1
|
Aumont-Rodrigue G, Picard C, Labonté A, Poirier J. Apolipoprotein B gene expression and regulation in relation to Alzheimer's disease pathophysiology. J Lipid Res 2024:100667. [PMID: 39395793 DOI: 10.1016/j.jlr.2024.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Apolipoprotein B (APOB), a receptor-binding protein present in cholesterol-rich lipoproteins, has been implicated in Alzheimer's disease (AD). High levels of APOB-containing low-density lipoproteins (LDL) are linked to the pathogenesis of both early-onset familial and late onset sporadic AD. Rare coding mutations in the APOB gene are associated with familial AD, suggesting a role for APOB-bound lipoproteins in the central nervous system. This research explores APOB gene regulation across the AD spectrum using four cohorts: BRAINEAC (elderly control brains), DBCBB (controls, AD brains), ROSMAP (controls, MCI, AD brains), and ADNI (control, MCI, AD clinical subjects). APOB protein levels, measured via mass spectrometry and ELISA, positively correlated with AD pathology indices and cognition, while APOB mRNA levels showed negative correlations. Brain APOB protein levels also correlated with cortical Aβ levels. A common coding variant in the APOB gene locus affected its expression but didn't impact AD risk or brain cholesterol concentrations, except for 24-S-hydroxycholesterol. Polymorphisms in the CYP27A1 gene, notably rs4674344, were associated with APOB protein levels. A negative correlation was observed between brain APOB gene expression and AD biomarker levels. CSF APOB correlated with Tau pathology in presymptomatic subjects, while cortical APOB was strongly associated with cortical Aβ deposition in late-stage AD. The study discusses the potential link between blood-brain barrier dysfunction and AD symptoms in relation to APOB neurobiology. Overall, APOB's involvement in lipoprotein metabolism appears to influence AD pathology across different stages of the disease.
Collapse
Affiliation(s)
- Gabriel Aumont-Rodrigue
- Douglas Mental Health University Institute, Montréal, Québec, Canada, H4H 1R3; Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada, H4H 1R3; McGill University, Montréal, Québec, Canada, H3A 0G4
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Québec, Canada, H4H 1R3; Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada, H4H 1R3
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Québec, Canada, H4H 1R3; Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada, H4H 1R3
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Québec, Canada, H4H 1R3; Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada, H4H 1R3; McGill University, Montréal, Québec, Canada, H3A 0G4
| |
Collapse
|
2
|
Poirier A, Picard C, Labonté A, Aubry I, Auld D, Zetterberg H, Blennow K, Tremblay ML, Poirier J. PTPRS is a novel marker for early Tau pathology and synaptic integrity in Alzheimer's disease. Sci Rep 2024; 14:14718. [PMID: 38926456 PMCID: PMC11208446 DOI: 10.1038/s41598-024-65104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early Tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower p(181)Tau and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.
Collapse
Affiliation(s)
- Alexandre Poirier
- Division of Experimental Medicine, Faculty of Medicine and Health Science, McGill University, Montréal, QC, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montréal, Canada
- McGill University, Montréal, QC, Canada
| | - Daniel Auld
- McGill University, Montréal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, QC, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, SAR, People's Republic of China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Michel L Tremblay
- Division of Experimental Medicine, Faculty of Medicine and Health Science, McGill University, Montréal, QC, Canada.
- Goodman Cancer Institute, McGill University, Montréal, Canada.
- McGill University, Montréal, QC, Canada.
- Department of Biochemistry, McGill University, Montréal, Canada.
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, QC, Canada.
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada.
- McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Poirier A, Picard C, Labonté A, Aubry I, Auld D, Zetterberg H, Blennow K, Tremblay ML, Poirier J. PTPRS is a novel marker for early tau pathology and synaptic integrity in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593733. [PMID: 38766183 PMCID: PMC11100782 DOI: 10.1101/2024.05.12.593733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower P-tau181 and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.
Collapse
|
4
|
Pergola G, Rampino A, Sportelli L, Borcuk CJ, Passiatore R, Di Carlo P, Marakhovskaia A, Fazio L, Amoroso N, Castro MN, Domenici E, Gennarelli M, Khlghatyan J, Kikidis GC, Lella A, Magri C, Monaco A, Papalino M, Parihar M, Popolizio T, Quarto T, Romano R, Torretta S, Valsecchi P, Zunuer H, Blasi G, Dukart J, Beaulieu JM, Bertolino A. A miR-137-Related Biological Pathway of Risk for Schizophrenia Is Associated With Human Brain Emotion Processing. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:356-366. [PMID: 38000716 DOI: 10.1016/j.bpsc.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND miR-137 is a microRNA involved in brain development, regulating neurogenesis and neuronal maturation. Genome-wide association studies have implicated miR-137 in schizophrenia risk but do not explain its involvement in brain function and underlying biology. Polygenic risk for schizophrenia mediated by miR-137 targets is associated with working memory, although other evidence points to emotion processing. We characterized the functional brain correlates of miR-137 target genes associated with schizophrenia while disentangling previously reported associations of miR-137 targets with working memory and emotion processing. METHODS Using RNA sequencing data from postmortem prefrontal cortex (N = 522), we identified a coexpression gene set enriched for miR-137 targets and schizophrenia risk genes. We validated the relationship of this set to miR-137 in vitro by manipulating miR-137 expression in neuroblastoma cells. We translated this gene set into polygenic scores of coexpression prediction and associated them with functional magnetic resonance imaging activation in healthy volunteers (n1 = 214; n2 = 136; n3 = 2075; n4 = 1800) and with short-term treatment response in patients with schizophrenia (N = 427). RESULTS In 4652 human participants, we found that 1) schizophrenia risk genes were coexpressed in a biologically validated set enriched for miR-137 targets; 2) increased expression of miR-137 target risk genes was mediated by low prefrontal miR-137 expression; 3) alleles that predict greater gene set coexpression were associated with greater prefrontal activation during emotion processing in 3 independent healthy cohorts (n1, n2, n3) in interaction with age (n4); and 4) these alleles predicted less improvement in negative symptoms following antipsychotic treatment in patients with schizophrenia. CONCLUSIONS The functional translation of miR-137 target gene expression linked with schizophrenia involves the neural substrates of emotion processing.
Collapse
Affiliation(s)
- Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy.
| | - Leonardo Sportelli
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Christopher James Borcuk
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Roberta Passiatore
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Institute of Neuroscience and Medicine, Brain & Behaviour, Research Centre Jülich, Jülich, Germany
| | - Pasquale Di Carlo
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | | | - Leonardo Fazio
- Department of Medicine and Surgery, Libera Università Mediterranea Giuseppe Degennaro, Casamassima, Italy
| | - Nicola Amoroso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Mariana Nair Castro
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina (MNC); Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Fleni-Consejo Nacional de Investigaciones Científicas y Técnicas Neurosciences Institute, Ciudad Autónoma de Buenos Aires, Argentina
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy; Fondazione The Microsoft Research University of Trento, Centre for Computational and Systems Biology, Rovereto, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, Istituto di Ricovero e Cura a Carattere Sanitario Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Jivan Khlghatyan
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy; Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Gianluca Christos Kikidis
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Annalisa Lella
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina (MNC); Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Fleni-Consejo Nacional de Investigaciones Científicas y Técnicas Neurosciences Institute, Ciudad Autónoma de Buenos Aires, Argentina; Università degli Studi di Bari Aldo Moro, Dipartimento Interateneo di Fisica M. Merlin, Bari, Italy
| | - Marco Papalino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Teresa Popolizio
- Istituto di Ricovero e Cura a Carattere Sanitario Istituto Centro San Giovanni di Dio Fatebenefratelli, Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tiziana Quarto
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Law, University of Foggia, Foggia, Italy
| | - Raffaella Romano
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Silvia Torretta
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Valsecchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Mental Health and Addiction Services, Azienda Socio Sanitaria Territoriale Spedali Civili of Brescia, Brescia, Italy
| | - Hailiqiguli Zunuer
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour, Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
5
|
Salpietro V, Maroofian R, Zaki MS, Wangen J, Ciolfi A, Barresi S, Efthymiou S, Lamaze A, Aughey GN, Al Mutairi F, Rad A, Rocca C, Calì E, Accogli A, Zara F, Striano P, Mojarrad M, Tariq H, Giacopuzzi E, Taylor JC, Oprea G, Skrahina V, Rehman KU, Abd Elmaksoud M, Bassiony M, El Said HG, Abdel-Hamid MS, Al Shalan M, Seo G, Kim S, Lee H, Khang R, Issa MY, Elbendary HM, Rafat K, Marinakis NM, Traeger-Synodinos J, Ververi A, Sourmpi M, Eslahi A, Khadivi Zand F, Beiraghi Toosi M, Babaei M, Jackson A, Bertoli-Avella A, Pagnamenta AT, Niceta M, Battini R, Corsello A, Leoni C, Chiarelli F, Dallapiccola B, Faqeih EA, Tallur KK, Alfadhel M, Alobeid E, Maddirevula S, Mankad K, Banka S, Ghayoor-Karimiani E, Tartaglia M, Chung WK, Green R, Alkuraya FS, Jepson JEC, Houlden H. Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome. Am J Hum Genet 2024; 111:200-210. [PMID: 38118446 PMCID: PMC10806450 DOI: 10.1016/j.ajhg.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Jamie Wangen
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sabina Barresi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Angelique Lamaze
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Fuad Al Mutairi
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | | | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Elisa Calì
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Accogli
- Division of Medical Genetics, Department of Pediatrics, McGill University, Montreal, Canada
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Unit of Pediatric Neurology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Huma Tariq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Edoardo Giacopuzzi
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Genomics Research Centre, Human Technopole, Milan, Italy; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud Bassiony
- Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Huda G El Said
- Department of Family Health, High Institute of Public Health, University of Alexandria, Alexandria, Egypt
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha Al Shalan
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | | | | | - Hane Lee
- 3billion, Inc, Seoul, South Korea
| | | | - Mahmoud Y Issa
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hasnaa M Elbendary
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Karima Rafat
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Ververi
- Genetics Unit, Department of Obstetrics & Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Masshad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Masshad, Iran
| | | | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | | | | | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Women and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Eissa Ali Faqeih
- Unit of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Majid Alfadhel
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital, London, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Ehsan Ghayoor-Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, University of London, St George's, Cranmer Terrace, London SW17 0RE, UK
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
6
|
Estevez-Fraga C, Altmann A, Parker CS, Scahill RI, Costa B, Chen Z, Manzoni C, Zarkali A, Durr A, Roos RAC, Landwehrmeyer B, Leavitt BR, Rees G, Tabrizi SJ, McColgan P. Genetic topography and cortical cell loss in Huntington's disease link development and neurodegeneration. Brain 2023; 146:4532-4546. [PMID: 37587097 PMCID: PMC10629790 DOI: 10.1093/brain/awad275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Andre Altmann
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Christopher S Parker
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Beatrice Costa
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Claudia Manzoni
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Angeliki Zarkali
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), AP-HP, Inserm, CNRS, Paris 75013, France
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | | | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver BC V5Z 4H4Canada
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver BC V6T 2B5, Canada
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Peter McColgan
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| |
Collapse
|
7
|
Hahn O, Foltz AG, Atkins M, Kedir B, Moran-Losada P, Guldner IH, Munson C, Kern F, Pálovics R, Lu N, Zhang H, Kaur A, Hull J, Huguenard JR, Grönke S, Lehallier B, Partridge L, Keller A, Wyss-Coray T. Atlas of the aging mouse brain reveals white matter as vulnerable foci. Cell 2023; 186:4117-4133.e22. [PMID: 37591239 PMCID: PMC10528304 DOI: 10.1016/j.cell.2023.07.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Aging is the key risk factor for cognitive decline, yet the molecular changes underlying brain aging remain poorly understood. Here, we conducted spatiotemporal RNA sequencing of the mouse brain, profiling 1,076 samples from 15 regions across 7 ages and 2 rejuvenation interventions. Our analysis identified a brain-wide gene signature of aging in glial cells, which exhibited spatially defined changes in magnitude. By integrating spatial and single-nucleus transcriptomics, we found that glial aging was particularly accelerated in white matter compared with cortical regions, whereas specialized neuronal populations showed region-specific expression changes. Rejuvenation interventions, including young plasma injection and dietary restriction, exhibited distinct effects on gene expression in specific brain regions. Furthermore, we discovered differential gene expression patterns associated with three human neurodegenerative diseases, highlighting the importance of regional aging as a potential modulator of disease. Our findings identify molecular foci of brain aging, providing a foundation to target age-related cognitive decline.
Collapse
Affiliation(s)
- Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aulden G Foltz
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Blen Kedir
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia Moran-Losada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian H Guldner
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Christy Munson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Langone Health, New York City, NY, USA
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Róbert Pálovics
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hui Zhang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Achint Kaur
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob Hull
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Stanford University, The Phil and Penny Knight Initiative for Brain Resilience, Stanford, CA, USA.
| |
Collapse
|
8
|
Guebel DV. Human hippocampal astrocytes: Computational dissection of their transcriptome, sexual differences and exosomes across ageing and mild-cognitive impairment. Eur J Neurosci 2023; 58:2677-2707. [PMID: 37427765 DOI: 10.1111/ejn.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/20/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
The role of astrocytes in Alzheimer's disease is often disregarded. Hence, characterization of astrocytes along their early evolution toward Alzheimer would be greatly beneficial. However, due to their exquisite responsiveness, in vivo studies are difficult. So public microarray data of hippocampal homogenates from (healthy) young, (healthy) elder and elder with mild cognitive impairment (MCI) were subjected to re-analysis by a multi-step computational pipeline. Ontologies and pathway analyses were compared after determining the differential genes that, belonging to astrocytes, have splice forms. Likewise, the subset of molecules exportable to exosomes was also determined. The results showed that astrocyte's phenotypes changed significantly. While already 'activated' astrocytes were found in the younger group, major changes occurred during ageing (increased vascular remodelling and response to mechanical stimulus, diminished long-term potentiation and increased long-term depression). MCI's astrocytes showed some 'rejuvenated' features, but their sensitivity to shear stress was markedly lost. Importantly, most of the changes showed to be sex biassed. Men's astrocytes are enriched in a type 'endfeet-astrocytome', whereas women's astrocytes appear close to the 'scar-forming' type (prone to endothelial dysfunction, hypercholesterolemia, loss of glutamatergic synapses, Ca+2 dysregulation, hypoxia, oxidative stress and 'pro-coagulant' phenotype). In conclusion, the computational dissection of the networks based on the hippocampal gene isoforms provides a relevant proxy to in vivo astrocytes, also revealing the occurrence of sexual differences. Analyses of the astrocytic exosomes did not provide an acceptable approximation to the overall functioning of astrocytes in the hippocampus, probably due to the selective cellular mechanisms which charge the cargo molecules.
Collapse
|
9
|
Jiang X, Gatt A, Lashley T. HnRNP Pathologies in Frontotemporal Lobar Degeneration. Cells 2023; 12:1633. [PMID: 37371103 DOI: 10.3390/cells12121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most common form of young-onset (<65 years) dementia. Clinically, it primarily manifests as a disorder of behavioural, executive, and/or language functions. Pathologically, frontotemporal lobar degeneration (FTLD) is the predominant cause of FTD. FTLD is a proteinopathy, and the main pathological proteins identified so far are tau, TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS). As TDP-43 and FUS are members of the heterogeneous ribonucleic acid protein (hnRNP) family, many studies in recent years have expanded the research on the relationship between other hnRNPs and FTLD pathology. Indeed, these studies provide evidence for an association between hnRNP abnormalities and FTLD. In particular, several studies have shown that multiple hnRNPs may exhibit nuclear depletion and cytoplasmic mislocalisation within neurons in FTLD cases. However, due to the diversity and complex association of hnRNPs, most studies are still at the stage of histological discovery of different hnRNP abnormalities in FTLD. We herein review the latest studies relating hnRNPs to FTLD. Together, these studies outline an important role of multiple hnRNPs in the pathogenesis of FTLD and suggest that future research into FTLD should include the whole spectrum of this protein family.
Collapse
Affiliation(s)
- Xinwa Jiang
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ariana Gatt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
10
|
Schreglmann SR, Goncalves T, Grant-Peters M, Kia DA, Soreq L, Ryten M, Wood NW, Bhatia KP, Tomita K. Age-related telomere attrition in the human putamen. Aging Cell 2023:e13861. [PMID: 37129365 PMCID: PMC10352551 DOI: 10.1111/acel.13861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Age is a major risk factor for neurodegenerative diseases. Shortening of leucocyte telomeres with advancing age, arguably a measure of "biological" age, is a known phenomenon and epidemiologically correlated with age-related disease. The main mechanism of telomere shortening is cell division, rendering telomere length in post-mitotic cells presumably stable. Longitudinal measurement of human brain telomere length is not feasible, and cross-sectional cortical brain samples so far indicated no attrition with age. Hence, age-related changes in telomere length in the brain and the association between telomere length and neurodegenerative diseases remain unknown. Here, we demonstrate that mean telomere length in the putamen, a part of the basal ganglia, physiologically shortens with age, like leukocyte telomeres. This was achieved by using matched brain and leukocyte-rich spleen samples from 98 post-mortem healthy human donors. Using spleen telomeres as a reference, we further found that mean telomere length was brain region-specific, as telomeres in the putamen were significantly shorter than in the cerebellum. Expression analyses of genes involved in telomere length regulation and oxidative phosphorylation revealed that both region- and age-dependent expression pattern corresponded with region-dependent telomere length dynamics. Collectively, our results indicate that mean telomere length in the human putamen physiologically shortens with advancing age and that both local and temporal gene expression dynamics correlate with this, pointing at a potential mechanism for the selective, age-related vulnerability of the nigro-striatal network.
Collapse
Affiliation(s)
- Sebastian R Schreglmann
- Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Tomas Goncalves
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, UK
- Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - Melissa Grant-Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Demis A Kia
- Queen Square Institute of Neurology, University College London, London, UK
| | - Lilach Soreq
- Queen Square Institute of Neurology, University College London, London, UK
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Nicholas W Wood
- Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash P Bhatia
- Queen Square Institute of Neurology, University College London, London, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, UK
- Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| |
Collapse
|
11
|
Silveira PP, Meaney MJ. Examining the biological mechanisms of human mental disorders resulting from gene-environment interdependence using novel functional genomic approaches. Neurobiol Dis 2023; 178:106008. [PMID: 36690304 DOI: 10.1016/j.nbd.2023.106008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
We explore how functional genomics approaches that integrate datasets from human and non-human model systems can improve our understanding of the effect of gene-environment interplay on the risk for mental disorders. We start by briefly defining the G-E paradigm and its challenges and then discuss the different levels of regulation of gene expression and the corresponding data existing in humans (genome wide genotyping, transcriptomics, DNA methylation, chromatin modifications, chromosome conformational changes, non-coding RNAs, proteomics and metabolomics), discussing novel approaches to the application of these data in the study of the origins of mental health. Finally, we discuss the multilevel integration of diverse types of data. Advance in the use of functional genomics in the context of a G-E perspective improves the detection of vulnerabilities, informing the development of preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore; Brain - Body Initiative, Agency for Science, Technology and Research (ASTAR), Singapore.
| |
Collapse
|
12
|
Feng Y, Zhang C, Wei Z, Li G, Gan Y, Liu C, Deng Y. Gene variations of glutamate metabolism pathway and epilepsy. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epilepsy is a paroxysmal disorder of the brain, caused by an imbalance of neuronal excitation and inhibition. Glutamate is the most important excitatory neurotransmitter in the brain and plays an important role in epileptogenesis. Mutations in genes at any step/component of the glutamate metabolic pathway may lead to the development of epilepsy or epileptic encephalopathy.
Methods
Clinical history of 3 epilepsy patients with genetic variations of the glutamate metabolism pathway was collected. Electroencephalogram recording and magnetic resonance imaging were performed in each patient. We also reviewed recent literature for a variety of the genetic variations involved in epilepsy.
Results
Case 1 was a SLC1A2 mutation-carrier diagnosed with developmental and epileptic encephalopathy (DEE) 41, whose seizures decreased after start of the ketogenic diet. Case 2 carried a GRIN2A gene mutation and was seizure-free for three years after taking levetiracetam and vitamin B6. Case 3 was a GRIN2B mutation-carrier diagnosed with DEE 27, who seizures diminished after taking oxcarbazepine.
Conclusions
Preclinical and clinical evidence supports the therapeutic potential of glutamatergic signaling-targeting treatments for epilepsy. More studies are needed to discover novel DEE-related genetic mutations in the glutamate metabolic pathway.
Collapse
|
13
|
Ramos-Campoy O, Lladó A, Bosch B, Ferrer M, Pérez-Millan A, Vergara M, Molina-Porcel L, Fort-Aznar L, Gonzalo R, Moreno-Izco F, Fernandez-Villullas G, Balasa M, Sánchez-Valle R, Antonell A. Differential Gene Expression in Sporadic and Genetic Forms of Alzheimer's Disease and Frontotemporal Dementia in Brain Tissue and Lymphoblastoid Cell Lines. Mol Neurobiol 2022; 59:6411-6428. [PMID: 35962298 DOI: 10.1007/s12035-022-02969-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Sporadic early-onset Alzheimer's disease (EOAD) and autosomal dominant Alzheimer's disease (ADAD) provide the opportunity to investigate the physiopathological mechanisms in the absence of aging, present in late-onset forms. Frontotemporal dementia (FTD) causes early-onset dementia associated to tau or TDP43 protein deposits. A 15% of FTD cases are caused by mutations in C9orf72, GRN, or MAPT genes. Lymphoblastoid cell lines (LCLs) have been proposed as an alternative to brain tissue for studying earlier phases of neurodegenerative diseases. The aim of this study is to investigate the expression profile in EOAD, ADAD, and sporadic and genetic FTD (sFTD and gFTD, respectively), using brain tissue and LCLs. Sixty subjects of the following groups were included: EOAD, ADAD, sFTD, gFTD, and controls. Gene expression was analyzed with Clariom D microarray (Affymetrix). Brain tissue pairwise comparisons revealed six common differentially expressed genes (DEG) for all the patients' groups compared with controls: RGS20, WIF1, HSPB1, EMP3, S100A11 and GFAP. Common up-regulated biological pathways were identified both in brain and LCLs (including inflammation and glial cell differentiation), while down-regulated pathways were detected mainly in brain tissue (including synaptic signaling, metabolism and mitochondrial dysfunction). CD163, ADAMTS9 and LIN7A gene expression disruption was validated by qPCR in brain tissue and NrCAM in LCLs in their respective group comparisons. In conclusion, our study highlights neuroinflammation, metabolism and synaptic signaling disturbances as common altered pathways in different AD and FTD forms. The use of LCLs might be appropriate for studying early immune system and inflammation, and some neural features in neurodegenerative dementias.
Collapse
Affiliation(s)
- Oscar Ramos-Campoy
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Mireia Ferrer
- Statistics and Bioinformatics Unit, Vall d'Hebrón Institut de Recerca, Passeig Vall d'Hebrón, Barcelona, Spain
| | - Agnès Pérez-Millan
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institute of Neurosciences, Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Miguel Vergara
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Neurological Tissue Bank, Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Laura Fort-Aznar
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Ricardo Gonzalo
- Statistics and Bioinformatics Unit, Vall d'Hebrón Institut de Recerca, Passeig Vall d'Hebrón, Barcelona, Spain
| | - Fermín Moreno-Izco
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, 20014, Donostia-San Sebastián, Spain.,Biodonostia, Neurosciences Area, Group of Neurodegenerative Diseases, 20014, San Sebastián, Spain
| | - Guadalupe Fernandez-Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
14
|
Guerra Leal B, Barros-Barbosa A, Ferreirinha F, Chaves J, Rangel R, Santos A, Carvalho C, Martins-Ferreira R, Samões R, Freitas J, Lopes J, Ramalheira J, Lobo MG, Martins da Silva A, Costa PP, Correia-de-Sá P. Mesial Temporal Lobe Epilepsy (MTLE) Drug-Refractoriness Is Associated With P2X7 Receptors Overexpression in the Human Hippocampus and Temporal Neocortex and May Be Predicted by Low Circulating Levels of miR-22. Front Cell Neurosci 2022; 16:910662. [PMID: 35875355 PMCID: PMC9300956 DOI: 10.3389/fncel.2022.910662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: ATP-gated ionotropic P2X7 receptors (P2X7R) actively participate in epilepsy and other neurological disorders. Neocortical nerve terminals of patients with Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS) express higher P2X7R amounts. Overexpression of P2X7R bolsters ATP signals during seizures resulting in glial cell activation, cytokines production, and GABAergic rundown with unrestrained glutamatergic excitation. In a mouse model of status epilepticus, increased expression of P2X7R has been associated with the down-modulation of the non-coding micro RNA, miR-22. MiR levels are stable in biological fluids and normally reflect remote tissue production making them ideal disease biomarkers. Here, we compared P2X7R and miR-22 expression in epileptic brains and in the serum of patients with MTLE-HS, respectively.Methods: Quantitative RT-PCR was used to evaluate the expression of P2X7R in the hippocampus and anterior temporal lobe of 23 patients with MTLE-HS and 10 cadaveric controls. Confocal microscopy and Western blot analysis were performed to assess P2X7R protein amounts. MiR-22 expression was evaluated in cell-free sera of 40 MTLE-HS patients and 48 healthy controls.Results: Nerve terminals of the hippocampus and neocortical temporal lobe of MTLE-HS patients overexpress (p < 0.05) an 85 kDa P2X7R protein whereas the normally occurring 67 kDa receptor protein dominates in the brain of the cadaveric controls. Contrariwise, miR-22 serum levels are diminished (p < 0.001) in MTLE-HS patients compared to age-matched control blood donors, a situation that is more evident in patients requiring multiple (>3) anti-epileptic drug (AED) regimens.Conclusion: Data show that there is an inverse relationship between miR-22 serum levels and P2X7R expression in the hippocampus and neocortex of MTLE-HS patients, which implies that measuring serum miR-22 may be a clinical surrogate of P2X7R brain expression in the MTLE-HS. Moreover, the high area under the ROC curve (0.777; 95% CI 0.629–0.925; p = 0.001) suggests that low miR-22 serum levels may be a sensitive predictor of poor response to AEDs among MTLE-HS patients. Results also anticipate that targeting the miR-22/P2X7R axis may be a good strategy to develop newer AEDs.
Collapse
Affiliation(s)
- Bárbara Guerra Leal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, ICBAS-UP, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Aurora Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia—Center for Drug Discovery and Innovative Medicines (MedInUP), ICBAS-UP, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia—Center for Drug Discovery and Innovative Medicines (MedInUP), ICBAS-UP, Porto, Portugal
| | - João Chaves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Serviço de Neurologia, Hospital de Santo António—Centro Hospitalar e Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - Rui Rangel
- Serviço de Neurocirurgia, HSA-CHUP, Porto, Portugal
| | - Agostinho Santos
- Serviço de Patologia Forense, Instituto Nacional de Medicina Legal e Ciências Forenses—Delegação do Norte (INMLCF-DN), Porto, Portugal
| | - Cláudia Carvalho
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, ICBAS-UP, Porto, Portugal
| | - Ricardo Martins-Ferreira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, ICBAS-UP, Porto, Portugal
| | - Raquel Samões
- Serviço de Neurologia, Hospital de Santo António—Centro Hospitalar e Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - Joel Freitas
- Serviço de Neurofisiologia, HSA-CHUP, Porto, Portugal
| | - João Lopes
- Serviço de Neurofisiologia, HSA-CHUP, Porto, Portugal
| | | | - Maria Graça Lobo
- Laboratório de Farmacologia e Neurobiologia—Center for Drug Discovery and Innovative Medicines (MedInUP), ICBAS-UP, Porto, Portugal
| | - António Martins da Silva
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Serviço de Neurofisiologia, HSA-CHUP, Porto, Portugal
| | - Paulo P. Costa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia—Center for Drug Discovery and Innovative Medicines (MedInUP), ICBAS-UP, Porto, Portugal
- *Correspondence: Paulo Correia-de-Sá orcid.org/0000-0002-6114-9189
| |
Collapse
|
15
|
A novel missense variant in the LMNB2 gene causes progressive myoclonus epilepsy. Acta Neurol Belg 2022; 122:659-667. [PMID: 33783721 DOI: 10.1007/s13760-021-01650-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Progressive myoclonus epilepsies (PMEs) are a group of disorders embracing myoclonus, seizures, and neurological dysfunctions. Because of the genetic and clinical heterogeneity, a large proportion of PMEs cases have remained molecularly undiagnosed. The present study aimed to determine the underlying genetic factors that contribute to the PME phenotype in an Iranian female patient. We describe a consanguineous Iranian family with autosomal recessive PME that had remained undiagnosed despite extensive genetic and pathological tests. After performing neuroimaging and clinical examinations, due to heterogeneity of PMEs, the proband was subjected to paired-end whole-exome sequencing and the candidate variant was confirmed by Sanger sequencing. Various in-silico tools were also used to predict the pathogenicity of the variant. In this study, we identified a novel homozygous missense variant (NM_032737.4:c.472C > T; p.(Arg158Trp)) in the LMNB2 gene (OMIM: 150341) as the most likely disease-causing variant. Neuroimaging revealed a progressive significant generalized atrophy in the cerebral and cerebellum without significant white matter signal changes. Video-electroencephalography monitoring showed a generalized pattern of high-voltage sharp waves in addition to multifocal spikes and waves compatible with mixed type seizures and epileptic encephalopathic pattern. Herein, we introduce the second case of PME caused by a novel variant in the LMNB2 gene. This study also underscores the potentiality of next-generation sequencing in the genetic diagnosis of patients with neurologic diseases with an unknown cause.
Collapse
|
16
|
Zillich L, Poisel E, Frank J, Foo JC, Friske MM, Streit F, Sirignano L, Heilmann-Heimbach S, Heimbach A, Hoffmann P, Degenhardt F, Hansson AC, Bakalkin G, Nöthen MM, Rietschel M, Spanagel R, Witt SH. Multi-omics signatures of alcohol use disorder in the dorsal and ventral striatum. Transl Psychiatry 2022; 12:190. [PMID: 35523767 PMCID: PMC9076849 DOI: 10.1038/s41398-022-01959-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol Use Disorder (AUD) is a major contributor to global mortality and morbidity. Postmortem human brain tissue enables the investigation of molecular mechanisms of AUD in the neurocircuitry of addiction. We aimed to identify differentially expressed (DE) genes in the ventral and dorsal striatum between individuals with AUD and controls, and to integrate the results with findings from genome- and epigenome-wide association studies (GWAS/EWAS) to identify functionally relevant molecular mechanisms of AUD. DNA-methylation and gene expression (RNA-seq) data was generated from postmortem brain samples of 48 individuals with AUD and 51 controls from the ventral striatum (VS) and the dorsal striatal regions caudate nucleus (CN) and putamen (PUT). We identified DE genes using DESeq2, performed gene-set enrichment analysis (GSEA), and tested enrichment of DE genes in results of GWASs using MAGMA. Weighted correlation network analysis (WGCNA) was performed for DNA-methylation and gene expression data and gene overlap was tested. Differential gene expression was observed in the dorsal (FDR < 0.05), but not the ventral striatum of AUD cases. In the VS, DE genes at FDR < 0.25 were overrepresented in a recent GWAS of problematic alcohol use. The ARHGEF15 gene was upregulated in all three brain regions. GSEA in CN and VS pointed towards cell-structure associated GO-terms and in PUT towards immune pathways. The WGCNA modules most strongly associated with AUD showed strong enrichment for immune response and inflammation pathways. Our integrated analysis of multi-omics data sets provides further evidence for the importance of immune- and inflammation-related processes in AUD.
Collapse
Affiliation(s)
- Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eric Poisel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - André Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, 4003, Switzerland
| | - Franziska Degenhardt
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
Restuadi R, Steyn FJ, Kabashi E, Ngo ST, Cheng FF, Nabais MF, Thompson MJ, Qi T, Wu Y, Henders AK, Wallace L, Bye CR, Turner BJ, Ziser L, Mathers S, McCombe PA, Needham M, Schultz D, Kiernan MC, van Rheenen W, van den Berg LH, Veldink JH, Ophoff R, Gusev A, Zaitlen N, McRae AF, Henderson RD, Wray NR, Giacomotto J, Garton FC. Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Med 2022; 14:7. [PMID: 35042540 PMCID: PMC8767698 DOI: 10.1186/s13073-021-01006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with 'omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10-6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10-3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings.
Collapse
Affiliation(s)
- Restuadi Restuadi
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, QLD, Brisbane, 4072, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Brisbane, 4029, Australia
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
| | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015, Paris, France
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Fei-Fei Cheng
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Marta F Nabais
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Mike J Thompson
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
| | - Ting Qi
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Chris R Bye
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Bradley J Turner
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Laura Ziser
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Susan Mathers
- Calvary Health Care Bethlehem, Parkdale, VIC, 3195, Australia
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Brisbane, 4029, Australia
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
| | - Merrilee Needham
- Fiona Stanley Hospital, Perth, WA, 6150, Australia
- Notre Dame University, Fremantle, WA, 6160, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, 6150, Australia
| | - David Schultz
- Department of Neurology, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Matthew C Kiernan
- Brain & Mind Centre, University of Sydney, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, 2006, Australia
| | - Wouter van Rheenen
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Roel Ophoff
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Noah Zaitlen
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Brisbane, 4029, Australia
- Centre for Clinical Research, The University of Queensland, QLD, Brisbane, 4019, Australia
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, The University of Queensland, QLD, Brisbane, 4072, Australia
- Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, Wacol, QLD, 4076, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, 4072, Australia.
| |
Collapse
|
18
|
Grima N, Henden L, Watson O, Blair IP, Williams KL. Simultaneous Isolation of High-Quality RNA and DNA From Postmortem Human Central Nervous System Tissues for Omics Studies. J Neuropathol Exp Neurol 2021; 81:135-145. [PMID: 34939123 DOI: 10.1093/jnen/nlab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multi-omics approaches are increasingly being adopted to understand the complex networks underlying disease. The coisolation of high-quality nucleotides from affected tissues is paramount for the parallel analysis of transcriptomic, genomic, and epigenomic data sets. Although nucleotides extracted from postmortem central nervous system (CNS) tissue are widely used in the study of neurodegenerative disease, assessment of methods for the simultaneous isolation of DNA and RNA is limited. Herein, we describe a strategy for the isolation of high-quality DNA and RNA from postmortem human tissue from 7 CNS regions. Motor cortex, frontal cortex, hippocampus, occipital cortex, anterior cingulate cortex, cerebellum, and spinal cord tissues were obtained from 22 individuals diagnosed with motor neuron disease (MND) and 13 neurologically normal controls (n = 245 tissues). We demonstrated that the Qiagen AllPrep DNA/RNA kit consistently isolated DNA and RNA of high yield and quality from all 6 brain regions. Importantly, phenol-chloroform-based extraction was required to isolate high-yield RNA from spinal cord. RNA sequencing using RNA extracted from 6 CNS regions (n = 60) generated high-quality transcriptomes. Hierarchical clustering of data from motor cortex, using an MND susceptibility gene panel and marker genes of disease-associated microglia, demonstrated that MND-specific gene expression signatures could be detected in the transcriptome data.
Collapse
Affiliation(s)
- Natalie Grima
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Lyndal Henden
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Owen Watson
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Ian P Blair
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| | - Kelly L Williams
- From the Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Peng S, Zeng L, Haure-Mirande JV, Wang M, Huffman DM, Haroutunian V, Ehrlich ME, Zhang B, Tu Z. Transcriptomic Changes Highly Similar to Alzheimer's Disease Are Observed in a Subpopulation of Individuals During Normal Brain Aging. Front Aging Neurosci 2021; 13:711524. [PMID: 34924992 PMCID: PMC8675870 DOI: 10.3389/fnagi.2021.711524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is a major risk factor for late-onset Alzheimer’s disease (LOAD). How aging contributes to the development of LOAD remains elusive. In this study, we examined multiple large-scale transcriptomic datasets from both normal aging and LOAD brains to understand the molecular interconnection between aging and LOAD. We found that shared gene expression changes between aging and LOAD are mostly seen in the hippocampal and several cortical regions. In the hippocampus, the expression of phosphoprotein, alternative splicing and cytoskeleton genes are commonly changed in both aging and AD, while synapse, ion transport, and synaptic vesicle genes are commonly down-regulated. Aging-specific changes are associated with acetylation and methylation, while LOAD-specific changes are more related to glycoprotein (both up- and down-regulations), inflammatory response (up-regulation), myelin sheath and lipoprotein (down-regulation). We also found that normal aging brain transcriptomes from relatively young donors (45–70 years old) clustered into several subgroups and some subgroups showed gene expression changes highly similar to those seen in LOAD brains. Using brain transcriptomic datasets from another cohort of older individuals (>70 years), we found that samples from cognitively normal older individuals clustered with the “healthy aging” subgroup while AD samples mainly clustered with the “AD similar” subgroups. This may imply that individuals in the healthy aging subgroup will likely remain cognitively normal when they become older and vice versa. In summary, our results suggest that on the transcriptome level, aging and LOAD have strong interconnections in some brain regions in a subpopulation of cognitively normal aging individuals. This supports the theory that the initiation of LOAD occurs decades earlier than the manifestation of clinical phenotype and it may be essential to closely study the “normal brain aging” to identify the very early molecular events that may lead to LOAD development.
Collapse
Affiliation(s)
- Shouneng Peng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Lu Zeng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | | | - Minghui Wang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Derek M Huffman
- Department of Medicine, Albert Einstein College of Medicine, New York City, NY, United States.,Institute for Aging Research, Albert Einstein College of Medicine, New York City, NY, United States.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, NY, United States
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Michelle E Ehrlich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| |
Collapse
|
20
|
Schilder BM, Navarro E, Raj T. Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms. Neurobiol Dis 2021; 163:105580. [PMID: 34871738 PMCID: PMC10101343 DOI: 10.1016/j.nbd.2021.105580] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Genome-Wide Association Studies (GWAS) have elucidated the genetic components of Parkinson's Disease (PD). However, because the vast majority of GWAS association signals fall within non-coding regions, translating these results into an interpretable, mechanistic understanding of the disease etiology remains a major challenge in the field. In this review, we provide an overview of the approaches to prioritize putative causal variants and genes as well as summarise the primary findings of previous studies. We then discuss recent efforts to integrate multi-omics data to identify likely pathogenic cell types and biological pathways implicated in PD pathogenesis. We have compiled full summary statistics of cell-type, tissue, and phentoype enrichment analyses from multiple studies of PD GWAS and provided them in a standardized format as a resource for the research community (https://github.com/RajLabMSSM/PD_omics_review). Finally, we discuss the experimental, computational, and conceptual advances that will be necessary to fully elucidate the effects of functional variants and genes on cellular dysregulation and disease risk.
Collapse
Affiliation(s)
- Brian M Schilder
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; UK Dementia Research Institute at Imperial College London, London, United Kingdom.
| | - Elisa Navarro
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Sección Departamental de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
21
|
HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol 2021; 142:609-627. [PMID: 34274995 PMCID: PMC8423707 DOI: 10.1007/s00401-021-02340-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.
Collapse
|
22
|
Verkerke M, Hol EM, Middeldorp J. Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochem Res 2021; 46:2662-2675. [PMID: 33559106 PMCID: PMC8437874 DOI: 10.1007/s11064-021-03256-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Ageing is the greatest risk factor for dementia, although physiological ageing by itself does not lead to cognitive decline. In addition to ageing, APOE ε4 is genetically the strongest risk factor for Alzheimer's disease and is highly expressed in astrocytes. There are indications that human astrocytes change with age and upon expression of APOE4. As these glial cells maintain water and ion homeostasis in the brain and regulate neuronal transmission, it is likely that age- and APOE4-related changes in astrocytes have a major impact on brain functioning and play a role in age-related diseases. In this review, we will discuss the molecular and morphological changes of human astrocytes in ageing and the contribution of APOE4. We conclude this review with a discussion on technical issues, innovations, and future perspectives on how to gain more knowledge on astrocytes in the human ageing brain.
Collapse
Affiliation(s)
- Marloes Verkerke
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| |
Collapse
|
23
|
Jia L, Li F, Wei C, Zhu M, Qu Q, Qin W, Tang Y, Shen L, Wang Y, Shen L, Li H, Peng D, Tan L, Luo B, Guo Q, Tang M, Du Y, Zhang J, Zhang J, Lyu J, Li Y, Zhou A, Wang F, Chu C, Song H, Wu L, Zuo X, Han Y, Liang J, Wang Q, Jin H, Wang W, Lü Y, Li F, Zhou Y, Zhang W, Liao Z, Qiu Q, Li Y, Kong C, Li Y, Jiao H, Lu J, Jia J. Prediction of Alzheimer's disease using multi-variants from a Chinese genome-wide association study. Brain 2021; 144:924-937. [PMID: 33188687 PMCID: PMC8041344 DOI: 10.1093/brain/awaa364] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
Previous genome-wide association studies have identified dozens of susceptibility loci for sporadic Alzheimer’s disease, but few of these loci have been validated in longitudinal cohorts. Establishing predictive models of Alzheimer’s disease based on these novel variants is clinically important for verifying whether they have pathological functions and provide a useful tool for screening of disease risk. In the current study, we performed a two-stage genome-wide association study of 3913 patients with Alzheimer’s disease and 7593 controls and identified four novel variants (rs3777215, rs6859823, rs234434, and rs2255835; Pcombined = 3.07 × 10−19, 2.49 × 10−23, 1.35 × 10−67, and 4.81 × 10−9, respectively) as well as nine variants in the apolipoprotein E region with genome-wide significance (P < 5.0 × 10−8). Literature mining suggested that these novel single nucleotide polymorphisms are related to amyloid precursor protein transport and metabolism, antioxidation, and neurogenesis. Based on their possible roles in the development of Alzheimer’s disease, we used different combinations of these variants and the apolipoprotein E status and successively built 11 predictive models. The predictive models include relatively few single nucleotide polymorphisms useful for clinical practice, in which the maximum number was 13 and the minimum was only four. These predictive models were all significant and their peak of area under the curve reached 0.73 both in the first and second stages. Finally, these models were validated using a separate longitudinal cohort of 5474 individuals. The results showed that individuals carrying risk variants included in the models had a shorter latency and higher incidence of Alzheimer’s disease, suggesting that our models can predict Alzheimer’s disease onset in a population with genetic susceptibility. The effectiveness of the models for predicting Alzheimer’s disease onset confirmed the contributions of these identified variants to disease pathogenesis. In conclusion, this is the first study to validate genome-wide association study-based predictive models for evaluating the risk of Alzheimer’s disease onset in a large Chinese population. The clinical application of these models will be beneficial for individuals harbouring these risk variants, and particularly for young individuals seeking genetic consultation.
Collapse
Affiliation(s)
- Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Luxi Shen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yanjiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglei Li
- Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Shandong, China
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Muni Tang
- Department of Geriatrics, Guangzhou Huiai Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Aihong Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fen Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Changbiao Chu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haiqing Song
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Liyong Wu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiumei Zuo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yue Han
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Junhua Liang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Li
- Department of Geriatric, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center for Cognitive Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhengluan Liao
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiongqiong Qiu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chaojun Kong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haishan Jiao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
24
|
Lyu Y, Zauhar R, Dana N, Strang CE, Hu J, Wang K, Liu S, Pan N, Gamlin P, Kimble JA, Messinger JD, Curcio CA, Stambolian D, Li M. Implication of specific retinal cell-type involvement and gene expression changes in AMD progression using integrative analysis of single-cell and bulk RNA-seq profiling. Sci Rep 2021; 11:15612. [PMID: 34341398 PMCID: PMC8329233 DOI: 10.1038/s41598-021-95122-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease with no unifying theme for its etiology. We used single-cell RNA sequencing to analyze the transcriptomes of ~ 93,000 cells from the macula and peripheral retina from two adult human donors and bulk RNA sequencing from fifteen adult human donors with and without AMD. Analysis of our single-cell data identified 267 cell-type-specific genes. Comparison of macula and peripheral retinal regions found no cell-type differences but did identify 50 differentially expressed genes (DEGs) with about 1/3 expressed in cones. Integration of our single-cell data with bulk RNA sequencing data from normal and AMD donors showed compositional changes more pronounced in macula in rods, microglia, endothelium, Müller glia, and astrocytes in the transition from normal to advanced AMD. KEGG pathway analysis of our normal vs. advanced AMD eyes identified enrichment in complement and coagulation pathways, antigen presentation, tissue remodeling, and signaling pathways including PI3K-Akt, NOD-like, Toll-like, and Rap1. These results showcase the use of single-cell RNA sequencing to infer cell-type compositional and cell-type-specific gene expression changes in intact bulk tissue and provide a foundation for investigating molecular mechanisms of retinal disease that lead to new therapeutic targets.
Collapse
Affiliation(s)
- Yafei Lyu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Randy Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Nicholas Dana
- Departments of Ophthalmology and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christianne E Strang
- Department of Psychology, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kui Wang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Information Theory and Data Science, School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 30071, China
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Naifei Pan
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - James A Kimble
- Department of Ophthalmology and Visual Sciences, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Dwight Stambolian
- Departments of Ophthalmology and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Sliz E, Shin J, Syme C, Patel Y, Parker N, Richer L, Gaudet D, Bennett S, Paus T, Pausova Z. A variant near DHCR24 associates with microstructural properties of white matter and peripheral lipid metabolism in adolescents. Mol Psychiatry 2021; 26:3795-3805. [PMID: 31900429 PMCID: PMC7332371 DOI: 10.1038/s41380-019-0640-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
Abstract
Visceral adiposity has been associated with altered microstructural properties of white matter in adolescents. Previous evidence suggests that circulating phospholipid PC(16:0/2:0) may mediate this association. To investigate the underlying biology, we performed a genome-wide association study (GWAS) of the shared variance of visceral fat, PC(16:0/2:0), and white matter microstructure in 872 adolescents from the Saguenay Youth Study. We further studied the metabolomic profile of the GWAS-lead variant in 931 adolescents. Visceral fat and white matter microstructure were assessed with magnetic resonance imaging. Circulating metabolites were quantified with serum lipidomics and metabolomics. We identified a genome-wide significant association near DHCR24 (Seladin-1) encoding a cholesterol-synthesizing enzyme (rs588709, p = 3.6 × 10-8); rs588709 was also associated nominally with each of the three traits (white matter microstructure: p = 2.1 × 10-6, PC(16:0/2:0): p = 0.005, visceral fat: p = 0.010). We found that the metabolic profile associated with rs588709 resembled that of a TM6SF2 variant impacting very low-density lipoprotein (VLDL) secretion and was only partially similar to that of a HMGCR variant. This suggests that the effect of rs588709 on VLDL lipids may arise due to altered phospholipid rather than cholesterol metabolism. The rs588709 was also nominally associated with circulating concentrations of omega-3 fatty acids in interaction with visceral fat and PC(16:0/2:0), and these fatty acid measures showed robust associations with white matter microstructure. Overall, the present study provides evidence that the DHCR24 locus may link peripheral metabolism to brain microstructure, an association with implications for cognitive impairment.
Collapse
Affiliation(s)
- Eeva Sliz
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Center for Life-Course Health Research and Computational Medicine, Faculty of Medicine, University of Oulu, and Biocenter Oulu, Oulu, Finland
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Catriona Syme
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Yash Patel
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Nadine Parker
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Daniel Gaudet
- Clinical Lipidology and rare lipid disorders Unit, Community Genetic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE-21, Chicoutimi, QC, Canada
| | - Steffany Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Wu C, Bendriem RM, Freed WJ, Lee CT. Transcriptome analysis of human dorsal striatum implicates attenuated canonical WNT signaling in neuroinflammation and in age-related impairment of striatal neurogenesis and synaptic plasticity. Restor Neurol Neurosci 2021; 39:247-266. [PMID: 34275915 DOI: 10.3233/rnn-211161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor and cognitive decline as part of the normal aging process is linked to alterations in synaptic plasticity and reduction of adult neurogenesis in the dorsal striatum. Neuroinflammation, particularly in the form of microglial activation, is suggested to contribute to these age-associated changes. OBJECTIVE AND METHODS To explore the molecular basis of alterations in striatal function during aging we analyzed RNA-Seq data for 117 postmortem human dorsal caudate samples and 97 putamen samples acquired through GTEx. RESULTS Increased expression of neuroinflammatory transcripts including TREM2, MHC II molecules HLA-DMB, HLA-DQA2, HLA-DPA1, HLA-DPB1, HLA-DMA and HLA-DRA, complement genes C1QA, C1QB, CIQC and C3AR1, and MHCI molecules HLA-B and HLA-F was identified. We also identified down-regulation of transcripts involved in neurogenesis, synaptogenesis, and synaptic pruning, including DCX, CX3CL1, and CD200, and the canonical WNTs WNT7A, WNT7B, and WNT8A. The canonical WNT signaling pathway has previously been shown to mediate adult neurogenesis and synapse formation and growth. Recent findings also highlight the link between WNT/β-catenin signaling and inflammation pathways. CONCLUSIONS These findings suggest that age-dependent attenuation of canonical WNT signaling plays a pivotal role in regulating striatal plasticity during aging. Dysregulation of WNT/β-catenin signaling via astrocyte-microglial interactions is suggested to be a novel mechanism that drives the decline of striatal neurogenesis and altered synaptic connectivity and plasticity, leading to a subsequent decrease in motor and cognitive performance with age. These findings may aid in the development of therapies targeting WNT/β-catenin signaling to combat cognitive and motor impairments associated with aging.
Collapse
Affiliation(s)
- Chun Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raphael M Bendriem
- Brain and Mind Research Institute, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William J Freed
- Department of Biology, Lebanon Valley College, Annville, PA, USA
| | - Chun-Ting Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
27
|
Patel S, Howard D, French L. A pH-eQTL Interaction at the RIT2- SYT4 Parkinson's Disease Risk Locus in the Substantia Nigra. Front Aging Neurosci 2021; 13:690632. [PMID: 34305570 PMCID: PMC8299340 DOI: 10.3389/fnagi.2021.690632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease causes severe motor and cognitive disabilities that result from the progressive loss of dopamine neurons in the substantia nigra. The rs12456492 variant in the RIT2 gene has been repeatedly associated with increased risk for Parkinson's disease. From a transcriptomic perspective, a meta-analysis found that RIT2 gene expression is correlated with pH in the human brain. To assess these pH associations in relation to Parkinson's disease risk, we examined the two datasets that assayed rs12456492, gene expression, and pH in the postmortem human brain. Using the BrainEAC dataset, we replicate the positive correlation between RIT2 gene expression and pH in the human brain (n = 100). Furthermore, we found that the relationship between expression and pH is influenced by rs12456492. When tested across ten brain regions, this interaction is specifically found in the substantia nigra. A similar association was found for the co-localized SYT4 gene. In addition, SYT4 associations are stronger in a combined model with both genes, and the SYT4 interaction appears to be specific to males. In the Genotype-Tissue Expression (GTEx) dataset, the pH associations involving rs12456492 and expression of either SYT4 and RIT2 were not seen. This null finding may be due to the short postmortem intervals of the GTEx tissue samples. In the BrainEAC data, we tested the effect of postmortem interval and only observed the interactions in samples with the longer intervals. These previously unknown associations suggest novel roles for rs12456492, RIT2, and SYT4 in the regulation and response to pH in the substantia nigra.
Collapse
Affiliation(s)
- Sejal Patel
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Derek Howard
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Leon French
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Shi J, Chen N, Wang Z, Wang F, Tan Y, Tan S, Tong J, An H, Guo X, Zuo L, Wang X, Yang F, Luo X. Cholinergic receptor nicotinic beta 3 subunit polymorphisms and smoking in male Chinese patients with schizophrenia. EC PSYCHOLOGY AND PSYCHIATRY 2021; 10:11-23. [PMID: 34368810 PMCID: PMC8341072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The aim of this study was to examine if cholinergic receptor nicotinic beta 3 subunit (CHRNB3) was a common genetic basis for both nicotine dependence and schizophrenia. METHODS Two CHRNB3 promoter single nucleotide polymorphisms (SNPs) were genotyped in 773 patients with schizophrenia and 302 healthy volunteers. Associations between smoking, schizophrenia, smoking+schizophrenia and CHRNB3 were analyzed. The mRNA expression of CHRNB3 in human brains was examined, and the expression correlations between CHRNB3 and dopaminergic and GABAergic receptor genes were evaluated. RESULTS The association between CHRNB3 and smoking was significant in the total sample, less significant in the smoking with schizophrenia, and suggestive in the smoking without schizophrenia. CHRNB3 had significant mRNA expression that was correlated with dopaminergic or GABAergic receptor expression in human brains. The two CHRNB3 SNPs had significant cis-acting regulatory effects on CHRNB3 mRNA expression. CONCLUSIONS Risk for smoking behavior was associated with CHRNB3. CHRNB3 mRNA is abundant in human brain and could play important role in the pathogenesis of smoking behavior.
Collapse
Affiliation(s)
- Jing Shi
- Beijing Hui Long Guan Hospital/Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Nan Chen
- Beijing Hui Long Guan Hospital/Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Zhiren Wang
- Beijing Hui Long Guan Hospital/Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Fan Wang
- Beijing Hui Long Guan Hospital/Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yunlong Tan
- Beijing Hui Long Guan Hospital/Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Shuping Tan
- Beijing Hui Long Guan Hospital/Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Jinghui Tong
- Beijing Hui Long Guan Hospital/Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Huimei An
- Beijing Hui Long Guan Hospital/Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Xiaoyun Guo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoping Wang
- Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Fude Yang
- Beijing Hui Long Guan Hospital/Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Practical Euthanasia Method for Common Sea Stars ( Asterias rubens) That Allows for High-Quality RNA Sampling. Animals (Basel) 2021; 11:ani11071847. [PMID: 34206249 PMCID: PMC8300397 DOI: 10.3390/ani11071847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Sea stars in research are often lethally sampled without available methodology to render them insensible prior to sampling due to concerns over sufficient sample quality for applied molecular techniques. The objectives of this study were to describe an inexpensive and effective two-step euthanasia method for adult common sea stars (Asterias rubens) and to demonstrate that high-quality RNA samples for further use in downstream molecular analyses can be obtained from pyloric ceca of MgCl2-immersed sea stars. Adult common sea stars (n = 15) were immersed in a 75 g/L magnesium chloride solution until they were no longer reactive to having their oral surface tapped with forceps (mean: 4 min, range 2-7 min), left immersed for an additional minute, and then sampled with sharp scissors. RNA from pyloric ceca (n = 10) was isolated using a liquid-liquid method, then samples were treated with DNase and analyzed for evaluation of RNA integrity number (RIN) for assessment of the quantity and purity of intact RNA. Aversive reactions to magnesium chloride solution were not observed and no sea stars regained spontaneous movement or reacted to sampling. The calculated RIN ranged from 7.3-9.8, demonstrating that the combination of animal welfare via the use of anesthesia and sampling for advanced molecular techniques is possible using this low-cost technique.
Collapse
|
30
|
Simone R, Javad F, Emmett W, Wilkins OG, Almeida FL, Barahona-Torres N, Zareba-Paslawska J, Ehteramyan M, Zuccotti P, Modelska A, Siva K, Virdi GS, Mitchell JS, Harley J, Kay VA, Hondhamuni G, Trabzuni D, Ryten M, Wray S, Preza E, Kia DA, Pittman A, Ferrari R, Manzoni C, Lees A, Hardy JA, Denti MA, Quattrone A, Patani R, Svenningsson P, Warner TT, Plagnol V, Ule J, de Silva R. MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature 2021; 594:117-123. [PMID: 34012113 PMCID: PMC7610982 DOI: 10.1038/s41586-021-03556-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.
Collapse
Affiliation(s)
- Roberto Simone
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| | - Faiza Javad
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Warren Emmett
- UCL Genetics Institute, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Inivata Ltd, Babraham, UK
| | - Oscar G Wilkins
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Filipa Lourenço Almeida
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Natalia Barahona-Torres
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Mazdak Ehteramyan
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Paola Zuccotti
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Angelika Modelska
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Kavitha Siva
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Gurvir S Virdi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Jamie S Mitchell
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Jasmine Harley
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Victoria A Kay
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Geshanthi Hondhamuni
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Daniah Trabzuni
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Selina Wray
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Elisavet Preza
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Demis A Kia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Alan Pittman
- Genetics Research Centre, Molecular and Clinical Sciences, St George's University of London, London, UK
| | - Raffaele Ferrari
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Claudia Manzoni
- UCL School of Pharmacy, Department of Pharmacology, London, UK
| | - Andrew Lees
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - John A Hardy
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Rickie Patani
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | | | - Jernej Ule
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
31
|
Advances in protein-protein interaction network analysis for Parkinson's disease. Neurobiol Dis 2021; 155:105395. [PMID: 34022367 DOI: 10.1016/j.nbd.2021.105395] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023] Open
Abstract
Protein-protein interactions (PPIs) are a key component of the subcellular molecular networks which enable cells to function. Due to their importance in homeostasis, alterations to the networks can be detrimental, leading to cellular dysfunction and ultimately disease states. Parkinson's disease (PD) is a progressive neurodegenerative condition with multifactorial aetiology, spanning genetic variation and environmental modifiers. At a molecular and systems level, the characterisation of PD is the focus of extensive research, largely due to an unmet need for disease modifying therapies. PPI network analysis approaches are a valuable strategy to accelerate our understanding of the molecular crosstalk and biological processes underlying PD pathogenesis, especially due to the complex nature of this disease. In this review, we describe the utility of PPI network approaches in modelling complex systems, focusing on previous work in PD research. We discuss four principal strategies for using PPI network approaches: to infer PD related cellular functions, pathways and novel genes; to support genomics studies; to study the interactome of single PD related genes; and to compare the molecular basis of PD to other neurodegenerative disorders. This is an evolving area of research which is likely to further expand as omics data generation and availability increase. These approaches complement and bridge-the-gap between genetics and functional research to inform future investigations. In this review we outline several limitations that require consideration, acknowledging that ongoing challenges in this field continue to be addressed and the refinement of these approaches will facilitate further advances using PPI network analysis for understanding complex diseases.
Collapse
|
32
|
Landolfi A, Barone P, Erro R. The Spectrum of PRRT2-Associated Disorders: Update on Clinical Features and Pathophysiology. Front Neurol 2021; 12:629747. [PMID: 33746883 PMCID: PMC7969989 DOI: 10.3389/fneur.2021.629747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the PRRT2 (proline-rich transmembrane protein 2) gene have been identified as the main cause of an expanding spectrum of disorders, including paroxysmal kinesigenic dyskinesia and benign familial infantile epilepsy, which places this gene at the border between epilepsy and movement disorders. The clinical spectrum has largely expanded to include episodic ataxia, hemiplegic migraine, and complex neurodevelopmental disorders in cases with biallelic mutations. Prior to the discovery of PRRT2 as the causative gene for this spectrum of disorders, the sensitivity of paroxysmal kinesigenic dyskinesia to anticonvulsant drugs regulating ion channel function as well as the co-occurrence of epilepsy in some patients or families fostered the hypothesis this could represent a channelopathy. However, recent evidence implicates PRRT2 in synapse functioning, which disproves the "channel hypothesis" (although PRRT2 modulates ion channels at the presynaptic level), and justifies the classification of these conditions as synaptopathies, an emerging rubric of brain disorders. This review aims to provide an update of the clinical and pathophysiologic features of PRRT2-associated disorders.
Collapse
Affiliation(s)
| | | | - Roberto Erro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana, ” University of Salerno, Baronissi, Italy
| |
Collapse
|
33
|
Bury JJ, Chambers A, Heath PR, Ince PG, Shaw PJ, Matthews FE, Brayne C, Simpson JE, Wharton SB. Type 2 diabetes mellitus-associated transcriptome alterations in cortical neurones and associated neurovascular unit cells in the ageing brain. Acta Neuropathol Commun 2021; 9:5. [PMID: 33407907 PMCID: PMC7788898 DOI: 10.1186/s40478-020-01109-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2D), characterised by peripheral insulin resistance, is a risk factor for dementia. In addition to its contribution to small and large vessel disease, T2D may directly damage cells of the brain neurovascular unit. In this study, we investigated the transcriptomic changes in cortical neurones, and associated astrocytes and endothelial cells of the neurovascular unit, in the ageing brain. Neurone, astrocyte, and endothelial cell-enriched mRNA, obtained by immuno-laser capture microdissection of temporal cortex (Brodmann area 21/22) from 6 cases with self-reported T2D in the Cognitive Function and Ageing Study neuropathology cohort, and an equal number of age and sex-matched controls, was assessed by microarray analysis. Integrated Molecular Pathway Level Analysis was performed using the Kyoto Encyclopaedia of Genes and Genomes database on significantly differentially expressed genes, defined as P < 0.05 and fold-change ± 1.2. Hub genes identified from Weighted Gene Co-expression Network Analysis were validated in neurones using the NanoString nCounter platform. The expression and cellular localisation of proteins encoded by selected candidate genes were confirmed by immunohistochemistry. 912, 2202, and 1227 genes were significantly differentially expressed between cases with self-reported T2D and controls in neurones, astrocytes, and endothelial cells respectively. Changes in cortical neurones included alterations in insulin and other signalling pathways, cell cycle, cellular senescence, inflammatory mediators, and components of the mitochondrial respiratory electron transport chain. Impaired insulin signalling was shared by neurovascular unit cells with, additionally, apoptotic pathway changes in astrocytes and dysregulation of advanced glycation end-product signalling in endothelial cells. Transcriptomic analysis identified changes in key cellular pathways associated with T2D that may contribute to neuronal damage and dysfunction. These effects on brain cells potentially contribute to a diabetic dementia, and may provide novel approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Joanna J Bury
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Annabelle Chambers
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Fiona E Matthews
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
34
|
Vidal-Pineiro D, Parker N, Shin J, French L, Grydeland H, Jackowski AP, Mowinckel AM, Patel Y, Pausova Z, Salum G, Sørensen Ø, Walhovd KB, Paus T, Fjell AM. Cellular correlates of cortical thinning throughout the lifespan. Sci Rep 2020; 10:21803. [PMID: 33311571 PMCID: PMC7732849 DOI: 10.1038/s41598-020-78471-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/13/2020] [Indexed: 01/11/2023] Open
Abstract
Cortical thinning occurs throughout the entire life and extends to late-life neurodegeneration, yet the neurobiological substrates are poorly understood. Here, we used a virtual-histology technique and gene expression data from the Allen Human Brain Atlas to compare the regional profiles of longitudinal cortical thinning through life (4004 magnetic resonance images [MRIs]) with those of gene expression for several neuronal and non-neuronal cell types. The results were replicated in three independent datasets. We found that inter-regional profiles of cortical thinning related to expression profiles for marker genes of CA1 pyramidal cells, astrocytes and, microglia during development and in aging. During the two stages of life, the relationships went in opposite directions: greater gene expression related to less thinning in development and vice versa in aging. The association between cortical thinning and cell-specific gene expression was also present in mild cognitive impairment and Alzheimer's Disease. These findings suggest a role of astrocytes and microglia in promoting and supporting neuronal growth and dendritic structures through life that affects cortical thickness during development, aging, and neurodegeneration. Overall, the findings contribute to our understanding of the neurobiology underlying variations in MRI-derived estimates of cortical thinning through life and late-life disease.
Collapse
Affiliation(s)
- Didac Vidal-Pineiro
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Pb. 1094 Blindern, 0317, Oslo, Norway
| | - Nadine Parker
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, M4G 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Leon French
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, M5T 1L8, Canada
| | - Håkon Grydeland
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Pb. 1094 Blindern, 0317, Oslo, Norway
| | - Andrea P Jackowski
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), University Federal of São Paulo, São Paulo, 04038-020, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, 90035-003, Brazil
| | - Athanasia M Mowinckel
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Pb. 1094 Blindern, 0317, Oslo, Norway
| | - Yash Patel
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, M4G 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Giovanni Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, 90035-003, Brazil
- Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Øystein Sørensen
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Pb. 1094 Blindern, 0317, Oslo, Norway
| | - Kristine B Walhovd
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Pb. 1094 Blindern, 0317, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, M4G 1R8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Departments of Psychology and Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| | - Anders M Fjell
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Pb. 1094 Blindern, 0317, Oslo, Norway.
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0450, Oslo, Norway.
| |
Collapse
|
35
|
Parkinson's Disease Master Regulators on Substantia Nigra and Frontal Cortex and Their Use for Drug Repositioning. Mol Neurobiol 2020; 58:1517-1534. [PMID: 33211252 DOI: 10.1007/s12035-020-02203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative diseases. Available evidences support the view of PD as a complex disease, being the outcome of interactions between genetic and environmental factors. In face of diagnosis and therapy challenges, and the elusive PD etiology, the use of alternative methodological approaches for the elucidation of the disease pathophysiological mechanisms and proposal of novel potential therapeutic interventions has become increasingly necessary. In the present study, we first reconstructed the transcriptional regulatory networks (TN), centered on transcription factors (TF), of two brain regions affected in PD, the substantia nigra pars compacta (SNc) and the frontal cortex (FCtx). Then, we used case-control studies data from these regions to identify TFs working as master regulators (MR) of the disease, based on region-specific TNs. Twenty-nine regulatory units enriched with differentially expressed genes were identified for the SNc, and twenty for the FCtx, all of which were considered MR candidates for PD. Three consensus MR candidates were found for SNc and FCtx, namely ATF2, SLC30A9, and ZFP69B. In order to search for novel potential therapeutic interventions, we used these consensus MR candidate signatures as input to the Connectivity Map (CMap), a computational drug repositioning webtool. This analysis resulted in the identification of four drugs that reverse the expression pattern of all three MR consensus simultaneously, benperidol, harmaline, tubocurarine chloride, and vorinostat, thus suggested as novel potential PD therapeutic interventions.
Collapse
|
36
|
Guo X, Fu Y, Zhang Y, Wang T, Lu L, Luo X, Wang K, Huang J, Xie T, Zheng C, Yang K, Tong J, Zuo L, Kang L, Tan Y, Jiang K, Li CSR, Luo X. Replicated risk CACNA1C variants for major psychiatric disorders may serve as potential therapeutic targets for the shared depressive endophenotype. JOURNAL OF NEUROSCIENCE & COGNITIVE STUDIES 2020; 4:1017. [PMID: 34046650 PMCID: PMC8153461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genome-wide association studies (GWASs) have reported numerous associations between risk variants and major psychiatric disorders (MPDs) including schizophrenia (SCZ), bipolar disorder (BPD), major depressive disorder (MDD) and others. We reviewed all of the published GWASs, and extracted the genome-wide significant (p<10-6) and replicated associations between risk SNPs and MPDs. We found the associations of 6 variants located in 6 genes, including L type voltage-gated calcium channel (LTCCs) subunit alpha1 C gene (CACNA1C), that were genome-wide significant (2.0×10 -8 ≤p≤1.0×10 -6 ) and replicated at single-point level across at least two GWASs. Among them, the associations between MPDs and rs1006737 within CACNA1C are most robust. Thus, as a next step, the expression of the replicated risk genes in human hippocampus was analyzed. We found CACNA1C had significant mRNA expression in human hippocampus in two independent cohorts. Finally, we tried to elucidate the roles of venlafaxine and ω-3 PUFAs in the mRNA expression regulation of the replicated risk genes in hippocampus. We used cDNA chip-based microarray profiling to explore the transcriptome-wide mRNA expression regulation by ω-3 PUFAs (0.72/kg/d) and venlafaxine (0.25/kg/d) treatment in chronic mild stress (CMS) rats. ω-3 PUFAs and venlafaxine treatment elicited significant CACNA1C up-regulation. We concluded that CACNA1C might confer the genetic vulnerability to the shared depressive symptoms across MPDs and CACNA1C might be the therapeutic target for depressive endophenotype as well.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Cellular &Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yingmei Fu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin 300222, China
| | - Tong Wang
- Cellular &Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lu Lu
- Departments of Genetics, Genomics, Informatics, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xingqun Luo
- Department of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juncao Huang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Ting Xie
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | | | - Kebing Yang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Jinghui Tong
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Diseases of Tibet Autonomous Region, Xizang Minzu University School of Medicine, Xiangyang, Shaanxi 712082, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Kaida Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| |
Collapse
|
37
|
Erzurumluoglu AM, Liu M, Jackson VE, Barnes DR, Datta G, Melbourne CA, Young R, Batini C, Surendran P, Jiang T, Adnan SD, Afaq S, Agrawal A, Altmaier E, Antoniou AC, Asselbergs FW, Baumbach C, Bierut L, Bertelsen S, Boehnke M, Bots ML, Brazel DM, Chambers JC, Chang-Claude J, Chen C, Corley J, Chou YL, David SP, de Boer RA, de Leeuw CA, Dennis JG, Dominiczak AF, Dunning AM, Easton DF, Eaton C, Elliott P, Evangelou E, Faul JD, Foroud T, Goate A, Gong J, Grabe HJ, Haessler J, Haiman C, Hallmans G, Hammerschlag AR, Harris SE, Hattersley A, Heath A, Hsu C, Iacono WG, Kanoni S, Kapoor M, Kaprio J, Kardia SL, Karpe F, Kontto J, Kooner JS, Kooperberg C, Kuulasmaa K, Laakso M, Lai D, Langenberg C, Le N, Lettre G, Loukola A, Luan J, Madden PAF, Mangino M, Marioni RE, Marouli E, Marten J, Martin NG, McGue M, Michailidou K, Mihailov E, Moayyeri A, Moitry M, Müller-Nurasyid M, Naheed A, Nauck M, Neville MJ, Nielsen SF, North K, Perola M, Pharoah PDP, Pistis G, Polderman TJ, Posthuma D, Poulter N, Qaiser B, Rasheed A, Reiner A, Renström F, Rice J, Rohde R, Rolandsson O, Samani NJ, Samuel M, Schlessinger D, Scholte SH, Scott RA, Sever P, Shao Y, Shrine N, Smith JA, Starr JM, Stirrups K, Stram D, Stringham HM, Tachmazidou I, Tardif JC, Thompson DJ, Tindle HA, Tragante V, Trompet S, Turcot V, Tyrrell J, Vaartjes I, van der Leij AR, van der Meer P, Varga TV, Verweij N, Völzke H, Wareham NJ, Warren HR, Weir DR, Weiss S, Wetherill L, Yaghootkar H, Yavas E, Jiang Y, Chen F, Zhan X, Zhang W, Zhao W, Zhao W, Zhou K, Amouyel P, Blankenberg S, Caulfield MJ, Chowdhury R, Cucca F, Deary IJ, Deloukas P, Di Angelantonio E, Ferrario M, Ferrières J, Franks PW, Frayling TM, Frossard P, Hall IP, Hayward C, Jansson JH, Jukema JW, Kee F, Männistö S, Metspalu A, Munroe PB, Nordestgaard BG, Palmer CNA, Salomaa V, Sattar N, Spector T, Strachan DP, van der Harst P, Zeggini E, Saleheen D, Butterworth AS, Wain LV, Abecasis GR, Danesh J, Tobin MD, Vrieze S, Liu DJ, Howson JMM. Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Mol Psychiatry 2020; 25:2392-2409. [PMID: 30617275 PMCID: PMC7515840 DOI: 10.1038/s41380-018-0313-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/30/2018] [Accepted: 11/14/2018] [Indexed: 02/02/2023]
Abstract
Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.
Collapse
Affiliation(s)
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Victoria E Jackson
- Department of Health Sciences, University of Leicester, Leicester, UK
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, 3052, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Parkville, Australia
| | - Daniel R Barnes
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Gargi Datta
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Carl A Melbourne
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Chiara Batini
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Tao Jiang
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Sheikh Daud Adnan
- National Institute of Cardiovascular Diseases, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | - Saima Afaq
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
| | - Arpana Agrawal
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Elisabeth Altmaier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Clemens Baumbach
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah Bertelsen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508GA, Utrecht, The Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, 3508GA, Utrecht, The Netherlands
| | - David M Brazel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Yi-Ling Chou
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Sean P David
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Joe G Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge Centre, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge Centre, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Charles Eaton
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare NHS Trust and Imperial College London, London, UK
- UK Dementia Research Institute (UK DRI) at Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Gong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Jeff Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Nutritional research, Umeå University, Umeå, Sweden
| | - Anke R Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew Hattersley
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Andrew Heath
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Chris Hsu
- University of Southern California, California, CA, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Genomic Health, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Sharon L Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Jukka Kontto
- Department of Public Health Solutions, National Institute for Health and Welfare, FI-00271, Helsinki, Finland
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kari Kuulasmaa
- Department of Public Health Solutions, National Institute for Health and Welfare, FI-00271, Helsinki, Finland
| | | | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Nhung Le
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | | | - Massimo Mangino
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Genomic Health, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | | | - Alireza Moayyeri
- Institute of Health Informatics, University College London, London, UK
| | - Marie Moitry
- Department of Epidemiology and Public health, University Hospital of Strasbourg, Strasbourg, France
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Aliya Naheed
- Initiative for Noncommunicable Diseases, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Matthew J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 74, DK-2730, Herlev, Denmark
| | - Kari North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health Solutions, National Institute for Health and Welfare, FI-00271, Helsinki, Finland
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge Centre, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Tinca J Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
- Department of Clinical Genetics, VU University Medical Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Beenish Qaiser
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Alex Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Frida Renström
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Skåne University Hospital, Lund University, SE-214 28, Malmö, Sweden
- Department of Biobank Research, Umeå University, SE-901 87, Umeå, Sweden
| | - John Rice
- Departments of Psychiatry and Mathematics, Washington University St. Louis, St. Louis, MO, USA
| | | | - Olov Rolandsson
- Department of Public Health & Clinical Medicine, Section for Family Medicine, Umeå universitet, SE, 90185, Umeå, Sweden
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Maria Samuel
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - David Schlessinger
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Steven H Scholte
- Department of Psychology, University of Amsterdam & Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Yaming Shao
- University of North Carolina, Chapel Hill, NC, USA
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Kathleen Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK
| | - Danielle Stram
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Hilary A Tindle
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Vinicius Tragante
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, 3508GA, Utrecht, The Netherlands
| | - Stella Trompet
- Department of gerontology and geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Valerie Turcot
- Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508GA, Utrecht, The Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, 3508GA, Utrecht, The Netherlands
| | - Andries R van der Leij
- Department of Psychology, University of Amsterdam & Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tibor V Varga
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Skåne University Hospital, Lund University, SE-214 28, Malmö, Sweden
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 301 Binney Street, Cambridge, MA, 02142, USA
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Stefan Weiss
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, 17475, Greifswald, Germany
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Ersin Yavas
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Yu Jiang
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Fang Chen
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Xiaowei Zhan
- Department of Clinical Science, Center for Genetics of Host Defense, University of Texas Southwestern, Dallas, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kaixin Zhou
- School of Medicine, University of Dundee, Dundee, UK
| | - Philippe Amouyel
- Department of Epidemiology and Public Health, Institut Pasteur de Lille, Lille, France
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Marco Ferrario
- EPIMED Research Centre, Department of Medicine and Surgery, University of Insubria at Varese, Varese, Italy
| | - Jean Ferrières
- Department of Epidemiology, UMR 1027- INSERM, Toulouse University-CHU Toulouse, Toulouse, France
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Skåne University Hospital, Lund University, SE-214 28, Malmö, Sweden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Tim M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | | | - Ian P Hall
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jan-Håkan Jansson
- Department of Public Health and Clinical Medicine, Skellefteå Research Unit, Umeå University, Umeå, Sweden
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- The Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health, Queens, University, Belfast, Belfast, UK
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, FI-00271, Helsinki, Finland
| | | | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 74, DK-2730, Herlev, Denmark
| | - Colin N A Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Veikko Salomaa
- Department of Public Health Solutions, National Institute for Health and Welfare, FI-00271, Helsinki, Finland
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Timothy Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
| | - David Peter Strachan
- Population Health Research Institute, St George!s, University of London, London, SW17 0RE, UK
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Danish Saleheen
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Dajiang J Liu
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA.
| | - Joanna M M Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.
| |
Collapse
|
38
|
Xie X, Liu F, Xue Q, Zhou Y, Liu Q, Tang S, Zhu K, Wan Z, Zhang J, Zuo P, Song R. Association between NT5C2 rs11191580 and autism spectrum disorder in the Chinese Han population. Asian J Psychiatr 2020; 53:102231. [PMID: 32590138 DOI: 10.1016/j.ajp.2020.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Liu
- Department of Nursing, Medical School, University of Shihezi, Shihezi, China
| | - Qi Xue
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuting Tang
- Department of Nursing, Medical School, University of Shihezi, Shihezi, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wan
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Pengxiang Zuo
- Department of Nursing, Medical School, University of Shihezi, Shihezi, China.
| | - Ranran Song
- Department of Nursing, Medical School, University of Shihezi, Shihezi, China; Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
Sng LM, Thomson PC, Trabzuni D. Comparison Between Expression Microarrays and RNA-Sequencing Using UKBEC Dataset Identified a trans-eQTL Associated with MPZ Gene in Substantia Nigra. FRONTIERS IN NEUROLOGY AND NEUROSCIENCE RESEARCH 2020; 1:100001. [PMID: 34322689 PMCID: PMC7611373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years, the advantages of RNA-sequencing (RNA-Seq) have made it the platform of choice for measuring gene expression over traditional microarrays. However, RNA-Seq comes with bioinformatical challenges and higher computational costs. Therefore, this study set out to assess whether the increased depth of transcriptomic information facilitated by RNA-Seq is worth the increased computation over microarrays, specifically at three levels: absolute expression levels, differentially expressed genes identification, and expression QTL (eQTL) mapping in regions of the human brain. Using the United Kingdom Brain Expression Consortium (UKBEC) dataset, there is high agreement of gene expression levels measured by microarrays and RNA-seq when quantifying absolute expression levels and when identifying differentially expressed genes. These findings suggest that depending on the aims of a study, the relative ease of working with microarray data may outweigh the computational time and costs of RNA-Seq pipelines. On the other, there was low agreement when mapping eQTLs. However, a number of eQTLs associated with genes that play important roles in the brain were found in both platforms. For example, a trans-eQTL was mapped that is associated with the MPZ gene in the substantia nigra. These eQTLs that we have highlighted are extremely promising candidates that merit further investigation.
Collapse
Affiliation(s)
- Letitia M.F. Sng
- The University of Sydney, School of Life and Environmental Sciences, Australia
| | - Peter C. Thomson
- The University of Sydney, School of Life and Environmental Sciences, Australia
| | - Daniah Trabzuni
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, United Kingdom,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Saudi Arabia,Corresponding author: Daniah Trabzuni, Department of Neurodegenerative Disease, Wing 1.2 (first floor) Cruciform Building, Gower Street, London, WC1E 6BT, UK, Tel: +447872608992;
| |
Collapse
|
40
|
Alzheimer's disease-related dysregulation of mRNA translation causes key pathological features with ageing. Transl Psychiatry 2020; 10:192. [PMID: 32546772 PMCID: PMC7297996 DOI: 10.1038/s41398-020-00882-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by Aβ and tau pathology as well as synaptic degeneration, which correlates best with cognitive impairment. Previous work suggested that this pathological complexity may result from changes in mRNA translation. Here, we studied whether mRNA translation and its underlying signalling are altered in an early model of AD, and whether modelling this deficiency in mice causes pathological features with ageing. Using an unbiased screen, we show that exposure of primary neurons to nanomolar amounts of Aβ increases FMRP-regulated protein synthesis. This selective regulation of mRNA translation is dependent on a signalling cascade involving MAPK-interacting kinase 1 (Mnk1) and the eukaryotic initiation factor 4E (eIF4E), and ultimately results in reduction of CYFIP2, an FMRP-binding protein. Modelling this CYFIP2 reduction in mice, we find age-dependent Aβ accumulation in the thalamus, development of tau pathology in entorhinal cortex and hippocampus, as well as gliosis and synapse loss in the hippocampus, together with deficits in memory formation. Therefore, we conclude that early stages of AD involve increased translation of specific CYFIP2/FMRP-regulated transcripts. Since reducing endogenous CYFIP2 expression is sufficient to cause key features of AD with ageing in mice, we suggest that prolonged activation of this pathway is a primary step toward AD pathology, highlighting a novel direction for therapeutic targeting.
Collapse
|
41
|
Chung J, Marini S, Pera J, Norrving B, Jimenez-Conde J, Roquer J, Fernandez-Cadenas I, Tirschwell DL, Selim M, Brown DL, Silliman SL, Worrall BB, Meschia JF, Demel S, Greenberg SM, Slowik A, Lindgren A, Schmidt R, Traylor M, Sargurupremraj M, Tiedt S, Malik R, Debette S, Dichgans M, Langefeld CD, Woo D, Rosand J, Anderson CD. Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain 2020; 142:3176-3189. [PMID: 31430377 DOI: 10.1093/brain/awz233] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023] Open
Abstract
Intracerebral haemorrhage and small vessel ischaemic stroke (SVS) are the most acute manifestations of cerebral small vessel disease, with no established preventive approaches beyond hypertension management. Combined genome-wide association study (GWAS) of these two correlated diseases may improve statistical power to detect novel genetic factors for cerebral small vessel disease, elucidating underlying disease mechanisms that may form the basis for future treatments. Because intracerebral haemorrhage location is an adequate surrogate for distinct histopathological variants of cerebral small vessel disease (lobar for cerebral amyloid angiopathy and non-lobar for arteriolosclerosis), we performed GWAS of intracerebral haemorrhage by location in 1813 subjects (755 lobar and 1005 non-lobar) and 1711 stroke-free control subjects. Intracerebral haemorrhage GWAS results by location were meta-analysed with GWAS results for SVS from MEGASTROKE, using 'Multi-Trait Analysis of GWAS' (MTAG) to integrate summary data across traits and generate combined effect estimates. After combining intracerebral haemorrhage and SVS datasets, our sample size included 241 024 participants (6255 intracerebral haemorrhage or SVS cases and 233 058 control subjects). Genome-wide significant associations were observed for non-lobar intracerebral haemorrhage enhanced by SVS with rs2758605 [MTAG P-value (P) = 2.6 × 10-8] at 1q22; rs72932727 (P = 1.7 × 10-8) at 2q33; and rs9515201 (P = 5.3 × 10-10) at 13q34. In the GTEx gene expression library, rs2758605 (1q22), rs72932727 (2q33) and rs9515201 (13q34) are significant cis-eQTLs for PMF1 (P = 1 × 10-4 in tibial nerve), NBEAL1, FAM117B and CARF (P < 2.1 × 10-7 in arteries) and COL4A2 and COL4A1 (P < 0.01 in brain putamen), respectively. Leveraging S-PrediXcan for gene-based association testing with the predicted expression models in tissues related with nerve, artery, and non-lobar brain, we found that experiment-wide significant (P < 8.5 × 10-7) associations at three genes at 2q33 including NBEAL1, FAM117B and WDR12 and genome-wide significant associations at two genes including ICA1L at 2q33 and ZCCHC14 at 16q24. Brain cell-type specific expression profiling libraries reveal that SEMA4A, SLC25A44 and PMF1 at 1q22 and COL4A1 and COL4A2 at 13q34 were mainly expressed in endothelial cells, while the genes at 2q33 (FAM117B, CARF and NBEAL1) were expressed in various cell types including astrocytes, oligodendrocytes and neurons. Our cross-phenotype genetic study of intracerebral haemorrhage and SVS demonstrates novel genome-wide associations for non-lobar intracerebral haemorrhage at 2q33 and 13q34. Our replication of the 1q22 locus previous seen in traditional GWAS of intracerebral haemorrhage, as well as the rediscovery of 13q34, which had previously been reported in candidate gene studies with other cerebral small vessel disease-related traits strengthens the credibility of applying this novel genome-wide approach across intracerebral haemorrhage and SVS.
Collapse
Affiliation(s)
- Jaeyoon Chung
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Sandro Marini
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - Bo Norrving
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden.,Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Jordi Jimenez-Conde
- Department of Neurology, Neurovascular Research Unit, Institut Hospital del Mar d'Investigacions Mèdiques, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jaume Roquer
- Department of Neurology, Neurovascular Research Unit, Institut Hospital del Mar d'Investigacions Mèdiques, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Israel Fernandez-Cadenas
- Neurovascular Research Laboratory and Neurovascular Unit, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain.,Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - David L Tirschwell
- Stroke Center, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Magdy Selim
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Devin L Brown
- Stroke Program, Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Scott L Silliman
- Department of Neurology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Bradford B Worrall
- Department of Neurology and Public Health Sciences, University of Virginia Health System, Charlottesville, VA, USA
| | | | - Stacie Demel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven M Greenberg
- The J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - Arne Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden.,Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Matthew Traylor
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Steffen Tiedt
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stéphanie Debette
- University of Bordeaux, INSERM U1219, Bordeaux Population Health Research Center, Bordeaux, France.,Department of Neurology, Memory Clinic, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Carl D Langefeld
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
42
|
Selvaggi P, Pergola G, Gelao B, Di Carlo P, Nettis MA, Amico G, Fazio L, Rampino A, Sambataro F, Blasi G, Bertolino A. Genetic Variation of a DRD2 Co-expression Network is Associated with Changes in Prefrontal Function After D2 Receptors Stimulation. Cereb Cortex 2020; 29:1162-1173. [PMID: 29415163 DOI: 10.1093/cercor/bhy022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 01/15/2018] [Indexed: 01/26/2023] Open
Abstract
Dopamine D2 receptors (D2Rs) contribute to the inverted U-shaped relationship between dopamine signaling and prefrontal function. Genetic networks from post-mortem human brain revealed 84 partner genes co-expressed with DRD2. Moreover, eight functional single nucleotide polymorphisms combined into a polygenic co-expression index (PCI) predicted co-expression of this DRD2 network and were associated with prefrontal function in humans. Here, we investigated the non-linear association of the PCI with behavioral and Working Memory (WM) related brain response to pharmacological D2Rs stimulation. Fifty healthy volunteers took part in a double-blind, placebo-controlled, functional MRI (fMRI) study with bromocriptine and performed the N-Back task. The PCI by drug interaction was significant on both WM behavioral scores (P = 0.046) and related prefrontal activity (all corrected P < 0.05) using a polynomial PCI model. Non-linear responses under placebo were reversed by bromocriptine administration. fMRI results on placebo were replicated in an independent sample of 50 participants who did not receive drug administration (P = 0.034). These results match earlier evidence in non-human primates and confirm the physiological relevance of this DRD2 co-expression network. Results show that in healthy subjects, different alleles evaluated as an ensemble are associated with non-linear prefrontal responses. Therefore, brain response to a dopaminergic drug may depend on a complex system of allelic patterns associated with DRD2 co-expression.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Gelao
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Di Carlo
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Antonietta Nettis
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Graziella Amico
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Fazio
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Science, University of Udine, Udine, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
43
|
Fazia T, Nova A, Gentilini D, Beecham A, Piras M, Saddi V, Ticca A, Bitti P, McCauley JL, Berzuini C, Bernardinelli L. Investigating the Causal Effect of Brain Expression of CCL2, NFKB1, MAPK14, TNFRSF1A, CXCL10 Genes on Multiple Sclerosis: A Two-Sample Mendelian Randomization Approach. Front Bioeng Biotechnol 2020; 8:397. [PMID: 32432099 PMCID: PMC7216783 DOI: 10.3389/fbioe.2020.00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple Sclerosis (MS) exhibits considerable heterogeneity in phenotypic expression, course, prognosis and response to therapy. This suggests this disease involves multiple, as yet poorly understood, causal mechanisms. In this work we assessed the possible causal link between gene expression level of five selected genes related to the pro-inflammatory NF-κB signaling pathway (i.e., CCL2, NFKB1, MAPK14, TNFRSF1A, CXCL10) in ten different brain tissues (i.e., cerebellum, frontal cortex, hippocampus, medulla, occipital cortex, putamen, substantia nigra, thalamus, temporal cortex and intralobular white matter) and MS. We adopted a two-stage Mendelian Randomization (MR) approach for the estimation of the causal effects of interest, based on summary-level data from 20 multiplex Sardinian families and data provided by the United Kingdom Brain Expression Consortium (UKBEC). Through Radial-MR and Cochrane's Q statistics we identified and removed genetic variants which are most likely to be invalid instruments. To estimate the total causal effect, univariable MR was carried out separately for each gene and brain region. We used Inverse-Variance Weighted estimator (IVW) as main analysis and MR-Egger Regression estimator (MR-ER) and Weighted Median Estimator (WME) as sensitivity analysis. As these genes belong to the same pathway and thus they can be closely related, we also estimated their direct causal effects by applying IVW and MR-ER within a multivariable MR (MVMR) approach using set of genetic instruments specific and common (composite) to each multiple exposures represented by the expression of the candidate genes. Univariate MR analysis showed a significant positive total causal effect for CCL2 and NFKB1 respectively in medulla and cerebellum. MVMR showed a direct positive causal effect for NFKB1 and TNFRSF1A, and a direct negative causal effect for CCL2 in cerebellum; while in medulla we observed a direct positive causal effect for CCL2. Since in general we observed a different magnitude for the gene specific causal effect we hypothesize that in cerebellum and medulla the effect of each gene expression is direct but also mediated by the others. These results confirm the importance of the involvement of NF-κB signaling pathway in brain tissue for the development of the disease and improve our understanding in the pathogenesis of MS.
Collapse
Affiliation(s)
- Teresa Fazia
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Andrea Nova
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Davide Gentilini
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL, United States
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Anna Ticca
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Pierpaolo Bitti
- Centro di Tipizzazione Tissutale, S.I.T., Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL, United States
| | - Carlo Berzuini
- Centre for Biostatistics, University of Manchester, Manchester, United Kingdom
| | - Luisa Bernardinelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
44
|
Xie X, Meng H, Wu H, Hou F, Chen Y, Zhou Y, Xue Q, Zhang J, Gong J, Li L, Song R. Integrative analyses indicate an association between ITIH3 polymorphisms with autism spectrum disorder. Sci Rep 2020; 10:5223. [PMID: 32251353 PMCID: PMC7089985 DOI: 10.1038/s41598-020-62189-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
It is challenge to pinpoint the functional variants among numerous genetic variants. Investigating the spatial dynamics of the human brain transcriptome for genes and exploring the expression quantitative trait loci data may provide the potential direction to identify the functional variants among autism spectrum disorders (ASD) patients. In order to explore the association of ITIH3 with ASD, the present study included three components: identifying the spatial-temporal expression of ITIH3 in the developing human brain using the expression data from the Allen Institute for Brain Science; examining the cis-acting regulatory effect of SNPs on the ITIH3 expression using UK Brain Expression Consortium database; validating the effect of identified SNPs using a case-control study with samples of 602 cases and 604 controls. The public expression data showed that ITIH3 may have a role in the development of human brain and suggested a cis-eQTL effect for rs2535629 and rs3617 on ITIH3 in the hippocampus. Genetic analysis of the above two SNPs suggested that the over-dominant model of rs2535629 was significantly associated with decreased risk of ASD. Convergent lines of evidence supported ITIH3 rs25352629 as a susceptibility variant for ASD.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heng Meng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Hou
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China
| | - Yu Zhou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Xue
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, 518019, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
45
|
Parker N, Vidal-Pineiro D, French L, Shin J, Adams HHH, Brodaty H, Cox SR, Deary IJ, Fjell AM, Frenzel S, Grabe H, Hosten N, Ikram MA, Jiang J, Knol MJ, Mazoyer B, Mishra A, Sachdev PS, Salum G, Satizabal CL, Schmidt H, Schmidt R, Seshadri S, Schumann G, Völzke H, Walhovd KB, Wen W, Wittfeld K, Yang Q, Debette S, Pausova Z, Paus T. Corticosteroids and Regional Variations in Thickness of the Human Cerebral Cortex across the Lifespan. Cereb Cortex 2020; 30:575-586. [PMID: 31240317 PMCID: PMC7444740 DOI: 10.1093/cercor/bhz108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
Exposures to life stressors accumulate across the lifespan, with possible impact on brain health. Little is known, however, about the mechanisms mediating age-related changes in brain structure. We use a lifespan sample of participants (n = 21 251; 4-97 years) to investigate the relationship between the thickness of cerebral cortex and the expression of the glucocorticoid- and the mineralocorticoid-receptor genes (NR3C1 and NR3C2, respectively), obtained from the Allen Human Brain Atlas. In all participants, cortical thickness correlated negatively with the expression of both NR3C1 and NR3C2 across 34 cortical regions. The magnitude of this correlation varied across the lifespan. From childhood through early adulthood, the profile similarity (between NR3C1/NR3C2 expression and thickness) increased with age. Conversely, both profile similarities decreased with age in late life. These variations do not reflect age-related changes in NR3C1 and NR3C2 expression, as observed in 5 databases of gene expression in the human cerebral cortex (502 donors). Based on the co-expression of NR3C1 (and NR3C2) with genes specific to neural cell types, we determine the potential involvement of microglia, astrocytes, and CA1 pyramidal cells in mediating the relationship between corticosteroid exposure and cortical thickness. Therefore, corticosteroids may influence brain structure to a variable degree throughout life.
Collapse
Affiliation(s)
- Nadine Parker
- Institute of Medical Science, University of Toronto, Toronto M5S 1A8, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto M4G 1R8, Canada
| | - Didac Vidal-Pineiro
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Leon French
- Centre for Addiction and Mental Health, University of Toronto, Toronto M5T 1L8, Canada
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto M5G 0A4, Canada
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam 3015, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam 3015, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing and Dementia Centre for Research Collaboration, University of New South Wales, Sydney, NSW 2025, Australia
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburg EH8 9JZ, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburg EH8 9JZ, UK
| | - Anders M Fjell
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0318, Norway
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17489, Germany
| | - Hans Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17489, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/ Greifswald 18147, Germany
| | - Norbert Hosten
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald 17489, Germany
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam 3015, the Netherlands
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam 3015, the Netherlands
| | - Bernard Mazoyer
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux 5293, France
| | - Aniket Mishra
- Bordeaux Population Health Research Center, INSERM UMR, University of Bordeaux, Bordeaux 33076, France
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Giovanni Salum
- Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, Brazil
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, MA 02118, USA
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz 8036, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz 8036, Austria
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, MA 02118, USA
| | - Gunter Schumann
- MRC-Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London SE5 8AF, UK
| | - Henry Völzke
- Department of SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald 17489, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald 13316, Germany
- DZD (German Centre for Diabetes Research), Site Greifswald
85764, Germany
| | - Kristine B Walhovd
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0318, Norway
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Katharina Wittfeld
- Department of Psychology, University of Edinburgh, Edinburg EH8 9JZ, UK
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/ Greifswald 18147, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, MA 02118, USA
| | - Stephanie Debette
- Bordeaux Population Health Research Center, INSERM UMR, University of Bordeaux, Bordeaux 33076, France
- Department of Neurology, CHU de Bordeaux, Bordeaux 33000, France
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto M5G 0A4, Canada
| | - Tomáš Paus
- Institute of Medical Science, University of Toronto, Toronto M5S 1A8, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto M4G 1R8, Canada
- Departments of Psychology and Psychiatry, University of Toronto
M5T 1R8, Canada
| |
Collapse
|
46
|
Keo A, Mahfouz A, Ingrassia AMT, Meneboo JP, Villenet C, Mutez E, Comptdaer T, Lelieveldt BPF, Figeac M, Chartier-Harlin MC, van de Berg WDJ, van Hilten JJ, Reinders MJT. Transcriptomic signatures of brain regional vulnerability to Parkinson's disease. Commun Biol 2020; 3:101. [PMID: 32139796 PMCID: PMC7058608 DOI: 10.1038/s42003-020-0804-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/28/2020] [Indexed: 01/11/2023] Open
Abstract
The molecular mechanisms underlying caudal-to-rostral progression of Lewy body pathology in Parkinson's disease remain poorly understood. Here, we identified transcriptomic signatures across brain regions involved in Braak Lewy body stages in non-neurological adults from the Allen Human Brain Atlas. Among the genes that are indicative of regional vulnerability, we found known genetic risk factors for Parkinson's disease: SCARB2, ELOVL7, SH3GL2, SNCA, BAP1, and ZNF184. Results were confirmed in two datasets of non-neurological subjects, while in two datasets of Parkinson's disease patients we found altered expression patterns. Co-expression analysis across vulnerable regions identified a module enriched for genes associated with dopamine synthesis and microglia, and another module related to the immune system, blood-oxygen transport, and endothelial cells. Both were highly expressed in regions involved in the preclinical stages of the disease. Finally, alterations in genes underlying these region-specific functions may contribute to the selective regional vulnerability in Parkinson's disease brains.
Collapse
Affiliation(s)
- Arlin Keo
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ahmed Mahfouz
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Angela M T Ingrassia
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Jean-Pascal Meneboo
- University Lille, Plate-forme de génomique fonctionnelle et Structurale, F-59000, Lille, France
- University lille. Bilille, F-59000, Lille, France
| | - Celine Villenet
- University Lille, Plate-forme de génomique fonctionnelle et Structurale, F-59000, Lille, France
| | - Eugénie Mutez
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
- Inserm, UMR-S 1172, Early Stages of Parkinson's Disease, F-59000, Lille, France
- University Lille, Service de Neurologie et Pathologie du mouvement, centre expert Parkinson, F-59000, Lille, France
| | - Thomas Comptdaer
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
- Inserm, UMR-S 1172, Early Stages of Parkinson's Disease, F-59000, Lille, France
| | - Boudewijn P F Lelieveldt
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Figeac
- University Lille, Plate-forme de génomique fonctionnelle et Structurale, F-59000, Lille, France
- University lille. Bilille, F-59000, Lille, France
| | - Marie-Christine Chartier-Harlin
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France.
- Inserm, UMR-S 1172, Early Stages of Parkinson's Disease, F-59000, Lille, France.
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands.
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Marcel J T Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands.
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
47
|
Reichman RD, Gaynor SC, Monson ET, Gaine ME, Parsons MG, Zandi PP, Potash JB, Willour VL. Targeted sequencing of the LRRTM gene family in suicide attempters with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:128-139. [PMID: 31854516 PMCID: PMC8380126 DOI: 10.1002/ajmg.b.32767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Glutamatergic signaling is the primary excitatory neurotransmission pathway in the brain, and its relationship to neuropsychiatric disorders is of considerable interest. Our previous attempted suicide genome-wide association study, and numerous studies investigating gene expression, genetic variation, and DNA methylation have implicated aberrant glutamatergic signaling in suicide risk. The glutamatergic pathway gene LRRTM4 was an associated gene identified in our attempted suicide genome-wide association study, with association support seen primarily in females. Recent evidence has also shown that glutamatergic signaling is partly regulated by sex-related hormones. The LRRTM gene family encodes neuronal leucine-rich transmembrane proteins that localize to and promote glutamatergic synapse development. In this study, we sequenced the coding and regulatory regions of all four LRRTM gene members plus a large intronic region of LRRTM4 in 476 bipolar disorder suicide attempters and 473 bipolar disorder nonattempters. We identified two male-specific variants, one female- and five male-specific haplotypes significantly associated with attempted suicide in LRRTM4. Furthermore, variants within significant haplotypes may be brain expression quantitative trait loci for LRRTM4 and some of these variants overlap with predicted hormone response elements. Overall, these results provide supporting evidence for a sex-specific association of genetic variation in LRRTM4 with attempted suicide.
Collapse
Affiliation(s)
- Rachel D. Reichman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sophia C. Gaynor
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Eric T. Monson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Marie E. Gaine
- Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Meredith G. Parsons
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter P. Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - James B. Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Virginia L. Willour
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
48
|
Gaynor SC, Monson ET, Gaine ME, Chimenti MS, Reichman RD, Parsons M, Oonthonpan L, Zandi PP, Potash JB, Willour VL. Male-specific association of the 2p25 region with suicide attempt in bipolar disorder. J Psychiatr Res 2020; 121:151-158. [PMID: 31830721 PMCID: PMC8344384 DOI: 10.1016/j.jpsychires.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/20/2023]
Abstract
We previously conducted a genome-wide association study (GWAS) of attempted suicide within bipolar disorder, which implicated common variation in the 2p25 region primarily in males. The top association signal from our GWAS occurred in an intergenic region of 2p25 (p = 5.07 × 10-8) and was supported by two independent studies. In the current study, to better characterize the association of the 2p25 region with attempted suicide, we sequenced the entire 350kb 2p25 region in 476 bipolar suicide attempters and 473 bipolar non-attempters using targeted next-generation sequencing. This fine-mapping project identified 4,681 variants in the 2p25 region. We performed both gene-level and individual-variant tests on our sequencing results and identified 375 variants which were nominally significant (p < 0.05) and three common variants that were significantly associated with attempted suicide in males (corrected p = 0.035, odds ratio (OR) = 2.13). These three variants are in strong linkage disequilibrium with the top variant from our GWAS. Our top five variants are also predicted expression quantitative trait loci (eQTL) for three genes in the 2p25 region based on publicly available brain expression databases. Our sequencing and eQTL data implicate these three genes - SH3YL1, ACP1, and FAM150B - and three additional pathways - androgen receptor, Wnt signaling, and glutamatergic/GABAergic signaling - in the association of the 2p25 region with suicide. The current study provides additional support for an association of the 2p25 region with attempted suicide in males and identifies several candidate genes and pathways that warrant further investigation to understand their role in suicidal behavior.
Collapse
Affiliation(s)
- Sophia C. Gaynor
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Eric T. Monson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Marie E. Gaine
- Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael S. Chimenti
- Bioinformatics Division, Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Rachel D. Reichman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Meredith Parsons
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Lalita Oonthonpan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Peter P. Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - James B. Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Virginia L. Willour
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| |
Collapse
|
49
|
Genome-wide human brain eQTLs: In-depth analysis and insights using the UKBEC dataset. Sci Rep 2019; 9:19201. [PMID: 31844111 PMCID: PMC6915738 DOI: 10.1038/s41598-019-55590-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/30/2019] [Indexed: 12/31/2022] Open
Abstract
Understanding the complexity of the human brain transcriptome architecture is one of the most important human genetics study areas. Previous studies have applied expression quantitative trait loci (eQTL) analysis at the genome-wide level of the brain to understand the underlying mechanisms relating to neurodegenerative diseases, primarily at the transcript level. To increase the resolution of our understanding, the current study investigates multi/single-region, transcript/exon-level and cis versus trans-acting eQTL, across 10 regions of the human brain. Some of the key findings of this study are: (i) only a relatively small proportion of eQTLs will be detected, where the sensitivity is under 5%; (ii) when an eQTL is acting in multiple regions (MR-eQTL), it tends to have very similar effects on gene expression in each of these regions, as well as being cis-acting; (iii) trans-acting eQTLs tend to have larger effects on expression compared to cis-acting eQTLs and tend to be specific to a single region (SR-eQTL) of the brain; (iv) the cerebellum has a very large number of eQTLs that function exclusively in this region, compared with other regions of the brain; (v) importantly, an interactive visualisation tool (Shiny app) was developed to visualise the MR/SR-eQTL at transcript and exon levels.
Collapse
|
50
|
Periyasamy S, John S, Padmavati R, Rajendren P, Thirunavukkarasu P, Gratten J, Vinkhuyzen A, McRae A, Holliday EG, Nyholt DR, Nancarrow D, Bakshi A, Hemani G, Nertney D, Smith H, Filippich C, Patel K, Fowdar J, McLean D, Tirupati S, Nagasundaram A, Gundugurti PR, Selvaraj K, Jegadeesan J, Jorde LB, Wray NR, Brown MA, Suetani R, Giacomotto J, Thara R, Mowry BJ. Association of Schizophrenia Risk With Disordered Niacin Metabolism in an Indian Genome-wide Association Study. JAMA Psychiatry 2019; 76:1026-1034. [PMID: 31268507 PMCID: PMC6613304 DOI: 10.1001/jamapsychiatry.2019.1335] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Importance Genome-wide association studies (GWASs) in European populations have identified more than 100 schizophrenia-associated loci. A schizophrenia GWAS in a unique Indian population offers novel findings. Objective To discover and functionally evaluate genetic loci for schizophrenia in a GWAS of a unique Indian population. Design, Setting, and Participants This GWAS included a sample of affected individuals, family members, and unrelated cases and controls. Three thousand ninety-two individuals were recruited and diagnostically ascertained via medical records, hospitals, clinics, and clinical networks in Chennai and surrounding regions. Affected participants fulfilled DSM-IV diagnostic criteria for schizophrenia. Unrelated control participants had no personal or family history of psychotic disorder. Recruitment, genotyping, and analysis occurred in consecutive phases beginning January 1, 2001. Recruitment was completed on February 28, 2018, and genotyping and analysis are ongoing. Main Outcomes and Measures Associations of single-nucleotide polymorphisms and gene expression with schizophrenia. Results The study population included 1321 participants with schizophrenia, 885 family controls, and 886 unrelated controls. Among participants with schizophrenia, mean (SD) age was 39.1 (11.4) years, and 52.7% were male. This sample demonstrated uniform ethnicity, a degree of inbreeding, and negligible rates of substance abuse. A novel genome-wide significant association was observed between schizophrenia and a chromosome 8q24.3 locus (rs10866912, allele A; odds ratio [OR], 1.27 [95% CI, 1.17-1.38]; P = 4.35 × 10-8) that attracted support in the schizophrenia Psychiatric Genomics Consortium 2 data (rs10866912, allele A; OR, 1.04 [95% CI, 1.02-1.06]; P = 7.56 × 10-4). This locus has undergone natural selection, with the risk allele A declining in frequency from India (approximately 72%) to Europe (approximately 43%). rs10866912 directly modifies the abundance of the nicotinate phosphoribosyltransferase gene (NAPRT1) transcript in brain cortex (normalized effect size, 0.79; 95% CI, 0.6-1.0; P = 5.8 × 10-13). NAPRT1 encodes a key enzyme for niacin metabolism. In Indian lymphoblastoid cell lines, (risk) allele A of rs10866912 was associated with NAPRT1 downregulation (AA: 0.74, n = 21; CC: 1.56, n = 17; P = .004). Preliminary zebrafish data further suggest that partial loss of function of NAPRT1 leads to abnormal brain development. Conclusions and Relevance Bioinformatic analyses and cellular and zebrafish gene expression studies implicate NAPRT1 as a novel susceptibility gene. Given this gene's role in niacin metabolism and the evidence for niacin deficiency provoking schizophrenialike symptoms in neuropsychiatric diseases such as pellagra and Hartnup disease, these results suggest that the rs10866912 genotype and niacin status may have implications for schizophrenia susceptibility and treatment.
Collapse
Affiliation(s)
- Sathish Periyasamy
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Sujit John
- Schizophrenia Research Foundation, Chennai, India
| | | | | | | | - Jacob Gratten
- Mater Research Institute and University of Queensland, Translational Research Institute, Brisbane, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Anna Vinkhuyzen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Allan McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | - Andrew Bakshi
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Gibran Hemani
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Deborah Nertney
- Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Heather Smith
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Cheryl Filippich
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Kalpana Patel
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Javed Fowdar
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Duncan McLean
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Srinivasan Tirupati
- Psychiatric Rehabilitation Service, Hunter New England Mental Health, Newcastle, Australia
| | | | | | | | | | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City
| | - Naomi R Wray
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Australia
| | - Rachel Suetani
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | | | - Bryan J Mowry
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| |
Collapse
|