1
|
Tobinick E, Ucci D, Bermudo K, Asseraf S. Perispinal etanercept stroke trial design: PESTO and beyond. Expert Opin Biol Ther 2024; 24:1095-1108. [PMID: 39177653 DOI: 10.1080/14712598.2024.2390636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Perispinal etanercept (PSE) is an innovative treatment designed to improve stroke recovery by addressing chronic post-stroke neuroinflammation. Basic science evidence, randomized clinical trial (RCT) evidence and 14 years of favorable clinical experience support the use of PSE to treat chronic stroke. This article provides guidance for the design of future PSE RCTs in accordance with current FDA recommendations. AREAS COVERED Scientific background and essential elements of PSE RCT design. EXPERT OPINION Intimate familiarity with PSE, its novel method of drug delivery, and the characteristics of ideal enriched study populations are necessary for those designing future PSE stroke trials. The design elements needed to enable a PSE RCT to generate valid results include a suitable research question; a homogeneous study population selected using a prospective enrichment strategy; a primary outcome measure responsive to the neurological improvements that result from PSE; trialists with expertise in perispinal delivery; optimal etanercept dosing; and steps taken to minimize the number of placebo responders. RCTs failing to incorporate these elements, such as the PESTO trial, are incapable of reaching reliable conclusions regarding PSE efficacy. SF-36 has not been validated in PSE trials and is unsuitable for use as a primary outcome measure in PSE RCTs.
Collapse
Affiliation(s)
| | - Danielle Ucci
- Institute of Neurological Recovery, Boca Raton, FL, USA
| | | | | |
Collapse
|
2
|
Park TY, Jeon J, Cha Y, Kim KS. Past, present, and future of cell replacement therapy for parkinson's disease: a novel emphasis on host immune responses. Cell Res 2024; 34:479-492. [PMID: 38777859 PMCID: PMC11217403 DOI: 10.1038/s41422-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence continues to rise with the aging global population. Central to the pathophysiology of PD is the specific degeneration of midbrain dopamine neurons (mDANs) in the substantia nigra. Consequently, cell replacement therapy (CRT) has emerged as a promising treatment approach, initially supported by various open-label clinical studies employing fetal ventral mesencephalic (fVM) cells. Despite the initial favorable results, fVM cell therapy has intrinsic and logistical limitations that hinder its transition to a standard treatment for PD. Recent efforts in the field of cell therapy have shifted its focus towards the utilization of human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, to surmount existing challenges. However, regardless of the transplantable cell sources (e.g., xenogeneic, allogeneic, or autologous), the poor and variable survival of implanted dopamine cells remains a major obstacle. Emerging evidence highlights the pivotal role of host immune responses following transplantation in influencing the survival of implanted mDANs, underscoring an important area for further research. In this comprehensive review, building upon insights derived from previous fVM transplantation studies, we delve into the functional ramifications of host immune responses on the survival and efficacy of grafted dopamine cells. Furthermore, we explore potential strategic approaches to modulate the host immune response, ultimately aiming for optimal outcomes in future clinical applications of CRT for PD.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
3
|
Clark IA, Vissel B. Autocrine positive feedback of tumor necrosis factor from activated microglia proposed to be of widespread relevance in chronic neurological disease. Pharmacol Res Perspect 2023; 11:e01136. [PMID: 37750203 PMCID: PMC10520644 DOI: 10.1002/prp2.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Over a decade's experience of post-stroke rehabilitation by administering the specific anti-TNF biological, etanercept, by the novel perispinal route, is consistent with a wide range of chronically diminished neurological function having been caused by persistent excessive cerebral levels of TNF. We propose that this TNF persistence, and cerebral disease chronicity, largely arises from a positive autocrine feedback loop of this cytokine, allowing the persistence of microglial activation caused by the excess TNF that these cells produce. It appears that many of these observations have never been exploited to construct a broad understanding and treatment of certain chronic, yet reversible, neurological illnesses. We propose that this treatment allows these chronically activated microglia to revert to their normal quiescent state, rather than simply neutralizing the direct harmful effects of this cytokine after its release from microglia. Logically, this also applies to the chronic cerebral aspects of various other neurological conditions characterized by activated microglia. These include long COVID, Lyme disease, post-stroke syndromes, traumatic brain injury, chronic traumatic encephalopathy, post-chemotherapy, post-irradiation cerebral dysfunction, cerebral palsy, fetal alcohol syndrome, hepatic encephalopathy, the antinociceptive state of morphine tolerance, and neurogenic pain. In addition, certain psychiatric states, in isolation or as sequelae of infectious diseases such as Lyme disease and long COVID, are candidates for being understood through this approach and treated accordingly. Perispinal etanercept provides the prospect of being able to treat various chronic central nervous system illnesses, whether they are of infectious or non-infectious origin, through reversing excess TNF generation by microglia.
Collapse
Affiliation(s)
- Ian A. Clark
- Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical ResearchSt Vincent's HospitalDarlinghurstAustralia
- UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and HealthSchool of Clinical Medicine, UNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Tobinick E, Spengler RN, Ignatowski TA, Wassel M, Laborde S. Rapid improvement in severe long COVID following perispinal etanercept. Curr Med Res Opin 2022; 38:2013-2020. [PMID: 35791687 DOI: 10.1080/03007995.2022.2096351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND This study aimed to describe the neurological improvements in a patient with severe long COVID brain dysfunction following perispinal etanercept administration. Perispinal administration of etanercept, a novel method designed to enhance its brain delivery via carriage in the cerebrospinal venous system, has previously been shown to reduce chronic neurological dysfunction after stroke. Etanercept is a recombinant biologic that is capable of ameliorating two components of neuroinflammation: microglial activation and the excess bioactivity of tumor necrosis factor (TNF), a proinflammatory cytokine that is a key neuromodulator in the brain. Optimal synaptic and brain network function require physiological levels of TNF. Neuroinflammation, including brain microglial activation and excess central TNF, can be a consequence of stroke or peripheral infection, including infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. METHODS Standardized, validated measures, including the Montreal Cognitive Assessment, Beck Depression Index-II (BDI-II), Fatigue Assessment Scale, Controlled Oral Word Association Test, Trail Making Tests, Timed Finger-to-Nose Test, 20 m Self-Paced Walk Test, 5 Times Sit-to-Stand Test and Grip Strength measured with a Jamar Dynamometer were used to quantitate changes in cognition, depression, fatigue and neurological function after a single 25 mg perispinal etanercept dose in a patient with severe long COVID of 12 months duration. RESULTS Following perispinal etanercept administration there was immediate neurological improvement. At 24 h, there were remarkable reductions in chronic post-COVID-19 fatigue and depression, and significant measurable improvements in cognition, executive function, phonemic verbal fluency, balance, gait, upper limb coordination and grip strength. Cognition, depression and fatigue were examined at 29 days; each remained substantially improved. CONCLUSION Perispinal etanercept is a promising treatment for the chronic neurologic dysfunction that may persist after resolution of acute COVID-19, including chronic cognitive dysfunction, fatigue, and depression. These results suggest that long COVID brain neuroinflammation is a potentially reversible pathology and viable treatment target. In view of the increasing unmet medical need, clinical trials of perispinal etanercept for long COVID are urgently necessary. The robust results of the present case suggest that perispinal etanercept clinical trials studying long COVID populations with severe fatigue, depression and cognitive dysfunction may have improved ability to detect a treatment effect. Positron emission tomographic methods that image brain microglial activation and measurements of cerebrospinal fluid proinflammatory cytokines may be useful for patient selection and correlation with treatment effects, as well as provide insight into the underlying pathophysiology.
Collapse
Affiliation(s)
| | | | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Manar Wassel
- Institute of Neurological Recovery, Boca Raton, FL, USA
| | | |
Collapse
|
5
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
6
|
Understanding Acquired Brain Injury: A Review. Biomedicines 2022; 10:biomedicines10092167. [PMID: 36140268 PMCID: PMC9496189 DOI: 10.3390/biomedicines10092167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
Any type of brain injury that transpires post-birth is referred to as Acquired Brain Injury (ABI). In general, ABI does not result from congenital disorders, degenerative diseases, or by brain trauma at birth. Although the human brain is protected from the external world by layers of tissues and bone, floating in nutrient-rich cerebrospinal fluid (CSF); it remains susceptible to harm and impairment. Brain damage resulting from ABI leads to changes in the normal neuronal tissue activity and/or structure in one or multiple areas of the brain, which can often affect normal brain functions. Impairment sustained from an ABI can last anywhere from days to a lifetime depending on the severity of the injury; however, many patients face trouble integrating themselves back into the community due to possible psychological and physiological outcomes. In this review, we discuss ABI pathologies, their types, and cellular mechanisms and summarize the therapeutic approaches for a better understanding of the subject and to create awareness among the public.
Collapse
|
7
|
Hung SY, Chung HY, Luo ST, Chu YT, Chen YH, MacDonald IJ, Chien SY, Kotha P, Yang LY, Hwang LL, Dun NJ, Chuang DM, Chen YH. Electroacupuncture improves TBI dysfunction by targeting HDAC overexpression and BDNF-associated Akt/GSK-3β signaling. Front Cell Neurosci 2022; 16:880267. [PMID: 36016833 PMCID: PMC9396337 DOI: 10.3389/fncel.2022.880267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Acupuncture or electroacupuncture (EA) appears to be a potential treatment in acute clinical traumatic brain injury (TBI); however, it remains uncertain whether acupuncture affects post-TBI histone deacetylase (HDAC) expression or impacts other biochemical/neurobiological events. Materials and methods We used behavioral testing, Western blot, and immunohistochemistry analysis to evaluate the cellular and molecular effects of EA at LI4 and LI11 in both weight drop-impact acceleration (WD)- and controlled cortical impact (CCI)-induced TBI models. Results Both WD- and CCI-induced TBI caused behavioral dysfunction, increased cortical levels of HDAC1 and HDAC3 isoforms, activated microglia and astrocytes, and decreased cortical levels of BDNF as well as its downstream mediators phosphorylated-Akt and phosphorylated-GSK-3β. Application of EA reversed motor, sensorimotor, and learning/memory deficits. EA also restored overexpression of HDAC1 and HDAC3, and recovered downregulation of BDNF-associated signaling in the cortex of TBI mice. Conclusion The results strongly suggest that acupuncture has multiple benefits against TBI-associated adverse behavioral and biochemical effects and that the underlying mechanisms are likely mediated by targeting HDAC overexpression and aberrant BDNF-associated Akt/GSK-3 signaling.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Division of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yi Chung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Sih-Ting Luo
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yu-Ting Chu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yu-Hsin Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Iona J. MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Peddanna Kotha
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nae J. Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States
| | - De-Maw Chuang
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
- *Correspondence: Yi-Hung Chen,
| |
Collapse
|
8
|
Pohóczky K, Kun J, Szentes N, Aczél T, Urbán P, Gyenesei A, Bölcskei K, Szőke É, Sensi S, Dénes Á, Goebel A, Tékus V, Helyes Z. Discovery of novel targets in a complex regional pain syndrome mouse model by transcriptomics: TNF and JAK-STAT pathways. Pharmacol Res 2022; 182:106347. [PMID: 35820612 DOI: 10.1016/j.phrs.2022.106347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
Abstract
Complex Regional Pain Syndrome (CRPS) represents severe chronic pain, hypersensitivity, and inflammation induced by sensory-immune-vascular interactions after a small injury. Since the therapy is unsatisfactory, there is a great need to identify novel drug targets. Unbiased transcriptomic analysis of the dorsal root ganglia (DRG) was performed in a passive transfer-trauma mouse model, and the predicted pathways were confirmed by pharmacological interventions. In the unilateral L3-5 DRGs 125 genes were differentially expressed in response to plantar incision and injecting IgG of CRPS patients. These are related to inflammatory and immune responses, cytokines, chemokines and neuropeptides. Pathway analysis revealed the involvement of Tumor Necrosis Factor (TNF) and Janus kinase (JAK-STAT) signaling. The relevance of these pathways was proven by abolished CRPS IgG-induced hyperalgesia and reduced microglia and astrocyte markers in pain-associated central nervous system regions after treatment with the soluble TNF alpha receptor etanercept or JAK inhibitor tofacitinib. These results provide the first evidence for CRPS-related neuroinflammation and abnormal cytokine signaling at the level of the primary sensory neurons in a translational mouse model and suggest that etanercept and tofacitinib might have drug repositioning potentials for CRPS-related pain.
Collapse
Affiliation(s)
- Krisztina Pohóczky
- Faculty of Pharmacy, Department of Pharmacology, University of Pécs, H-7624 Pécs, Hungary; Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; Bioinformatic Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; Chronic Pain Research Group, Eötvös Lorand Research Network, University of Pécs, H-7624 Pécs, Hungary
| | - Tímea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Péter Urbán
- Bioinformatic Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Attila Gyenesei
- Bioinformatic Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; Chronic Pain Research Group, Eötvös Lorand Research Network, University of Pécs, H-7624 Pécs, Hungary
| | - Serena Sensi
- Department of Translational Medicine, University of Liverpool, Liverpool L9 7AL, United Kingdom; Department of Pain Medicine, The Walton Centre National Health Service Foundation Trust, Liverpool L9 7LJ, United Kingdom
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Andreas Goebel
- Department of Translational Medicine, University of Liverpool, Liverpool L9 7AL, United Kingdom; Department of Pain Medicine, The Walton Centre National Health Service Foundation Trust, Liverpool L9 7LJ, United Kingdom
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; Faculty of Health Sciences, Department of Laboratory Diagnostics, University of Pécs, H-7624 Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; PharmInVivo Ltd., H-7629 Pécs, Hungary; Chronic Pain Research Group, Eötvös Lorand Research Network, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
9
|
Larson K, Damon M, Randhi R, Nixon-Lee N, J Dixon K. Selective inhibition of soluble TNF using XPro1595 improves hippocampal pathology to promote improved neurological recovery following traumatic brain injury in mice. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-124336. [PMID: 35692164 DOI: 10.2174/1871527321666220610104908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
AIMS To determine the efficacy of XPro1595 to improve pathophysiological and functional outcomes in a mouse model of traumatic brain injury (TBI). BACKGROUND Symptoms associated with TBI can be debilitating, and treatment without off-target side effects remains a challenge. This study aimed to investigate the efficacy of selectively inhibiting the soluble form of TNF (solTNF) using the biologic XPro1595 in a mouse model of TBI. OBJECTIVES Use XPro1595 to determine whether injury-induced solTNF promotes hippocampal inflammation and dendritic plasticity, and associated functional impairments. METHODS Mild-to-moderate traumatic brain injury (CCI model) was induced in adult male C57Bl/6J WT and Thy1-YFPH mice, with XPro1595 (10 mg/kg, S.C.) or vehicle being administered in a clinically relevant window (60 minutes post-injury). The animals were assessed for differences in neurological function, and hippocampal tissue was analyzed for inflammation and glial reactivity, as well as neuronal degeneration and plasticity. RESULTS We report that unilateral CCI over the right parietal cortex in mice promoted deficits in learning and memory, depressive-like behavior, and neuropathic pain. Using immunohistochemical and Western blotting techniques, we observed the cortical injury promoted a set of expected pathophysiology's within the hippocampus consistent with the observed neurological outcomes, including glial reactivity, enhanced neuronal dendritic degeneration (dendritic beading), and reduced synaptic plasticity (spine density and PSD-95 expression) within the DG and CA1 region of the hippocampus, that were prevented in mice treated with XPro1595. CONCLUSION Overall, we observed that selectively inhibiting solTNF using XPro1595 improved the pathophysiological and neurological sequelae of brain-injured mice, which provides support for its use in patients with TBI.
Collapse
Affiliation(s)
- Katelyn Larson
- Department of Surgery, Virginia Commonwealth University, United States
| | - Melissa Damon
- Department of Surgery, Virginia Commonwealth University, United States
| | - Rajasa Randhi
- Department of Surgery, Virginia Commonwealth University, United States
| | - Nancy Nixon-Lee
- Department of Surgery, Virginia Commonwealth University, United States
| | - Kirsty J Dixon
- Department of Surgery, Virginia Commonwealth University, United States
| |
Collapse
|
10
|
Clark IA. Chronic cerebral aspects of long COVID, post-stroke syndromes and similar states share their pathogenesis and perispinal etanercept treatment logic. Pharmacol Res Perspect 2022; 10:e00926. [PMID: 35174650 PMCID: PMC8850677 DOI: 10.1002/prp2.926] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
The chronic neurological aspects of traumatic brain injury, post-stroke syndromes, long COVID-19, persistent Lyme disease, and influenza encephalopathy having close pathophysiological parallels that warrant being investigated in an integrated manner. A mechanism, common to all, for this persistence of the range of symptoms common to these conditions is described. While TNF maintains cerebral homeostasis, its excessive production through either pathogen-associated molecular patterns or damage-associated molecular patterns activity associates with the persistence of the symptoms common across both infectious and non-infectious conditions. The case is made that this shared chronicity arises from a positive feedback loop causing the persistence of the activation of microglia by the TNF that these cells generate. Lowering this excess TNF is the logical way to reducing this persistent, TNF-maintained, microglial activation. While too large to negotiate the blood-brain barrier effectively, the specific anti-TNF biological, etanercept, shows promise when administered by the perispinal route, which allows it to bypass this obstruction.
Collapse
Affiliation(s)
- Ian Albert Clark
- Research School of BiologyAustralian National UniversityCanberraACTAustralia
| |
Collapse
|
11
|
Brain Immune Interactions-Novel Emerging Options to Treat Acute Ischemic Brain Injury. Cells 2021; 10:cells10092429. [PMID: 34572077 PMCID: PMC8472028 DOI: 10.3390/cells10092429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is still among the leading causes of mortality and morbidity worldwide. Despite intensive advancements in medical sciences, the clinical options to treat ischemic stroke are limited to thrombectomy and thrombolysis using tissue plasminogen activator within a narrow time window after stroke. Current state of the art knowledge reveals the critical role of local and systemic inflammation after stroke that can be triggered by interactions taking place at the brain and immune system interface. Here, we discuss different cellular and molecular mechanisms through which brain–immune interactions can take place. Moreover, we discuss the evidence how the brain influence immune system through the release of brain derived antigens, damage-associated molecular patterns (DAMPs), cytokines, chemokines, upregulated adhesion molecules, through infiltration, activation and polarization of immune cells in the CNS. Furthermore, the emerging concept of stemness-induced cellular immunity in the context of neurodevelopment and brain disease, focusing on ischemic implications, is discussed. Finally, we discuss current evidence on brain–immune system interaction through the autonomic nervous system after ischemic stroke. All of these mechanisms represent potential pharmacological targets and promising future research directions for clinically relevant discoveries.
Collapse
|
12
|
Clark IA. Background to new treatments for COVID-19, including its chronicity, through altering elements of the cytokine storm. Rev Med Virol 2021; 31:1-13. [PMID: 33580566 PMCID: PMC7883210 DOI: 10.1002/rmv.2210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Anti-tumour necrosis factor (TNF) biologicals, Dexamethasone and rIL-7 are of considerable interest in treating COVID-19 patients who are in danger of, or have become, seriously ill. Yet reducing sepsis mortality by lowering circulating levels of TNF lost favour when positive endpoints in earlier simplistic models could not be reproduced in well-conducted human trials. Newer information with anti-TNF biologicals has encouraged reintroducing this concept for treating COVID-19. Viral models have had encouraging outcomes, as have the effects of anti-TNF biologicals on community-acquired COVID-19 during their long-term use to treat chronic inflammatory states. The positive outcome of a large scale trial of dexamethasone, and its higher potency late in the disease, harmonises well with its capacity to enhance levels of IL-7Rα, the receptor for IL-7, a cytokine that enhances lymphocyte development and is increased during the cytokine storm. Lymphoid germinal centres required for antibody-based immunity can be harmed by TNF, and restored by reducing TNF. Thus the IL-7- enhancing activity of dexamethasone may explain its higher potency when lymphocytes are depleted later in the infection, while employing anti-TNF, for several reasons, is much more logical earlier in the infection. This implies dexamethasone could prove to be synergistic with rIL-7, currently being trialed as a COVID-19 therapeutic. The principles behind these COVID-19 therapies are consistent with the observed chronic hypoxia through reduced mitochondrial function, and also the increased severity of this disease in ApoE4-positive individuals. Many of the debilitating persistent aspects of this disease are predictably susceptible to treatment with perispinal etanercept, since they have cerebral origins.
Collapse
Affiliation(s)
- Ian A. Clark
- Research School of BiologyAustralian National UniversityCanberraAustralia
| |
Collapse
|
13
|
Wei Z, Koya J, Reznik SE. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Front Neurosci 2021; 15:687157. [PMID: 34349617 PMCID: PMC8326507 DOI: 10.3389/fnins.2021.687157] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease that accounts for 60–70% of dementia and is the sixth leading cause of death in the United States. The pathogenesis of this debilitating disorder is still not completely understood. New insights into the pathogenesis of AD are needed in order to develop novel pharmacologic approaches. In recent years, numerous studies have shown that insulin resistance plays a significant role in the development of AD. Over 80% of patients with AD have type II diabetes (T2DM) or abnormal serum glucose, suggesting that the pathogenic mechanisms of insulin resistance and AD likely overlap. Insulin resistance increases neuroinflammation, which promotes both amyloid β-protein deposition and aberrant tau phosphorylation. By increasing production of reactive oxygen species, insulin resistance triggers amyloid β-protein accumulation. Oxidative stress associated with insulin resistance also dysregulates glycogen synthase kinase 3-β (GSK-3β), which leads to increased tau phosphorylation. Both insulin and amyloid β-protein are metabolized by insulin degrading enzyme (IDE). Defects in this enzyme are the basis for a strong association between T2DM and AD. This review highlights multiple pathogenic mechanisms induced by insulin resistance that are implicated in AD. Several pharmacologic approaches to AD associated with insulin resistance are presented.
Collapse
Affiliation(s)
- Zenghui Wei
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States.,Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Postolache TT, Wadhawan A, Can A, Lowry CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E, Benros ME, Stiller JW. Inflammation in Traumatic Brain Injury. J Alzheimers Dis 2021; 74:1-28. [PMID: 32176646 DOI: 10.3233/jad-191150] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an increasing evidence that inflammation contributes to clinical and functional outcomes in traumatic brain injury (TBI). Many successful target-engaging, lesion-reducing, symptom-alleviating, and function-improving interventions in animal models of TBI have failed to show efficacy in clinical trials. Timing and immunological context are paramount for the direction, quality, and intensity of immune responses to TBI and the resulting neuroanatomical, clinical, and functional course. We present components of the immune system implicated in TBI, potential immune targets, and target-engaging interventions. The main objective of our article is to point toward modifiable molecular and cellular mechanisms that may modify the outcomes in TBI, and contribute to increasing the translational value of interventions that have been identified in animal models of TBI.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Saint Elizabeths Hospital, Department of Psychiatry, Washington, DC, USA
| | - Adem Can
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Margaret Woodbury
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael E Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland State Athletic Commission, Baltimore, MD, USA.,Saint Elizabeths Hospital, Neurology Consultation Services, Washington, DC, USA
| |
Collapse
|
15
|
Gao P, Tang S, Chen H, Zhou X, Ou Y, Shen R, He Y. Preconditioning increases brain resistance against acute brain injury via neuroinflammation modulation. Exp Neurol 2021; 341:113712. [PMID: 33819449 DOI: 10.1016/j.expneurol.2021.113712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023]
Abstract
Acute brain injury (ABI) is a broad concept mainly comprised of sudden parenchymal brain injury. Acute brain injury outcomes are dependent not only on the severity of the primary injury, but the delayed secondary injury that subsequently follows as well. These are both taken into consideration when determining the patient's prognosis. Growing clinical and experimental evidence demonstrates that "preconditioning," a prophylactic approach in which the brain is exposed to various pre-injury stressors, can induce varying degrees of "tolerance" against the impact of the ABI by modulating neuroinflammation. In this review, we will summarize the pathophysiology of ABI, and discuss the involved mechanisms of neuroinflammation in ABI, as well as existing experimental and clinical studies demonstrating the efficacy of preconditioning methods in various types of ABI by modulating neuroinflammation.
Collapse
Affiliation(s)
- Pan Gao
- Department of Translational Neurodegeneration, German Centre for Neurodegenerative Diseases (DZNE), Munich 81377, Germany.
| | - Sicheng Tang
- Medical Clinic and Polyclinic IV, Ludwig-Maximilians University Munich (LMU), Munich 80336, Germany
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ronghua Shen
- Department of Psychological Rehabilitation, Hankou Hospital, Wuhan, Hubei 430010, PR China.
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
16
|
Neuroinflammation and Hypothalamo-Pituitary Dysfunction: Focus of Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22052686. [PMID: 33799967 PMCID: PMC7961958 DOI: 10.3390/ijms22052686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) has increased over the last years with an important impact on public health. Many preclinical and clinical studies identified multiple and heterogeneous TBI-related pathophysiological mechanisms that are responsible for functional, cognitive, and behavioral alterations. Recent evidence has suggested that post-TBI neuroinflammation is responsible for several long-term clinical consequences, including hypopituitarism. This review aims to summarize current evidence on TBI-induced neuroinflammation and its potential role in determining hypothalamic-pituitary dysfunctions.
Collapse
|
17
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
18
|
Abd-El-Basset EM, Rao MS, Alsaqobi A. Interferon-Gamma and Interleukin-1Beta Enhance the Secretion of Brain-Derived Neurotrophic Factor and Promotes the Survival of Cortical Neurons in Brain Injury. Neurosci Insights 2020; 15:2633105520947081. [PMID: 32776009 PMCID: PMC7391446 DOI: 10.1177/2633105520947081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
Neuro-inflammation is associated with the production of cytokines, which influence neuronal and glial functions. Although the proinflammatory cytokines interferon-γ (IFN-γ) and interleukin-1Beta (IL-1β) are thought to be the major mediators of neuro-inflammation, their role in brain injury remains ill-defined. The objective of this study was to examine the effect of IFN-γ and IL-1β on survival of cortical neurons in stab wound injury in mice. A stab wound injury was made in the cortex of male BALB/c mice. Injured mice (I) were divide into IFN-γ and IL-1β treatment experiments. Mice in I + IFN-γ group were treated with IFN-γ (ip, 10 µg/kg/day) for 1, 3 and 7 days and mice in I + IL-1β group were treated with 5 IP injection of IL-1β (0.5 µg /12 h). Appropriate control mice were maintained for comparison. Immunostaining of frozen brain sections for astrocytes (GFAP), microglia (Iba-1) and Fluoro-Jade B staining for degenerating neurons were used. Western blotting and ELISA for brain-derived neurotrophic factor (BDNF) were done on the tissues isolated from the injured sites. Results showed a significant increase in the number of both astrocytes and microglia in I + IFN-γ and I + IL-1β groups. There were no significant changes in the number of astrocytes or microglia in noninjury groups (NI) treated with IFN-γ or IL-1β. The number of degenerating neurons significantly decreased in I + IFN-γ and I + IL-1β groups. GFAP and BDNF levels were significantly increased in I + IFN-γ and I + IL-1β groups. Interferon-γ and IL-1β induce astrogliosis, microgliosis, enhance the secretion of BDNF, one of the many neurotrophic factors after brain injury, and promote the survival of cortical neurons in stab wound brain injury.
Collapse
|
19
|
Lin CT, Lecca D, Yang LY, Luo W, Scerba MT, Tweedie D, Huang PS, Jung YJ, Kim DS, Yang CH, Hoffer BJ, Wang JY, Greig NH. 3,6'-dithiopomalidomide reduces neural loss, inflammation, behavioral deficits in brain injury and microglial activation. eLife 2020; 9:e54726. [PMID: 32589144 PMCID: PMC7375814 DOI: 10.7554/elife.54726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) causes mortality and disability worldwide. It can initiate acute cell death followed by secondary injury induced by microglial activation, oxidative stress, inflammation and autophagy in brain tissue, resulting in cognitive and behavioral deficits. We evaluated a new pomalidomide (Pom) analog, 3,6'-dithioPom (DP), and Pom as immunomodulatory agents to mitigate TBI-induced cell death, neuroinflammation, astrogliosis and behavioral impairments in rats challenged with controlled cortical impact TBI. Both agents significantly reduced the injury contusion volume and degenerating neuron number evaluated histochemically and by MRI at 24 hr and 7 days, with a therapeutic window of 5 hr post-injury. TBI-induced upregulated markers of microglial activation, astrogliosis and the expression of pro-inflammatory cytokines, iNOS, COX-2, and autophagy-associated proteins were suppressed, leading to an amelioration of behavioral deficits with DP providing greater efficacy. Complementary animal and cellular studies demonstrated DP and Pom mediated reductions in markers of neuroinflammation and α-synuclein-induced toxicity.
Collapse
Affiliation(s)
- Chih-Tung Lin
- Graduate Institute of Medical Sciences, Taipei Medical UniversityTaipeiTaiwan
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences, Taipei Medical UniversityTaipeiTaiwan
| | - Weiming Luo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - Pen-Sen Huang
- Graduate Institute of Medical Sciences, Taipei Medical UniversityTaipeiTaiwan
| | - Yoo-Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| | - Dong Seok Kim
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
- AevisBio IncGaithersburgUnited States
- AevisBio IncDaejeonRepublic of Korea
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Barry J Hoffer
- Department of Neurological Surgery, Case Western Reserve UniversityClevelandUnited States
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, Taipei Medical UniversityTaipeiTaiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical UniversityTaipeiTaiwan
- Neuroscience Research Center, Taipei Medical UniversityTaipeiTaiwan
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIHBaltimoreUnited States
| |
Collapse
|
20
|
Galinsky R, Dhillon SK, Dean JM, Davidson JO, Lear CA, Wassink G, Nott F, Kelly SB, Fraser M, Yuill C, Bennet L, Gunn AJ. Tumor necrosis factor inhibition attenuates white matter gliosis after systemic inflammation in preterm fetal sheep. J Neuroinflammation 2020; 17:92. [PMID: 32293473 PMCID: PMC7087378 DOI: 10.1186/s12974-020-01769-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Increased circulating levels of tumor necrosis factor (TNF) are associated with greater risk of impaired neurodevelopment after preterm birth. In this study, we tested the hypothesis that systemic TNF inhibition, using the soluble TNF receptor Etanercept, would attenuate neuroinflammation in preterm fetal sheep exposed to lipopolysaccharide (LPS). Methods Chronically instrumented preterm fetal sheep at 0.7 of gestation were randomly assigned to receive saline (control; n = 7), LPS infusion (100 ng/kg i.v. over 24 h then 250 ng/kg/24 h for 96 h plus 1 μg LPS boluses at 48, 72, and 96 h, to induce inflammation; n = 8) or LPS plus two i.v. infusions of Etanercept (2 doses, 5 mg/kg infused over 30 min, 48 h apart) started immediately before LPS-exposure (n = 8). Sheep were killed 10 days after starting infusions, for histology. Results LPS boluses were associated with increased circulating TNF, interleukin (IL)-6 and IL-10, electroencephalogram (EEG) suppression, hypotension, tachycardia, and increased carotid artery perfusion (P < 0.05 vs. control). In the periventricular and intragyral white matter, LPS exposure increased gliosis, TNF-positive cells, total oligodendrocytes, and cell proliferation (P < 0.05 vs control), but did not affect myelin expression or numbers of neurons in the cortex and subcortical regions. Etanercept delayed the rise in circulating IL-6, prolonged the increase in IL-10 (P < 0.05 vs. LPS), and attenuated EEG suppression, hypotension, and tachycardia after LPS boluses. Histologically, Etanercept normalized LPS-induced gliosis, and increase in TNF-positive cells, proliferation, and total oligodendrocytes. Conclusion TNF inhibition markedly attenuated white matter gliosis but did not affect mature oligodendrocytes after prolonged systemic inflammation in preterm fetal sheep. Further studies of long-term brain maturation are now needed.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Simerdeep K Dhillon
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Joanne O Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Christopher A Lear
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Guido Wassink
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Fraser Nott
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mhoyra Fraser
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Caroline Yuill
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Alistair Jan Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand.
| |
Collapse
|
21
|
Lee HF, Lin JS, Chang CF. Acute Kahweol Treatment Attenuates Traumatic Brain Injury Neuroinflammation and Functional Deficits. Nutrients 2019; 11:nu11102301. [PMID: 31569604 PMCID: PMC6835740 DOI: 10.3390/nu11102301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions worldwide with devastating long-term effects on health and cognition. Emerging data suggest that targeting the immune response may offer promising strategies to alleviate TBI outcomes; kahweol, an anti-inflammatory diterpene that remains in unfiltered coffee, has been shown to be beneficial in neuronal recovery. Here, we examined whether kahweol could alleviate brain trauma-induced injury in a mouse model of TBI and its underlying mechanisms. TBI was induced by controlled cortical impact (CCI) and various doses of kahweol were intraperitoneally administered following injury. Contusion volume, brain edema, neurobehavioral deficits, and protein expression and activity were evaluated in both short-term and long-term recovery. We found that kahweol treatments significantly reduced secondary brain injury and improved neurobehavioral outcomes in TBI mice. These changes were accompanied by the attenuation of proinflammatory cytokine secretion, decreased microglia/macrophage activation, and reduction of neutrophil and leukocyte infiltration. In addition, continuous kahweol treatment further improved short-term TBI outcomes compared to single-dosage. Collectively, our data showed that kahweol protects against TBI by reducing immune responses and may serve as a potential therapeutic intervention for TBI patients.
Collapse
Affiliation(s)
- Hung-Fu Lee
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan.
| | - Jhih Syuan Lin
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan.
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Che-Feng Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
22
|
Shin SH, Kim EK, Lee KY, Kim HS. TNF-α antagonist attenuates systemic lipopolysaccharide-induced brain white matter injury in neonatal rats. BMC Neurosci 2019; 20:45. [PMID: 31470812 PMCID: PMC6716877 DOI: 10.1186/s12868-019-0529-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/26/2019] [Indexed: 12/04/2022] Open
Abstract
Background Systemic inflammation is an important risk factor for neurodevelopmental impairments in preterm infants. Premyelinating oligodendrocytes are main building blocks of white matter in preterm infants and vulnerable to oxidative stress and excitotoxic stress. Tumour necrosis factor-α (TNF-α) plays important roles in systemic inflammation and local inflammation leading to apoptosis of premyelinating oligodendrocytes and white matter injury (WMI) in brain tissue. This study was conducted to investigate whether etanercept, a TNF-α antagonist, could attenuate systemic lipopolysaccharide (LPS)-induced WMI in the immature brain. Results We found that intraperitoneal LPS administration caused systemic and local inflammation in brain tissue. Subsequent etanercept treatment significantly attenuated LPS-induced inflammation in brain tissue as well as in systemic circulation. Intraperitoneal LPS also induced microgliosis and astrocytosis in the cingulum and etanercept treatment reduced LPS-induced microgliosis and astrocytosis. Additionally, systemic LPS-induced apoptosis of oligodendrocyte precursor cells was observed, which was lessened by etanercept treatment. The concentration of etanercept in the CSF was higher when it was administrated with LPS than when administrated with a vehicle. Conclusions It appears that etanercept reduce WMI in the neonatal rat brain via attenuation of systemic and local inflammation. This study provides preclinical data suggesting etanercept-mediated modulation of inflammation as a promising approach to reduce WMI caused by sepsis or necrotizing enterocolitis in preterm infants.
Collapse
Affiliation(s)
- Seung Han Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, South Korea
| | - Ee-Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, South Korea.
| | - Kyung-Yup Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, South Korea
| | - Han-Suk Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, South Korea
| |
Collapse
|
23
|
The immunological response to traumatic brain injury. J Neuroimmunol 2019; 332:112-125. [DOI: 10.1016/j.jneuroim.2019.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
|
24
|
Tse BC, Dvoriantchikova G, Tao W, Gallo RA, Lee JY, Pappas S, Brambilla R, Ivanov D, Tse DT, Pelaez D. Tumor Necrosis Factor Inhibition in the Acute Management of Traumatic Optic Neuropathy. Invest Ophthalmol Vis Sci 2019; 59:2905-2912. [PMID: 30025145 PMCID: PMC5989875 DOI: 10.1167/iovs.18-24431] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To determine the effectiveness of etanercept, a tumor necrosis factor (TNF) inhibitor, in conferring neuroprotection to retinal ganglion cells (RGCs) and improving visual outcomes after optic nerve trauma with either optic nerve crush (ONC) or sonication-induced traumatic optic neuropathy (SI-TON) in mice. Methods Mouse optic nerves were unilaterally subjected to ONC (n = 20) or SI-TON (n = 20). TNF expression was evaluated by using immunohistochemistry and quantitative RT-PCR (qRT-PCR) in optic nerves harvested 6 and 24 hours post ONC (n = 10) and SI-TON (n = 10). Mice in each injury group received daily subcutaneous injections of either etanercept (10 mg/kg of body weight; five mice) or vehicle (five mice) for 7 days. Pattern electroretinograms were performed on all mice at 1 and 2 weeks after injury. ONC mice were killed at 2 weeks after injury, while SI-TON mice were euthanized at 4 weeks after injury. Whole retina flat-mounts were used for RGC quantification. Results Immunohistochemistry and qRT-PCR showed upregulation of TNF protein and gene expression within 24 hours after injury. In both models, etanercept use immediately following optic nerve injury led to higher RGC survival when compared to controls, which was comparable between the two models (24.23% in ONC versus 20.42% in SI-TON). In both models, 1 and 2 weeks post injury, mice treated with etanercept had significantly higher a-wave amplitudes than untreated injured controls. Conclusions Treatment with etanercept significantly reduced retinal damage and improved visual function in both animal models of TON. These findings suggest that reducing TNF activity in injured optic nerves constitutes an effective therapeutic approach in an acute setting.
Collapse
Affiliation(s)
- Brian C Tse
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Galina Dvoriantchikova
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Wensi Tao
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Ryan A Gallo
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - John Y Lee
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Steven Pappas
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Roberta Brambilla
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Dmitry Ivanov
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - David T Tse
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Daniel Pelaez
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States.,Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States
| |
Collapse
|
25
|
Wagner AK, Kumar RG. TBI Rehabilomics Research: Conceptualizing a humoral triad for designing effective rehabilitation interventions. Neuropharmacology 2018; 145:133-144. [PMID: 30222984 DOI: 10.1016/j.neuropharm.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Most areas of medicine use biomarkers in some capacity to aid in understanding how personal biology informs clinical care. This article draws upon the Rehabilomics research model as a translational framework for programs of precision rehabilitation and intervention research focused on linking personal biology to treatment response using biopsychosocial constructs that broadly represent function and that can be applied to many clinical populations with disability. The summary applies the Rehabilomics research framework to the population with traumatic brain injury (TBI) and emphasizes a broad vision for biomarker inclusion, beyond typical brain-derived biomarkers, to capture and/or reflect important neurological and non-neurological pathology associated with TBI as a chronic condition. Humoral signaling molecules are explored as important signaling and regulatory drivers of these chronic conditions and their impact on function. Importantly, secondary injury cascades involved in the humoral triad are influenced by the systemic response to TBI and the development of non-neurological organ dysfunction (NNOD). Biomarkers have been successfully leveraged in other medical fields to inform pre-randomization patient selection for clinical trials, however, this practice largely has not been utilized in TBI research. As such, the applicability of the Rehabilomics research model to contemporary clinical trials and comparative effectiveness research designs for neurological and rehabilitation populations is emphasized. Potential points of intervention to modify inflammation, hormonal, or neurotrophic support through rehabilitation interventions are discussed. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- A K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Neuroscience, University of Pittsburgh, USA; Center for Neuroscience, University of Pittsburgh, USA.
| | - R G Kumar
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Epidemiology, University of Pittsburgh, USA
| |
Collapse
|
26
|
Wang W, Zinsmaier AK, Firestone E, Lin R, Yatskievych TA, Yang S, Zhang J, Bao S. Blocking Tumor Necrosis Factor-Alpha Expression Prevents Blast-Induced Excitatory/Inhibitory Synaptic Imbalance and Parvalbumin-Positive Interneuron Loss in the Hippocampus. J Neurotrauma 2018; 35:2306-2316. [PMID: 29649942 DOI: 10.1089/neu.2018.5688] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of neurological disorder and death in civilian and military populations. It comprises two components-direct injury from the traumatic impact and secondary injury from ensuing neural inflammatory responses. Blocking tumor necrosis factor-alpha (TNF-α), a central regulator of neural inflammation, has been shown to improve functional recovery after TBI. However, the mechanisms underlying those therapeutic effects are still poorly understood. Here, we examined effects of 3,6'-dithiothalidomide (dTT), a potentially therapeutic TNF-α inhibitor, in mice with blast-induced TBI. We found that blast exposure resulted in elevated expression of TNF-α, activation of microglial cells, enhanced excitatory synaptic transmission, reduced inhibitory synaptic transmission, and a loss of parvalbumin-positive (PV+) inhibitory interneurons. Administration of dTT for 5 days after the blast exposure completely suppressed blast-induced increases in TNF-α transcription, largely reversed blasted-induced synaptic changes, and prevented PV+ neuron loss. However, blocking TNF-α expression by dTT failed to mitigate blast-induced microglial activation in the hippocampus, as evidenced by their non-ramified morphology. These results indicate that TNF-α plays a major role in modulating neuronal functions in blast-induced TBI and that it is a potential target for treatment of TBI-related brain disorders.
Collapse
Affiliation(s)
- Weihua Wang
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Alexander K Zinsmaier
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Ethan Firestone
- 2 Department of Otolaryngology-Head and Neck Surgery and Department of Communication Sciences and Disorders, School of Medicine, Wayne State University , Detroit, Michigan
| | - Ruizhu Lin
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona.,3 Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China
| | - Tatiana A Yatskievych
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Sungchil Yang
- 4 Department of Biomedical Sciences, City University of Hong Kong , Kowloon, Hong Kong, China
| | - Jinsheng Zhang
- 2 Department of Otolaryngology-Head and Neck Surgery and Department of Communication Sciences and Disorders, School of Medicine, Wayne State University , Detroit, Michigan
| | - Shaowen Bao
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
27
|
Hasturk AE, Gokce EC, Yilmaz ER, Horasanli B, Evirgen O, Hayirli N, Gokturk H, Erguder I, Can B. Therapeutic Evaluation of Tumor Necrosis Factor-alpha Antagonist Etanercept against Traumatic Brain Injury in Rats: Ultrastructural, Pathological, and Biochemical Analyses. Asian J Neurosurg 2018; 13:1018-1025. [PMID: 30459860 PMCID: PMC6208262 DOI: 10.4103/ajns.ajns_29_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose The aim of the present study was to investigate the effect of etanercept (ETA) on histopathological and biochemical changes after traumatic brain injury (TBI) in rats. Materials and Methods Thirty-six male Wistar albino rats were distributed into three groups (n = 12 each). Control group rats were not subjected to trauma. Trauma group rats were subjected to TBI only. ETA group rats were subjected to TBI plus ETA (5 mg/kg intraperitoneal [i.p.]). The groups were further subdivided into those sacrificed in the hyperacute stage (1 h after TBI) (control-1, trauma-1, and ETA-1 groups) and the acute stage (6 h after TBI) (control-6, trauma-6, and ETA-6 groups). Tissue levels of tumour necrosis factor-alpha, interleukin-1 beta, malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase were analyzed. Histopathological and ultrastructural evaluations were also performed. Results i.p. administration of ETA at 1 and 6 h significantly reduced inflammatory cytokine expression, attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in comparison to trauma group. Histopathological and ultrastructural abnormalities were significantly reduced in ETA-treated rats compared to closed head injury trauma groups. Conclusions ETA significantly improves neural function and prevents post-TBI histopathological damage in rats.
Collapse
Affiliation(s)
- Askin Esen Hasturk
- Department of Neurosurgery, Oncology Training and Research Hospital, Ankara, Turkey
| | - Emre Cemal Gokce
- Department of Neurosurgery, Oncology Training and Research Hospital, Ankara, Turkey
| | - Erdal Resit Yilmaz
- Department of Neurosurgery, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Bahriye Horasanli
- Department of Neurology, Baskent University Faculty of Medicine, Konya, Turkey
| | - Oya Evirgen
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Nazli Hayirli
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Hilal Gokturk
- Department of Histology and Embryology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Imge Erguder
- Department of Biochemistry, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Belgin Can
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
28
|
Dehghan F, Shahrokhi N, Khaksari M, Soltani Z, Asadikorom G, Najafi A, Shahrokhi N. Does the administration of melatonin during post-traumatic brain injury affect cytokine levels? Inflammopharmacology 2017; 26:1017-1023. [PMID: 29159715 DOI: 10.1007/s10787-017-0417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 01/11/2023]
Abstract
Increased levels of inflammatory cytokines after traumatic brain injury (TBI) can lead to brain edema and neuronal death. In this study, the effect of melatonin on pro-inflammatory (IL-1ß, IL-6, and TNF-α) and anti-inflammatory (IL-10) cytokines following TBI was investigated considering anti-inflammatory effect of melatonin. Male Wistar rats were divided into five groups: Sham, TBI, TBI + VEH (vehicle), TBI + 5 mg dose of melatonin (MEL5), TBI + 20 mg dose of melatonin (MEL20). Diffuse TBI was induced by Marmarou method. Melatonin was administered 1, 24, 48 and 72 h after TBI through i.p. Brain water content and brain levels of pro-inflammatory (IL-1ß, IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines were measured 72 h after TBI. The IL-1ß levels decreased in the TBI + MEL5 and TBI + MEL20 groups in comparison to TBI + VEH group (p < 0.001). The levels of IL-6 and TNF-α also decreased in melatonin-treated groups compared to control group (p < 0.001). The amount of IL-10 decreased after TBI. But melatonin administration increased the IL-10 levels in comparison with TBI + VEH group (p < 0.001). The results showed that melatonin administration affected the brain levels of pro-inflammatory and anti-inflammatory cytokines involving in brain edema led to neuronal protection after TBI.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Afzalipour Faculty of Medical, Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikorom
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Najafi
- Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Nava Shahrokhi
- Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Wang AH, Ma Q, Wang X, Xu GH. Protective effects of beef decoction rich in carnosine on cerebral ischemia injury by permanent middle cerebral artery occlusion in rats. Exp Ther Med 2017; 15:1321-1329. [PMID: 29399121 PMCID: PMC5774539 DOI: 10.3892/etm.2017.5524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammation has a role in the cerebral injury induced by ischemia and the present study aimed to determine the mechanism of the protective effect of beef decoction (BD) with carnosine against it. A rat model of permanent middle cerebral artery occlusion was established using a suture method in the vehicle and each of the BD groups. In experiment 1, 72 Sprague Dawley (SD) rats were randomly divided into three groups: Sham, vehicle and BD-treated group. Rats in the BD group were given 600 mg/kg BD by oral gavage for 1, 3 and 7 days. The sham and vehicle group rats received an equivalent amount of normal saline. In experiment 2, 60 SD rats were randomly divided into six groups: Sham-operated I, sham-operated II, vehicle, low-dose BD, medium-dose BD and high-dose BD group. Rats in the low-, medium- and high-dose BD groups were given BD at the dose of 200, 400 and 600 mg/kg, respectively, by oral gavage for 7 days. Rats in the sham-operated II group were given 600 mg/kg BD. Rats in the sham-operated I group and vehicle group were given the same volume of normal saline by oral gavage. The body weight, neurological deficits and infarct volume were recorded at 1, 3 and 7 days after the operation. Furthermore, the effect of different doses of BD on interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-4 (IL-4) levels in peripheral blood was measured at 7 days. BD-treated rats showed less neurological deficits and a smaller infarct volume at 7 days. BD at 400 and 600 mg/kg significantly decreased the infarct volume in rats. At 600 mg/kg BD, a decline in IL-6, TNF-α, IFN-γ and an increase in IL-4 expression was observed in the BD groups, while no difference in body weight and neurological dysfunction was detected. In conclusion, BD is a neuroprotective agent that may be used as a supplement treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ai-Hong Wang
- Department of Basic Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Qian Ma
- Department of Basic Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xin Wang
- Department of Basic Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Gui-Hua Xu
- Department of Chinese Medicine Nursing, Institute of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
30
|
Chen D, Pan D, Tang S, Tan Z, Zhang Y, Fu Y, Lü G, Huang Q. Administration of chlorogenic acid alleviates spinal cord injury via TLR4/NF‑κB and p38 signaling pathway anti‑inflammatory activity. Mol Med Rep 2017; 17:1340-1346. [PMID: 29115619 DOI: 10.3892/mmr.2017.7987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Chlorogenic acid, as a secondary metabolite of plants, exhibits a variety of effects including free radical scavenging, antiseptic, anti‑inflammatory and anti‑viral, in addition to its ability to reduce blood glucose, protect the liver and act as an anti‑hyperlipidemic agent and cholagogue. The present study demonstrated that administration of chlorogenic acid alleviated spinal cord injury (SCI) via anti‑inflammatory activity mediated by nuclear factor (NF)‑κB and p38 signaling pathways. Wistar rats were used to structure a SCI model rat to explore the effects of administration of chlorogenic acid on SCI. The Basso, Beattie and Bresnahan test was executed for assessment of neuronal functional recovery and then spinal cord tissue wet/dry weight ratio was recorded. The present study demonstrated that chlorogenic acid increased SCI‑inhibition of BBB scores and decreased SCI‑induction of spinal cord wet/dry weight ratio in rats. In addition, chlorogenic acid suppressed SCI‑induced inflammatory activity, inducible nitric oxide synthase activity and cyclooxygenase‑2 protein expression in the SCI rat. Furthermore, chlorogenic acid suppressed Toll like receptor (TLR)‑4/myeloid differentiation primary response 88 (MyD88)/NF‑κB/IκB signaling pathways and downregulated p38 mitogen activated protein kinase protein expression in SCI rats. The findings suggest that administration of chlorogenic acid alleviates SCI via anti‑inflammatory activity mediated by TLR4/MyD88/NF‑κB and p38 signaling pathways.
Collapse
Affiliation(s)
- Dayong Chen
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Dan Pan
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Shaolong Tang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Zhihong Tan
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Yanan Zhang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Yunfeng Fu
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Guohua Lü
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Qinghua Huang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
31
|
Lim SW, Shiue YL, Liao JC, Wee HY, Wang CC, Chio CC, Chang CH, Hu CY, Kuo JR. Simvastatin Therapy in the Acute Stage of Traumatic Brain Injury Attenuates Brain Trauma-Induced Depression-Like Behavior in Rats by Reducing Neuroinflammation in the Hippocampus. Neurocrit Care 2017; 26:122-132. [PMID: 27406816 DOI: 10.1007/s12028-016-0290-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The antidepressant-like effects of simvastatin on traumatic brain injury (TBI) remain unclear. The present study aimed to investigate the neuroprotective effects of simvastatin and determine whether simvastatin attenuates TBI-induced depression-like behavior and, more specifically, acts as an antineuroinflammatory. METHODS Anesthetized male Sprague-Dawley rats were divided into five groups: sham-operated controls, TBI controls, and TBI treatment with simvastatin 4, 10, or 20 mg/kg. Simvastatin was intraperitoneally injected 0, 24, and 48 h after TBI. The motor function was measured using an inclined plane, and depression-like behavior was evaluated using forced swimming tests. Neuronal apoptosis (markers: NeuN, TUNEL, caspase-3), microglia (marker: OX42) and astrocyte (marker: GFAP) activation, and TNF-α expression in the microglia and astrocytes of the hippocampal CA3 area were investigated using immunofluorescence assay. All parameters were measured on the 4th, 8th, and 15th day, or only on the 15th day after TBI. RESULTS TBI-induced depression-like behavior, which increased duration of immobility, was significantly attenuated by 20 mg simvastatin therapy on day 15 after TBI. TBI-induced neuronal apoptosis, microglia and astrocyte activation, and TNF-α expression in the microglia and astrocytes of the CA3 area of the hippocampus were significantly reduced by simvastatin treatment, particularly when 20 mg/kg was administered for 3 days. CONCLUSIONS Intraperitoneal injection of simvastatin attenuated TBI in rats during the acute stage by reducing neuronal apoptosis, microglia, and TNF-α expression, thereby resulting in a reduction of depressive-like behavior. Our results suggest that simvastatin may be a promising treatment for TBI-induced depression-like behavior.
Collapse
Affiliation(s)
- Sher-Wei Lim
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, Chi-Mei Medical Center, Chiali, Tainan, Taiwan
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jen-Chieh Liao
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Hsiao-Yue Wee
- Department of Neurosurgery, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Che-Chuan Wang
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
- Departments of Child Care, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chung-Ching Chio
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chin-Hung Chang
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chiao-Ya Hu
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Departments of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan.
- Departments of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan.
- Chi-Mei Medical Center, #901 Chung Hwa Road, Yung Kang, Tainan, Taiwan.
| |
Collapse
|
32
|
Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 2017; 95:1246-1265. [PMID: 28910616 DOI: 10.1016/j.neuron.2017.07.010] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with a considerable socioeconomic burden. Heterogeneity of pathoanatomical subtypes and diversity in the pathogenesis and extent of injury contribute to differences in the course and outcome of TBI. Following the primary injury, extensive and lasting damage is sustained through a complex cascade of events referred to as "secondary injury." Neuroinflammation is proposed as an important manipulable aspect of secondary injury in animal and human studies. Because neuroinflammation can be detrimental or beneficial, before developing immunomodulatory therapies, it is necessary to better understand the timing and complexity of the immune responses that follow TBI. With a rapidly increasing body of literature, there is a need for a clear summary of TBI neuroimmunology. This review presents our current understanding of the immune response to TBI in a chronological and compartment-based manner, highlighting early changes in gene expression and initial signaling pathways that lead to activation of innate and adaptive immunity. Based on recent advances in our understanding of innate immune cell activation, we propose a new paradigm to study innate immune cells following TBI that moves away from the existing M1/M2 classification of activation states toward a stimulus- and disease-specific understanding of polarization state based on transcriptomic and proteomic profiling.
Collapse
|
33
|
Chio CC, Lin HJ, Tian YF, Chen YC, Lin MT, Lin CH, Chang CP, Hsu CC. Exercise attenuates neurological deficits by stimulating a critical HSP70/NF-κB/IL-6/synapsin I axis in traumatic brain injury rats. J Neuroinflammation 2017; 14:90. [PMID: 28438174 PMCID: PMC5404305 DOI: 10.1186/s12974-017-0867-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background Despite previous evidence for a potent inflammatory response after a traumatic brain injury (TBI), it is unknown whether exercise preconditioning (EP) improves outcomes after a TBI by modulating inflammatory responses. Methods We performed quantitative real-time PCR (qPCR) to quantify the genes encoding 84 cytokines and chemokines in the peripheral blood and used ELISA to determine both the cerebral and blood levels of interleukin-6 (IL-6). We also performed the chromatin immunoprecipitation (ChIP) assay to evaluate the extent of nuclear factor kappa-B (NF-κB) binding to the DNA elements in the IL-6 promoter regions. Also, we adopted the Western blotting assay to measure the cerebral levels of heat shock protein (HSP) 70, synapsin I, and β-actin. Finally, we performed both histoimmunological and behavioral assessment to measure brain injury and neurological deficits, respectively. Results We first demonstrated that TBI upregulated nine pro-inflammatory and/or neurodegenerative messenger RNAs (mRNAs) in the peripheral blood such as CXCL10, IL-18, IL-16, Cd-70, Mif, Ppbp, Ltd, Tnfrsf 11b, and Faslg. In addition to causing neurological injuries, TBI also upregulated the following 14 anti-inflammatory and/or neuroregenerative mRNAs in the peripheral blood such as Ccl19, Ccl3, Cxcl19, IL-10, IL-22, IL-6, Bmp6, Ccl22, IL-7, Bmp7, Ccl2, Ccl17, IL-1rn, and Gpi. Second, we observed that EP inhibited both neurological injuries and six pro-inflammatory and/or neurodegenerative genes (Cxcl10, IL-18, IL-16, Cd70, Mif, and Faslg) but potentiated four anti-inflammatory and/or neuroregenerative genes (Bmp6, IL-10, IL-22, and IL-6). Prior depletion of cerebral HSP70 with gene silence significantly reversed the beneficial effects of EP in reducing neurological injuries and altered gene profiles after a TBI. A positive Pearson correlation exists between IL-6 and HSP70 in the peripheral blood or in the cerebral levels. In addition, gene silence of cerebral HSP70 significantly reduced the overexpression of NF-κB, IL-6, and synapsin I in the ipsilateral brain regions after an EP in rats. Conclusions TBI causes neurological deficits associated with stimulating several pro-inflammatory gene profiles but inhibiting several anti-inflammatory gene profiles of cytokines and chemokines. Exercise protects against neurological injuries via stimulating an anti-inflammatory HSP70/NF-κB/IL-6/synapsin I axis in the injured brains.
Collapse
Affiliation(s)
- Chung-Ching Chio
- Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Yu-Chieh Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | | | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan. .,Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Chien-Chin Hsu
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan. .,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan.
| |
Collapse
|
34
|
The Polarization States of Microglia in TBI: A New Paradigm for Pharmacological Intervention. Neural Plast 2017; 2017:5405104. [PMID: 28255460 PMCID: PMC5309408 DOI: 10.1155/2017/5405104] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/17/2016] [Accepted: 01/11/2017] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious medical and social problem worldwide. Because of the complex pathophysiological mechanisms of TBI, effective pharmacotherapy is still lacking. The microglial cells are resident tissue macrophages located in the brain and have two major polarization states, M1 phenotype and M2 phenotype, when activated. The M1 phenotype is related to the release of proinflammatory cytokines and secondary brain injury, while the M2 phenotype has been proved to be responsible for the release of anti-inflammation cytokines and for central nervous system (CNS) repair. In animal models, pharmacological strategies inhibiting the M1 phenotype and promoting the M2 phenotype of microglial cells could alleviate cerebral damage and improve neurological function recovery after TBI. In this review, we aimed to summarize the current knowledge about the pathological significance of microglial M1/M2 polarization in the pathophysiology of TBI. In addition, we reviewed several drugs that have provided neuroprotective effects against brain injury following TBI by altering the polarization states of the microglia. We emphasized that future investigation of the regulation mechanisms of microglial M1/M2 polarization in TBI is anticipated, which could contribute to the development of new targets of pharmacological intervention in TBI.
Collapse
|
35
|
Shi X, Yu W, Liu L, Liu W, Zhang X, Yang T, Chai L, Lou L, Gao Y, Zhu L. Panax notoginseng saponins administration modulates pro- /anti-inflammatory factor expression and improves neurologic outcome following permanent MCAO in rats. Metab Brain Dis 2017; 32:221-233. [PMID: 27585466 DOI: 10.1007/s11011-016-9901-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
Abstract
Ischemic stroke, particularly permanent occlusion, accounts for the overwhelming majority of all strokes. In addition to the occlusion of arteries, the inflammatory response plays a pivotal role in the severity of the cerebral injury and its clinical prognosis. Here, panax notoginseng saponins (PNS) extracted from a traditional Chinese herbal medicine was administered following permanent middle cerebral artery occlusion (MCAO) in rats to explore the neuroprotective mechanisms against ischemic injury. The results showed that MCAO surgery was successful in producing an infarct and that PNS and nimodipine could ameliorate the neurological deficits. The expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) were increased, while the level of interleukin-10 (IL-10) was reduced in the infarct cortex 7 days after MCAO, as assessed by immunohistochemistry, western blotting and quantitative real-time PCR (qRT-PCR). PNS was able to markedly reduce the overexpression of IL-1β and TNF-α while significantly promoting the expression of IL-10, but did not affect the elevated expression of TGF-β1. Meanwhile, nimodipine was able to significantly reduce the expression of IL-1β and TNF-α, but had no obvious effect on IL-10 or TGF-β1. In addition, the serum levels of TNF-α, IL-10 and TGF-β1 were basically consistent with cerebral tissue results; however, the IL-1β levels did not differ. We conclude that PNS can directly down-regulate the overexpression of proinflammatory factors IL-1β and TNF-α while up-regulating the expression of anti-inflammatory factor IL-10 in the core region of the cerebral infarct, thereby preventing neurological damage in rats after permanent MCAO.
Collapse
Affiliation(s)
- Xiaowei Shi
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Yu
- Department of pediatrics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lixing Liu
- Department of Integrated Traditional and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Liu
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaomeng Zhang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Yang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
36
|
Lim SW, Sung KC, Shiue YL, Wang CC, Chio CC, Kuo JR. Hyperbaric Oxygen Effects on Depression-Like Behavior and Neuroinflammation in Traumatic Brain Injury Rats. World Neurosurg 2017; 100:128-137. [PMID: 28065873 DOI: 10.1016/j.wneu.2016.12.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether hyperbaric oxygen (HBO) therapy causes attenuation of traumatic brain injury (TBI)-induced depression-like behavior and its associated anti-neuroinflammatory effects after fluid percussion injury. METHODS Anesthetized male Sprague-Dawley rats were divided into 3 groups: sham operation plus normobaric air (NBA) (21% oxygen at 1 absolute atmosphere [ATA]), TBI plus NBA, and TBI plus HBO (100% oxygen at 2.0 ATA). HBO was applied immediately for 60 min/d after TBI for 3 days. Depression-like behavior was tested by a forced swimming test, motor function was tested by an inclined plane test, and infarction volume was tested by triphenyltetrazolium chloride (TTC) staining on days 4, 8, and 15. Neuronal apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling assay), microglial (marker OX42) activation, and tumor necrosis factor (TNF)-α expression in microglia in the hippocampus CA3 were measured by immunofluorescence methods. RESULTS Compared with the TBI controls, without significant changes in TTC staining or in the motor function test, TBI-induced depression-like behavior was significantly attenuated by HBO therapy by day 15 after TBI. Simultaneously, TBI-induced neuronal apoptosis, microglial (marker OX42) activation, and TNF-α expression in the microglia in the hippocampus CA3 were significantly reduced by HBO. CONCLUSIONS Our results suggest that HBO treatment may ameliorate TBI-induced depression-like behavior in rats by attenuating neuroinflammation, representing one possible mechanism by which depression-like behavior recovery might occur. We also recommend HBO as a potential treatment for TBI-induced depression-like behavior if early intervention is possible.
Collapse
Affiliation(s)
- Sher-Wei Lim
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Chi-Mei Medical Center, Chiali, Tainan, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Kuan-Chin Sung
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Child Care, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chung-Ching Chio
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
37
|
Chio CC, Lin MT, Chang CP, Lin HJ. A positive correlation exists between neurotrauma and TGF-β1-containing microglia in rats. Eur J Clin Invest 2016; 46:1063-1069. [PMID: 27759956 DOI: 10.1111/eci.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transforming growth factor-beta 1 (TGF-β1) regulates many processes after traumatic brain injury (TBI). Both Neuro AiD™ (MLC601) and astragaloside (AST) attenuate microglia activation in rats with TBI. The purpose of this study was to investigate whether MLC601 or AST improves output of TBI by affecting microglial expression of TGF-β1. MATERIALS AND METHODS Adult male Sprague-Dawley rats (120 in number) were used to investigate the contribution of TGF-β1-containing microglia in the MLC601-mediated or the AST-mediated neuroprotection in the brain trauma condition using lateral fluid percussion injury. RESULTS Pearson correlation analysis revealed that there was a positive correlation between brain injury (evidenced by both brain contused volume and neurological severity score) and the cortical numbers of TGF-β1-containing microglia for the rats (n = 12) 4 days post-TBI. MLC601 or AST significantly (P < 0·05) attenuated TBI-induced brain contused volume (119 ± 14 mm3 or 108 ± 11 mm3 vs. 160 ± 21 mm3 ), neurological severity score (7·8 ± 0·3 or 8·1 ± 0·4 vs. 10·2 ± 0·5) and numbers of TGF-β1-containing microglia (6% ± 2% or 11% ± 3% vs. 79% ± 7%) for the rats 4 days post-TBI. CONCLUSIONS There was a positive correlation between TBI and cortical numbers of TGF-β1-containing microglia which could be significantly attenuated by astragaloside or NeuroAiD™ (MLC601) in rats.
Collapse
Affiliation(s)
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
38
|
Tang WC, Hsu YC, Wang CC, Hu CY, Chio CC, Kuo JR. Early electroacupuncture treatment ameliorates neuroinflammation in rats with traumatic brain injury. Altern Ther Health Med 2016; 16:470. [PMID: 27852302 PMCID: PMC5112630 DOI: 10.1186/s12906-016-1457-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/31/2016] [Indexed: 02/21/2023]
Abstract
Background Neuroinflammation is the leading cause of neurological sequelae after traumatic brain injury (TBI). The aim of the present study was to investigate whether the neuroprotective effects of electroacupuncture (EA) are mediated by anti-neuroinflammatory effects in a rat model of TBI. Methods Male Sprague-Dawley rats were randomly divided into three groups: sham-operated, TBI control, and EA-treated. The animals in the sham-operated group underwent a sham operation, those in the TBI control group were subjected to TBI, but not EA, and those in the EA group were treated with EA for 60 min immediately after TBI, daily for 3 consecutive days. EA was applied at the acupuncture points GV20, GV26, LI4, and KI1, using a dense-dispersed wave, at frequencies of 0.2 and 1 Hz, and an amplitude of 1 mA. Cell infarction volume (TTC stain), neuronal apoptosis (markers: TUNEL and Caspase-3), activation of microglia (marker: Iba1) and astrocytes (marker: GFAP), and tumor necrosis factor (TNF)-α expression in the microglia and astrocytes were evaluated by immunofluorescence. Functional outcomes were assessed using the inclined plane test. All tests were performed 72 h after TBI. Results We found that TBI-induced loss of grasp strength, infarction volume, neuronal apoptosis, microglial and astrocyte activation, and TNF-α expression in activated microglia and astrocytes were significantly attenuated by EA treatment. Conclusions Treatment of TBI in the acute stage with EA for 60 min daily for 3 days could ameliorate neuroinflammation. This may thus represent a mechanism by which functional recovery can occur after TBI.
Collapse
|
39
|
Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation 2016; 13:236. [PMID: 27596607 PMCID: PMC5011997 DOI: 10.1186/s12974-016-0708-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
The basic mechanism of the major neurodegenerative diseases, including neurogenic pain, needs to be agreed upon before rational treatments can be determined, but this knowledge is still in a state of flux. Most have agreed for decades that these disease states, both infectious and non-infectious, share arguments incriminating excitotoxicity induced by excessive extracellular cerebral glutamate. Excess cerebral levels of tumor necrosis factor (TNF) are also documented in the same group of disease states. However, no agreement exists on overarching mechanism for the harmful effects of excess TNF, nor, indeed how extracellular cerebral glutamate reaches toxic levels in these conditions. Here, we link the two, collecting and arguing the evidence that, across the range of neurodegenerative diseases, excessive TNF harms the central nervous system largely through causing extracellular glutamate to accumulate to levels high enough to inhibit synaptic activity or kill neurons and therefore their associated synapses as well. TNF can be predicted from the broader literature to cause this glutamate accumulation not only by increasing glutamate production by enhancing glutaminase, but in addition simultaneously reducing glutamate clearance by inhibiting re-uptake proteins. We also discuss the effects of a TNF receptor biological fusion protein (etanercept) and the indirect anti-TNF agents dithio-thalidomides, nilotinab, and cannabinoids on these neurological conditions. The therapeutic effects of 6-diazo-5-oxo-norleucine, ceptriaxone, and riluzole, agents unrelated to TNF but which either inhibit glutaminase or enhance re-uptake proteins, but do not do both, as would anti-TNF agents, are also discussed in this context. By pointing to excess extracellular glutamate as the target, these arguments greatly strengthen the case, put now for many years, to test appropriately delivered ant-TNF agents to treat neurodegenerative diseases in randomly controlled trials.
Collapse
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, 0200, Australia.
| | - Bryce Vissel
- Neurodegeneration Research Group, Garvan Institute, 384 Victoria Street, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
40
|
Madsen PM, Clausen BH, Degn M, Thyssen S, Kristensen LK, Svensson M, Ditzel N, Finsen B, Deierborg T, Brambilla R, Lambertsen KL. Genetic ablation of soluble tumor necrosis factor with preservation of membrane tumor necrosis factor is associated with neuroprotection after focal cerebral ischemia. J Cereb Blood Flow Metab 2016; 36:1553-69. [PMID: 26661199 PMCID: PMC5012516 DOI: 10.1177/0271678x15610339] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
Microglia respond to focal cerebral ischemia by increasing their production of the neuromodulatory cytokine tumor necrosis factor, which exists both as membrane-anchored tumor necrosis factor and as cleaved soluble tumor necrosis factor forms. We previously demonstrated that tumor necrosis factor knockout mice display increased lesion volume after focal cerebral ischemia, suggesting that tumor necrosis factor is neuroprotective in experimental stroke. Here, we extend our studies to show that mice with intact membrane-anchored tumor necrosis factor, but no soluble tumor necrosis factor, display reduced infarct volumes at one and five days after stroke. This was associated with improved functional outcome after experimental stroke. No changes were found in the mRNA levels of tumor necrosis factor and tumor necrosis factor-related genes (TNFR1, TNFR2, TACE), pro-inflammatory cytokines (IL-1β, IL-6) or chemokines (CXCL1, CXCL10, CCL2); however, protein expression of TNF, IL-1β, IL-6 and CXCL1 was reduced in membrane-anchored tumor necrosis factor(Δ/Δ) compared to membrane-anchored tumor necrosis factor(wt/wt) mice one day after experimental stroke. This was paralleled by reduced MHCII expression and a reduction in macrophage infiltration in the ipsilateral cortex of membrane-anchored tumor necrosis factor(Δ/Δ) mice. Collectively, these findings indicate that membrane-anchored tumor necrosis factor mediates the protective effects of tumor necrosis factor signaling in experimental stroke, and therapeutic strategies specifically targeting soluble tumor necrosis factor could be beneficial in clinical stroke therapy.
Collapse
Affiliation(s)
- Pernille M Madsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Bettina H Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Matilda Degn
- Molecular Sleep Lab, Department of Diagnostics, Glostrup Hospital, Glostrup, Denmark
| | - Stine Thyssen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lotte K Kristensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martina Svensson
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Nicholas Ditzel
- KMEB, Molecular Endocrinology, Odense University Hospital, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tomas Deierborg
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
41
|
Sordillo PP, Sordillo LA, Helson L. Bifunctional role of pro-inflammatory cytokines after traumatic brain injury. Brain Inj 2016; 30:1043-53. [DOI: 10.3109/02699052.2016.1163618] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Abstract
Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.
Collapse
Affiliation(s)
- Edward Lewis Tobinick
- Institute of Neurological Recovery, 2300 Glades Road, Suite 305E, Boca Raton, FL, 33431, USA.
| |
Collapse
|
43
|
Yang W, Yang Y, Yang JY, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med 2016; 37:1075-82. [PMID: 26936518 DOI: 10.3892/ijmm.2016.2498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 02/12/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the protective effect exerted by bone marrow mesenchymal stem cells (BMSCs) in combination with plumbagin on spinal cord injury (SCI) and explore the mechanism behind this protective effect. Firstly, BMSCs were extracted from male Sprague-Dawley rats, cultured in vitro, and identified by hematoxylin. Sprague-Dawley rats were then randomly divided into a control group, SCI model group, BMSC-treated group, a plumbagin-treated group, and a BMSC and plumbagin-treated group. After treatment with BMSCs combined with plumbagin, a Basso, Beattie and Bresnahan (BBB) test was carried out and the spinal cord water content was examined in order to analyze the effect of BMSCs combined with plumbagin on SCI. The myeloperoxidase (MPO), superoxide dismutase (SOD), malondialdehyde (MDA), nuclear factor-κB (NF-κB) p65 unit, tumor necrosis factor-α (TNF-α) levels were also detected. Moreover, nuclear factor erythroid 2‑related factor 2 (Nrf2), phosphoinositide 3-kinase (PI3K), phosphorylated (p-)Akt, p-p38 mitogen-activated protein kinase (MAPK), and p-extracellular-signal-regulated kinase (ERK) protein expression levels were measured using western blot analysis. Treatment with BMSCs combined with plumbagin significantly improved locomotor recovery and reduced the spinal cord water content after SCI. The increased MPO, MDA, NF-κB p65 and TNF-α levels were significantly suppressed and the decreased SOD was significantly increased in SCI rats. The suppression of Nrf2, p-Akt and p-ERK, as well as the promotion of p-p38 MAPK, were reversed by treatment with BMSCs combined with plumbagin. These effects suggest that treatment with BMSCs combined with plumbagin alleviates SCI through its effects on oxidative stress, inflammation, apoptotis and activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Wencheng Yang
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Yan Yang
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jian-Yi Yang
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Ming Liang
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jiangtao Song
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
44
|
Therapies negating neuroinflammation after brain trauma. Brain Res 2015; 1640:36-56. [PMID: 26740405 DOI: 10.1016/j.brainres.2015.12.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) elicits a complex secondary injury response, with neuroinflammation as a crucial central component. Long thought to be solely a deleterious factor, the neuroinflammatory response has recently been shown to be far more intricate, with both beneficial and detrimental consequences depending on the timing, magnitude and specific immune composition of the response post-injury. Despite extensive preclinical and clinical research into mechanisms of secondary injury after TBI, no effective neuroprotective therapy has been identified, with potential candidates repeatedly proving disappointing in the clinic. The neuroinflammatory response offers a promising avenue for therapeutic targeting, aiming to quell the deleterious consequences without influencing its function in providing a neurotrophic environment supportive of repair. The present review firstly describes the findings of recent clinical trials that aimed to modulate inflammation as a means of neuroprotection. Secondly, we discuss promising multifunctional and single-target anti-inflammatory candidates either currently in trial, or with ample experimental evidence supporting clinical application. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
45
|
Effects of Etanercept against Transient Cerebral Ischemia in Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:189292. [PMID: 26665003 PMCID: PMC4668299 DOI: 10.1155/2015/189292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus is known to exacerbate acute cerebral ischemic injury. Previous studies have demonstrated that infarction volumes caused by transient cerebral ischemia were greater in diabetic rats than in nondiabetic rats. Tumor necrosis factor-α (TNF-α) is a proinflammatory protein produced in the brain in response to cerebral ischemia that promotes apoptosis. Etanercept (ETN), a recombinant TNF receptor (p75)-Fc fusion protein, competitively inhibits TNF-α. Therefore, we evaluated the neuroprotective effects of chronic or acute treatment with ETN on cerebral injury caused by middle cerebral artery occlusion/reperfusion (MCAO/Re) in rats with streptozotocin-induced diabetes. Furthermore, we evaluated the effects of ETN against the apoptosis and myeloperoxidase activity. Single administration of ETN before MCAO significantly suppressed exacerbation of cerebral damage in nondiabetic rats, as assessed by infarct volume. In contrast, the diabetic state markedly aggravated MCAO/Re-induced cerebral damage despite ETN treatment within 24 h before MCAO. However, the damage was improved by repeated administration of ETN at 900 μg/kg/daily in rats in an induced diabetic state. These results suggested that repeated administration of ETN can prevent exacerbation of cerebral ischemic injury in the diabetic state and is mainly attributed to anti-inflammatory effects.
Collapse
|
46
|
Wu MH, Huang CC, Chio CC, Tsai KJ, Chang CP, Lin NK, Lin MT. Inhibition of Peripheral TNF-α and Downregulation of Microglial Activation by Alpha-Lipoic Acid and Etanercept Protect Rat Brain Against Ischemic Stroke. Mol Neurobiol 2015; 53:4961-71. [PMID: 26374550 DOI: 10.1007/s12035-015-9418-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
Abstract
Ischemic stroke, caused by obstruction of blood flow to the brain, would initiate microglia activation which contributes to neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation could be a therapeutic strategy for ischemic stroke. This study was aimed to elucidate the anti-inflammatory effects of alpha-lipoic acid and etanercept given either singly or in combination in rats subjected to middle cerebral artery occlusion. Both α-lipoic acid and etanercept markedly reduced cerebral infarct, blood-brain barrier disruption, and neurological motor deficits with the former drug being more effective with the dosage used. Furthermore, when used in combination, the reduction was more substantial. Remarkably, a greater diminution in the serum levels of tumor necrosis factor-alpha as well as the brain levels of microglial activation (e.g., microgliosis, amoeboid microglia, and microglial overexpression of tumor necrosis factor-α) was observed with the combined drug treatment as compared to the drugs given separately. We conclude that inhibition of peripheral tumor necrosis factor-alpha as well as downregulation of brain microglial activation by alpha-lipoic acid or etanercept protect rat brain against ischemic stroke. Moreover, when both drugs were used in combination, the stroke recovery was promoted more extensively.
Collapse
Affiliation(s)
- Ming-Hsiu Wu
- The Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Division of Neurology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, 736, Taiwan
| | - Chao-Ching Huang
- The Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University College of Medicine and Hospital, Tainan, 701, Taiwan
| | - Chung-Ching Chio
- Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Kuen-Jer Tsai
- The Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Nan-Kai Lin
- Li-Sheng Biotechnology Co., Ltd., Taipei, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan.
| |
Collapse
|
47
|
Perez-Polo JR, Rea HC, Johnson KM, Parsley MA, Unabia GC, Xu GY, Prough D, DeWitt DS, Paulucci-Holthauzen AA, Werrbach-Perez K, Hulsebosch CE. Inflammatory cytokine receptor blockade in a rodent model of mild traumatic brain injury. J Neurosci Res 2015; 94:27-38. [PMID: 26172557 DOI: 10.1002/jnr.23617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/24/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
In rodent models of traumatic brain injury (TBI), both Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) levels increase early after injury to return later to basal levels. We have developed and characterized a rat mild fluid percussion model of TBI (mLFP injury) that results in righting reflex response times (RRRTs) that are less than those characteristic of moderate to severe LFP injury and yet increase IL-1α/β and TNFα levels. Here we report that blockade of IL-1α/β and TNFα binding to IL-1R and TNFR1, respectively, reduced neuropathology in parietal cortex, hippocampus, and thalamus and improved outcome. IL-1β binding to the type I IL-1 receptor (IL-1R1) can be blocked by a recombinant form of the endogenous IL-1R antagonist IL-1Ra (Kineret). TNFα binding to the TNF receptor (TNFR) can be blocked by the recombinant fusion protein etanercept, made up of a TNFR2 peptide fused to an Fc portion of human IgG1. There was no benefit from the combined blockades compared with individual blockades or after repeated treatments for 11 days after injury compared with one treatment at 1 hr after injury, when measured at 6 hr or 18 days, based on changes in neuropathology. There was also no further enhancement of blockade benefits after 18 days. Given that both Kineret and etanercept given singly or in combination showed similar beneficial effects and that TNFα also has a gliotransmitter role regulating AMPA receptor traffic, thus confounding effects of a TNFα blockade, we chose to focus on a single treatment with Kineret.
Collapse
Affiliation(s)
| | - H C Rea
- University of Texas Medical Branch, Galveston, Texas
| | - K M Johnson
- University of Texas Medical Branch, Galveston, Texas
| | - M A Parsley
- University of Texas Medical Branch, Galveston, Texas
| | - G C Unabia
- University of Texas Medical Branch, Galveston, Texas
| | - G-Y Xu
- University of Texas Medical Branch, Galveston, Texas
| | - D Prough
- University of Texas Medical Branch, Galveston, Texas
| | - D S DeWitt
- University of Texas Medical Branch, Galveston, Texas
| | | | | | | |
Collapse
|
48
|
Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol 2015; 275 Pt 3:367-380. [PMID: 26112314 DOI: 10.1016/j.expneurol.2015.05.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury rapidly induces inflammation. This inflammation is produced both by endogenous brain cells and circulating inflammatory cells that enter from the brain. Together they drive the inflammatory response through a wide variety of bioactive lipids, cytokines and chemokines. A large number of drugs with anti-inflammatory action have been tested in both preclinical studies and in clinical trials. These drugs either have known anti-inflammatory action or inhibit the inflammatory response through unknown mechanisms. The results of these preclinical studies and clinical trials are reviewed. Recommendations are suggested on how to improve preclinical testing of drugs to make them more relevant to evaluate for clinical trials.
Collapse
Affiliation(s)
- Peter J Bergold
- Robert F. Furchgott Center for Neural Science, Department of Physiology and Pharmacology, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States.
| |
Collapse
|
49
|
Tobinick E, Rodriguez-Romanacce H, Levine A, Ignatowski TA, Spengler RN. Immediate neurological recovery following perispinal etanercept years after brain injury. Clin Drug Investig 2015; 34:361-6. [PMID: 24647830 DOI: 10.1007/s40261-014-0186-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Positron emission tomographic brain imaging and pathological examination have revealed that a chronic, intracerebral neuroinflammatory response lasting for years after a single brain injury may occur in humans. Evidence suggests the immune signaling molecule, tumor necrosis factor (TNF), is centrally involved in this pathology through its modulation of microglial activation, role in synaptic dysfunction, and induction of depressive symptoms and neuropathic pain. Etanercept is a recombinant TNF receptor fusion protein and potent TNF inhibitor that has been found to reduce microglial activation and neuropathic pain in multiple experimental models. We report that a single dose of perispinal etanercept produced an immediate, profound, and sustained improvement in expressive aphasia, speech apraxia, and left hemiparesis in a patient with chronic, intractable, debilitating neurological dysfunction present for more than 3 years after acute brain injury. These results indicate that acute brain injury-induced pathologic levels of TNF may provide a therapeutic target that can be addressed years after injury. Perispinal administration of etanercept is capable of producing immediate relief from brain injury-mediated neurological dysfunction.
Collapse
Affiliation(s)
- Edward Tobinick
- Institute of Neurological Recovery, 2300 Glades Road Suite 305E, Boca Raton, FL, 33431, USA,
| | | | | | | | | |
Collapse
|
50
|
Baratz R, Tweedie D, Wang JY, Rubovitch V, Luo W, Hoffer BJ, Greig NH, Pick CG. Transiently lowering tumor necrosis factor-α synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflammation 2015; 12:45. [PMID: 25879458 PMCID: PMC4352276 DOI: 10.1186/s12974-015-0237-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Background The treatment of traumatic brain injury (TBI) represents an unmet medical need, as no effective pharmacological treatment currently exists. The development of such a treatment requires a fundamental understanding of the pathophysiological mechanisms that underpin the sequelae resulting from TBI, particularly the ensuing neuronal cell death and cognitive impairments. Tumor necrosis factor-alpha (TNF-α) is a cytokine that is a master regulator of systemic and neuroinflammatory processes. TNF-α levels are reported to become rapidly elevated post TBI and, potentially, can lead to secondary neuronal damage. Methods To elucidate the role of TNF-α in TBI, particularly as a drug target, the present study evaluated (i) time-dependent TNF-α levels and (ii) markers of apoptosis and gliosis within the brain and related these to behavioral measures of ‘well being’ and cognition in a mouse closed head 50 g weight drop mild TBI (mTBI) model in the presence and absence of post-treatment with an experimental TNF-α synthesis inhibitor, 3,6′-dithiothalidomide. Results mTBI elevated brain TNF-α levels, which peaked at 12 h post injury and returned to baseline by 18 h. This was accompanied by a neuronal loss and an increase in astrocyte number (evaluated by neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) immunostaining), as well as an elevation in the apoptotic death marker BH3-interacting domain death agonist (BID) at 72 h. Selective impairments in measures of cognition, evaluated by novel object recognition and passive avoidance paradigms - without changes in well being, were evident at 7 days after injury. A single systemic treatment with the TNF-α synthesis inhibitor 3,6′-dithiothalidomide 1 h post injury prevented the mTBI-induced TNF-α elevation and fully ameliorated the neuronal loss (NeuN), elevations in astrocyte number (GFAP) and BID, and cognitive impairments. Cognitive impairments evident at 7 days after injury were prevented by treatment as late as 12 h post mTBI but were not reversed when treatment was delayed until 18 h. Conclusions These results implicate that TNF-α in mTBI induced secondary brain damage and indicate that pharmacologically limiting the generation of TNF-α post mTBI may mitigate such damage, defining a time-dependent window of up to 12 h to achieve this reversal.
Collapse
Affiliation(s)
- Renana Baratz
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - David Tweedie
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, BRC Room 05C220, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Weiming Luo
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, BRC Room 05C220, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, BRC Room 05C220, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|