-PCR. The results demonstrated that astrocytes express most KP enzymes, except for kynurenine-hydroxylase. This in vitro study provides novel informations regarding the ability of human fetal astrocytes to degrade L-tryptophan along the KP.
Collapse
Affiliation(s)
- G J Guillemin
- Centre for Immunology, St Vincent's Hospital, Sydney, Australia.
| | | | | | | | | |
Collapse
|
41
|
Chiarugi A, Moroni F. Regulation of quinolinic acid synthesis by mitochondria and o-methoxybenzoylalanine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 467:233-9. [PMID: 10721061 DOI: 10.1007/978-1-4615-4709-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
o-Methoxybenzoylalanine, a selective kynureninase inhibitor, caused unexpected accumulation of 3-hydroxyanthranilic acid (3OH-ANA), the product of kynureninase activity and the precursor of quinolinic acid (QUIN) in liver homogenates incubated with 3OH-kynurenine (3OH-KYN). In order to explain this observation, we investigated the interaction(s) of o-methoxybenzoylalanine with 3-hydroxyanthranilic acid dioxygenase, the enzyme responsible of QUIN formation. When the purified enzyme, or partially purified cytosol preparations were used, oMBA did not affect 3-hydroxyanthranilic acid dioxygenase activity. The addition of purified mitochondria to 3-hydroxyanthranilic acid dioxygenase preparations reduced the enzymatic activity and the synthesis of QUIN. In the presence of mitochondria oMBA further reduced QUIN synthesis. The administration of oMBA reduced QUIN content in both blood and brain of mice. Our results suggest that mitochondrial protein(s) interact(s) with soluble 3-hydroxyanthranilic acid dioxygenase and cause(s) modifications in the enzyme resulting in a decrease in its activity. These modifications also allow the enzyme to interact with oMBA, thus leading to a further reduction in QUIN synthesis.
Collapse
Affiliation(s)
- A Chiarugi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Firenze, Italy
| | | |
Collapse
|
42
|
Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 1999; 375:87-100. [PMID: 10443567 DOI: 10.1016/s0014-2999(99)00196-x] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The synthesis of NAD (or NADP) from tryptophan involves a series of enzymes and the formation of a number of intermediates which are collectively called 'kynurenines.' In the late 1970s and early 1980s, it became clear that intraventricular administration of several 'kynurenines' could cause convulsions and that one of the 'kynurenines,' quinolinic acid, was an agonist of a sub-population of NMDA receptors and caused excitotoxic neuronal death. A related metabolite, kynurenic acid, could, on the other hand, reduce excitotoxin-induced neuronal death by antagonising ionotropic glutamate receptors. Since then, modifications in quinolinic and kynurenic acid synthesis have been proposed as a pathogenetic mechanism in Huntington's chorea and epilepsy. It was subsequently shown that a robust activation of the kynurenine pathway and a large accumulation of quinolinic acid in the central nervous system occurred in several inflammatory neurological disorders. More recently, it has been shown that 3OH-kynurenine or 3OH-anthranilic acid, two other kynurenine metabolites, may cause either apoptotic or necrotic neuronal death in cultures and that inhibitors of kynurenine hydroxylase may reduce neuronal death in in vitro and in vivo models of brain ischaemia or excitotoxicity. Finally, it has been reported that indole metabolites, indirectly linked to the kynurenine pathway, are able to modify neuronal function and animal behaviour by interacting with voltage-dependent Na+ channels. Oxindole, one of these metabolites, has sedative and anticonvulsant properties and accumulates in the blood and brain when liver function is impaired. In conclusion, a number of metabolites affecting brain function originate from tryptophan metabolism. Selective inhibitors of their forming enzymes may be useful to understand their role in physiology or as therapeutic agents in pathology.
Collapse
Affiliation(s)
- F Moroni
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy.
| |
Collapse
|
43
|
Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S. Enzymology of NAD+ synthesis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:135-82, xi. [PMID: 10218108 DOI: 10.1002/9780470123195.ch5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beyond its role as an essential coenzyme in numerous oxidoreductase reactions as well as respiration, there is growing recognition that NAD+ fulfills many other vital regulatory functions both as a substrate and as an allosteric effector. This review describes the enzymes involved in pyridine nucleotide metabolism, starting with a detailed consideration of the anaerobic and aerobic pathways leading to quinolinate, a key precursor of NAD+. Conversion of quinolinate and 5'-phosphoribosyl-1'-pyrophosphate to NAD+ and diphosphate by phosphoribosyltransferase is then explored before proceeding to a discussion the molecular and kinetic properties of NMN adenylytransferase. The salient features of NAD+ synthetase as well as NAD+ kinase are likewise presented. The remainder of the review encompasses the metabolic steps devoted to (a) the salvaging of various niacin derivatives, including the roles played by NAD+ and NADH pyrophosphatases, nicotinamide deamidase, and NMN deamidase, and (b) utilization of niacins by nicotinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase.
Collapse
Affiliation(s)
- G Magni
- Istituto di Biochimica, Facoltà di Medicina, Università di Ancona, Italy
| | | | | | | | | |
Collapse
|
44
|
Chiarugi A, Moroni F. Effects of mitochondria and o-methoxybenzoylalanine on 3-hydroxyanthranilic acid dioxygenase activity and quinolinic acid synthesis. J Neurochem 1999; 72:1125-32. [PMID: 10037484 DOI: 10.1046/j.1471-4159.1999.0721125.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of o-methoxybenzoylalanine, a selective kynureninase inhibitor, has been proposed with the aim of reducing brain synthesis of quinolinic acid, an excitotoxic tryptophan metabolite. In liver homogenates, however, this compound caused unexpected accumulation of 3-hydroxyanthranilic acid, the product of kynureninase activity and the precursor of quinolinic acid. To explain this observation, we investigated the interaction(s) of o-methoxybenzoylalanine with 3-hydroxyanthranilic acid dioxygenase, the enzyme responsible for quinolinic acid formation. When the purified enzyme or partially purified cytosol preparations were used, o-methoxybenzoylalanine did not affect 3-hydroxyanthranilic acid dioxygenase activity. However, a significant reduction of this enzymatic activity did occur when o-methoxybenzoylalanine was tested in the presence of mitochondria. It is interesting that addition of purified mitochondria to 3-hydroxyanthranilic acid dioxygenase preparations reduced the enzymatic activity and the synthesis of quinolinic acid. In vivo, administration of o-methoxybenzoylalanine significantly reduced quinolinic acid synthesis and content in both blood and brain of mice. Our results suggest that mitochondrial protein(s) interact(s) with soluble 3-hydroxyanthranilic acid dioxygenase and cause(s) modifications in the enzyme resulting in a decrease in its activity. These modifications also allow the enzyme to interact with o-methoxybenzoylalanine, thus leading to a further reduction in quinolinic acid synthesis.
Collapse
Affiliation(s)
- A Chiarugi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | |
Collapse
|
45
|
Luthman J, Radesäter AC, Oberg C. Effects of the 3-hydroxyanthranilic acid analogue NCR-631 on anoxia-, IL-1 beta- and LPS-induced hippocampal pyramidal cell loss in vitro. Amino Acids 1999; 14:263-9. [PMID: 9871472 DOI: 10.1007/bf01345273] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The kynurenine pathway intermediate 3-hydroxyanthranilic acid (3-HANA) is converted by 3-HANA 3,4-dioxygenase (3-HAO) to the putative neuropathogen quinolinic acid (QUIN). In the present study, the neuroprotective effects of the 3-HANA analogue and 3-HAO inhibitor NCR-631 was investigated using organotypic cultures of rat hippocampus. An anoxic lesion was induced by exposing the cultures to 100% N2 for 150 min, resulting in a pronounced loss of pyramidal neurons, as identified using NMDA-R1 receptor subunit immunohistochemistry. NCR-631 provided a concentration-dependent protective effect against the anoxia. NCR-631 was also found to counteract the loss of pyramidal neurons in two models of neuroinflammatory-related damage; incubation with either LPS (10 ng/ml) or IL-1 beta (10 IU/ml). The findings suggest that NCR-631 has neuroprotective properties and that it may be a useful tool to study the role of kynurenines in neurodegeneration.
Collapse
Affiliation(s)
- J Luthman
- Department of Cell Biology, Preclinical R&D, Astra Arcus AB, Södertälje, Sweden
| | | | | |
Collapse
|
46
|
Abstract
Iron containing 3-Hydroxyanthranilate oxidase (3HAO) converts 3-hydroxyanthranilate (3HAA) and dioxygen into a precursor which spontaneously converts to quinolinic acid (QA). 3HAO participates in de novo biosynthesis of NAD in mammalian kidney and liver, and it is present in low concentrations in brain where its function is controversial. However, QA increases in spinal fluid and is associated with convulsions in AIDS dementia, Huntington's disease, and CNS inflammation. QA is a known N-methyl, D-aspartate receptor agonist and excitotoxin that causes convulsions when injected into the brain. Hyperbaric oxygen (HBO) also causes convulsions and we investigated the interrelationships among the stimulating and toxic effects of oxygen and the role of iron in vitro using rat liver enzyme which is reported to be identical to brain enzyme and is more abundant. 3HAO requires dioxygen as a substrate but it was inactivated approximately 40% by 5.2 atm HBO in vitro in 15 min. The apparent Km was 2.6 x 10(-4) M for oxygen and 5 x 10(-5) M for 3HAA, and these values did not change for enzyme that was half-inactivated by HBO oxygen. Thus, oxygen-inactivation appears to be all-or-none for individual enzyme molecules. Freshly prepared enzyme was activated about 3-fold by incubation with acidic iron. Iron-staining of 3HAO, separated by gel electrophoresis after partial purification by FPLC, showed that loss of iron and loss of enzyme activity during HBO exposure were correlated. The apparent oxygen Km of 3HAO is far higher than the oxygen concentration in brain cells. Thus, 3HAO is capable of being stimulated initially in animals breathing HBO, and subsequently of being inactivated with potential significance for brain QA and convulsions.
Collapse
Affiliation(s)
- Y Dang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia 65211, USA
| | | | | |
Collapse
|
47
|
Fukuoka SI, Nyaruhucha CM, Shibata K. Characterization and functional expression of the cDNA encoding human brain quinolinate phosphoribosyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1395:192-201. [PMID: 9473669 DOI: 10.1016/s0167-4781(97)00143-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian quinolinate phosphoribosyltransferase (QPRTase) (EC 2.4.2.19) is a key enzyme in catabolism of quinolinate, an intermediate in the tryptophan-nicotinamide adenine dinucleotide (NAD) pathway. Quinolinate acts as a most potent endogenous exitotoxin to neurons. Elevation of quinolinate levels in the brain has been linked to the pathogenesis of neurodegenerative disorders. As the first step to elucidate molecular basis underlying the quinolinate metabolism, the cDNA encoding human brain QPRTase was cloned and characterized. Utilizing partial amino acid sequences obtained from highly purified porcine kidney QPRTase, a human isolog was obtained from a human brain cDNA library. The cDNA encodes a open reading frame of 297 amino acids, and shares 30 to 40% identity with those of bacterial QPRTases. To confirm that the cDNA clone encodes human QPRTase, its functional expression was studied in a bacterial host. Introduction of the human cDNA into a QPRTase defective (nadC) E. coli strain brought about an abrupt increase in QPRTase activity and allowed the cells to grow in the absence of nicotinic acid. It is concluded that the cloned cDNA encodes human QPRTase which is functional beyond the phylogenic boundary.
Collapse
Affiliation(s)
- S I Fukuoka
- Research Institute for Food Science, Kyoto University Uji, Japan.
| | | | | |
Collapse
|
48
|
Moffett JR, Els T, Espey MG, Walter SA, Streit WJ, Namboodiri MA. Quinolinate immunoreactivity in experimental rat brain tumors is present in macrophages but not in astrocytes. Exp Neurol 1997; 144:287-301. [PMID: 9168830 DOI: 10.1006/exnr.1996.6365] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Experimental tumors of the central nervous system were investigated with antibodies to quinolinate to assess the cellular distribution of this endogenous neurotoxin. In advanced F98 and RG-2 glioblastomas and E367 neuroblastomas in the striatum of rats, variable numbers of quinolinate immunoreactive cells were observed in and around the tumors, with the majority being present within tumors, rather than brain parenchyma. The stained cells were morphologically variable, including round, complex, rod-shaped, and sparsely dendritic cells. Neuroblastoma and glioma cells were unstained, as were neurons, astrocytes, oligodendrocytes, ependymal cells, endothelial cells, and cells of the choroid plexus and leptomeninges. Glial fibrillary acidic protein immunoreactivity was strongly elevated in astrocytes surrounding the tumors. Dual labeling immunohistochemistry with antibodies to quinolinate and glial fibrillary acidic protein demonstrated that astrocytes and the cells containing quinolinate immunoreactivity were morphologically disparate and preferentially distributed external and internal to the tumors, respectively, and no dual labeled cells were observed. Lectin histochemistry with Griffonia simplicifolia B4 isolectin and Lycopersicon esculentum lectin demonstrated numerous phagocytic macrophages and reactive microglia in and around the tumors whose distribution was similar to that of quinolinate immunoreactive cells, albeit much more numerous. Dual labeling studies with antibodies to quinolinate and the lectins demonstrated partial codistribution of these markers, with most double-labeled cells having the morphology of phagocytes. The present findings suggest the possibility that quinolinate may serve a functional role in a select population of inflammatory cell infiltrates during the immune response to brain neoplasms.
Collapse
Affiliation(s)
- J R Moffett
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA
| | | | | | | | | | | |
Collapse
|
49
|
Ceresoli G, Fuller MS, Schwarcz R. Excitotoxic lesions of the rat striatum: different responses of kynurenine pathway enzymes during ontogeny. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 92:61-9. [PMID: 8861723 DOI: 10.1016/0165-3806(95)00200-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Excitotoxic lesions of the adult rat striatum result in reactive gliosis and an associated increase in the activities of the astrocytic enzymes 3-hydroxyanthranilic acid oxygenase (3HAO) and kynurenine aminotransferase (KAT), which are responsible for the biosynthesis of the neurotoxin quinolinic acid and the neuroprotectant kynurenic acid, respectively. Unilateral ibotenate injections were made in the striatum of 7-, 14-, 21- and 28-day- and 2.5-month-old rats to study the reaction of 3HAO and KAT when injury is inflicted during ontogeny. By one week, all lesioned striata showed a > 50 percent decrease in the activity of the neuronal marker enzyme glutamic acid decarboxylase. At this timepoint, lesion-induced elevations in 3HA0 activity increased progressively from 130 to 206, 280, 385 and 456 percent of the contralateral striatum in the five age groups studied. In contrast, in the same animals the respective increases in striatal KAT activity were 601, 350, 312, 259 and 159 percent (n = 6-13 per group). In all age groups, statistically significant lesion-induced increases in 3HA0 and KAT were seen up to 4 weeks after the ibotenate injection. Rats receiving an intrastriatal injection of ibotenate on postnatal day 7 also showed an increase in the striatal tissue level of kynurenic acid 1 week after the lesion. These data demonstrate that substantial qualitative differences exist between the immature and adult rat in the reaction of two glial enzymes to striatal injury. Moreover, the ability of the immature brain to mobilize kynurenic acid production preferentially may play a role in the brain's response to perinatal injury.
Collapse
Affiliation(s)
- G Ceresoli
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | | | | |
Collapse
|
50
|
Reinhard JF, Flanagan EM, Madge DJ, Iyer R, Salter M. Effects of 540C91 [(E)-3-[2-(4'-pyridyl)-vinyl]-1H-indole], an inhibitor of hepatic tryptophan dioxygenase, on brain quinolinic acid in mice. Biochem Pharmacol 1996; 51:159-63. [PMID: 8615884 DOI: 10.1016/0006-2952(95)02167-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Studies were undertaken to assess the role of the liver in the formation of the neurotoxin quinolinic acid in the brain. A selective and potent inhibitor of hepatic tryptophan 2,3-dioxygenase, 540C91 [(E)-3-[2-(4'-pyridyl)-vinyl]-1H-indole], largely prevented the elevation in mouse brain quinolinic acid resulting from parenteral injection of tryptophan (TRP). In contrast, 540C91 did not affect basal levels of the neurotoxin. Following induction of indoleamine dioxygenase with bacterial lipopolysaccharide, 540C91 was less effective in preventing the TRP-induced elevations in quinolinic acid. The data suggest that kynurenines, formed from tryptophan, by the liver and other extrahepatic organs can give rise to brain quinolinic acid.
Collapse
Affiliation(s)
- J F Reinhard
- Wellcome Research Laboratories, Research Triangle Park 27709, USA
| | | | | | | | | |
Collapse
|