1
|
Sandoval IM, Kelley CM, Bernal-Conde LD, Steece-Collier K, Marmion DJ, Davidsson M, Crosson SM, Boye SL, Boye SE, Manfredsson FP. Engineered AAV capsid transport mutants overcome transduction deficiencies in the aged CNS. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102332. [PMID: 39445231 PMCID: PMC11497394 DOI: 10.1016/j.omtn.2024.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
Adeno-associated virus (AAV)-based gene therapy has enjoyed great successes over the past decade, with Food and Drug Administration-approved therapeutics and a robust clinical pipeline. Nonetheless, barriers to successful translation remain. For example, advanced age is associated with impaired brain transduction, with the diminution of infectivity depending on anatomical region and capsid. Given that CNS gene transfer is often associated with neurodegenerative diseases where age is the chief risk factor, we sought to better understand the causes of this impediment. We assessed two AAV variants hypothesized to overcome factors negatively impacting transduction in the aged brain; specifically, changes in extracellular and cell-surface glycans, and intracellular transport. We evaluated a heparin sulfate proteoglycan null variant with or without mutations enhancing intracellular transport. Vectors were injected into the striatum of young adult or aged rats to address whether improving extracellular diffusion, removing glycan receptor dependence, or improving intracellular transport are important factors in transducing the aged brain. We found that, regardless of the viral capsid, there was a reduction in many of our metrics of transduction in the aged brain. However, the transport mutant was less sensitive to age, suggesting that changes in the cellular transport of AAV capsids are a key factor in age-related transduction deficiency.
Collapse
Affiliation(s)
- Ivette M. Sandoval
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christy M. Kelley
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Luis Daniel Bernal-Conde
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI 49506, USA
| | - David J. Marmion
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Marcus Davidsson
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sean M. Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sanford L. Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Fredric P. Manfredsson
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| |
Collapse
|
2
|
Schimek N, Wood TR, Beck DAC, McKenna M, Toghani A, Nance E. High-fidelity predictions of diffusion in the brain microenvironment. Biophys J 2024:S0006-3495(24)00664-7. [PMID: 39390745 DOI: 10.1016/j.bpj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
Multiple-particle tracking (MPT) is a microscopy technique capable of simultaneously tracking hundreds to thousands of nanoparticles in a biological sample and has been used extensively to characterize biological microenvironments, including the brain extracellular space (ECS). Machine learning techniques have been applied to MPT data sets to predict the diffusion mode of nanoparticle trajectories as well as more complex biological variables, such as biological age. In this study, we develop a machine learning pipeline to predict and investigate changes to the brain ECS due to injury using supervised classification and feature importance calculations. We first validate the pipeline on three related but distinct MPT data sets from the living brain ECS-age differences, region differences, and enzymatic degradation of ECS structure. We predict three ages with 86% accuracy, three regions with 90% accuracy, and healthy versus enzyme-treated tissue with 69% accuracy. Since injury across groups is normally compared with traditional statistical approaches, we first used linear mixed effects models to compare features between healthy control conditions and injury induced by two different oxygen glucose deprivation exposure times. We then used machine learning to predict injury state using MPT features. We show that the pipeline predicts between the healthy control, 0.5 h OGD treatment, and 1.5 h OGD treatment with 59% accuracy in the cortex and 66% in the striatum, and identifies nonlinear relationships between trajectory features that were not evident from traditional linear models. Our work demonstrates that machine learning applied to MPT data is effective across multiple experimental conditions and can find unique biologically relevant features of nanoparticle diffusion.
Collapse
Affiliation(s)
- Nels Schimek
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Thomas R Wood
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington
| | - David A C Beck
- Deparment of Computer Science and Engineering, University of Washington, Seattle, Washington; eScience Institute, University of Washington, Seattle, Washington; Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Ali Toghani
- Deparment of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Elizabeth Nance
- eScience Institute, University of Washington, Seattle, Washington; Department of Chemical Engineering, University of Washington, Seattle, Washington; Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
3
|
Gyimesi M, Okolicsanyi RK, Haupt LM. Beyond amyloid and tau: rethinking Alzheimer's disease through less explored avenues. Open Biol 2024; 14:240035. [PMID: 38862019 DOI: 10.1098/rsob.240035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Neurodegenerative diseases, particularly Alzheimer's disease (AD), pose a significant challenge in ageing populations. Our current understanding indicates that the onset of toxic amyloid and tau protein pathologies initiates disease progression. However, existing treatments targeting these hallmark symptoms offer symptomatic relief without halting disease advancement. This review offers an alternative perspective on AD, centring on impaired adult hippocampal neurogenesis (AHN) as a potential early aetiological factor. By delving into the intricate molecular events during the initial stages of AD (Braak Stages I-III), a novel hypothesis is presented, interweaving the roles of Notch signalling and heparan sulfate proteoglycans (HSPGs) in compromised AHN. While acknowledging the significance of the amyloid and tau hypotheses, it calls for further exploration beyond these paradigms, suggesting the potential of altered HS sulfation patterns in AD initiation. Future directions propose more detailed investigations into early HS aggregation, aberrant sulfation patterns and examination of their temporal relationship with tau hyperphosphorylation. In challenging the conventional 'triggers' of AD and urging their reconsideration as symptoms, this review advocates an alternative approach to understanding this disease, offering new avenues of investigation into the intricacies of AD pathogenesis.
Collapse
Affiliation(s)
- M Gyimesi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
| | - R K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices , Brisbane, QLD 4059, Australia
| | - L M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices , Brisbane, QLD 4059, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies , Brisbane, QLD 4059, Australia
| |
Collapse
|
4
|
Valachová K, Hassan ME, Šoltés L. Hyaluronan: Sources, Structure, Features and Applications. Molecules 2024; 29:739. [PMID: 38338483 PMCID: PMC10856924 DOI: 10.3390/molecules29030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Hyaluronan (HA) is a non-sulfated glycosaminoglycan that is present in a variety of body tissues and organs. Hyaluronan has a wide range of biological activities that are frequently influenced by molar mass; however, they also depend greatly on the source, purity, and kind of impurities in hyaluronan. High-molar-mass HA has anti-inflammatory, immunosuppressive, and antiangiogenic properties, while low-molar-mass HA has opposite properties. A number of chemical modifications have been performed to enhance the stability of HA and its applications in medical practice. Hyaluronan is widely applied in medicine, such as viscosupplementation, ophthalmology, otolaryngology, wound healing, cosmetics, and drug delivery. In this review, we summarized several medical applications of polymers based on the hyaluronan backbone.
Collapse
Affiliation(s)
- Katarína Valachová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| | - Mohamed E. Hassan
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
- Centre of Excellence, Encapsulation & Nanobiotechnology Group, Chemistry of Natural and Microbial Products Department, National Research Centre, El Behouth Street, Cairo 12622, Egypt
| | - Ladislav Šoltés
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| |
Collapse
|
5
|
Kim SH, Cho YS, Kim Y, Park J, Yoo SM, Gwak J, Kim Y, Gwon Y, Kam TI, Jung YK. Endolysosomal impairment by binding of amyloid beta or MAPT/Tau to V-ATPase and rescue via the HYAL-CD44 axis in Alzheimer disease. Autophagy 2023; 19:2318-2337. [PMID: 36843263 PMCID: PMC10351450 DOI: 10.1080/15548627.2023.2181614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/28/2023] Open
Abstract
Impaired activities and abnormally enlarged structures of endolysosomes are frequently observed in Alzheimer disease (AD) brains. However, little is known about whether and how endolysosomal dysregulation is triggered and associated with AD. Here, we show that vacuolar ATPase (V-ATPase) is a hub that mediates proteopathy of oligomeric amyloid beta (Aβ) and hyperphosphorylated MAPT/Tau (p-MAPT/Tau). Endolysosomal integrity was largely destroyed in Aβ-overloaded or p-MAPT/Tau-positive neurons in culture and AD brains, which was a necessary step for triggering neurotoxicity, and treatments with acidic nanoparticles or endocytosis inhibitors rescued the endolysosomal impairment and neurotoxicity. Interestingly, we found that the lumenal ATP6V0C and cytosolic ATP6V1B2 subunits of the V-ATPase complex bound to the internalized Aβ and cytosolic PHF-1-reactive MAPT/Tau, respectively. Their interactions disrupted V-ATPase activity and accompanying endolysosomal activity in vitro and induced neurodegeneration. Using a genome-wide functional screen, we isolated a suppressor, HYAL (hyaluronidase), which reversed the endolysosomal dysfunction and proteopathy and alleviated the memory impairment in 3xTg-AD mice. Further, we found that its metabolite hyaluronic acid (HA) and HA receptor CD44 attenuated neurotoxicity in affected neurons via V-ATPase. We propose that endolysosomal V-ATPase is a bona fide proteotoxic receptor that binds to pathogenic proteins and deteriorates endolysosomal function in AD, leading to neurodegeneration in proteopathy.Abbreviations: AAV, adeno-associated virus; Aβ, amyloid beta; AD, Alzheimer disease; APP, amyloid beta precursor protein; ATP6V0C, ATPase H+ transporting V0 subunit c; ATP6V1A, ATPase H+ transporting V1 subunit A; ATP6V1B2, ATPase H+ transporting V1 subunit B2; CD44.Fc, CD44-mouse immunoglobulin Fc fusion construct; Co-IP, co-immunoprecipitation; CTSD, cathepsin D; HA, hyaluronic acid; HMWHA, high-molecular-weight hyaluronic acid; HYAL, hyaluronidase; i.c.v, intracerebroventricular; LMWHA, low-molecular-weight hyaluronic acid; NPs, nanoparticles; p-MAPT/Tau, hyperphosphorylated microtubule associated protein tau; PI3K, phosphoinositide 3-kinase; V-ATPase, vacuolar-type H+-translocating ATPase; WT, wild-type.
Collapse
Affiliation(s)
- Seo-Hyun Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Young-Sin Cho
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| | - Jisu Park
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Seung-Min Yoo
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jimin Gwak
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Youngwon Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Youngdae Gwon
- School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Tae-in Kam
- Department of Neurology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry 2022; 27:3192-3203. [PMID: 35760878 PMCID: PMC9708575 DOI: 10.1038/s41380-022-01634-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
Abstract
All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic.
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jiri Ruzicka
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Barbara A Sorg
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
7
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
8
|
Snow AD, Cummings JA, Lake T. The Unifying Hypothesis of Alzheimer's Disease: Heparan Sulfate Proteoglycans/Glycosaminoglycans Are Key as First Hypothesized Over 30 Years Ago. Front Aging Neurosci 2021; 13:710683. [PMID: 34671250 PMCID: PMC8521200 DOI: 10.3389/fnagi.2021.710683] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
The updated "Unifying Hypothesis of Alzheimer's disease" (AD) is described that links all the observed neuropathology in AD brain (i.e., plaques, tangles, and cerebrovascular amyloid deposits), as well as inflammation, genetic factors (involving ApoE), "AD-in-a-Dish" studies, beta-amyloid protein (Aβ) as a microbial peptide; and theories that bacteria, gut microflora, gingivitis and viruses all play a role in the cause of AD. The common link is the early accumulation of heparan sulfate proteoglycans (HSPGs) and heparan sulfate glycosaminoglycans (GAGs). HS GAG accumulation and/or decreased HS GAG degradation is postulated to be the key initiating event. HS GAGs and highly sulfated macromolecules induce Aβ 1-40 (but not 1-42) to form spherical congophilic maltese-cross star-like amyloid core deposits identical to those in the AD brain. Heparin/HS also induces tau protein to form paired helical filaments (PHFs). Increased sulfation and/or decreased degradation of HSPGs and HS GAGs that occur due to brain aging leads to the formation of plaques and tangles in AD brain. Knockout of HS genes markedly reduce the accumulation of Aβ fibrils in the brain demonstrating that HS GAGs are key. Bacteria and viruses all use cell surface HS GAGs for entry into cells, including SARS-CoV-2. Bacteria and viruses cause HS GAGs to rapidly increase to cause near-immediate aggregation of Aβ fibrils. "AD-in-a-dish" studies use "Matrigel" as the underlying scaffold that spontaneously causes plaque, and then tangle formation in a dish. Matrigel mostly contains large amounts of perlecan, the same specific HSPG implicated in AD and amyloid disorders. Mucopolysaccharidoses caused by lack of specific HS GAG enzymes lead to massive accumulation of HS in lysosomal compartments in neurons and contribute to cognitive impairment in children. Neurons full of HS demonstrate marked accumulation and fibrillization of Aβ, tau, α-synuclein, and prion protein (PrP) in mucopolysaccharidosis animal models demonstrating that HS GAG accumulation is a precursor to Aβ accumulation in neurons. Brain aging leads to changes in HSPGs, including newly identified splice variants leading to increased HS GAG sulfation in the AD brain. All of these events lead to the new "Unifying Hypothesis of Alzheimer's disease" that further implicates HSPGs /HS GAGs as key (as first hypothesized by Snow and Wight in 1989).
Collapse
|
9
|
Miyata S. Structural and Functional Remodeling of the Extracellular Matrix during Brain Development and Aging. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2003.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shinji Miyata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
10
|
Miyata S. Structural and Functional Remodeling of the Extracellular Matrix during Brain Development and Aging. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2003.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shinji Miyata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
11
|
Sugitani K, Egorova D, Mizumoto S, Nishio S, Yamada S, Kitagawa H, Oshima K, Nadano D, Matsuda T, Miyata S. Hyaluronan degradation and release of a hyaluronan-aggrecan complex from perineuronal nets in the aged mouse brain. Biochim Biophys Acta Gen Subj 2020; 1865:129804. [PMID: 33253804 DOI: 10.1016/j.bbagen.2020.129804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Perineuronal nets (PNNs) are insoluble aggregates of extracellular matrix molecules in the brain that consist of hyaluronan (HA) and chondroitin sulfate proteoglycans (CSPGs). PNNs promote the acquisition and storage of memories by stabilizing the formation of synapses in the adult brain. Although the deterioration of PNNs has been suggested to contribute to the age-dependent decline in brain function, the molecular mechanisms underlying age-related changes in PNNs remain unclear. METHODS The amount and solubility of PNN components were investigated by sequential extraction followed by a disaccharide analysis and immunoblotting. We examined the interaction between HA and aggrecan, a major HA-binding CSPG, by combining mass spectrometry and pull-down assays. RESULTS The solubility and amount of HA increased in the brain with age. Among several CSPGs, the solubility of aggrecan was selectively elevated during aging. In contrast to alternations in biochemical properties, the expression of PNN components at the transcript level was not markedly changed by aging. The increased solubility of aggrecan was not due to the loss of HA-binding properties. Our results indicated that the degradation of high-molecular-mass HA induced the release of the HA-aggrecan complex from PNNs in the aged brain. CONCLUSION The present study revealed a novel mechanism underlying the age-related deterioration of PNNs in the brain.
Collapse
Affiliation(s)
- Kei Sugitani
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Diana Egorova
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-Ku, Nagoya 468-8503, Japan
| | - Shunsuke Nishio
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-Ku, Nagoya 468-8503, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-Ku, Kobe 658-8558, Japan
| | - Kenzi Oshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Daita Nadano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Tsukasa Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan
| | - Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan; Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
12
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
13
|
Takechi M, Oshima K, Nadano D, Kitagawa H, Matsuda T, Miyata S. A pericellular hyaluronan matrix is required for the morphological maturation of cortical neurons. Biochim Biophys Acta Gen Subj 2020; 1864:129679. [PMID: 32623025 DOI: 10.1016/j.bbagen.2020.129679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hyaluronan (HA) is a major component of the extracellular matrix (ECM) and is involved in many cellular functions. In the adult brain, HA forms macromolecular aggregates around synapses and plays important roles in neural plasticity. In contrast to the well-characterized function of HA in the adult brain, its roles in the developing brain remain largely unknown. METHODS Biochemical and histochemical analyses were performed to analyze the amount, solubility, and localization of HA in the developing mouse brain. By combining in utero labeling, cell isolation, and in vitro cultures, we examined the expression of hyaluronan synthase (HAS) and morphological maturation of cortical neurons. RESULTS The amount of HA increased during perinatal development and decreased in the adult. HA existed as a soluble form in the early stages; however, its solubility markedly decreased during postnatal development. HA localized in cell-sparse regions in the embryonic stages, but was broadly distributed during the postnatal development of the cerebral cortex. Developing cortical neurons expressed both Has2 and Has3, but not Has1, suggesting the autonomous production of HA by neurons themselves. HA formed a pericellular matrix around the cell bodies and neurites of developing cortical neurons, and the inhibition of HA synthesis reduced neurite outgrowth. CONCLUSION The formation of the pericellular HA matrix is essential for the proper morphological maturation of developing neurons. GENERAL SIGNIFICANCE This study provides new insights into the roles of hyaluronan in the brain. DEVELOPMENT
Collapse
Affiliation(s)
- Mina Takechi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Kenzi Oshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Daita Nadano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-Ku, Kobe 658-8558, Japan
| | - Tsukasa Matsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan
| | - Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-Ku, Nagoya 464-8601, Japan; Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
14
|
Reed MJ, Damodarasamy M, Banks WA. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer's disease. Tissue Barriers 2019; 7:1651157. [PMID: 31505997 DOI: 10.1080/21688370.2019.1651157] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing interest in defining the location, content, and role of extracellular matrix (ECM) components in brain structure and function during development, aging, injury, and neurodegeneration. Studies in vivo confirm brain ECM has a dynamic composition with constitutive and induced alterations that impact subsequent cell-cell and cell-matrix interactions. Moreover, it is clear that for any given ECM component, the brain region, and cell type within that location, determines the direction, magnitude, and composition of those changes. This review will examine the ECM at the neurovascular unit (NVU) and the blood-brain barrier (BBB) within the NVU. The discussion will begin at the glycocalyx ECM on the luminal surface of the vasculature, and progress to the abluminal side with a focus on changes in basement membrane ECM during aging and neurodegeneration.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| |
Collapse
|
15
|
Su W, Matsumoto S, Banine F, Srivastava T, Dean J, Foster S, Pham P, Hammond B, Peters A, Girish KS, Rangappa KS, Basappa, Jose J, Hennebold JD, Murphy MJ, Bennett-Toomey J, Back SA, Sherman LS. A modified flavonoid accelerates oligodendrocyte maturation and functional remyelination. Glia 2019; 68:263-279. [PMID: 31490574 DOI: 10.1002/glia.23715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
Abstract
Myelination delay and remyelination failure following insults to the central nervous system (CNS) impede axonal conduction and lead to motor, sensory and cognitive impairments. Both myelination and remyelination are often inhibited or delayed due to the failure of oligodendrocyte progenitor cells (OPCs) to mature into myelinating oligodendrocytes (OLs). Digestion products of the glycosaminoglycan hyaluronan (HA) have been implicated in blocking OPC maturation, but how these digestion products are generated is unclear. We tested the possibility that hyaluronidase activity is directly linked to the inhibition of OPC maturation by developing a novel modified flavonoid that functions as a hyaluronidase inhibitor. This compound, called S3, blocks some but not all hyaluronidases and only inhibits matrix metalloproteinase activity at high concentrations. We find that S3 reverses HA-mediated inhibition of OPC maturation in vitro, an effect that can be overcome by excess recombinant hyaluronidase. Furthermore, we find that hyaluronidase inhibition by S3 accelerates OPC maturation in an in vitro model of perinatal white matter injury. Finally, blocking hyaluronidase activity with S3 promotes functional remyelination in mice with lysolecithin-induced demyelinating corpus callosum lesions. All together, these findings support the notion that hyaluronidase activity originating from OPCs in CNS lesions is sufficient to prevent OPC maturation, which delays myelination or blocks remyelination. These data also indicate that modified flavonoids can act as selective inhibitors of hyaluronidase activity and can promote OPC maturation, making them excellent candidates to accelerate myelination or promote remyelination following perinatal and adult CNS insults.
Collapse
Affiliation(s)
- Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Steven Matsumoto
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon.,Integrative Biosciences Department, School Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Taasin Srivastava
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Justin Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Scott Foster
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Peter Pham
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Brian Hammond
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Alec Peters
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Kesturu S Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, India
| | | | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, India
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Phytochemistry, PharmaCampus, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Melinda J Murphy
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jill Bennett-Toomey
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon.,Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon.,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
16
|
Al-Ahmad AJ, Patel R, Palecek SP, Shusta EV. Hyaluronan impairs the barrier integrity of brain microvascular endothelial cells through a CD44-dependent pathway. J Cereb Blood Flow Metab 2019; 39:1759-1775. [PMID: 29589805 PMCID: PMC6727144 DOI: 10.1177/0271678x18767748] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyaluronan (HA) constitutes the most abundant extracellular matrix component during brain development, only to become a minor component rapidly after birth and in adulthood to remain in specified regions. HA signaling has been associated with several neurological disorders, yet the impact of HA signaling at the blood-brain barrier (BBB) function remains undocumented. In this study, we investigated the impact of HA on BBB properties using human-induced pluripotent stem cell (iPSC) -derived and primary human and rat BMECs. The impact of HA signaling on developmental and mature BMECs was assessed by measuring changes in TEER, permeability, BMECs markers (GLUT1, tight junction proteins, P-gp) expression and localization, CD44 expression and hyaluronan levels. In general, HA treatment decreased barrier function and reduced P-gp activity with effects being more prominent upon treatment with oligomeric forms of HA (oHA). Such effects were exacerbated when applied during BMEC differentiation phase (considered as developmental BBB). We noted a hyaluronidase activity as well as an increase in CD44 expression during prolonged oxygen-glucose deprivation stress. Inhibition of HA signaling by antibody blockade of CD44 abrogated the detrimental effects of HA treatment. These results suggest the importance of HA signaling through CD44 on BBB properties.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.,2 Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ronak Patel
- 2 Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sean P Palecek
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Su W, Matsumoto S, Sorg B, Sherman LS. Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biol 2018; 78-79:272-283. [PMID: 29408010 DOI: 10.1016/j.matbio.2018.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis in mammals is a tightly regulated process where neural stem cells (NSCs), especially in the subgranular zone (SGZ) of the hippocampal dentate gyrus, proliferate and differentiate into new neurons that form new circuits or integrate into old circuits involved in episodic memory, pattern discrimination, and emotional responses. Recent evidence suggests that changes in the hyaluronan (HA)-based extracellular matrix of the SGZ may regulate neurogenesis by controlling NSC proliferation and early steps in neuronal differentiation. These studies raise the intriguing possibility that perturbations in this matrix, including HA accumulation with aging, could impact adult neurogenesis and cognitive functions, and that alterations to this matrix could be beneficial following insults to the central nervous system that impact hippocampal functions.
Collapse
Affiliation(s)
- Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Steven Matsumoto
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Integrative Biosciences Department, School of Dentistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Barbara Sorg
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
18
|
Reed MJ, Vernon RB, Damodarasamy M, Chan CK, Wight TN, Bentov I, Banks WA. Microvasculature of the Mouse Cerebral Cortex Exhibits Increased Accumulation and Synthesis of Hyaluronan With Aging. J Gerontol A Biol Sci Med Sci 2017; 72:740-746. [PMID: 28482035 PMCID: PMC6075594 DOI: 10.1093/gerona/glw213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/10/2016] [Indexed: 01/28/2023] Open
Abstract
The microvasculature of the aged brain is less dense and more vulnerable to dysfunction than that of the young brain. Brain microvasculature is supported by its surrounding extracellular matrix, which is comprised largely of hyaluronan (HA). HA is continually degraded into lower molecular weight forms that induce neuroinflammation. We examined HA associated with microvessels (MV) of the cerebral cortex of young (4 months), middle-aged (14 months), and aged (24-26 months) mice. We confirmed that the density of cortical MV decreased with age. Perivascular HA levels increased with age, but there was no age-associated change in HA molecular weight profile. MV isolated from aged cortex had more HA than MV from young cortex. Examination of mechanisms that might account for elevated HA levels with aging showed increased HA synthase 2 (HAS2) mRNA and protein in aged MV relative to young MV. In contrast, mRNAs for HA-degrading hyaluronidases or hyaladherins that mitigate HA degradation showed no changes with age. Corresponding to increased HAS2, aged MV synthesized significantly more HA (of all molecular weight classes) in vitro than young MV. We propose that increased HA synthesis and accumulation in brain MV contributes to neuroinflammation and reduced MV density and function in aging.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, University of Washington, Seattle
| | - Robert B Vernon
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | | | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Itay Bentov
- Department of Anesthesia and Pain Medicine, University of Washington, Seattle
| | - William A Banks
- Department of Medicine, University of Washington, Seattle
- VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington
| |
Collapse
|
19
|
Marella M, Ouyang J, Zombeck J, Zhao C, Huang L, Connor RJ, Phan KB, Jorge MC, Printz MA, Paladini RD, Gelb AB, Huang Z, Frost GI, Sugarman BJ, Steinman L, Wei G, Shepard HM, Maneval DC, Lapinskas PJ. PH20 is not expressed in murine CNS and oligodendrocyte precursor cells. Ann Clin Transl Neurol 2017; 4:191-211. [PMID: 28275653 PMCID: PMC5338182 DOI: 10.1002/acn3.393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
Objective Expression of Spam1/PH20 and its modulation of high/low molecular weight hyaluronan substrate have been proposed to play an important role in murine oligodendrocyte precursor cell (OPC) maturation in vitro and in normal and demyelinated central nervous system (CNS). We reexamined this using highly purified PH20. Methods Steady‐state expression of mRNA in OPCs was evaluated by quantitative polymerase chain reaction; the role of PH20 in bovine testicular hyaluronidase (BTH) inhibition of OPC differentiation was explored by comparing BTH to a purified recombinant human PH20 (rHuPH20). Contaminants in commercial BTH were identified and their impact on OPC differentiation characterized. Spam1/PH20 expression in normal and demyelinated mouse CNS tissue was investigated using deep RNA sequencing and immunohistological methods with two antibodies directed against recombinant murine PH20. Results BTH, but not rHuPH20, inhibited OPC differentiation in vitro. Basic fibroblast growth factor (bFGF) was identified as a significant contaminant in BTH, and bFGF immunodepletion reversed the inhibitory effects of BTH on OPC differentiation. Spam1 mRNA was undetected in OPCs in vitro and in vivo; PH20 immunolabeling was undetected in normal and demyelinated CNS. Interpretation We were unable to detect Spam1/PH20 expression in OPCs or in normal or demyelinated CNS using the most sensitive methods currently available. Further, “BTH” effects on OPC differentiation are not due to PH20, but may be attributable to contaminating bFGF. Our data suggest that caution be exercised when using some commercially available hyaluronidases, and reports of Spam1/PH20 morphogenic activity in the CNS may be due to contaminants in reagents.
Collapse
Affiliation(s)
| | - Joe Ouyang
- Halozyme Therapeutics, Inc. San Diego California
| | | | - Chunmei Zhao
- Halozyme Therapeutics, Inc. San Diego California
| | - Lei Huang
- Halozyme Therapeutics, Inc. San Diego California
| | | | - Kim B Phan
- Halozyme Therapeutics, Inc. San Diego California
| | | | | | | | | | | | | | | | - Lawrence Steinman
- University School of Medicine Department of Neurology and Neurological Sciences Beckman Center for Molecular Medicine Stanford University Stanford California
| | - Ge Wei
- Halozyme Therapeutics, Inc. San Diego California
| | | | | | | |
Collapse
|
20
|
Su W, Foster SC, Xing R, Feistel K, Olsen RHJ, Acevedo SF, Raber J, Sherman LS. CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. J Biol Chem 2017; 292:4434-4445. [PMID: 28154169 DOI: 10.1074/jbc.m116.774109] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Adult neurogenesis in the hippocampal subgranular zone (SGZ) is involved in learning and memory throughout life but declines with aging. Mice lacking the CD44 transmembrane receptor for the glycosaminoglycan hyaluronan (HA) demonstrate a number of neurological disturbances including hippocampal memory deficits, implicating CD44 in the processes underlying hippocampal memory encoding, storage, or retrieval. Here, we found that HA and CD44 play important roles in regulating adult neurogenesis, and we provide evidence that HA contributes to age-related reductions in neural stem cell (NSC) expansion and differentiation in the hippocampus. CD44-expressing NSCs isolated from the mouse SGZ are self-renewing and capable of differentiating into neurons, astrocytes, and oligodendrocytes. Mice lacking CD44 demonstrate increases in NSC proliferation in the SGZ. This increased proliferation is also observed in NSCs grown in vitro, suggesting that CD44 functions to regulate NSC proliferation in a cell-autonomous manner. HA is synthesized by NSCs and increases in the SGZ with aging. Treating wild type but not CD44-null NSCs with HA inhibits NSC proliferation. HA digestion in wild type NSC cultures or in the SGZ induces increased NSC proliferation, and CD44-null as well as HA-disrupted wild type NSCs demonstrate delayed neuronal differentiation. HA therefore signals through CD44 to regulate NSC quiescence and differentiation, and HA accumulation in the SGZ may contribute to reductions in neurogenesis that are linked to age-related decline in spatial memory.
Collapse
Affiliation(s)
- Weiping Su
- From the Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Scott C Foster
- From the Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Rubing Xing
- From the Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Kerstin Feistel
- From the Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006.,Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany, and
| | | | | | - Jacob Raber
- From the Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006.,Departments of Behavioral Neuroscience.,Neurology and Radiation Medicine, and
| | - Larry S Sherman
- From the Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, .,Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
21
|
Hyaluronan Synthesis, Catabolism, and Signaling in Neurodegenerative Diseases. Int J Cell Biol 2015; 2015:368584. [PMID: 26448752 PMCID: PMC4581574 DOI: 10.1155/2015/368584] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/11/2015] [Indexed: 11/18/2022] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a component of the extracellular matrix, has been implicated in regulating neural differentiation, survival, proliferation, migration, and cell signaling in the mammalian central nervous system (CNS). HA is found throughout the CNS as a constituent of proteoglycans, especially within perineuronal nets that have been implicated in regulating neuronal activity. HA is also found in the white matter where it is diffusely distributed around astrocytes and oligodendrocytes. Insults to the CNS lead to long-term elevation of HA within damaged tissues, which is linked at least in part to increased transcription of HA synthases. HA accumulation is often accompanied by elevated expression of at least some transmembrane HA receptors including CD44. Hyaluronidases that digest high molecular weight HA into smaller fragments are also elevated following CNS insults and can generate HA digestion products that have unique biological activities. A number of studies, for example, suggest that both the removal of high molecular weight HA and the accumulation of hyaluronidase-generated HA digestion products can impact CNS injuries through mechanisms that include the regulation of progenitor cell differentiation and proliferation. These studies, reviewed here, suggest that targeting HA synthesis, catabolism, and signaling are all potential strategies to promote CNS repair.
Collapse
|
22
|
Preston M, Gong X, Su W, Matsumoto SG, Banine F, Winkler C, Foster S, Xing R, Struve J, Dean J, Baggenstoss B, Weigel PH, Montine TJ, Back SA, Sherman LS. Digestion products of the PH20 hyaluronidase inhibit remyelination. Ann Neurol 2013; 73:266-80. [PMID: 23463525 DOI: 10.1002/ana.23788] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 09/25/2012] [Accepted: 10/08/2012] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Oligodendrocyte progenitor cells (OPCs) recruited to demyelinating lesions often fail to mature into oligodendrocytes (OLs) that remyelinate spared axons. The glycosaminoglycan hyaluronan (HA) accumulates in demyelinating lesions and has been implicated in the failure of OPC maturation and remyelination. We tested the hypothesis that OPCs in demyelinating lesions express a specific hyaluronidase, and that digestion products of this enzyme inhibit OPC maturation. METHODS Mouse OPCs grown in vitro were analyzed for hyaluronidase expression and activity. Gain of function studies were used to define the hyaluronidases that blocked OPC maturation. Mouse and human demyelinating lesions were assessed for hyaluronidase expression. Digestion products from different hyaluronidases and a hyaluronidase inhibitor were tested for their effects on OPC maturation and functional remyelination in vivo. RESULTS OPCs demonstrated hyaluronidase activity in vitro and expressed multiple hyaluronidases, including HYAL1, HYAL2, and PH20. HA digestion by PH20 but not other hyaluronidases inhibited OPC maturation into OLs. In contrast, inhibiting HA synthesis did not influence OPC maturation. PH20 expression was elevated in OPCs and reactive astrocytes in both rodent and human demyelinating lesions. HA digestion products generated by the PH20 hyaluronidase but not another hyaluronidase inhibited remyelination following lysolecithin-induced demyelination. Inhibition of hyaluronidase activity lead to increased OPC maturation and promoted increased conduction velocities through lesions. INTERPRETATION We determined that PH20 is elevated in demyelinating lesions and that increased PH20 expression is sufficient to inhibit OPC maturation and remyelination. Pharmacological inhibition of PH20 may therefore be an effective way to promote remyelination in multiple sclerosis and related conditions.
Collapse
Affiliation(s)
- Marnie Preston
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pearson BL, Corley MJ, Vasconcellos A, Blanchard DC, Blanchard RJ. Heparan sulfate deficiency in autistic postmortem brain tissue from the subventricular zone of the lateral ventricles. Behav Brain Res 2013; 243:138-45. [PMID: 23318464 DOI: 10.1016/j.bbr.2012.12.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/20/2023]
Abstract
Abnormal cellular growth and organization have been characterized in postmortem tissue from brains of autistic individuals, suggestive of pathology in a critical neurogenic niche, the subventricular zone (SVZ) of the brain lateral ventricles (LV). We examined cellular organization, cell proliferation, and constituents of the extracellular matrix such as N-sulfated heparan sulfate (HS) and laminin (LAM) in postmortem brain tissue from the LV-SVZ of young to elderly individuals with autism (n=4) and age-matched typically developing (TD) individuals (n=4) using immunofluorescence techniques. Strong and systematic reductions in HS immunofluorescence were observed in the LV-SVZ of the TD individuals with increasing age. For young through mature, but not elderly, autistic pair members, HS was reduced compared to their matched TDs. Cellular proliferation (Ki67+) was higher in the autistic individual of the youngest age-matched pair. These preliminary data suggesting that HS may be reduced in young to mature autistic individuals are in agreement with previous findings from the BTBR T+tf/J mouse, an animal model of autism; from mice with genetic modifications reducing HS; and with genetic variants in HS-related genes in autism. They suggest that aberrant extracellular matrix glycosaminoglycan function localized to the subventricular zone of the lateral ventricles may be a biomarker for autism, and potentially involved in the etiology of the disorder.
Collapse
Affiliation(s)
- Brandon L Pearson
- Department of Psychology, University of Hawaii, 2530 Dole Street, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|
24
|
Leong NL, Hurng JM, Djomehri SI, Gansky SA, Ryder MI, Ho SP. Age-related adaptation of bone-PDL-tooth complex: Rattus-Norvegicus as a model system. PLoS One 2012; 7:e35980. [PMID: 22558292 PMCID: PMC3340399 DOI: 10.1371/journal.pone.0035980] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/26/2012] [Indexed: 01/18/2023] Open
Abstract
Functional loads on an organ induce tissue adaptations by converting mechanical energy into chemical energy at a cell-level. The transducing capacity of cells alters physico-chemical properties of tissues, developing a positive feedback commonly recognized as the form-function relationship. In this study, organ and tissue adaptations were mapped in the bone-tooth complex by identifying and correlating biomolecular expressions to physico-chemical properties in rats from 1.5 to 15 months. However, future research using hard and soft chow over relevant age groups would decouple the function related effects from aging affects. Progressive curvature in the distal root with increased root resorption was observed using micro X-ray computed tomography. Resorption was correlated to the increased activity of multinucleated osteoclasts on the distal side of the molars until 6 months using tartrate resistant acid phosphatase (TRAP). Interestingly, mononucleated TRAP positive cells within PDL vasculature were observed in older rats. Higher levels of glycosaminoglycans were identified at PDL-bone and PDL-cementum entheses using alcian blue stain. Decreasing biochemical gradients from coronal to apical zones, specifically biomolecules that can induce osteogenic (biglycan) and fibrogenic (fibromodulin, decorin) phenotypes, and PDL-specific negative regulator of mineralization (asporin) were observed using immunohistochemistry. Heterogeneous distribution of Ca and P in alveolar bone, and relatively lower contents at the entheses, were observed using energy dispersive X-ray analysis. No correlation between age and microhardness of alveolar bone (0.7 ± 0.1 to 0.9 ± 0.2 GPa) and cementum (0.6 ± 0.1 to 0.8 ± 0.3 GPa) was observed using a microindenter. However, hardness of cementum and alveolar bone at any given age were significantly different (P<0.05). These observations should be taken into account as baseline parameters, during development (1.5 to 4 months), growth (4 to 10 months), followed by a senescent phase (10 to 15 months), from which deviations due to experimentally induced perturbations can be effectively investigated.
Collapse
Affiliation(s)
- Narita L. Leong
- Division of Biomaterials & Bioengineering, University of California San Francisco, San Francisco, California, United States of America
| | - Jonathan M. Hurng
- Division of Biomaterials & Bioengineering, University of California San Francisco, San Francisco, California, United States of America
| | - Sabra I. Djomehri
- Division of Biomaterials & Bioengineering, University of California San Francisco, San Francisco, California, United States of America
| | - Stuart A. Gansky
- Division of Oral Epidemiology & Dental Public Health, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Mark I. Ryder
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Sunita P. Ho
- Division of Biomaterials & Bioengineering, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
25
|
Elkin BS, Shaik MA, Morrison B. Chondroitinase ABC Reduces Brain Tissue SwellingIn Vitro. J Neurotrauma 2011; 28:2277-85. [DOI: 10.1089/neu.2010.1603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benjamin S. Elkin
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Mohammed A. Shaik
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
26
|
Cargill R, Kohama SG, Struve J, Su W, Banine F, Witkowski E, Back SA, Sherman LS. Astrocytes in aged nonhuman primate brain gray matter synthesize excess hyaluronan. Neurobiol Aging 2011; 33:830.e13-24. [PMID: 21872361 DOI: 10.1016/j.neurobiolaging.2011.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/22/2011] [Accepted: 07/08/2011] [Indexed: 12/17/2022]
Abstract
The glycosaminoglycan hyaluronan (HA) accumulates in central nervous system lesions where it limits astrogliosis but also inhibits oligodendrocyte progenitor cell (OPC) maturation. The role of hyaluronan in normative brain aging has not been previously investigated. Here, we tested the hypothesis that HA accumulates in the aging nonhuman primate brain. We found that HA levels significantly increase with age in the gray matter of rhesus macaques. HA accumulation was linked to age-related increases in the transcription of HA synthase-1 (HAS1) expressed by reactive astrocytes but not changes in the expression of other HAS genes or hyaluronidases. HA accumulation was accompanied by increased expression of CD44, a transmembrane HA receptor. Areas of gray matter with elevated HA in older animals demonstrated increased numbers of olig2(+) OPCs, consistent with the notion that HA may influence OPC expansion or maturation. Collectively, these data indicate that HAS1 and CD44 are transcriptionally upregulated in astrocytes during normative aging and are linked to HA accumulation in gray matter.
Collapse
Affiliation(s)
- Robert Cargill
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Elkin BS, Shaik MA, Morrison B. Fixed negative charge and the Donnan effect: a description of the driving forces associated with brain tissue swelling and oedema. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:585-603. [PMID: 20047940 PMCID: PMC2944388 DOI: 10.1098/rsta.2009.0223] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cerebral oedema or brain tissue swelling is a significant complication following traumatic brain injury or stroke that can increase the intracranial pressure (ICP) and impair blood flow. Here, we have identified a potential driver of oedema: the negatively charged molecules fixed within cells. This fixed charge density (FCD), once exposed, could increase ICP through the Donnan effect. We have shown that metabolic processes and membrane integrity are required for concealing this FCD as slices of rat cortex swelled immediately (within 30 min) following dissection if treated with 2 deoxyglucose + cyanide (2DG+CN) or Triton X-100. Slices given ample oxygen and glucose, however, did not swell significantly. We also found that dead brain tissue swells and shrinks in response to changes in ionic strength of the bathing medium, which suggests that the Donnan effect is capable of pressurizing and swelling brain tissue. As predicted, a non-ionic osmolyte, 1,2 propanediol, elicited no volume change at 2000 x 10(-3) osmoles l(-1) (Osm). Swelling data were well described by triphasic mixture theory with the calculated reference state FCD similar to that measured with a 1,9 dimethylmethylene blue assay. Taken together, these data suggest that intracellular fixed charges may contribute to the driving forces responsible for brain swelling.
Collapse
|
28
|
Hrabetová S, Masri D, Tao L, Xiao F, Nicholson C. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC. J Physiol 2009; 587:4029-49. [PMID: 19546165 DOI: 10.1113/jphysiol.2009.170092] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The concentration of extracellular calcium plays a critical role in synaptic transmission and neuronal excitability as well as other physiological processes. The time course and extent of local fluctuations in the concentration of this ion largely depend on its effective diffusion coefficient (D*) and it has been speculated that fixed negative charges on chondroitin sulphate proteoglycans (CSPGs) and other components of the extracellular matrix may influence calcium diffusion because it is a divalent cation. In this study we used ion-selective microelectrodes combined with pressure ejection or iontophoresis of ions from a micropipette to quantify diffusion characteristics of neocortex and hippocampus in rat brain slices. We show that D* for calcium is less than the value predicted from the behaviour of the monovalent cation tetramethylammonium (TMA), a commonly used diffusion probe, but D* for calcium increases in both brain regions after the slices are treated with chondroitinase ABC, an enzyme that predominantly cleaves chondroitin sulphate glycans. These results suggest that CSPGs do play a role in determining the local diffusion properties of calcium in brain tissue, most likely through electrostatic interactions mediating rapid equilibrium binding. In contrast, chondroitinase ABC does not affect either the TMA diffusion or the extracellular volume fraction, indicating that the enzyme does not alter the structure of the extracellular space and that the diffusion of small monovalent cations is not affected by CSPGs in the normal brain ionic milieu. Both calcium and CSPGs are known to have many distinct roles in brain physiology, including brain repair, and our study suggests they may be functionally coupled through calcium diffusion properties.
Collapse
Affiliation(s)
- Sabina Hrabetová
- Department of Physiology and Neuroscience, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
30
|
In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. Proc Natl Acad Sci U S A 2008; 105:8416-21. [PMID: 18541909 DOI: 10.1073/pnas.0711345105] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The intercellular spaces between neurons and glia contain an amorphous, negatively charged extracellular matrix (ECM) with the potential to shape and regulate the distribution of many diffusing ions, proteins and drugs. However, little evidence exists for direct regulation of extracellular diffusion by the ECM in living tissue. Here, we demonstrate macromolecule sequestration by an ECM component in vivo, using quantitative diffusion measurements from integrative optical imaging. Diffusion measurements in free solution, supported by confocal imaging and binding assays with cultured cells, were used to characterize the properties of a fluorescently labeled protein, lactoferrin (Lf), and its association with heparin and heparan sulfate in vitro. In vivo diffusion measurements were then performed through an open cranial window over rat somatosensory cortex to measure effective diffusion coefficients (D*) under different conditions, revealing that D* for Lf was reduced approximately 60% by binding to heparan sulfate proteoglycans, a prominent component of the ECM and cell surfaces in brain. Finally, we describe a method for quantifying heparan sulfate binding site density from data for Lf and the structurally similar protein transferrin, allowing us to predict a low micromolar concentration of these binding sites in neocortex, the first estimate in living tissue. Our results have significance for many tissues, because heparan sulfate is synthesized by almost every type of cell in the body. Quantifying ECM effects on diffusion will also aid in the modeling and design of drug delivery strategies for growth factors and viral vectors, some of which are likely to interact with heparan sulfate.
Collapse
|
31
|
Back SA, Tuohy TMF, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF, Rao MS, Sherman LS. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 2005; 11:966-72. [PMID: 16086023 DOI: 10.1038/nm1279] [Citation(s) in RCA: 463] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 07/05/2005] [Indexed: 11/09/2022]
Abstract
Demyelination is the hallmark of numerous neurodegenerative conditions, including multiple sclerosis. Oligodendrocyte progenitors (OPCs), which normally mature into myelin-forming oligodendrocytes, are typically present around demyelinated lesions but do not remyelinate affected axons. Here, we find that the glycosaminoglycan hyaluronan accumulates in demyelinated lesions from individuals with multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. A high molecular weight (HMW) form of hyaluronan synthesized by astrocytes accumulates in chronic demyelinated lesions. This form of hyaluronan inhibits remyelination after lysolecithin-induced white matter demyelination. OPCs accrue and do not mature into myelin-forming cells in demyelinating lesions where HMW hyaluronan is present. Furthermore, the addition of HMW hyaluronan to OPC cultures reversibly inhibits progenitor-cell maturation, whereas degrading hyaluronan in astrocyte-OPC cocultures promotes oligodendrocyte maturation. HMW hyaluronan may therefore contribute substantially to remyelination failure by preventing the maturation of OPCs that are recruited to demyelinating lesions.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sames K, Hoyer S. Age-related histochemical staining patterns of glycosaminoglycans in cell nuclei of different regions of the rat brain: a pilot study. Arch Gerontol Geriatr 2005; 14:75-84. [PMID: 15374411 DOI: 10.1016/0167-4943(92)90008-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1990] [Revised: 09/10/1991] [Accepted: 09/11/1991] [Indexed: 11/17/2022]
Abstract
The brains of 6 rats aged 12 months (adult) and 6 rats aged 24 months (aged) were embedded in paraffin following steady state perfusion with fixation solution. Glycosaminoglycans (GAGs) were demonstrated by histochemical methods using the Alcian blue CEC method in combination with the Feulgen reaction and testis hyaluronidase. Cell nuclei revealed different patterns of GAGs in different layers of the brain cortex and in different cell types. In neuronal cell nuclei of layer 2, no GAGs are found and this may be the case also in certain types of pyramidal cells. There was a reduction of the blue staining components of the chromatin network by hyaluronidase, and also a reduction of the electronmicroscopic contrast by this enzyme in pilot study using a specimen of one animal. The enzyme effects were found to be more marked or even exclusively present in the group of aged animals. Thus, the contents of chrondroitin sulfates or hyluronate which are substrates of the enzyme may be increased either relatively or absolutely in cell nuclei of aged brains whereas GAGs resistant to the enzyme may be reduced in activity. Since GAGs are known to influence DNA activity, the variations demonstrated may be assumed to be of significance for the aging process in postmitotic cells.
Collapse
Affiliation(s)
- K Sames
- Department of Pathochemistry and General Neurochemistry, University of Heidelberg, F.R.G
| | | |
Collapse
|
33
|
Perosa SR, Porcionatto MA, Cukiert A, Martins JRM, Passeroti CC, Amado D, Matas SLA, Nader HB, Cavalheiro EA, Leite JP, Naffah-Mazzacoratti MG. Glycosaminoglycan levels and proteoglycan expression are altered in the hippocampus of patients with mesial temporal lobe epilepsy. Brain Res Bull 2002; 58:509-16. [PMID: 12242104 DOI: 10.1016/s0361-9230(02)00822-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Extracellular matrix proteoglycans (PGs) and glycosaminoglycans (GAGs) play a crucial role in cell differentiation and synaptogenesis by modulating neurite outgrowth. The chondroitin sulfate (CS)-rich PG, the receptor protein tyrosine phosphatase zeta/beta (RPTP zeta/beta), has been related to neural morphogenesis and axon guidance. Hippocampal sclerosis is the most frequent pathologic finding in patients with intractable mesial temporal lobe epilepsy (MTLE), which is associated with neuron loss, reactive gliosis, and mossy fiber sprouting. In the present study, we investigated the concentration of CS, heparan sulfate (HS) and hyaluronic acid (HA) in the hippocampus and temporal neocortex as well as RPTP zeta/beta expression in the hippocampus of patients with MTLE. Compared to autopsy control tissue, epileptic hippocampi showed a significantly increased concentration of CS (224%; p=0.0109) and HA (146%; p=0.039). HS was instead similar to control values. No differences were found in the concentration of CS, HS, or HA in the temporal neocortex of epileptic patients when compared to control values. In contrast, RPTP zeta/beta immunoreactivity was induced in astrocytes of the inner molecular layer of the dentate gyrus of the sclerotic hippocampus. Because matrix compounds have been associated with tissue injury and repair, the present findings suggest that changes in PGs and GAGs might be related to damage-induced gliosis and neuronal reorganization in the hippocampus of MTLE patients.
Collapse
Affiliation(s)
- S R Perosa
- Department of Neurology, UNIFESP-EPM, SP, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Perosa SR, Porcionatto MA, Cukiert A, Martins JRM, Amado D, Nader HB, Cavalheiro EA, Leite JP, Naffah-Mazzacoratti MG. Extracellular matrix components are altered in the hippocampus, cortex, and cerebrospinal fluid of patients with mesial temporal lobe epilepsy. Epilepsia 2002; 43 Suppl 5:159-61. [PMID: 12121313 DOI: 10.1046/j.1528-1157.43.s.5.30.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE This work studied the profile of glycosaminoglycans (GAGs) in the hippocampus, cortex, and cerebrospinal fluid of patients with temporal lobe epilepsy (TLE). METHODS The GAGs were analyzed by agarose gel electrophoresis, enzymatic degradation, and enzyme-linked immunosorbent assay (ELISA). RESULTS The hippocampus of TLE patients showed increased levels of chondroitin sulfate and hyaluronic acid against normal levels of these GAGs in the neocortex and cerebrospinal fluid (CSF). CONCLUSIONS These results suggest that these matrix components could be involved in the pathophysiology of TLE.
Collapse
Affiliation(s)
- S R Perosa
- Disciplina de Bioquímica, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Naffah-Mazzacoratti MG, Argañaraz GA, Porcionatto MA, Scorza FA, Amado D, Silva R, Bellissimo MI, Nader HB, Cavalheiro EA. Selective alterations of glycosaminoglycans synthesis and proteoglycan expression in rat cortex and hippocampus in pilocarpine-induced epilepsy. Brain Res Bull 1999; 50:229-39. [PMID: 10582521 DOI: 10.1016/s0361-9230(99)00195-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proteoglycans and glycosaminoglycans are elements of matrix. In the nervous system, glycosaminoglycans modulate neurite outgrowth and are co-receptors for growth factors playing a crucial role in cell differentiation and synaptogenesis. The receptor of protein tyrosine phosphatase beta (RPTPbeta) is a chondroitin sulphate proteoglycan which plays an important role in neural morphogenesis and axon guidance mechanisms. Pilocarpine-treated rats present status epilepticus, which is followed by a seizure-free period (silent), by a period of spontaneous recurrent seizures (chronic), and the hippocampus of these animals exhibits cell loss and mossy fiber sprouting. Thus, the synthesis of heparan sulphate and chondroitin sulphate and the time course of RPTPbeta immunoreactivity were studied in the hippocampus and cerebral cortex during these phases of pilocarpine-induced epilepsy. The results showed decreased synthesis of heparan sulphate during the acute phase and an increased synthesis of chondroitin sulphate during the silent period in the cortex and hippocampus. In control rats RPTPbeta immunoreactivity was detected only in glial cells. After 6 h of status epilepticus the RPTPbeta immunoreactivity was no longer detectable in the glial cells in both tissues and intense staining became evident in the matrix, surrounding CA3 and dentate gyrus and piriform cortex neurones. In the silent and chronic periods RPTPbeta immunoreactivity was mainly detected in neuronal somata and fibers of neurones of hippocampus and cortex. These changes show a selective variation of synthesis and expression of glycosaminoglycans and RPTPbeta in relation to epilepsy suggesting a molecular interplay between glia and neurones during seizures.
Collapse
|
36
|
Abstract
The extracellular matrix (ECM) of the brain contains hyaluronan and proteoglycans, as does the ECM of cartilage. Aggrecan, the major proteoglycan of cartilage, forms large aggregates with hyaluronan, which then associate with the chondrocyte cell surface through an interaction with surface hyaluronan binding proteins. In culture, chondrocytes elaborate hyaluronan-proteoglycan aggregates, which form large hydrated pericellular matrices (PCMs) that can be visualized by a particle exclusion assay (Knudson and Toole: Dev Biol 112:308, 1985). It has recently been demonstrated that embryonic glial cells can also elaborate PCMs in culture (Deyst and Toole: Dev Brain Res 28:351, 1995). We demonstrate here that different classes of glial cells elaborate different types of endogenous PCMs in culture. Less differentiated glial cells, as evidenced by their immunoreactivity for nestin, elaborate larger endogenously produced PCMs than differentiated astrocytes, as defined by immunoreactivity for GFAP. This in vitro result may be a reflection of the larger volume of extracellular space present in the embryonic than in the mature brain. We show further that glial cells can incorporate cartilage aggrecan into their PCMs, and that both endogenous and aggrecan-supplemented glial PCMs are dependent on hyaluronan. In contrast, primary neurons from newborn (P0) and P1 rat cortex neither express endogenous matrices nor can assemble exogenous hyaluronan/aggrecan aggregates into PCMs. These results suggest that immature neurons may not have the ability to assemble hyaluronan-based PCMs, and they raise the possibility that neural proteoglycans associate with neuronal surfaces through a mechanism that may not directly involve hyaluronan.
Collapse
Affiliation(s)
- M Maleski
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
37
|
Laurent UB, Laurent TC, Hellsing LK, Persson L, Hartman M, Lilja K. Hyaluronan in human cerebrospinal fluid. Acta Neurol Scand 1996; 94:194-206. [PMID: 8899053 DOI: 10.1111/j.1600-0404.1996.tb07052.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the concentration of hyaluronan in cerebrospinal fluid (CSF) in various diseases and attempted to define its reference interval. A radioassay utilizing cartilage proteins with affinity for hyaluronan was used in determining the concentration of 200 lumbar and 27 ventricular CSF specimens and 11 brain cyst fluids. Molecular weight distributions were determined by gel chromatography and localization in brain tissue by histochemistry. The hyaluronan level of lumbar CSF showed an increase with age; comparatively healthy children had (mean +/- SD) 50 +/- 41 micrograms/L (n = 40) and adults 166 +/- 77 micrograms/L (n = 9); i.e. significantly different values. The highest level was recorded in a patient with meningitis (> 8000 micrograms/L). More than 4000 micrograms/ L was noted in a patient with tumour metastasis in the cerebellum. Significantly elevated levels were especially found with spinal stenosis, head injury and cerebral infarction, but also in inflammatory medical disorders, hydrocephalus and encephalitis. We found no significant increase in multiple sclerosis and some other neurological diseases. Ventricular CSF of adults contained significantly less hyaluronan (53 +/- 73 micrograms/L; n = 16) than lumbar CSF. Hyaluronan in cyst fluids varied from 31 to 25,000 micrograms/L. Weight average molecular weight of hyaluronan in CSF was 2.9-3.0 x 10(5) and in brain tumour cyst fluid 2.4 x 10(6). In search for the origin of hyaluronan in CSF it was found that its concentration in the choroid plexus and leptomeninges was low, but that hyaluronan was accumulated in the superficial layer of the cerebral cortex. Continued screening for hyaluronan in CSF may be valuable in cases of inflammatory diseases, tumours and obstruction to CSF flow.
Collapse
Affiliation(s)
- U B Laurent
- Department of Ophthalmology, University of Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Burg MA, Halfter W, Cole GJ. Analysis of proteoglycan expression in developing chicken brain: characterization of a heparan sulfate proteoglycan that interacts with the neural cell adhesion molecule. J Neurosci Res 1995; 41:49-64. [PMID: 7674377 DOI: 10.1002/jnr.490410107] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study we have characterized the major proteoglycans of chick brain, focusing on their pattern of expression in development and on identifying the heparan sulfate proteoglycan (HSPG) that binds to the neural cell adhesion molecule (NCAM). The major chondroitin sulfate proteoglycans (CSPG) are a heterogeneous group of molecules with an average MW of 450 kDa. Protein core analysis reveals multiple protein cores between 100 and 350 kDa. The HSPGs are somewhat smaller, with an average MW of 350 kDa, and the major brain HSPG possesses a 250 kDa protein core. During development the relative percentage of HSPG decreases from approximately 50% of total sulfate-labeled PG at E6 to 25% by E10. In order to begin to characterize the HSPG that interacts with NCAM, we initially used an antiserum produced against a HSPG which was previously shown to copurify with NCAM (Cole and Burg: Exp Cell Res 182:44-60, 1989). This antiserum immunoprecipitated a HSPG core protein of 250 kDa, corresponding to the major HSPG of chick brain. We also show that the major brain HSPG binds to a synthetic peptide that encodes the heparan sulfate-binding domain of NCAM, and that monoclonal antibodies to a recently identified chick retinal HSPG recognize this NCAM-binding HSPG. This HSPG was immunopurified from E10 chick brain using the 6D2 monoclonal antibody, and has been shown to bind an affinity column containing the heparan sulfate-binding peptide of NCAM. Consistent with its ability to bind NCAM, we show that the intact 6D2 HSPG inhibits cell adhesion to a HBD peptide substratum, and also binds chick brain cells when employed as a substratum.
Collapse
Affiliation(s)
- M A Burg
- Neurobiotechnology Center, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
39
|
Yannariello-Brown J, Chapman SH, Ward WF, Pappas TC, Weigel PH. Circulating hyaluronan levels in the rodent: effects of age and diet. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C952-7. [PMID: 7733243 DOI: 10.1152/ajpcell.1995.268.4.c952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circulating hyaluronan (HA) levels were investigated as a function of age and diet in Fischer 344 male rats. A biphasic pattern of age-related changes was observed in rats fed ad libitum a diet in which the protein source was soya/fish meal. HA levels in 3- to 6- and 22- to 29-mo-old rats were not statistically different. However, HA levels in 12- to 20-mo-old rats were 10-29% of the levels in younger or aged adults. HA levels were also measured in rats fed ad libitum a semisynthetic diet in which the protein source was hydrolyzed casein. Whereas the two colonies exhibited similar biphasic age-related changes, HA levels differed 4- to 20-fold at every age examined. Caloric restriction affected HA levels in 19-mo-old casein-fed rats; HA levels were 2.3 times higher than age-matched controls and were not statistically different from young or aged animals. Serum and plasma HA levels were identical in the same individuals at all ages tested. These data suggest that HA turnover and metabolism in the rat are affected by age, dietary composition, and caloric intake.
Collapse
Affiliation(s)
- J Yannariello-Brown
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0647, USA
| | | | | | | | | |
Collapse
|
40
|
Asher RA, Scheibe RJ, Keiser HD, Bignami A. On the existence of a cartilage-like proteoglycan and link proteins in the central nervous system. Glia 1995; 13:294-308. [PMID: 7615338 DOI: 10.1002/glia.440130406] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monoclonal antibodies (mAbs) against the major constituents of cartilage extracellular matrix, aggrecan and link protein, were screened by indirect immunofluorescence on frozen sections of bovine spinal cord. Antibodies against aggrecan and link protein gave rise to very similar perineuronal labeling in spinal cord gray matter. Aggrecan and link protein reactivities were seen in other regions of the central nervous system (CNS), although their distributions were not always coincident. Pretreatment of the tissue section with Streptomyces hyaluronidase, which is hyaluronate-specific, led to the loss of both reactivities. On Western blots, anti-aggrecan mAbs reacted with a large chondroitin sulfate proteoglycan. The chondroitinase-treated CNS proteoglycan co-migrated with the chondroitinase- and keratanase-treated cartilage proteoglycan. In CNS tissue homogenates, the addition of Streptomyces hyaluronidase brought about the release of the proteoglycan from the tissue. Anti-link protein mAbs were reactive with two species in the bovine CNS, the mobilities of which were very similar to those of the cartilage link proteins. The release of these species from the tissue required hyaluronidase. A rabbit antiserum against aggrecan was used to identify a similar proteoglycan in the rat CNS. In spinal cord-derived cell cultures, the labeled material was associated with astrocytes. An aggrecan cDNA hybridized to a 9.5 kb mRNA in the rat CNS. We conclude that the perineuronal matrix consists, in part, of a hyaluronate-bound aggrecan-like proteoglycan and link proteins, and that the former is produced by astrocytes.
Collapse
Affiliation(s)
- R A Asher
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
41
|
Challacombe JF, Elam JS. Structural analysis of glycosaminoglycans derived from axonally transported proteoglycans in regenerating goldfish optic nerve. Neurochem Res 1995; 20:253-9. [PMID: 7609824 DOI: 10.1007/bf00969540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Structural characteristics of glycosaminoglycans (GAGs) derived from axonally transported proteoglycans (PGs) were compared in 21 days regenerating and intact goldfish optic tracts. Twenty one days following unilateral optic nerve crushes, fish received intraocular injections of 35SO4. Eight hours post injection, tracts were removed and the 35SO4-labeled GAGs, chondroitin sulfate (CS) and heparan sulfate (HS), isolated. The HS from regenerating optic tracts had a DEAE elution profile indicative of decreased charge density, while heparitinase treatment of HS followed by Sephadex G50 analysis of the resulting fragments showed a change in the elution pattern, suggesting reduced overall sulfation. HPLC analysis of HS disaccharides revealed a difference in the sulfation pattern of regenerating tract HS, characterized by the reduced presence of tri-sulfated disaccharides. Other structural features, such as the sizes of CS and HS, and the sulfation of CS, showed no changes during regeneration. These results indicate that changes in the structure of axonally transported HS accompany regeneration of goldfish optic axons.
Collapse
Affiliation(s)
- J F Challacombe
- Program in Neuroscience, Florida State University, Tallahassee 32306, USA
| | | |
Collapse
|
42
|
Leveugle B, Fillit H. Proteoglycans and the acute-phase response in Alzheimer's disease brain. Mol Neurobiol 1994; 9:25-32. [PMID: 7888102 DOI: 10.1007/bf02816102] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease is a dementing disorder affecting increasingly large numbers of individuals in the aging population. The characteristic neuropathologic changes of Alzheimer's disease are the deposition of extracellular amyloid plaques, neurons containing neurofibrillary tangles, and neuronal cell loss. The A4 amyloid peptide is the major constituent of senile plaques. In addition to the A4 peptide, senile plaques contain a variety of molecular species, including proteoglycans and inflammatory components. The presence of proteoglycans in the amyloid deposits of Alzheimer's disease and of systemic amyloidoses suggests that these molecules play an active role in the pathogenesis of amyloidosis. However, the molecular mechanisms that lead to the codeposition of amyloid peptide with proteoglycans is still unknown. Recent evidence suggests that the metabolism of proteoglycans is altered in Alzheimer's disease patients. The acute-phase response observed in the brain of patients affected by Alzheimer's disease may be responsible for this effect. In this article, we discuss the role of proteoglycans in Alzheimer's disease, and the possible interactions between factors involved in brain inflammatory mechanisms and proteoglycans in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- B Leveugle
- Department of Geriatrics and Adult Development, Mount Sinai Medical Center, New York, NY 10029
| | | |
Collapse
|
43
|
Marret S, Delpech B, Delpech A, Asou H, Girard N, Courel MN, Chauzy C, Maingonnat C, Fessard C. Expression and effects of hyaluronan and of the hyaluronan-binding protein hyaluronectin in newborn rat brain glial cell cultures. J Neurochem 1994; 62:1285-95. [PMID: 7510775 DOI: 10.1046/j.1471-4159.1994.62041285.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hyaluronan (HA) is a polymerized nonsulfated extracellular matrix glycosaminoglycan that may be involved in brain development. We have tested the expression of HA and the HA-binding protein hyaluronectin (HN) in glial cell cultures from newborn rat brain. HA was secreted into the culture medium by type 1 astrocytes in the first stages of the primary cultures. The secretion was high during cell proliferation, reached a maximum when they were confluent, and then decreased. HA was not secreted at a detectable level by total O-2A lineage cell-enriched cultures. HA labeled small O-2A progenitor cells (GFA-, A2B5+, HA+), small O-2A progenitorlike (GFA-, A2B5-, HA+) cells, and type 2 astrocytes (GFA+, A2B5+, HA+), but not mature oligodendrocytes (Galc+, HA-). In contrast to HA, hyaluronectin labeled oligodendrocyte membranes (i.e., more mature cells) from day 8. A2B5+ GFA- cells were found to be either HA+ or HN+ at days 7-9, suggesting intermediary stages. The addition of HA to primary cultures and to O-2A progenitor-enriched cultures decreased significantly the increase in the number of O-2A progenitors, of mature (Galc+) oligodendrocytes proportionally to the decrease of the O-2A progenitor number, and of BrdU+ cells, suggesting that HA acts (directly or indirectly) on O-2A cell proliferation. This effect, which was seen for concentrations as low as 0.1 micrograms/ml, was HA specific and was not observed with other glycosaminoglycans. When primary cultures were performed in the presence of hyaluronidase-digested or HA-depleted (by passage on a HN column) fetal calf serum, the total number of O-2A lineage cells was dramatically increased (100%, p < 10(-4)) in comparison with control cultures in standard fetal calf serum. Platelet-derived growth factor increased the total number of O-2A lineage cells and of (Galc+) oligodendrocytes. This effect was opposed by HA dose dependently. The effect of HA was significantly inhibited by HN (30%, p < 10(-4)). HN had, however, no effect when it was added to culture in the presence of hyaluronidase in fetal calf serum, suggesting its effect was only due to its binding to HA. During cell maturation, HA disappears as HN appears. This and the fact that HA and PDGF have opposite effects suggest an effect of these factors, or of their balance, on myelination.
Collapse
Affiliation(s)
- S Marret
- Laboratoire d'Oncologie Moléculaire, Centre Henri Becquerel, Rouen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nichol KA, Everett AW, Schulz M, Bennett MR. Retinal ganglion cell survival in vitro maintained by a chondroitin sulfate proteoglycan from the superior colliculus carrying the HNK-1 epitope. J Neurosci Res 1994; 37:623-32. [PMID: 7518009 DOI: 10.1002/jnr.490370509] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We recently reported evidence implicating a superior colliculus-derived chondroitin sulfate proteoglycan (SCCP) in the trophic support of cultured retinal ganglion cells (Schulz et al., 1990). In the present work we show preparations of the SCCP to be reactive with an antibody (CS-56) to chondroitin sulfate types A and C and with the HNK-1 antibody. Reaction with the HNK-1 antibody allowed us partially to purify the native proteoglycan by immunoaffinity chromatography. HNK-1 reactive material was further processed by a combination of molecular sieve chromatography in the presence of 4M guanidine HCL followed by anion exchange chromatography to yield a product that migrated electrophoretically as a single band in polyacrylamide gel with an apparent molecular weight of not less than 400 k. The SCCP, when added to a fully defined culture medium, maintained the survival of the vast majority (80%) of the ganglion cells over a 16 hr culture period with 86% of these cells showing a profusion of processes; few ganglion cells (10%) survived in the absence of the proteoglycan. Electrophoretic analysis of nonreduced preparations of the molecule did not reveal any low molecular weight silver stained components that may have remained associated with the molecule after guanidine HCL treatment. However, two bands corresponding to molecular weights of around 60 and 80 k were reproducibly observed on polyacrylamide gels following electrophoresis of the molecule in the presence of beta-mercaptoethanol. Our findings provide further evidence suggesting a role for a chondroitin sulfate proteoglycan carrying the HNK-1 epitope in the trophic support of central neurones.
Collapse
Affiliation(s)
- K A Nichol
- Department of Physiology, University of Sydney, N.S.W., Australia
| | | | | | | |
Collapse
|
45
|
Grundl PD, Biagas KV, Kochanek PM, Schiding JK, Barmada MA, Nemoto EM. Early cerebrovascular response to head injury in immature and mature rats. J Neurotrauma 1994; 11:135-48. [PMID: 7932794 DOI: 10.1089/neu.1994.11.135] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Clinical studies suggest that children respond to head injury with more pronounced cerebral edema and hyperemia than do adults. We hypothesized that these age-related differences could be demonstrated in an animal model. Anesthetized and ventilated mature (2-3 months) and immature (3.5-4.5 weeks) male Wistar rats were traumatized by weight drop onto the exposed right parietal cortex. Trauma severity was adjusted to keep the ratio of force to brain weight constant. This resulted in an energy delivered to the brain of about 9 x 10(3) ergs.mm-2.g-1 brain in both age groups. Percent right hemispheric brain water (%RBW) was measured at 2, 24, 48, and 168 h posttrauma. Infarct area, intracranial pressure (ICP), and 14C-iodoantipyrine autoradiographic local cerebral blood flow (ICBF) were measured at 2 h or 24 h posttrauma. In mature rats, %RBW was unchanged at 2 h, but increased at 24 and 48 h (both p < 0.05). In immature rats, %RBW increased at 2 h and remained elevated at 24 and 48 h (all p < 0.05). Traumatic infarct area as a percent of hemispheric area at 24 h did not differ between age groups. In mature rats, at 2 h posttrauma ICBF was reduced (p < 0.05) in 16 of 17 regions but in only 4 of 17 regions in immature rats. ICBF as a percent of age-matched control values showed a greater reduction in mature vs immature rats in 9 of 16 regions (p < 0.05). ICP increased at 24 h posttrauma in both age groups. In immature rats posttrauma, brain water increased earlier and cerebral hypoperfusion was less marked than in mature rats.
Collapse
Affiliation(s)
- P D Grundl
- Department of Anesthesiology/Critical Care Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- K Sames
- Department of Anatomy, University of Hamburg, Germany
| |
Collapse
|
47
|
Brückner G, Brauer K, Härtig W, Wolff JR, Rickmann MJ, Derouiche A, Delpech B, Girard N, Oertel WH, Reichenbach A. Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 1993; 8:183-200. [PMID: 7693589 DOI: 10.1002/glia.440080306] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nature and function of previously described perineuronal nets are still obscure. In the present study their polyanionic components were demonstrated in the rat brain using colloidal iron hydroxide (CIH) staining. In subcortical regions, such as the red nucleus, cerebellar, and vestibular nuclei, most neurons were ensheathed by CIH-binding material. In the cerebral cortex perineuronal nets were seen around numerous nonpyramidal neurons. Biotinylated hyaluronectin revealed that hyaluronan occurs in perineuronal nets. Two plant lectins [Wisteria floribunda agglutinin (WFA) and Vicia villosa agglutinin (VVA)] with affinity for N-acetylgalactosamine visualized perineuronal nets similar to those rich in anionic components. Glutamic acid decarboxylase (GAD)-immunoreactive synaptic boutons were shown to occupy numerous meshes of perineuronal VVA-positive nets. Electron microscopically, VVA binding sites were scattered throughout perisynaptic profiles, but accumulated at membranes and in the extracellular space except not in synaptic clefts. To investigate the spatial relationship between glial cell processes and perineuronal nets, two astrocytic markers (S100-protein and glutamine synthetase) were visualized at the light and electron microscopic level. Two methods to detect microglia by the use of Griffonia simplicifolia agglutinin (GSA I-B4) and the monoclonal antibody, OX-42, were also applied. Labelled structures forming perineuronal nets were observed with both astrocytic, but not with microglial, markers. It is concluded that perineuronal nets are composed of a specialized type of glia-associated extracellular matrix rich in polyanionic groups and N-acetylgalactosamine. The net-like appearance is due to perisynaptic arrangement of the astrocytic processes and these extracellular components. Similar to the ensheathment of nodes of Ranvier, perineuronal nets may provide a special ion buffering capacity required around various, perhaps highly active, types of neurons.
Collapse
Affiliation(s)
- G Brückner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hondermarck H, Deudon E, Boilly B. Embryonic brain-derived heparan sulfate inhibits cellular membrane binding and biological activity of basic fibroblast growth factor. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 68:247-53. [PMID: 1394971 DOI: 10.1016/0165-3806(92)90067-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have investigated the ability of glycosaminoglycans from embryonic chick brain (15 days old) to interact with basic fibroblast growth factor (bFGF). 35SO4 metabolically labeled glycosaminoglycans were purified and separated on DEAE-cellulose chromatography. Material which eluted between 0.20 and 0.35 M NaCl displaced the binding of [125I]bFGF to brain membrane. This activity was dose-dependent and on the basis to its heparinase sensitivity and chondroitinase insensitivity, has been attributed to heparan sulfate. CL-6B-Sepharose chromatography of this material revealed two glycosaminoglycans of molecular masses of about 15,000 and 65,000. Incubation with [125I]bFGF followed or not by heparinase and chondroitinase treatment of electrotransfert from SDS-PAGE revealed that both of these forms correspond to heparan sulfate chains and bind bFGF. In vitro, embryonic brain-derived heparan sulfate inhibited both bFGF induced [3H]thymidine incorporation in CCL39 cells and neurite outgrowth in PC12 cells. These results suggest that heparan sulfate play an important function in the control of the biological activity of bFGF during brain development.
Collapse
Affiliation(s)
- H Hondermarck
- Laboratoire de Biologie des Facteurs de Croissance, Université des Sciences et Techniques de Lille, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
49
|
Bignami A, Asher R. Some observations on the localization of hyaluronic acid in adult, newborn and embryonal rat brain. Int J Dev Neurosci 1992; 10:45-57. [PMID: 1376955 DOI: 10.1016/0736-5748(92)90006-l] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hyaluronic acid was localized in acetone-fixed cryostat sections of brain and spinal cord obtained from adult, newborn and embryonal rat. The sections were incubated with glial hyaluronate-binding protein (GHAP) of human origin and the protein was visualized by indirect immunofluorescence with monoclonal antibodies raised to human GHAP and not staining rat brain by immunofluorescence. GHAP is a brain extracellular matrix (ECM) glycoprotein, approximately 60,000 molecular weight, which is structurally related to the HA-binding region of cartilage ECM proteins. The distribution of hyaluronate in adult brain white matter and cerebellar cortex was similar to that previously reported for GHAP. In both cases, the reaction product formed a mesh surrounding myelinated axons and granule cells. Hyaluronate was also found in parts of the brain that did not contain GHAP. A finely reticulated mesh was observed in the neuropil between cell bodies in cerebral cortex and basal ganglia. Scattered cortical neurons were surrounded by a rim of reactive material. Perineural staining was the rule rather than the exception in spinal cord anterior horn motoneurons, inferior olivary nucleus, large bulbar reticular neurons and dentate nucleus of cerebellum. The only part of the brain which appeared relatively free of hyaluronate was the molecular layer of the cerebellum. In newborn and embryonal rat, the densely packed cell bodies in cerebral gray matter, periventricular germinal layer and external granular layer of cerebellum were surrounded by hyaluronate. Small droplets of hyaluronate were observed in between the cylindrical epithelial cells lining the neural tube in 11 day embryos. Non-myelinated fiber tracts and the molecular layer of the developing cerebellum were relatively unstained. No hyaluronate was detected in the ependyma lining the cerebral ventricles and the central canal of the spinal cord.
Collapse
Affiliation(s)
- A Bignami
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
50
|
Cole GJ, McCabe CF. Identification of a developmentally regulated keratan sulfate proteoglycan that inhibits cell adhesion and neurite outgrowth. Neuron 1991; 7:1007-18. [PMID: 1764241 DOI: 10.1016/0896-6273(91)90345-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoclonal antibodies have been used to identify a 320 kd keratan sulfate proteoglycan that is primarily expressed in the embryonic chick nervous system. Immunohistochemical localization of the proteoglycan shows that it is expressed by putative midline barrier structures in the developing chick central nervous system. When added to laminin or neural cell adhesion molecule that has been adsorbed onto nitrocellulose-coated dishes, the proteoglycan abolishes cell attachment and neurite outgrowth on these adhesive substrata. This effect can be reversed by keratanase treatment and incubation with a monoclonal antibody that recognizes the keratan sulfate chains of the proteoglycan. These data suggest that this neural keratan sulfate proteoglycan plays an important role in the modulation of neuronal cell adhesion during embryonic brain development.
Collapse
Affiliation(s)
- G J Cole
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston 29425
| | | |
Collapse
|