1
|
Lochhead JJ, Ronaldson PT, Davis TP. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem Pharmacol 2024; 228:116186. [PMID: 38561092 PMCID: PMC11410550 DOI: 10.1016/j.bcp.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Patrick T Ronaldson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
2
|
Harshithkumar R, Shah P, Jadaun P, Mukherjee A. ROS Chronicles in HIV Infection: Genesis of Oxidative Stress, Associated Pathologies, and Therapeutic Strategies. Curr Issues Mol Biol 2024; 46:8852-8873. [PMID: 39194740 DOI: 10.3390/cimb46080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Reactive oxygen species (ROS) are widely regarded as signaling molecules and play essential roles in various cellular processes, but when present in excess, they can lead to oxidative stress (OS). Growing evidence suggests that the OS plays a critical role in the pathogenesis of HIV infection and is associated with several comorbidities in HIV-infected individuals. ROS, generated both naturally during mitochondrial oxidative metabolism and as a response to various cellular processes, can trigger host antiviral responses but can also promote viral replication. While the multifaceted roles of ROS in HIV pathophysiology clearly need more investigation, this review paper unravels the mechanisms of OS generation in the context of HIV infections, offering insights into HIV viral protein-mediated and antiretroviral therapy-generated OS. Though the viral protein Tat is significantly attributed to the endogenous cellular increase in ROS post HIV infection, this paper sums up the contribution of other viral proteins in HIV-mediated elicitation of ROS. Given the investigations recognizing the significant role of ROS in the onset and progression of diverse pathologies, the paper also explores the critical function of ROS in the mediation of an of array of pathologies associated with HIV infection and retroviral therapy. HIV patients are observed with disruption to the antioxidant defense system, the antioxidant therapy is gaining focus as a potential therapeutic intervention and is well discussed. While ROS play a significant role in the HIV scenario, further exploratory studies are imperative to identifying alternative therapeutic strategies that could mitigate the toxicities and pathologies associated with ART-induced OS.
Collapse
Affiliation(s)
- R Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Prachibahen Shah
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Pratiksha Jadaun
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| |
Collapse
|
3
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rodríguez-De Jesús AE, Cartagena-Isern LJ, García-Requena LA, Roche-Lima A, Meléndez LM. Quantitative Proteomics Reveal That CB2R Agonist JWH-133 Downregulates NF-κB Activation, Oxidative Stress, and Lysosomal Exocytosis from HIV-Infected Macrophages. Int J Mol Sci 2024; 25:3246. [PMID: 38542221 PMCID: PMC10970132 DOI: 10.3390/ijms25063246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affect 15-55% of HIV-positive patients and effective therapies are unavailable. HIV-infected monocyte-derived macrophages (MDM) invade the brain of these individuals, promoting neurotoxicity. We demonstrated an increased expression of cathepsin B (CATB), a lysosomal protease, in monocytes and post-mortem brain tissues of women with HAND. Increased CATB release from HIV-infected MDM leads to neurotoxicity, and their secretion is associated with NF-κB activation, oxidative stress, and lysosomal exocytosis. Cannabinoid receptor 2 (CB2R) agonist, JWH-133, decreases HIV-1 replication, CATB secretion, and neurotoxicity from HIV-infected MDM, but the mechanisms are not entirely understood. We hypothesized that HIV-1 infection upregulates the expression of proteins associated with oxidative stress and that a CB2R agonist could reverse these effects. MDM were isolated from healthy women donors (n = 3), infected with HIV-1ADA, and treated with JWH-133. After 13 days post-infection, cell lysates were labeled by Tandem Mass Tag (TMT) and analyzed by LC/MS/MS quantitative proteomics bioinformatics. While HIV-1 infection upregulated CATB, NF-κB signaling, Nrf2-mediated oxidative stress response, and lysosomal exocytosis, JWH-133 treatment downregulated the expression of the proteins involved in these pathways. Our results suggest that JWH-133 is a potential alternative therapy against HIV-induced neurotoxicity and warrant in vivo studies to test its potential against HAND.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Luz J. Cartagena-Isern
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Luis A. García-Requena
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
4
|
Levine AJ, Thadani C, Soontornniyomkij V, Lopez-Aranda MF, Mesa YG, Kitchen S, Rezek V, Silva A, Kolson DL. Behavioral and histological assessment of a novel treatment of neuroHIV in humanized mice. RESEARCH SQUARE 2023:rs.3.rs-3678629. [PMID: 38168407 PMCID: PMC10760308 DOI: 10.21203/rs.3.rs-3678629/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neurocognitive deficits are prevalent among people living with HIV, likely due to chronic inflammation and oxidative stress in the brain. To date, no pharmaceutical treatments beyond antiretroviral therapy (ARV) has been shown to reduce risk for, or severity of, HIV-associated neurocognitive disorder. Here we investigate a novel compound, CDDO-Me, with documented neuroprotective effects via activation of the nrf2 and inhibition of the NFkB pathways. Methods We conducted three studies to assess the efficacy of CDDO-Me alone or in combination with antiretroviral therapy in humanized mice infected with HIV; behavioral, histopathological, and immunohistochemical. Results CDDO-Me in combination with ARV rescued social interaction deficits; however, only ARV was associated with preserved functioning in other behaviors, and CDDO-Me may have attenuated those benefits. A modest neuroprotective effect was found for CDDO-Me when administered with ARV, via preservation of PSD-95 expression; however, ARV alone had a more consistent protective effect. No significant changes in antioxidant enzyme expression levels were observed in CDDO-Me-treated animals. Only ARV use seemed to affect some antioxidant levels, indicating that it is ARV rather than CDDO-Me that is the major factor providing neuroprotection in this animal model. Finally, immunohistochemical analysis found that several cellular markers in various brain regions varied due to ARV rather than CDDO-Me. Conclusion Limited benefit of CDDO-Me on behavior and neuroprotection were observed. Instead, ARV was shown to be the more beneficial treatment. These experiments support the future use of this chimeric mouse for behavioral experiments in neuroHIV research.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Kitchen
- UCLA Humanized Mouse Core Laboratory, University of California
| | - Valerie Rezek
- UCLA Humanized Mouse Core Laboratory, University of California
| | | | | |
Collapse
|
5
|
Sangha V, Aboulhassane S, Qu QR, Bendayan R. Protective effects of pyrroloquinoline quinone in brain folate deficiency. Fluids Barriers CNS 2023; 20:84. [PMID: 37981683 PMCID: PMC10659058 DOI: 10.1186/s12987-023-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Folates (Vitamin B9) are critical for normal neurodevelopment and function, with transport mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Cerebral folate uptake primarily occurs at the blood-cerebrospinal fluid barrier (BCSFB) through concerted actions of FRα and PCFT, with impaired folate transport resulting in the neurological disorder cerebral folate deficiency (CFD). Increasing evidence suggests that disorders associated with CFD also present with neuroinflammation, oxidative stress, and mitochondrial dysfunction, however the role of brain folate deficiency in inducing these abnormalities is not well-understood. Our laboratory has identified the upregulation of RFC by nuclear respiratory factor 1 (NRF-1) at the blood-brain barrier (BBB) once indirectly activated by the natural compound pyrroloquinoline quinone (PQQ). PQQ is also of interest due to its anti-inflammatory, antioxidant, and mitochondrial biogenesis effects. In this study, we examined the effects of folate deficiency and PQQ treatment on inflammatory and oxidative stress responses, and changes in mitochondrial function. METHODS Primary cultures of mouse mixed glial cells exposed to folate-deficient (FD) conditions and treated with PQQ were analyzed for changes in gene expression of the folate transporters, inflammatory markers, oxidative stress markers, and mitochondrial DNA (mtDNA) content through qPCR analysis. Changes in cellular reactive oxygen species (ROS) levels were analyzed in vitro through a DCFDA assay. Wildtype (C57BL6/N) mice exposed to FD (0 mg/kg folate), or control (2 mg/kg folate) diets underwent a 10-day (20 mg/kg/day) PQQ treatment regimen and brain tissues were collected and analyzed. RESULTS Folate deficiency resulted in increased expression of inflammatory and oxidative stress markers in vitro and in vivo, with increased cellular ROS levels observed in mixed glial cells as well as a reduction of mitochondrial DNA (mtDNA) content observed in FD mixed glial cells. PQQ treatment was able to reverse these changes, while increasing RFC expression through activation of the PGC-1α/NRF-1 signaling pathway. CONCLUSION These results demonstrate the effects of brain folate deficiency, which may contribute to the neurological deficits commonly seen in disorders of CFD. PQQ may represent a novel treatment strategy for disorders associated with CFD, as it can increase folate uptake, while in parallel reversing many abnormalities that arise with brain folate deficiency.
Collapse
Affiliation(s)
- Vishal Sangha
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Sara Aboulhassane
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Qing Rui Qu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Reina Bendayan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Archie SR, Sifat AE, Mara D, Ahn Y, Akter KA, Zhang Y, Cucullo L, Abbruscato TJ. Impact of in-utero electronic cigarette exposure on neonatal neuroinflammation, oxidative stress and mitochondrial function. Front Pharmacol 2023; 14:1227145. [PMID: 37693917 PMCID: PMC10484598 DOI: 10.3389/fphar.2023.1227145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Despite the prevalence of the perception that electronic cigarettes (e-cig) are a safer alternative to tobacco smoke, growing concern about their potential toxic impact warrants adequate investigation focusing on special populations like maternal and pediatric groups. This study evaluated the consequences of maternal e-cig use on neonatal neuroinflammation, oxidative stress, and mitochondrial function in primary cultured neurons and postnatal day (PD) 7 and 90 brain. Methodology: Pregnant CD1 mice were exposed to e-cig vapor (2.4% nicotine) from gestational day 5 (E5) till PD7, and the primary neurons were isolated from pups at E16/17. Cellular total reactive oxygen species (ROS) and mitochondrial superoxide were measured in primary neurons using CM-H2DCFDA and Mitosox red, respectively. Mitochondrial function was assessed by Seahorse XF Cell Mitostress analysis. The level of pro-inflammatory cytokines was measured in primary neurons and PD7 and PD90 brains by RT-PCR and immunobead assay. Western blot analysis evaluated the expression of antioxidative markers (SOD-2, HO-1, NRF2, NQO1) and that of the proinflammatory modulator NF-κB. Results: Significantly higher level of total cellular ROS (p < 0.05) and mitochondrial superoxide (p < 0.01) was observed in prenatally e-cig-exposed primary neurons. We also observed significantly reduced antioxidative marker expression and increased proinflammatory modulator and cytokines expression in primary neurons and PD7 (p < 0.05) but not in PD90 postnatal brain. Conclusion: Our findings suggest that prenatal e-cig exposure induces postnatal neuroinflammation by promoting oxidative stress (OS), increasing cytokines' levels, and disrupting mitochondrial function. These damaging events can alter the fetal brain's immune functions, making such offspring more vulnerable to brain insults.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - David Mara
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Thomas J. Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| |
Collapse
|
7
|
Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics 2022; 14:1501. [PMID: 35890396 PMCID: PMC9324459 DOI: 10.3390/pharmaceutics14071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a primary origin of morbidity and mortality in the United States and around the world. Indeed, several research projects have attempted to discover new drugs or repurpose existing therapeutics to advance stroke pharmacotherapy. Many of these preclinical stroke studies have reported positive results for neuroprotective agents; however, only one compound (3K3A-activated protein C (3K3A-APC)) has advanced to Phase III clinical trial evaluation. One reason for these many failures is the lack of consideration of transport mechanisms at the blood-brain barrier (BBB) and neurovascular unit (NVU). These endogenous transport processes function as a "gateway" that is a primary determinant of efficacious brain concentrations for centrally acting drugs. Despite the knowledge that some neuroprotective agents (i.e., statins and memantine) are substrates for these endogenous BBB transporters, preclinical stroke studies have largely ignored the role of transporters in CNS drug disposition. Here, we review the current knowledge on specific BBB transporters that either limit drug uptake into the brain (i.e., ATP-binding cassette (ABC) transporters) or can be targeted for optimized drug delivery (i.e., solute carrier (SLC) transporters). Additionally, we highlight the current knowledge on transporter expression in astrocytes, microglia, pericytes, and neurons with an emphasis on transport mechanisms in these cell types that can influence drug distribution within the brain.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA;
| | | |
Collapse
|
8
|
Jiménez-Osorio AS, Jaen-Vega S, Fernández-Martínez E, Ortíz-Rodríguez MA, Martínez-Salazar MF, Jiménez-Sánchez RC, Flores-Chávez OR, Ramírez-Moreno E, Arias-Rico J, Arteaga-García F, Estrada-Luna D. Antiretroviral Therapy-Induced Dysregulation of Gene Expression and Lipid Metabolism in HIV+ Patients: Beneficial Role of Antioxidant Phytochemicals. Int J Mol Sci 2022; 23:5592. [PMID: 35628408 PMCID: PMC9146859 DOI: 10.3390/ijms23105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection has continued to be the subject of study since its discovery nearly 40 years ago. Significant advances in research and intake of antiretroviral therapy (ART) have slowed the progression and appearance of the disease symptoms and the incidence of concomitant diseases, which are the leading cause of death in HIV+ persons. However, the prolongation of ART is closely related to chronic degenerative diseases and pathologies caused by oxidative stress (OS) and alterations in lipid metabolism (increased cholesterol levels), both of which are conditions of ART. Therefore, recent research focuses on using natural therapies to diminish the effects of ART and HIV infection: regulating lipid metabolism and reducing OS status. The present review summarizes current information on OS and cholesterol metabolism in HIV+ persons and how the consumption of certain phytochemicals can modulate these. For this purpose, MEDLINE and SCOPUS databases were consulted to identify publications investigating HIV disease and natural therapies and their associated effects.
Collapse
Affiliation(s)
- Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Sinaí Jaen-Vega
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Eduardo Fernández-Martínez
- Laboratorio de Química Medicinal y Farmacología, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Calle Dr. Eliseo Ramírez Ulloa no. 400, Col. Doctores, Pachuca Hidalgo 42090, Mexico;
| | - María Araceli Ortíz-Rodríguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Iztaccíhuatl 100 Col. Los Volcanes, Cuernavaca 62350, Mexico;
| | - María Fernanda Martínez-Salazar
- Facultad de Ciencias del Deporte, Facultad de Farmacia Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001 Col. Chamilpa, Cuernavaca 62209, Mexico;
| | - Reyna Cristina Jiménez-Sánchez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Olga Rocío Flores-Chávez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico;
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Felipe Arteaga-García
- Coordinación de Enseñanza e Investigación, Hospital del Niño DIF Hidalgo, Carretera México-Pachuca km 82, Pachuca de Soto 42080, Mexico;
| | - Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| |
Collapse
|
9
|
Khan N, Halcrow PW, Lakpa LK, Rehan M, Chen X, Geiger JD. Endolysosome iron restricts Tat-mediated HIV-1 LTR transactivation by increasing HIV-1 Tat oligomerization and β-catenin expression. J Neurovirol 2021; 27:755-773. [PMID: 34550543 DOI: 10.1007/s13365-021-01016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
HIV-1 transactivator of transcription (Tat) protein is required for HIV-1 replication, and it has been implicated in the pathogenesis of HIV-1-associated neurocognitive disorder (HAND). HIV-1 Tat can enter cells via receptor-mediated endocytosis where it can reside in endolysosomes; upon its escape from these acidic organelles, HIV-1 Tat can enter the cytosol and nucleus where it activates the HIV-1 LTR promoter. Although it is known that HIV-1 replication is affected by the iron status of people living with HIV-1 (PLWH), very little is known about how iron affects HIV-1 Tat activation of the HIV-1 LTR promoter. Because HIV-1 proteins de-acidify endolysosomes and endolysosome de-acidification affects subcellular levels and actions of iron, we tested the hypothesis that the endolysosome pool of iron is sufficient to affect Tat-induced HIV-1 LTR transactivation. Ferric (Fe3+) and ferrous (Fe2+) iron both restricted Tat-mediated HIV-1 LTR transactivation. Chelation of endolysosome iron with deferoxamine (DFO) and 2-2 bipyridyl, but not chelation of cytosolic iron with deferiprone and deferasirox, significantly enhanced Tat-mediated HIV-1 LTR transactivation. In the presence of iron, HIV-1 Tat increasingly oligomerized and DFO prevented the oligomerization. DFO also reduced protein expression levels of the HIV-1 restriction agent beta-catenin in the cytosol and nucleus. These findings suggest that DFO increases HIV-1 LTR transactivation by increasing levels of the more active dimeric form of Tat relative to the less active oligomerized form of Tat, increasing the escape of dimeric Tat from endolysosomes, and/or reducing beta-catenin protein expression levels. Thus, intracellular iron might play a significant role in regulating HIV-1 replication, and these findings raise cautionary notes for chelation therapies in PLWH.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Peter W Halcrow
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Leo K Lakpa
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
10
|
Whyte-Allman SK, Kaul R, Bendayan R. Regulation of ABC Drug Efflux Transporters in Human T-Cells Exposed to an HIV Pseudotype. Front Pharmacol 2021; 12:711999. [PMID: 34421607 PMCID: PMC8371480 DOI: 10.3389/fphar.2021.711999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
ATP-binding cassette (ABC) drug efflux transporters could contribute to low intracellular concentrations of antiretroviral drugs in HIV-1 cell reservoirs and sanctuary sites. Furthermore, the functional expression of these transporters could be induced in activated T-cells. Therefore, we investigated the expression of ABC drug efflux transporters in human T-cells exposed to an HIV pseudotype virus (pHIVNL4-3), and further examined the potential involvement of the mammalian target of rapamycin (mTOR) signaling pathway in regulating their expression following exposure to pHIVNL4-3. Additionally, we investigated the contribution of the drug efflux transporters to the inflammatory response following pHIVNL4-3-induced T-cell activation. Human peripheral blood mononuclear cells (PBMCs) were exposed to HIV-1 envelope glycoprotein gp120IIIB, pHIVNL4-3 and/or mTOR inhibitors. The expression of ABC transporters, T-cell activation marker CD69, mTOR and pHIVNL4-3 was assessed in CD4+ T-cells by Flow cytometry. mRNA and protein levels of proinflammatory cytokines (IL6, TNFα and INFγ) were examined in PBMCs by qPCR and ELISA analyses, respectively, following exposure to pHIVNL4-3 with or without inhibitors of mTOR or ABC transporters. The expression of ABC transporters (P-glycoprotein, breast cancer resistance protein and multi-drug resistance associated protein-1) was significantly increased in CD4+ T-cells exposed to pHIVNL4-3. Treatment with mTOR inhibitors attenuated pHIVNL4-3-induced transporter expression, as well as mRNA and protein levels of IL6, TNFα and INFγ. Additionally, inhibition of P-gp or MRP1 activity resulted in lower concentrations of proinflammatory cytokines in supernatants of PBMC exposed to pHIVNL4-3. Herein we present novel data demonstrating that upregulation of ABC drug efflux transporters could involve the mTOR signaling pathway in CD4+ T-cells exposed to an HIV pseudotype. These transporters could limit antiretroviral drug penetration in HIV target T-cells. Furthermore, ABC transporters could potentially contribute to HIV-associated proinflammatory cytokine secretion.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Rupert Kaul
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
12
|
Hoque TMD, Cattin A, Whyte-Allman SK, Winchester L, Fletcher CV, Routy JP, Ancuta P, Bendayan R. Antiretroviral Drug Transporters and Metabolic Enzymes in Circulating Monocytes and Monocyte-Derived Macrophages of ART-Treated People Living With HIV and HIV-Uninfected Individuals. J Acquir Immune Defic Syndr 2021; 87:1093-1101. [PMID: 34153016 PMCID: PMC8346207 DOI: 10.1097/qai.0000000000002682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
ABSTRACT Membrane-associated drug transport proteins and drug metabolic enzymes could regulate intracellular antiretroviral (ARV) drug concentrations in HIV-1 target cells such as myeloid cells. We investigated the expression of these transporters and enzymes in monocyte subsets and monocyte-derived macrophages (MDMs) isolated from peripheral blood mononuclear cells (PBMCs) of HIV-uninfected individuals (HIV-negative) and people living with HIV receiving viral suppressive antiretroviral therapy (ART; HIV+ART) and examined plasma and intracellular ARV concentrations. Monocytes were isolated from PBMCs of 12 HIV-negative and 12 HIV+ART donors and differentiated into MDMs. The mRNA and protein expression of drug transporters and metabolic enzymes were analyzed by quantitative real-time polymerase chain reaction and flow cytometry, respectively. ARV drug concentrations were quantified in plasma, PBMCs, monocytes, and MDMs by LC-MS/MS. The mRNA expression of relevant ARV transporters or metabolic enzymes, ABCB1/P-gp, ABCG2/BCRP, ABCC1/MRP1, ABCC4/MRP4, SLC22A1/OCT1, SLC29A2/ENT2, CYP2B6, CYP2D6, and UGT1A1, was demonstrated in monocytes and MDMs of 2 to 4 HIV-negative donors. P-gp, BCRP, and MRP1 proteins were differentially expressed in classical, intermediate, and nonclassical monocytes and MDMs of both HIV+ART and HIV-negative donors. Intracellular concentrations of ARVs known to be substrates of these transporters and metabolic enzymes were detected in monocytes of HIV+ART donors but were undetectable in MDMs. In this study, we demonstrated the expression of drug transporters and metabolic enzymes in monocytes and MDMs of HIV-negative and HIV+ART individuals, which could potentially limit intracellular concentrations of ARVs and contribute to residual HIV replication. Further work is needed to assess the role of these transporters in the penetration of ARVs in tissue macrophages.
Collapse
Affiliation(s)
- Tozammel M. D. Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Amélie Cattin
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
- Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Lee Winchester
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Courtney V. Fletcher
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Jean-Pierre Routy
- The Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Petronela Ancuta
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
- Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Human Parainfluenza Virus Type 2 V Protein Modulates Iron Homeostasis. J Virol 2021; 95:JVI.01861-20. [PMID: 33408172 DOI: 10.1128/jvi.01861-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Intracellular iron concentration is tightly controlled for cell viability. It is known to affect the growth of several viruses, but the molecular mechanisms are not well understood. We found that iron chelators inhibit growth of human parainfluenza virus type 2 (hPIV-2). Furthermore, infection with hPIV-2 alters ferritin localization from granules to a homogenous distribution within cytoplasm of iron-stimulated cells. The V protein of hPIV-2 interacts with ferritin heavy chain 1 (FTH1), a ferritin subunit. It also binds to nuclear receptor coactivator 4 (NCOA4), which mediates autophagic degradation of ferritin, so-called ferritinophagy. V protein consequently interferes with interaction between FTH1 and NCOA4. hPIV-2 growth is inhibited in FTH1 knockdown cell line where severe hPIV-2-induced apoptosis is shown. In contrast, NCOA4 knockdown results in the promotion of hPIV-2 growth and limited apoptosis. Our data collectively suggest that hPIV-2 V protein inhibits FTH1-NCOA4 interaction and subsequent ferritinophagy. This iron homeostasis modulation allows infected cells to avoid apoptotic cell death, resulting in effective growth of hPIV-2.IMPORTANCE hPIV-2 V protein interferes with interaction between FTH1 and NCOA4 and inhibits NCOA4-mediated ferritin degradation, leading to the inhibition of iron release to the cytoplasm. This iron homeostasis modulation allows infected cells to avoid apoptotic cell death, resulting in effective growth of hPIV-2.
Collapse
|
14
|
Isaguliants M, Bayurova E, Avdoshina D, Kondrashova A, Chiodi F, Palefsky JM. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel) 2021; 13:305. [PMID: 33467638 PMCID: PMC7830613 DOI: 10.3390/cancers13020305] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.
Collapse
Affiliation(s)
- Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ekaterina Bayurova
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Darya Avdoshina
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Alla Kondrashova
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, CA 94117, USA;
| |
Collapse
|
15
|
Yang S, Deng X, Zhang T, Xiao Y, Peng L, Li L, He X, Wei Y, Liu L, Cao H, Long B, Huang S. [SBi4211 alleviates gp120-induced central nervous system injury via inhibiting S100B/ RAGE]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1693-1702. [PMID: 33380406 DOI: 10.12122/j.issn.1673-4254.2020.12.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the protective effect of SBi4211 (heptamidine), an inhibitor of S100B, against central nervous system injury induced by HIV-1 envelope protein gp120. METHODS In an in vitro model, U251 glioma cells were co-cultured with SH-SY5Y cells to explore the protective effect of SBi4211 against gp120-induced central nervous system injury. In a gp120 transgenic (Tg) mouse model (8 months old) mimicking HIV-associated neurocognitive disorder (HAND), the effect of treatment with gp120 or both gp120 and SBi4211 on neuronal activity and apoptosis were assessed using Cell Counting kit-8 (CCK-8) and flow cytometry. ELISA, Western blotting and immunohistochemistry were used to determine the expression levels of S100B, RAGE, GFAP, NeuN, Syn, MAP-2 and the inflammatory factors IL-6 and TNF-α. RESULTS In the cell co-culture system, SBi4211 treatment significantly inhibited gp120-induced expression of S100B, RAGE and GFAP in U251 cells (P < 0.001), reduced the levels of inflammatory factors iNOS, IL-6 and TNF-α (P < 0.001) and enhanced the expressions of neuron-related proteins NeuN, Syn and MAP-2 (P < 0.001). In the transgenic mouse model, SBi4211 treatment significantly reduced the expressions of S100B, RAGE and inflammation levels (P < 0.05), inhibited the activation of astrocytes in the brain, and maintained the integrity of the neurons (P < 0.05). CONCLUSIONS SBi4211 can protect neurons from gp120-induced neurotoxicity possibly by inhibiting the S100B/ RAGE-mediated signaling pathway.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyan Deng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Tiesong Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China
| | - Yi Xiao
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Liang Peng
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yi Wei
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Liqun Liu
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Beiguo Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shenghe Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Ellis RJ, Moore DJ, Sundermann EE, Heaton RK, Mehta S, Hulgan T, Samuels D, Fields JA, Letendre SL. Nucleic acid oxidation is associated with biomarkers of neurodegeneration in CSF in people with HIV. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e902. [PMID: 33055205 PMCID: PMC7577534 DOI: 10.1212/nxi.0000000000000902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine whether oxidative stress in virologically suppressed people with HIV (PWH) may contribute to or result from neurodegeneration, we measured 7,8-dihydro-8-oxoguanine (8-oxo-dG), a marker of DNA damage due to oxidative stress, and markers of age-related neurodegeneration, specifically, reduced levels of CSF Aβ-42, and elevated CSF total tau and neurofilament light (NFL). METHODS This cross-sectional study prospectively enrolled participants at 6 US centers in the CNS HIV Antiretroviral Effects Research study. Inclusion criteria included HIV+ with a plasma level of HIV RNA ≤50 copies/mL. Exclusions included significant CNS confounding conditions. Measurements of total tau and Aβ-42 were performed by bead suspension array. NFL and 8-oxo-dG were measured using ELISA. RESULTS Participants were 53 PWH, mean age 55 (±9.3) years, 19% women, and 48% non-Hispanic White. Higher 8-oxo-dG correlated with markers of AD-related neurodegeneration including lower CSF Aβ-42 (r = -0.34; p = 0.012) and higher CSF NFL (r = 0.39; p = 0.0091) and total tau (r = 0.6696; p < 0.0001). Relationships remained after adjusting for demographic variables. Levels of protein carbonyls, a marker of protein oxidation, were not related to neurodegeneration markers. CONCLUSIONS Among virologically suppressed PWH, nucleic acid oxidation was associated with standard CSF biomarkers of neurodegeneration. Potential sources of oxidative stress in PWH include low-level HIV replication, inflammation, mitochondrial dysfunction, and specific antiretroviral drugs. Results suggest that the higher levels of oxidative stress among PWH may play a role in neurodegeneration. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that among virologically suppressed PWH, nucleic acid oxidation is associated with standard CSF biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Ronald J Ellis
- From the Departments of Neurosciences and Psychiatry, University of California (R.J.E.), San Diego; Department of Psychiatry, University of California (D.J.M., E.E.S., R.K.H.), San Diego; Department of Medicine, University of California (S.M., T.H.), San Diego; Vanderbilt University (D.S., J.A.F.), Nashville, Tennessee; and Departments of Medicine and Psychiatry, University of California (S.L.L.), San Diego.
| | - David J Moore
- From the Departments of Neurosciences and Psychiatry, University of California (R.J.E.), San Diego; Department of Psychiatry, University of California (D.J.M., E.E.S., R.K.H.), San Diego; Department of Medicine, University of California (S.M., T.H.), San Diego; Vanderbilt University (D.S., J.A.F.), Nashville, Tennessee; and Departments of Medicine and Psychiatry, University of California (S.L.L.), San Diego
| | - Erin E Sundermann
- From the Departments of Neurosciences and Psychiatry, University of California (R.J.E.), San Diego; Department of Psychiatry, University of California (D.J.M., E.E.S., R.K.H.), San Diego; Department of Medicine, University of California (S.M., T.H.), San Diego; Vanderbilt University (D.S., J.A.F.), Nashville, Tennessee; and Departments of Medicine and Psychiatry, University of California (S.L.L.), San Diego
| | - Robert K Heaton
- From the Departments of Neurosciences and Psychiatry, University of California (R.J.E.), San Diego; Department of Psychiatry, University of California (D.J.M., E.E.S., R.K.H.), San Diego; Department of Medicine, University of California (S.M., T.H.), San Diego; Vanderbilt University (D.S., J.A.F.), Nashville, Tennessee; and Departments of Medicine and Psychiatry, University of California (S.L.L.), San Diego
| | - Sanjay Mehta
- From the Departments of Neurosciences and Psychiatry, University of California (R.J.E.), San Diego; Department of Psychiatry, University of California (D.J.M., E.E.S., R.K.H.), San Diego; Department of Medicine, University of California (S.M., T.H.), San Diego; Vanderbilt University (D.S., J.A.F.), Nashville, Tennessee; and Departments of Medicine and Psychiatry, University of California (S.L.L.), San Diego
| | - Todd Hulgan
- From the Departments of Neurosciences and Psychiatry, University of California (R.J.E.), San Diego; Department of Psychiatry, University of California (D.J.M., E.E.S., R.K.H.), San Diego; Department of Medicine, University of California (S.M., T.H.), San Diego; Vanderbilt University (D.S., J.A.F.), Nashville, Tennessee; and Departments of Medicine and Psychiatry, University of California (S.L.L.), San Diego
| | - David Samuels
- From the Departments of Neurosciences and Psychiatry, University of California (R.J.E.), San Diego; Department of Psychiatry, University of California (D.J.M., E.E.S., R.K.H.), San Diego; Department of Medicine, University of California (S.M., T.H.), San Diego; Vanderbilt University (D.S., J.A.F.), Nashville, Tennessee; and Departments of Medicine and Psychiatry, University of California (S.L.L.), San Diego
| | - Jerel A Fields
- From the Departments of Neurosciences and Psychiatry, University of California (R.J.E.), San Diego; Department of Psychiatry, University of California (D.J.M., E.E.S., R.K.H.), San Diego; Department of Medicine, University of California (S.M., T.H.), San Diego; Vanderbilt University (D.S., J.A.F.), Nashville, Tennessee; and Departments of Medicine and Psychiatry, University of California (S.L.L.), San Diego
| | - Scott L Letendre
- From the Departments of Neurosciences and Psychiatry, University of California (R.J.E.), San Diego; Department of Psychiatry, University of California (D.J.M., E.E.S., R.K.H.), San Diego; Department of Medicine, University of California (S.M., T.H.), San Diego; Vanderbilt University (D.S., J.A.F.), Nashville, Tennessee; and Departments of Medicine and Psychiatry, University of California (S.L.L.), San Diego
| |
Collapse
|
17
|
Whyte-Allman SK, Bendayan R. HIV-1 Sanctuary Sites-the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes. AAPS JOURNAL 2020; 22:118. [PMID: 32875457 DOI: 10.1208/s12248-020-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the treatment of human immunodeficiency virus-1 (HIV) infection with highly active antiretroviral drug therapy, the persistence of the virus in cellular and anatomic reservoirs is a major obstacle preventing total HIV eradication. Viral persistence could result from a variety of contributing factors including, but not limited to, non-adherence to treatment and adverse drug reactions, latently infected cells carrying replication-competent virus, drug-drug interactions, and inadequate antiretroviral drug (ARV) concentrations reached in several anatomic sites such as the brain, testis, and gut-associated lymphoid tissues. The distribution of ARVs at specific sites of infection is primarily dependent on drug physicochemical properties and drug plasma protein binding, as well as drug efflux, influx, and metabolic processes. A thorough understanding of the functional roles of drug transporters and metabolic enzymes in the disposition of ARVs in immune cell types and tissues that are characterized as HIV reservoirs and sanctuaries is critical to overcome the challenge of suboptimal drug distribution at sites of persistent HIV infection. This review summarizes the current knowledge related to the expression and function of drug transporters and metabolic enzymes in HIV cellular and anatomic reservoirs, and their potential contribution to drug-drug interactions and insufficient drug concentration at these sites.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
18
|
Huang Q, Wang X, Lin X, Zhang J, You X, Shao A. The Role of Transient Receptor Potential Channels in Blood-Brain Barrier Dysfunction after Ischemic Stroke. Biomed Pharmacother 2020; 131:110647. [PMID: 32858500 DOI: 10.1016/j.biopha.2020.110647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Stroke is the leading cause of long-term disability, demanding an ever-increasing need to find treatment. Transient receptor potential (TRP) channels are nonselective Ca2+-permeable channels, among which TRPC, TRPM, and TRPV are widely expressed in the brain. Dysfunction of the blood brain barrier (BBB) is a core feature of stroke and is associated with severity of injury. As studies have shown, TRP channels influence various neuronal functions by regulating the BBB. Here, we briefly review the role of TRP channel in the BBB dysfunction after stroke, and explore the therapeutic potential of TRP-targeted therapy.
Collapse
Affiliation(s)
- Qingxia Huang
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianyi Lin
- Department of anesthesiology, Sir run run shaw hospital, school of medicine, zhejiang university, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Brain Research Institute, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Xiangdong You
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Gil-Martins E, Barbosa DJ, Silva V, Remião F, Silva R. Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther 2020; 213:107554. [PMID: 32320731 DOI: 10.1016/j.pharmthera.2020.107554] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
ABC (ATP-binding cassette) transporters represent one of the largest and most diverse superfamily of proteins in living species, playing an important role in many biological processes such as cell homeostasis, cell signaling, drug metabolism and nutrient uptake. Moreover, using the energy generated from ATP hydrolysis, they mediate the efflux of endogenous and exogenous substrates from inside the cells, thereby reducing their intracellular accumulation. At present, 48 ABC transporters have been identified in humans, which were classified into 7 different subfamilies (A to G) according to their phylogenetic analysis. Nevertheless, the most studied members with importance in drug therapeutic efficacy and toxicity include P-glycoprotein (P-gp), a member of the ABCB subfamily, the multidrug-associated proteins (MPRs), members of the ABCC subfamily, and breast cancer resistance protein (BCRP), a member of the ABCG subfamily. They exhibit ubiquitous expression throughout the human body, with a special relevance in barrier tissues like the blood-brain barrier (BBB). At this level, they play a physiological function in tissue protection by reducing or limiting the brain accumulation of neurotoxins. Furthermore, dysfunction of ABC transporters, at expression and/or activity level, has been associated with many neurological diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis. Additionally, these transporters are strikingly associated with the pharmacoresistance to central nervous system (CNS) acting drugs, because they contribute to the decrease in drug bioavailability. This article reviews the signaling pathways that regulate the expression and activity of P-gp, BCRP and MRPs subfamilies of transporters, with particular attention at the BBB level, and their mis-regulation in neurological disorders.
Collapse
Affiliation(s)
- Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
20
|
HIV gp120 Protein Increases the Function of Connexin 43 Hemichannels and Pannexin-1 Channels in Astrocytes: Repercussions on Astroglial Function. Int J Mol Sci 2020; 21:ijms21072503. [PMID: 32260308 PMCID: PMC7178136 DOI: 10.3390/ijms21072503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
At least half of human immunodeficiency virus (HIV)-infected individuals suffer from a wide range of cognitive, behavioral and motor deficits, collectively known as HIV-associated neurocognitive disorders (HAND). The molecular mechanisms that amplify damage within the brain of HIV-infected individuals are unknown. Recently, we described that HIV augments the opening of connexin-43 (Cx43) hemichannels in cultured human astrocytes, which result in the collapse of neuronal processes. Whether HIV soluble viral proteins such as gp120, can regulate hemichannel opening in astrocytes is still ignored. These channels communicate the cytosol with the extracellular space during pathological conditions. We found that gp120 enhances the function of both Cx43 hemichannels and pannexin-1 channels in mouse cortical astrocytes. These effects depended on the activation of IL-1β/TNF-α, p38 MAP kinase, iNOS, cytoplasmic Ca2+ and purinergic signaling. The gp120-induced channel opening resulted in alterations in Ca2+ dynamics, nitric oxide production and ATP release. Although the channel opening evoked by gp120 in astrocytes was reproduced in ex vivo brain preparations, these responses were heterogeneous depending on the CA1 region analyzed. We speculate that soluble gp120-induced activation of astroglial Cx43 hemichannels and pannexin-1 channels could be crucial for the pathogenesis of HAND.
Collapse
|
21
|
Liu X, Yang W, Guo H, Ma Y. HIV-1 Tat protein potentiated ABCC-mediated efflux in Jurkat cells. ACTA ACUST UNITED AC 2020; 75:97-101. [PMID: 34432966 DOI: 10.1515/znc-2019-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Xianfang Liu
- School of Pharmacy, Nankai University, Tianjin 300353, China
| | - Wengen Yang
- School of Pharmacy, Nankai University, Tianjin 300353, China
| | - Han Guo
- School of Pharmacy, Nankai University, Tianjin 300353, China
| | - Yonggang Ma
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| |
Collapse
|
22
|
Nitrosative Stress Is Associated with Dopaminergic Dysfunction in the HIV-1 Transgenic Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 189:1375-1385. [PMID: 31230667 DOI: 10.1016/j.ajpath.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
Advances in antiretroviral therapy have resulted in significantly decreased HIV-related mortality. HIV-associated neurocognitive disorders, however, continue to be a major problem in infected patients. The neuropathology underlying HIV-associated neurocognitive disorders has not been well characterized, and evidence suggests different contributing mechanisms. One potential mechanism is the induction of oxidative stress. Using the HIV-1 transgenic (Tg) rat model of HIV, we found increased striatal NADPH oxidase-4 and neuronal nitric oxide synthase expression in the adult (7- to 9-month-old) Tg rat compared with control rats but not in the young (1-month-old) Tg rats. This was accompanied by increased 3-nitrotyrosine (3-NT) immunostaining in the adult Tg rats, which worsened significantly in the old Tg rats (18 to 20 months old). There was, however, no concurrent induction of the antioxidant systems because there was no change in the expression of the nuclear factor-erythroid 2-related factor 2 and its downstream targets (thioredoxin and glutathione antioxidant systems). Colocalization of 3-NT staining with neurofilament proteins and evidence of decreased tyrosine hydroxylase and dopamine transporter expression in the old rats support dopaminergic involvement. We conclude that the HIV-1 Tg rat brain shows evidence of nitrosative stress without appropriate oxidation-reduction adaptation, whereas 3-NT modification of striatal neurofilament proteins likely points to the ensuing dopaminergic neuronal loss and dysfunction in the aging HIV-1 Tg rat.
Collapse
|
23
|
Omeragic A, Saikali MF, Currier S, Volsky DJ, Cummins CL, Bendayan R. Selective peroxisome proliferator-activated receptor-gamma modulator, INT131 exhibits anti-inflammatory effects in an EcoHIV mouse model. FASEB J 2019; 34:1996-2010. [PMID: 31907999 DOI: 10.1096/fj.201901874r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Despite the use of antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments, that is, HIV-1-associated neurocognitive disorders remain prevalent potentially due to persistent viral replication, production of viral proteins, associated brain inflammation or in certain instances, antiretroviral neurotoxicity. Cellular targets in the brain include microglia which in response to infection release inflammatory markers and viral proteins. Evidence suggests that PPARγ agonists exert anti-inflammatory properties in neurological disorders. However, these agonists namely, thiazolidinediones have limited use in the clinic due to reported adverse side effects. INT131 is a novel non-thiazolidinedione compound that belongs to a new class of drugs known as selective PPARγ modulators. INT131 is considered to have a safer profile; however, its neuroprotective role in vivo is not known.The goal of this study was to examine the effect of INT131 in the context of EcoHIV-induced inflammation in vitro, in primary cultures of mouse glial cells and in vivo, in a mouse model of EcoHIV-associated brain inflammation, as well as characterize its pharmacokinetic properties and brain penetration. In primary cultures of glial cells and in the in vivo mouse model, EcoHIV exposure resulted in a significant elevation of inflammatory markers such as TNFα, IL-1β, CCL3, and C3 which were attenuated with INT131 treatment. Pharmacokinetic analyses revealed that INT131 penetrates into the brain with a brain to blood partition ratio Kp value of 8.5%. Overall, this is the first report to demonstrate that INT131 could be a potential candidate for the treatment of HIV-1-associated brain inflammation.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Sydney Currier
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David J Volsky
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Omeragic A, Kara-Yacoubian N, Kelschenbach J, Sahin C, Cummins CL, Volsky DJ, Bendayan R. Peroxisome Proliferator-Activated Receptor-gamma agonists exhibit anti-inflammatory and antiviral effects in an EcoHIV mouse model. Sci Rep 2019; 9:9428. [PMID: 31263138 PMCID: PMC6603270 DOI: 10.1038/s41598-019-45878-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The widespread use of combination antiretroviral therapy (cART) has resulted in significantly reduced deaths from HIV-1 associated complications and opportunistic infections. However, it is estimated that up to 50% of HIV-1 infected individuals still develop HIV-1 associated neurocognitive disorders (HAND). With no treatment currently available for patients, there is a critical need to identify therapeutic approaches that can treat this disorder. Evidence suggests that targeting Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) can be anti-inflammatory in neurological disorders. Here we show that treatment with PPARγ agonists (rosiglitazone or pioglitazone) in primary cultures of mouse glial cells reversed EcoHIV-induced inflammatory genes (TNFα, IL-1β, CCL2, CCL3, CXCL10) and indicator of oxidative stress (iNOS). Furthermore, in vivo, mice administered with EcoHIV through intracranial injection resulted in upregulation of inflammatory genes (TNFα, IL-1β, IFNγ, CCL2, CCL3, CXCL10) and oxidative stress marker (iNOS) in the brain which was reversed through intraperitoneal administration of PPARγ agonists (rosiglitazone or pioglitazone). Finally, we demonstrated that treatment with these compounds in vivo reduced EcoHIV p24 protein burden in the brain. Our results suggest that treatment with PPARγ agonists are anti-inflammatory and antiviral in an in vivo model of EcoHIV infection. These drugs hold promise as potential candidates for HAND treatment in the future.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Nareg Kara-Yacoubian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Jennifer Kelschenbach
- Department of Medicine - Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - David J Volsky
- Department of Medicine - Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Fields JA, Ellis RJ. HIV in the cART era and the mitochondrial: immune interface in the CNS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:29-65. [PMID: 31208526 DOI: 10.1016/bs.irn.2019.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) persist in the era of effective combined antiretroviral therapy (cART). A large body of literature suggests that mitochondrial dysfunction is a prospective etiology of HAND in the cART era. While viral load is often suppressed and the immune system remains intact in HIV+ patients on cART, evidence suggests that the central nervous system (CNS) acts as a reservoir for virus and low-level expression of viral proteins, which interact with mitochondria. In particular, the HIV proteins glycoprotein 120, transactivator of transcription, viral protein R, and negative factor have each been linked to mitochondrial dysfunction in the brain. Moreover, cART drugs have also been shown to have detrimental effects on mitochondrial function. Here, we review the evidence generated from human studies, animal models, and in vitro models that support a role for HIV proteins and/or cART drugs in altered production of adenosine triphosphate, mitochondrial dynamics, mitophagy, calcium signaling and apoptosis, oxidative stress, mitochondrial biogenesis, and immunometabolism in the CNS. When insightful, evidence of HIV or cART-induced mitochondrial dysfunction in the peripheral nervous system or other cell types is discussed. Lastly, therapeutic approaches to targeting mitochondrial dysfunction have been summarized with the aim of guiding new investigations and providing hope that mitochondrial-based drugs may provide relief for those suffering with HAND.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
26
|
Liu S, Ye T, Li Z, Li J, Jamil AM, Zhou Y, Hua G, Liang A, Deng T, Yang L. Identifying Hub Genes for Heat Tolerance in Water Buffalo ( Bubalus bubalis) Using Transcriptome Data. Front Genet 2019; 10:209. [PMID: 30918514 PMCID: PMC6424900 DOI: 10.3389/fgene.2019.00209] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022] Open
Abstract
Heat stress has a detrimental effect on the physiological and production performance of buffaloes. Elucidating the underlying mechanisms of heat stress is challenging, therefore identifying candidate genes is urgent and necessary. We evaluated the response of buffaloes (n = 30) to heat stress using the physiological parameters, ELISA indexes, and hematological parameters. We then performed mRNA and microRNA (miRNA) expression profiles analysis between heat tolerant (HT, n = 4) and non-heat tolerant (NHT, n = 4) buffaloes, as well as the specific modules, significant genes, and miRNAs related to the heat tolerance identified using the weighted gene co-expression network analysis (WGCNA). The results indicated that the buffaloes in HT had a significantly lower rectal temperature (RT) and respiratory rate (RR) and displayed a higher plasma heat shock protein (HSP70 and HSP90) and cortisol (COR) levels than those of NHT buffaloes. Differentially expressed analysis revealed a total of 753 differentially expressed genes (DEGs) and 16 differentially expressed miRNAs (DEmiRNAs) were identified between HT and NHT. Using the WGCNA analysis, these DEGs assigned into 5 modules, 4 of which were significantly correlation with the heat stress indexes. Interestingly, 158 DEGs associated with heat tolerance in the turquoise module were identified, 35 of which were found within the protein-protein interaction network. Several hub genes (IL18RAP, IL6R, CCR1, PPBP, IL1B, and IL1R1) were identified that significantly enriched in the Cytokine-cytokine receptor interaction. The findings may help further elucidate the underlying mechanisms of heat tolerance in buffaloes.
Collapse
Affiliation(s)
- Shenhe Liu
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingzhu Ye
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zipeng Li
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- Department of Immunology, Zunyi Medical College, Zunyi, China
| | - Ahmad Muhammad Jamil
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhou
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guohua Hua
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aixin Liang
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Liguo Yang
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Anderson SM, Naidoo RN, Pillay Y, Tiloke C, Muttoo S, Asharam K, Chuturgoon AA. HIV induced nitric oxide and lipid peroxidation, influences neonatal birthweight in a South African population. ENVIRONMENT INTERNATIONAL 2018; 121:1-12. [PMID: 30170231 DOI: 10.1016/j.envint.2018.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
HIV has been implicated in adverse birth outcomes, due to increased oxidative stress and inflammation. In addition, HIV has been reported to increase nitric oxide levels. Therefore the combined exposures to HIV and traffic-related air pollution, within South Durban, South Africa (SA), may lead to adverse birth outcomes. However, the exact mechanism is still unknown; this study aimed to identify a potential mechanism. First, the influence of HIV on oxidative and nitrosative stress markers in pregnant women was assessed. Secondly, the effect of these stress makers and exposure to oxides of nitrogen (NOx) on neonatal birthweight (BW) was evaluated. Finally, the effect HIV and traffic-related pollution exposure has on the oxidative and endoplasmic profile and epigenetic regulation of Nrf2-Keap1 pathway by miR-144 and miR-28 in pregnant women was determined. Women, in their third trimester with singleton pregnancies, who were HIV+ and HIV-, were recruited from Durban, SA. Biomarker levels of serum nitrites/nitrates (NO) and malondialdehyde (MDA) were analysed and mRNA expression levels of oxidative and endoplasmic stress response genes were assessed. Land regression modelling was performed to determine NOx exposure levels. HIV exposure during pregnancy was associated with increased NO levels. NO was shown to reduce neonatal BW. NO and MDA was found to reciprocally increase each other, with HIV differentially influencing MDA's effect on BW. HIV down-regulated miR-144 which was negatively associated with Nrf2, suggesting a potential mechanism for HIV associated chronic oxidative stress. This study proposes that NO plays a key role in neonatal BW reduction in response to HIV and traffic-related air pollution.
Collapse
Affiliation(s)
- Samantha M Anderson
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Yashodani Pillay
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Charlette Tiloke
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Sheena Muttoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Kareshma Asharam
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
28
|
Ojeda DS, Grasso D, Urquiza J, Till A, Vaccaro MI, Quarleri J. Cell Death Is Counteracted by Mitophagy in HIV-Productively Infected Astrocytes but Is Promoted by Inflammasome Activation Among Non-productively Infected Cells. Front Immunol 2018; 9:2633. [PMID: 30515154 PMCID: PMC6255949 DOI: 10.3389/fimmu.2018.02633] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
Despite more than 30 years of extensive research efforts, a complete understanding of the neurological consequences of HIV central nervous system (CNS) infection remains elusive. HIV is not only able to establish a viral reservoir in the CNS but also to initiate manifestation of neurodegenerative diseases. These neurological disorders may arise because of virus-induced activation of the inflammasome in CNS cells, including astrocytes. Nevertheless, in some productive viral infection scenarios, selective autophagy may reduce inflammation through mitochondrial degradation ("mitophagy") to counteract inflammasome activation. In this study, using cultured human astrocytes, we demonstrate that-depending on the HIV infection outcome-cells may resist death, or succumb by inflammasome activation when viral infection is productive or abortive, respectively. Cells productively infected with HIV were able to attenuate both mitochondrial ROS production and mitochondrial membrane potential dissipation, thus exhibiting cell death resistance. Interestingly, mitochondrial injury was counteracted by increasing the autophagic flux and by activating mitophagy. Conversely, astrocytes exposed to HIV in an abortive scenario showed prominent mitochondrial damage, inflammasome activation, and cell death. This bystander effect occurred after cell-to-cell contact with HIV-productively infected astrocytes. In summary, we demonstrate a tight functional crosstalk between viral infection mode, inflammasome activation, autophagy pathways and cell fate in the context of HIV infection. Moreover, mitophagy is crucial for cell death resistance in HIV-productively infected astrocytes, but its impairment may favor inflammasome-mediated cell death in abortively infected cells.
Collapse
Affiliation(s)
- Diego S Ojeda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Grasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular Departamento de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Urquiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andreas Till
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany.,Life and Brain GmbH, Bonn, Germany
| | - María Inés Vaccaro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular Departamento de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Quarleri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
29
|
Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 2018; 315:C343-C356. [PMID: 29949404 DOI: 10.1152/ajpcell.00095.2018] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely controls cerebral homeostasis. It also plays a central role in the regulation of blood-to-brain flux of endogenous and exogenous xenobiotics and associated metabolites. This is accomplished by molecular characteristics of brain microvessel endothelial cells such as tight junction protein complexes and functional expression of influx and efflux transporters. One of the pathophysiological features of ischemic stroke is disruption of the BBB, which significantly contributes to development of brain injury and subsequent neurological impairment. Biochemical characteristics of BBB damage include decreased expression and altered organization of tight junction constituent proteins as well as modulation of functional expression of endogenous BBB transporters. Therefore, there is a critical need for development of novel therapeutic strategies that can protect against BBB dysfunction (i.e., vascular protection) in the setting of ischemic stroke. Such strategies include targeting tight junctions to ensure that they maintain their correct structure or targeting transporters to control flux of physiological substrates for protection of endothelial homeostasis. In this review, we will describe the pathophysiological mechanisms in cerebral microvascular endothelial cells that lead to BBB dysfunction following onset of stroke. Additionally, we will utilize this state-of-the-art knowledge to provide insights on novel pharmacological strategies that can be developed to confer BBB protection in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Dinesh Tripathi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
30
|
Ramezani A, Nahad MP, Faghihloo E. The role of Nrf2 transcription factor in viral infection. J Cell Biochem 2018; 119:6366-6382. [DOI: 10.1002/jcb.26897] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ali Ramezani
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Hepatitis Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mehdi Parsa Nahad
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ebrahim Faghihloo
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
31
|
Brzica H, Abdullahi W, Reilly BG, Ronaldson PT. A Simple and Reproducible Method to Prepare Membrane Samples from Freshly Isolated Rat Brain Microvessels. J Vis Exp 2018. [PMID: 29782001 DOI: 10.3791/57698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic barrier tissue that responds to various pathophysiological and pharmacological stimuli. Such changes resulting from these stimuli can greatly modulate drug delivery to the brain and, by extension, cause considerable challenges in the treatment of central nervous system (CNS) diseases. Many BBB changes that affect pharmacotherapy, involve proteins that are localized and expressed at the level of endothelial cells. Indeed, such knowledge on BBB physiology in health and disease has sparked considerable interest in the study of these membrane proteins. From a basic science research standpoint, this implies a requirement for a simple but robust and reproducible method for isolation of microvessels from brain tissue harvested from experimental animals. In order to prepare membrane samples from freshly isolated microvessels, it is essential that sample preparations be enriched in endothelial cells but limited in the presence of other cell types of the neurovascular unit (i.e., astrocytes, microglia, neurons, pericytes). An added benefit is the ability to prepare samples from individual animals in order to capture the true variability of protein expression in an experimental population. In this manuscript, details regarding a method that is utilized for isolation of rat brain microvessels and preparation of membrane samples are provided. Microvessel enrichment, from samples derived, is achieved by using four centrifugation steps where dextran is included in the sample buffer. This protocol can easily be adapted by other laboratories for their own specific applications. Samples generated from this protocol have been shown to yield robust experimental data from protein analysis experiments that can greatly aid the understanding of BBB responses to physiological, pathophysiological, and pharmacological stimuli.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson;
| |
Collapse
|
32
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
33
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 958] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
34
|
P-glycoprotein (ABCB1) and Oxidative Stress: Focus on Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7905486. [PMID: 29317984 PMCID: PMC5727796 DOI: 10.1155/2017/7905486] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022]
Abstract
ATP-binding cassette (ABC) transporters, in particular P-glycoprotein (encoded by ABCB1), are important and selective elements of the blood-brain barrier (BBB), and they actively contribute to brain homeostasis. Changes in ABCB1 expression and/or function at the BBB may not only alter the expression and function of other molecules at the BBB but also affect brain environment. Over the last decade, a number of reports have shown that ABCB1 actively mediates the transport of beta amyloid (Aβ) peptide. This finding has opened up an entirely new line of research in the field of Alzheimer's disease (AD). Indeed, despite intense research efforts, AD remains an unsolved pathology and effective therapies are still unavailable. Here, we review the crucial role of ABCB1 in the Aβ transport and how oxidative stress may interfere with this process. A detailed understanding of ABCB1 regulation can provide the basis for improved neuroprotection in AD and also enhanced therapeutic drug delivery to the brain.
Collapse
|
35
|
Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol 2017; 101:13-36. [PMID: 29129736 DOI: 10.1016/j.exger.2017.10.029] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging brain. Brain aging is significantly associated with mitochondrial dysfunction. This is characterized by a decrease in the activity of respiratory chain enzymes and ATP production, and increased free radical generation, mitochondrial deoxyribonucleic acid (DNA) mutations, and impaired mitochondrial structures. To get a better understanding of aging and to prevent its effects on many organs, chronic systemic administration of D-galactose was used to artificially create brain senescence in animal models and established to be beneficial for studies of anti-aging therapeutic interventions. Several studies have shown that D-galactose-induced brain aging which does so not only by causing mitochondrial dysfunction, but also by increasing oxidative stress, inflammation, and apoptosis, as well as lowering brain-derived neurotrophic factors. All of these defects finally lead to cognitive decline. Various therapeutic approaches which act on mitochondria and cognition were evaluated to assess their effectiveness in the battle to reverse brain aging. The aim of this article is to comprehensively summarize and discuss the underlying mechanisms involved in D-galactose-induced brain aging, particularly as regards alterations in brain mitochondria and cognitive function. In addition, the aim is to summarize the different therapeutic approaches which have been utilized to address D-galactose-induced brain aging.
Collapse
|
36
|
Peroxisome proliferator-activated receptor-gamma: potential molecular therapeutic target for HIV-1-associated brain inflammation. J Neuroinflammation 2017; 14:183. [PMID: 28886715 PMCID: PMC5591559 DOI: 10.1186/s12974-017-0957-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Despite the use of combination antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments remain prevalent due to persistent viral replication and associated brain inflammation. Primary cellular targets of HIV-1 in the brain are macrophages, microglia, and to a certain extent astrocytes which in response to infection release inflammatory markers, viral proteins [i.e., glycoprotein 120 (gp120)] and exhibit impaired glutamate uptake. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. Compelling evidence suggests that PPARγ exerts anti-inflammatory properties in neurological disorders. The goal of this study was to examine the role of PPARγ in the context of HIV-1ADA gp120-induced inflammation in vitro, in primary cultures of rat astrocytes and microglia, and in vivo, in a rodent model of HIV-1ADA gp120-associated brain inflammation. Methods Primary mixed cultures of rat astrocytes and microglia were treated with PPARγ agonists (rosiglitazone or pioglitazone) and exposed to HIV-1ADA gp120. Inflammatory cytokines and indicator of oxidative stress response (TNFα, IL-1β, iNOS) were measured using qPCR, and glutamate transporter (GLT-1) was quantified by immunoblotting. In vivo, rats were administered an intracerebroventricular injection of HIV-1ADA gp120 and an intraperitoneal injection of PPARγ agonist (rosiglitazone) or co-administration with PPARγ antagonist (GW9662). qPCR and immunoblotting analyses were applied to measure inflammatory markers, GLT-1 and PPARγ. Results In primary mixed cultures of rat astrocytes and microglia, HIV-1ADA gp120 exposure resulted in a significant elevation of inflammatory markers and a decrease in GLT-1 expression which were significantly attenuated with rosiglitazone or pioglitazone treatment. Similarly, in vivo, treatment with rosiglitazone reversed the gp120-mediated inflammatory response and downregulation of GLT-1. Furthermore, we demonstrated that the anti-inflammatory effects of PPARγ agonist rosiglitazone were mediated through inhibition of NF-κB. Conclusion Our data demonstrate that gp120 can induce an inflammatory response and decrease expression of GLT-1 in the brain in vitro and in vivo. We have also successfully shown that these effects can be reversed by treatment with PPARγ agonists, rosiglitazone or pioglitazone. Together our data suggest that targeting PPARγ signaling may provide an option for preventing/treating HIV-associated brain inflammation. Electronic supplementary material The online version of this article (10.1186/s12974-017-0957-8) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Brzica H, Abdullahi W, Ibbotson K, Ronaldson PT. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke. J Cent Nerv Syst Dis 2017; 9:1179573517693802. [PMID: 28469523 PMCID: PMC5392046 DOI: 10.1177/1179573517693802] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/22/2017] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA). A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity) greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB) provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps) and organic cation transporters (Octs). In addition, multidrug resistance proteins (Mrps) are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Kathryn Ibbotson
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
38
|
Levast B, Barblu L, Coutu M, Prévost J, Brassard N, Peres A, Stegen C, Madrenas J, Kaufmann DE, Finzi A. HIV-1 gp120 envelope glycoprotein determinants for cytokine burst in human monocytes. PLoS One 2017; 12:e0174550. [PMID: 28346521 PMCID: PMC5367833 DOI: 10.1371/journal.pone.0174550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/10/2017] [Indexed: 11/26/2022] Open
Abstract
The first step of HIV infection involves the interaction of the gp120 envelope glycoprotein to its receptor CD4, mainly expressed on CD4+ T cells. Besides its role on HIV-1 entry, the gp120 has been shown to be involved in the production of IL-1, IL-6, CCL20 and other innate response cytokines by bystander, uninfected CD4+ T cells and monocytes. However, the gp120 determinants involved in these functions are not completely understood. Whether signalling leading to cytokine production is due to CD4 or other receptors is still unclear. Enhanced chemokine receptor binding and subsequent clustering receptors may lead to cytokine production. By using a comprehensive panel of gp120 mutants, here we show that CD4 binding is mandatory for cytokine outburst in monocytes. Our data suggest that targeting monocytes in HIV-infected patients might decrease systemic inflammation and the potential tissue injury associated with the production of inflammatory cytokines. Understanding how gp120 mediates a cytokine burst in monocytes might help develop new approaches to improve the chronic inflammation that persists in these patients despite effective suppression of viremia by antiretroviral therapy.
Collapse
Affiliation(s)
- Benoît Levast
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
| | - Lucie Barblu
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
| | - Mathieu Coutu
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Brassard
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
| | - Adam Peres
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
| | - Camille Stegen
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
| | - Joaquín Madrenas
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Ibbotson K, Yell J, Ronaldson PT. Nrf2 signaling increases expression of ATP-binding cassette subfamily C mRNA transcripts at the blood-brain barrier following hypoxia-reoxygenation stress. Fluids Barriers CNS 2017; 14:6. [PMID: 28298215 PMCID: PMC5353788 DOI: 10.1186/s12987-017-0055-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Background Strategies to maintain BBB integrity in diseases with a hypoxia/reoxygenation (H/R) component involve preventing glutathione (GSH) loss from endothelial cells. GSH efflux transporters include multidrug resistance proteins (Mrps). Therefore, characterization of Mrp regulation at the BBB during H/R is required to advance these transporters as therapeutic targets. Our goal was to investigate, in vivo, regulation of Abcc1, Abcc2, and Abcc4 mRNA expression (i.e., genes encoding Mrp isoforms that transport GSH) by nuclear factor E2-related factor (Nrf2) using a well-established H/R model. Methods Female Sprague–Dawley rats (200–250 g) were subjected to normoxia (Nx, 21% O2, 60 min), hypoxia (Hx, 6% O2, 60 min) or H/R (6% O2, 60 min followed by 21% O2, 10 min, 30 min, or 1 h) or were treated with the Nrf2 activator sulforaphane (25 mg/kg, i.p.) for 3 h. Abcc mRNA expression in brain microvessels was determined using quantitative real-time PCR. Nrf2 signaling activation was examined using an electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) respectively. Data were expressed as mean ± SD and analyzed via ANOVA followed by the post hoc Bonferroni t test. Results We observed increased microvascular expression of Abcc1, Abcc2, and Abcc4 mRNA following H/R treatment with reoxygenation times of 10 min, 30 min, and 1 h and in animals treated with sulforaphane. Using a biotinylated Nrf2 probe, we observed an upward band shift in brain microvessels isolated from H/R animals or animals administered sulforaphane. ChIP studies showed increased Nrf2 binding to antioxidant response elements on Abcc1, Abcc2, and Abcc4 promoters following H/R or sulforaphane treatment, suggesting a role for Nrf2 signaling in Abcc gene regulation. Conclusions Our data show increased Abcc1, Abcc2, and Abcc4 mRNA expression at the BBB in response to H/R stress and that Abcc gene expression is regulated by Nrf2 signaling. Since these Mrp isoforms transport GSH, these results may point to endogenous transporters that can be targeted for BBB protection during H/R stress. Experiments are ongoing to examine functional implications of Nrf2-mediated increases in Abcc transcript expression. Such studies will determine utility of targeting Mrp isoforms for BBB protection in diseases with an H/R component.
Collapse
Affiliation(s)
- Kathryn Ibbotson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1295 N. Martin Avenue, P.O. Box 210202, Tucson, 85721, AZ, USA
| | - Joshua Yell
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA.
| |
Collapse
|
40
|
Ghoneim RH, Kojovic D, Piquette-Miller M. Impact of endotoxin on the expression of drug transporters in the placenta of HIV-1 transgenic (HIV-Tg) rats. Eur J Pharm Sci 2017; 102:94-102. [PMID: 28274777 DOI: 10.1016/j.ejps.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Inflammatory responses in HIV (+) patients may be exacerbated due to reports of subclinical endotoxemia and existing immune dysregulation. As inflammation has been reported to mediate changes in the expression of transporters, this could be potentiated in pregnant HIV (+) women. Similar to humans, the HIV-Tg rat model develops immune dysregulation and chronic AIDS-like conditions. Our objective was to examine the expression of placental drug transporters in HIV-Tg rats in response to low-dose endotoxin. METHODS Pregnant HIV-Tg rats or wild-type littermates (WT) were treated with low dose bacterial endotoxin 0.1mg/kg (n=8) or 0.25mg/kg (n=4-6) on GD18 and placentas were harvested 18h later. Placental and hepatic expression of transporters and cytokines were examined using qRT-PCR and Western blotting. RESULTS As compared to WT, endotoxin administration increased the hepatic and placental expression of IL-6 and TNF-α to a greater extent in HIV-Tg rats (p<0.05). The placental mRNA and protein expression of Abcb1a and Slco2b1 was significantly decreased in endotoxin-treated HIV-Tg but not WT rats and downregulation of Slco4a1 mRNA was more pronounced in the HIV-Tg group (p<0.05). These changes significantly correlated with the placental expression of pro-inflammatory cytokines. Abcc3 mRNA expression was increased in the placenta of endotoxin treated WT rats only, while placental expression of Abcc1, Abcc2 and Abcc4 was not significantly affected in both WT and HIV rats. Endotoxin imposed a pronounced downregulation in the hepatic expression of Abcb1a, Abcc2, Abcc4, Abcg2, Slco1a1, Slco1b2 and Slc29a1 in both HIV-Tg and WT rats; however, Abcb1b expression was increased in HIV but not WT rats. CONCLUSION Our results indicate that low-dose endotoxin resulted in an augmented inflammatory response in HIV-Tg rats accompanied with significant changes in the placental expression of several drug transporters. Our data suggests that subclinical endotoxemia and other co-existing infections may alter the placental transfer of drugs in the HIV population.
Collapse
Affiliation(s)
- Ragia H Ghoneim
- Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Dea Kojovic
- Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | | |
Collapse
|
41
|
Grewal GK, Kukal S, Kanojia N, Saso L, Kukreti S, Kukreti R. Effect of Oxidative Stress on ABC Transporters: Contribution to Epilepsy Pharmacoresistance. Molecules 2017; 22:molecules22030365. [PMID: 28264441 PMCID: PMC6155434 DOI: 10.3390/molecules22030365] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a neurological disorder affecting around 1%–2% of population worldwide and its treatment includes use of antiepileptic drugs to control seizures. Failure to respond to antiepileptic drug therapy is a major clinical problem and over expression of ATP-binding cassette transporters is considered one of the major reasons for pharmacoresistance. In this review, we have summarized the regulation of ABC transporters in response to oxidative stress due to disease and antiepileptic drugs. Further, ketogenic diet and antioxidants were examined for their role in pharmacoresistance. The understanding of signalling pathways and mechanism involved may help in identifying potential therapeutic targets and improving drug response.
Collapse
Affiliation(s)
- Gurpreet Kaur Grewal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Samiksha Kukal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Neha Kanojia
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India.
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| |
Collapse
|
42
|
Cao L, Fu M, Kumar S, Kumar A. Methamphetamine potentiates HIV-1 gp120-mediated autophagy via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death Dis 2016; 7:e2425. [PMID: 27763640 PMCID: PMC5133984 DOI: 10.1038/cddis.2016.317] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH), a commonly used controlled substance, is known to exacerbate neuropathological dysfunction in HIV-infected individuals. The neuropathological manifestation results from cell death or dysfunction in the central nervous system (CNS) wherein autophagy is expected to have an important role. Autophagy is generally considered protective during deprivation/stress. However, excessive autophagy can be destructive, leading to autophagic cell death. This study was designed to investigate if METH and HIV-1 gp120 interact to induce autophagy in SVGA astrocytes, and whether autophagy is epiphenomenal or it has a role in METH- and gp120-induced cytotoxicity. We found that METH and gp120 IIIb caused an increase in LC3II level in astrocytes in a dose- and time-dependent manner, and the level of LC3II was further increased when the cells were treated with METH and gp120 IIIb in combination. Next, we sought to explore the mechanism by which METH and gp120 induce the autophagic response. We found that METH induces autophagy via opioid and metabotropic glutamate receptor type 5 (mGluR5) receptors. Other than that, signaling proteins Akt, mammalian target of rapamycin (mTOR), Beclin-1, Atg5 and Atg7 were involved in METH and gp120-mediated autophagy. In addition, long-term treatment of METH and gp120 IIIb resulted in cell death, which was exacerbated by inhibition of autophagy. This suggests that autophagy functions as a protective response against apoptosis caused by METH and gp120. This study is novel and clinically relevant because METH abuse among HIV-infected populations is highly prevalent and is known to cause exacerbated neuroAIDS.
Collapse
Affiliation(s)
- Lu Cao
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
43
|
Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, Isaguliants MG. Oxidative Stress during HIV Infection: Mechanisms and Consequences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8910396. [PMID: 27829986 PMCID: PMC5088339 DOI: 10.1155/2016/8910396] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022]
Abstract
It is generally acknowledged that reactive oxygen species (ROS) play crucial roles in a variety of natural processes in cells. If increased to levels which cannot be neutralized by the defense mechanisms, they damage biological molecules, alter their functions, and also act as signaling molecules thus generating a spectrum of pathologies. In this review, we summarize current data on oxidative stress markers associated with human immunodeficiency virus type-1 (HIV-1) infection, analyze mechanisms by which this virus triggers massive ROS production, and describe the status of various defense mechanisms of the infected host cell. In addition, we have scrutinized scarce data on the effect of ROS on HIV-1 replication. Finally, we present current state of knowledge on the redox alterations as crucial factors of HIV-1 pathogenicity, such as neurotoxicity and dementia, exhaustion of CD4+/CD8+ T-cells, predisposition to lung infections, and certain side effects of the antiretroviral therapy, and compare them to the pathologies associated with the nitrosative stress.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | - Elizaveta S. Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow 142782, Russia
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69003 Lyon, France
- DevWeCan Laboratories of Excellence Network (Labex), France
| | - Maria G. Isaguliants
- Riga Stradins University, Riga LV-1007, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- N. F. Gamaleya Research Center of Epidemiology and Microbiology, Moscow 123098, Russia
| |
Collapse
|
44
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
45
|
Rao PSS, Midde NM, Miller DD, Chauhan S, Kumar A, Kumar S. Diallyl Sulfide: Potential Use in Novel Therapeutic Interventions in Alcohol, Drugs, and Disease Mediated Cellular Toxicity by Targeting Cytochrome P450 2E1. Curr Drug Metab 2016; 16:486-503. [PMID: 26264202 DOI: 10.2174/1389200216666150812123554] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
Diallyl sulfide (DAS) and other organosulfur compounds are chief constituents of garlic. These compounds have many health benefits, as they are very efficient in detoxifying natural agents. Therefore, these compounds may be useful for prevention/treatment of cancers. However, DAS has shown appreciable allergic reactions and toxicity, as they can also affect normal cells. Thus their use as in the prevention and treatment of cancer is limited. DAS is a selective inhibitor of cytochrome P450 2E1 (CYP2E1), which is known to metabolize many xenobiotics including alcohol and analgesic drugs in the liver. CYP2E1-mediated alcohol/drug metabolism produce reactive oxygen species and reactive metabolites, which damage DNA, protein, and lipid membranes, subsequently causing liver damage. Several groups have shown that DAS is not only capable of inhibiting alcohol- and drug-mediated cellular toxicities, but also HIV protein- and diabetes-mediated toxicities by selectively inhibiting CYP2E1 in various cell types. However, due to known DAS toxicities, its use as a treatment modality for alcohol/drug- and HIV/diabetes-mediated toxicity have only limited clinical relevance. Therefore, effort is being made to generate DAS analogs, which are potent and selective inhibitor of CYP2E1 and poor substrate of CYP2E1. This review summarizes current advances in the field of DAS, its anticancer properties, role as a CYP2E1 inhibitor, preventing agent of cellular toxicities from alcohol, analgesic drugs, xenobiotics, as well as, from diseases like HIV and diabetes. Finally, this review also provides insights toward developing novel DAS analogues for chemical intervention of many disease conditions by targeting CYP2E1 enzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Santosh Kumar
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN 38163, USA.
| |
Collapse
|
46
|
Zhou Y, Zhang K, Yin X, Nie Q, Ma Y. HIV-1 Tat Protein Enhances Expression and Function of Breast Cancer Resistance Protein. AIDS Res Hum Retroviruses 2016; 32:1-3. [PMID: 26367065 DOI: 10.1089/aid.2015.0117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ATP binding cassette (ABC) transporters can transfer a variety of antiviral agents from the cytoplasm to body fluid, which results in a reduced intracellular concentration of the drugs. Proteins of HIV-1, e.g., Tat and gp120, altered some types of ABC transporter expression in brain microvascular endothelial cells and astrocytes. However, the effect of Tat on ABC transporters in T lymphocytes is unclear. In this study the status of breast cancer resistance protein (BCRP) in Tat expressing cell lines was examined with real-time PCR and flow cytometry. It was found that HIV-1 Tat protein upregulated BCRP expression and enhanced efflux mediated by BCRP significantly, which could inhibit antiviral drugs from entering infected cells and interfere with the therapeutic effect of HAART.
Collapse
Affiliation(s)
- Yancong Zhou
- School of Pharmacy, Nankai University, Tianjin, China
| | - Kun Zhang
- School of Pharmacy, Nankai University, Tianjin, China
| | - Xiaojie Yin
- School of Pharmacy, Nankai University, Tianjin, China
| | - Qichang Nie
- School of Pharmacy, Nankai University, Tianjin, China
| | - Yonggang Ma
- School of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
47
|
McRae M. HIV and viral protein effects on the blood brain barrier. Tissue Barriers 2016; 4:e1143543. [PMID: 27141423 PMCID: PMC4836474 DOI: 10.1080/21688370.2016.1143543] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/31/2022] Open
Abstract
The blood brain barrier (BBB) plays a critical role in the normal physiology of the central nervous system (CNS) by regulating what crosses from the periphery into the brain. Damage to the BBB or alterations in transport systems may mediate the pathogenesis of many CNS diseases, including HIV-associated CNS dysfunction. HIV-1 infection can result in neuropathologic changes in about one half of infected individuals and also can result in damage to the BBB. HIV-1 and the HIV-1 viral proteins, Tat and gp120, cause alterations in the integrity and function of the BBB through both paracellular and transcellular mechanisms. The current review discusses HIV and viral protein-mediated injury to the BBB with a focus on the effects on tight junction proteins, barrier permeability, and drug efflux proteins.
Collapse
Affiliation(s)
- MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Sciences; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
48
|
Qosa H, Miller DS, Pasinelli P, Trotti D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res 2015; 1628:298-316. [PMID: 26187753 PMCID: PMC4681613 DOI: 10.1016/j.brainres.2015.07.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 01/16/2023]
Abstract
The strength of the blood-brain barrier (BBB) in providing protection to the central nervous system from exposure to circulating chemicals is maintained by tight junctions between endothelial cells and by a broad range of transporter proteins that regulate exchange between CNS and blood. The most important transporters that restrict the permeability of large number of toxins as well as therapeutic agents are the ABC transporters. Among them, P-gp, BCRP, MRP1 and MRP2 are the utmost studied. These efflux transporters are neuroprotective, limiting the brain entry of neurotoxins; however, they could also restrict the entry of many therapeutics and contribute to CNS pharmacoresistance. Characterization of several regulatory pathways that govern expression and activity of ABC efflux transporters in the endothelium of brain capillaries have led to an emerging consensus that these processes are complex and contain several cellular and molecular elements. Alterations in ABC efflux transporters expression and/or activity occur in several neurological diseases. Here, we review the signaling pathways that regulate expression and transport activity of P-gp, BCRP, MRP1 and MRP2 as well as how their expression/activity changes in neurological diseases. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Hisham Qosa
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA.
| | - David S Miller
- Laboratory of Signal Transduction, NIH/NIEHS, Research Triangle Park, NC 27709, USA
| | - Piera Pasinelli
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA.
| |
Collapse
|
49
|
Uehara EU, Shida BDS, de Brito CA. Role of nitric oxide in immune responses against viruses: beyond microbicidal activity. Inflamm Res 2015. [DOI: 10.1007/s00011-015-0857-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
50
|
Ye B, Shen H, Zhang J, Zhu YG, Ransom BR, Chen XC, Ye ZC. Dual pathways mediate β-amyloid stimulated glutathione release from astrocytes. Glia 2015. [PMID: 26200696 DOI: 10.1002/glia.22886] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bing Ye
- Department of Neurology; Fujian Institute of Geriatrics, Union Hospital of Fujian Medical University; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Hui Shen
- Department of Neurology; Fujian Institute of Geriatrics, Union Hospital of Fujian Medical University; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Jing Zhang
- Department of Neurology; Fujian Institute of Geriatrics, Union Hospital of Fujian Medical University; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Yuan-Gui Zhu
- Department of Neurology; Fujian Institute of Geriatrics, Union Hospital of Fujian Medical University; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Bruce R. Ransom
- Department of Neurology; University of Washington School of Medicine; Seattle, Washington
| | - Xiao-Chun Chen
- Department of Neurology; Fujian Institute of Geriatrics, Union Hospital of Fujian Medical University; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Zu-Cheng Ye
- Department of Neurology; University of Washington School of Medicine; Seattle, Washington
- Center for Neuroscience Research; School of Basic Medical Sciences; Fujian Medical University; Fuzhou China
| |
Collapse
|