1
|
Xu Y, Liang X, Hyun CG. Isolation, Characterization, Genome Annotation, and Evaluation of Tyrosinase Inhibitory Activity in Secondary Metabolites of Paenibacillus sp. JNUCC32: A Comprehensive Analysis through Molecular Docking and Molecular Dynamics Simulation. Int J Mol Sci 2024; 25:2213. [PMID: 38396889 PMCID: PMC10889091 DOI: 10.3390/ijms25042213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
A potential strain, Paenibacillus sp. JNUCC32, was isolated and subjected to whole-genome sequencing. Genome functional annotation revealed its active metabolic capabilities. This study aimed to investigate the pivotal secondary metabolites in the biological system. Fermentation and extraction were performed, resulting in the isolation of seven known compounds: tryptophol (1), 3-(4-hydroxyphenyl)propionic acid (2), ferulic acid (3), maculosin (4), brevianamide F (5), indole-3-acetic acid (6), and butyric acid (7). Tryptophol exhibited favorable pharmacokinetic properties and demonstrated certain tyrosinase inhibitory activity (IC50 = 999 μM). For further analysis of its inhibition mechanism through molecular docking and molecular dynamics (MD) simulation, tryptophol formed three hydrogen bonds and a pro-Michaelis complex with tyrosinase (binding energy = -5.3 kcal/mol). The MD simulation indicated favorable stability for the tryptophol-mushroom tyrosinase complex, primarily governed by hydrogen bond interactions. The crucial residues VAL-283 and HIS-263 in the docking were also validated. This study suggests tryptophol as a potential candidate for antibrowning agents and dermatological research.
Collapse
Affiliation(s)
| | | | - Chang-Gu Hyun
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea; (Y.X.); (X.L.)
| |
Collapse
|
2
|
Mousa AB, Moawad R, Abdallah Y, Abdel-Rasheed M, Zaher AMA. Zinc Oxide Nanoparticles Promise Anticancer and Antibacterial Activity in Ovarian Cancer. Pharm Res 2023; 40:2281-2290. [PMID: 37016170 PMCID: PMC10072921 DOI: 10.1007/s11095-023-03505-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Ovarian cancer is the most lethal cancer in gynaecology. Surgery, chemotherapy, and radiotherapy are the most often used cancer-fighting strategies. Post-surgery infection is fairly prevalent, especially among people with insufficient immunity. Zinc oxide nanoparticles (ZnOnps) have amazing biomedical features as anticancer and antibacterial agents. METHODS We investigated the behaviour of ZnOnps synthesized by green methods on ovarian cancers using established human ovarian cancer cell lines, besides the antibacterial action toward models of gram + ve and gram -ve bacteria. The cytotoxic effect of ZnOnps was calculated using a Sulforhodamine B (SRB) trial. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were tested as models for gram + ve and gram -ve bacteria. The selected bacteria were subjected to concentrations of 20, 40, 80, and 100 μg/ml. RESULTS The synthesized ZnOnps induced 50% inhibitory concentration (IC50) at a concentration of 27.45 μg/ml. The diameter of inhibition ranged between 20.16 ± 0.16 and 27 ± 0.57 mm for S. aureus and 25.66 ± 0.33 to 31 ± 0.33 mm for E. coli. ZnOnps antagonistic effect statistically differed with neomycin, cefaclor, and cefadroxil. CONCLUSIONS Green synthesis of ZnOnps is easily prepared, low cost, non-toxic, and eco-friendly. Their cytotoxic action on SKOV3 cells and their antibacterial characteristics pave the way to be an alternative therapy for ovarian cancer and S. aureus and E. coli infection.
Collapse
Affiliation(s)
- Ahmed Bakr Mousa
- Obstetrics and Gynaecology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Raghda Moawad
- Dairy Department, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Yasmine Abdallah
- Plant Pathology Department, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Mazen Abdel-Rasheed
- Reproductive Health Research Department, National Research Centre, 33 El-Buhouth St, Cairo, 12622, Dokki, Egypt.
| | - Azza M Abdel Zaher
- Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Liang X, Zhou K, Li P, Wan D, Liu J, Yi X, Peng Y. Characteristics of endophytic bacteria and active ingredients in the Eucommiae cortex from different origins. Front Microbiol 2023; 14:1164674. [PMID: 37266017 PMCID: PMC10229866 DOI: 10.3389/fmicb.2023.1164674] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Objective This study aimed to explore the differences between Eucommiae cortex (EC) endophytic bacteria from different origins and their effects on the active ingredients of EC. Methods A total of 10 samples of Eucommia ulmoides Oliv. (E. ulmoides) bark were collected from each of the following four regions, namely, Zunyi in Guizhou (GZ), Baokang in Hubei (HUB), Cili in Hunan (HUN), and Loyang in Shaanxi (SX). Subsequently, the contents of the main active ingredients of EC were determined by ultra-performance liquid chromatography (UPLC), and the endophytic bacteria of EC were detected by 16S rRNA sequencing. The relationship between the dominant endophytic bacteria and the active ingredients was investigated by correlation analysis. Results A total of 4,551 different operational taxonomic units (OTUs) were delineated in the four groups of samples, of which 585, 439, 957, and 684 genera were annotated from GZ, HUB, HUN, and SX, respectively. The richness and diversity of endophytic bacteria from different origins were ranked as HUN > SX > GZ or HUB. The analysis demonstrated that there was no significant correlation between the diversity and richness of endophytic bacteria in EC and its active ingredients. Nevertheless, notable variations in the community structures of endophytic bacteria were observed across different origins, and they had a considerable impact on certain active ingredients in EC. Comamonas and Cedecea were the dominant genera. Characteristic bacteria of different origins could be clearly distinguished. Simultaneous, significant correlations had been identified between some characteristic endophytic bacteria derived from different origins and active ingredients of EC. For example, Delftia, a characteristic bacterium from GZ, showed a significant positive correlation with pinoresinol diglucoside. Paenibacillus and Klebsiella, two characteristic bacteria from HUB, exhibited significant positive correlations with geniposidic acid. Thauera, a characteristic bacterium from HUN, demonstrated a significant positive correlation with geniposide. Brevundimonas, a characteristic bacterium from SX, displayed a significant positive correlation with pinoresinol diglucoside. Conclusion There was a complex correlation between EC endophytic bacteria and active ingredient content, while EC endophytic bacteria from different origins had significant differences at the genus level.
Collapse
Affiliation(s)
- Xuejuan Liang
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Penghui Li
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Dan Wan
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yanmei Peng
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Zhao Y, Xie X, Li J, Shi Y, Chai A, Fan T, Li B, Li L. Comparative Genomics Insights into a Novel Biocontrol Agent Paenibacillus peoriae Strain ZF390 against Bacterial Soft Rot. BIOLOGY 2022; 11:1172. [PMID: 36009799 PMCID: PMC9404902 DOI: 10.3390/biology11081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Bacterial soft rot, caused by Pectobacterium brasiliense, can infect several economically important horticultural crops. However, the management strategies available to control this disease are limited. Plant-growth-promoting rhizobacteria (PGPR) have been considered to be promising biocontrol agents. With the aim of obtaining a strain suitable for agricultural applications, 161 strains were isolated from the rhizosphere soil of healthy cucumber plants and screened through plate bioassays and greenhouse tests. Paenibacillus peoriae ZF390 exhibited an eminent control effect against soft rot disease and a broad antagonistic activity spectrum in vitro. Moreover, ZF390 showed good activities of cellulase, protease, and phosphatase and a tolerance of heavy metal. Whole-genome sequencing was performed and annotated to explore the underlying biocontrol mechanisms. Strain ZF390 consists of one 6,193,667 bp circular chromosome and three plasmids. Comparative genome analysis revealed that ZF390 involves ten gene clusters responsible for secondary metabolite antibiotic synthesis, matching its excellent biocontrol activity. Plenty of genes related to plant growth promotion, biofilm formation, and induced systemic resistance were mined to reveal the biocontrol mechanisms that might consist in strain ZF390. Overall, these findings suggest that strain ZF390 could be a potential biocontrol agent in bacterial-soft-rot management, as well as a source of antimicrobial mechanisms for further exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Thakur V, Kumar V, Kumar V, Singh D. Xylooligosaccharides production using multi-substrate specific xylanases secreted by a psychrotolerant Paenibacillus sp. PCH8. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
6
|
Park H, Yeo S, Kang S, Huh CS. Longitudinal Microbiome Analysis in a Dextran Sulfate Sodium-Induced Colitis Mouse Model. Microorganisms 2021; 9:370. [PMID: 33673349 PMCID: PMC7917662 DOI: 10.3390/microorganisms9020370] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
The role of the gut microbiota in the pathogenesis of inflammatory bowel disease (IBD) has been in focus for decades. Although metagenomic observations in patients/animal colitis models have been attempted, the microbiome results were still indefinite and broad taxonomic presumptions were made due to the cross-sectional studies. Herein, we conducted a longitudinal microbiome analysis in a dextran sulfate sodium (DSS)-induced colitis mouse model with a two-factor design based on serial DSS dose (0, 1, 2, and 3%) and duration for 12 days, and four mice from each group were sacrificed at two-day intervals. During the colitis development, a transition of the cecal microbial diversity from the normal state to dysbiosis and dynamic changes of the populations were observed. We identified genera that significantly induced or depleted depending on DSS exposure, and confirmed the correlations of the individual taxa to the colitis severity indicated by inflammatory biomarkers (intestinal bleeding and neutrophil-derived indicators). Of note, each taxonomic population showed its own susceptibility to the changing colitis status. Our findings suggest that an understanding of the individual susceptibility to colitis conditions may contribute to identifying the role of the gut microbes in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea;
- Advanced Green Energy and Environment Institute, Handong Global University, Pohang 37554, Korea
| | - Soyoung Yeo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Seokwon Kang
- Department of Life Sciences, Handong Global University, Pohang 37554, Korea;
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea;
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| |
Collapse
|
7
|
Patil R, Arvindekar A. Glycation of gut proteins initiates microbial dysbiosis and can promote establishment of diabetes in experimental animals. Microb Pathog 2020; 152:104589. [PMID: 33171259 DOI: 10.1016/j.micpath.2020.104589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Diabetes and obesity is associated with change in the gut microbiota, however, the reason for such transition is still unknown. The secondary complications in diabetes mainly stem from protein glycation, oxidative stress and inflammatory response. It is intended to study the correlation between gut proteins glycation and microbial dysbiosis and thereby progression to diabetes. The study was carried out through feeding high fructose to male Wistar rats and evaluating their gut microbiota. The rate of gut flora excretion via faecal matter was found to decrease on fructose feed for 7 days. Intestinal flora was drastically reduced and pathogenic succession observed. Intestinal fluorescence studies confirmed that there is heavy glycation of gut proteins. Microbes obtained from fructose fed animals could grow on glycated BSA. There was significant increase in level of TNF-α and IFN-γ providing evidence of inflammation. Though microbial dysbiosis was observed in diabetes, the cause for this remained elusive. In the present study we prove that high fructose feed and glycation of the gut proteins probably prevent adherence/survival of the gut microflora in control animals and promotes transition to a changed microflora which is capable of adhering/utilizing glycated proteins as well as high fructose. The changed microbiota, enhanced protein glycation and inflammation help in establishing insulin resistance.
Collapse
Affiliation(s)
- Rahul Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, M.S, India
| | - Akalpita Arvindekar
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, M.S, India.
| |
Collapse
|
8
|
Cheng S, Shi M, Xing L, Wang X, Gao H, Sun Y. Sulfamethoxazole affects the microbial composition and antibiotic resistance gene abundance in soil and accumulates in lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29257-29265. [PMID: 32436096 DOI: 10.1007/s11356-020-08902-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Pot experiments were set up to simulate the soil contamination by three initial concentrations of sulfamethoxazole (SMX) (S1, 100 mg/kg; S2, 200 mg/kg; S3, 300 mg/kg). The content of SMX in soil and its accumulation in lettuce were analysed. Additionally, the effects of SMX on soil microorganisms and antibiotic resistance genes were studied by Illumina high-throughput sequencing and droplet digital polymerase chain reaction (ddPCR). The results demonstrated that the SMX content in soil reduced by 97%, 86% and 75% in the S1, S2 and S3 treatment groups after 120 days, respectively. The accumulated SMX in lettuce was positively correlated with the initial concentration of SMX in soil. SMX contamination significantly reduced the bacterial diversity and altered the composition of bacterial and fungal communities in soil. The dominant bacterial and fungal genera in the SMX-contaminated soil were obviously different from those in the control soil. The relative abundance of sul1 (sulfonamide resistance gene) remarkably increased in the SMX-contaminated soil, while that of other ARGs, such as sul2 and tetracycline and quinolone resistance genes, showed no significant change.
Collapse
Affiliation(s)
- Shoutao Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Mingming Shi
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Lijun Xing
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Haoze Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yanmei Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
9
|
Hwang J, Shin SC, Han JW, Hong SP, Min WK, Chung D, Kim HJ. Complete genome sequence of Paenibacillus xylanexedens PAMC 22703, a xylan-degrading bacterium. Mar Genomics 2020; 55:100788. [PMID: 32563695 DOI: 10.1016/j.margen.2020.100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Paenibacillus is widely distributed in various environments and has the potential for use as a biotechnological agent in industrial processes. Here, we report the complete genome sequence of the marine bacterium, Paenibacillus xylanexedens PAMC 22703, which utilizes xylan. The P. xylanexedens PAMC 22703 strain was isolated from marine sediments. P. xylanexedens PAMC 22703 utilizes xylan as a carbon source to grow. The genome sequence clarified that this strain possesses genes for utilizing xylan. The complete genome sequence contained one chromosome (7,053,622 bp with 46.0% GC content) and one plasmid (44,617 bp with 44.1% C + G content). The genome harbored genes that fully deploy the xylan assimilation pathway. The complete genome sequence of P. xylanexedens PAMC 22703 would prove useful in acquiring information for its application with xylan in various industries.
Collapse
Affiliation(s)
- Junsang Hwang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea
| | - Seung Chul Shin
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jae Won Han
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea
| | - Sang Pil Hong
- Research Group of Traditional Food, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Won-Ki Min
- Department of Food Science and Development, Kyungil University, Gyeongsan 38428, Republic of Korea
| | - Donghwa Chung
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Center for Food Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Jin Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
10
|
Chávez-Ramírez B, Kerber-Díaz JC, Acoltzi-Conde MC, Ibarra JA, Vásquez-Murrieta MS, Estrada-de Los Santos P. Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi. Microbiol Res 2020; 230:126347. [PMID: 31586859 DOI: 10.1016/j.micres.2019.126347] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
Biocontrol has emerged in recent years as an alternative to pesticides. Given the importance of environmental preservation using biocontrol, in this study two antagonistic bacteria against phytopathogenic fungi were isolated and evaluated. These bacterial strains, identified as Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24, inhibited (70 to 80%) the development of two phytopathogens of economic importance: the fungus Rhizoctonia solani RhCh-14, isolated from chili pepper, and the oomycete Pythium ultimum PyFr-14, isolated from tomato. The spectrum was not limited to the previous pathogens, but also to other phytopathogenic fungus, some bacteria and other oomycetes. Fungi-bacteria microcultures observed with optical and scanning electron microscopy revealed hyphae disintegration and pores formation. The antifungal activity was found also in the supernatant, suggesting a diffusible compound is present. Innocuous tests on tobacco leaves, blood agar, bean seed germination and in Galleria mellonella larvae showed that strain NMA1017 has the potential to be a biocontrol agent. Greenhouse experiments with bean plants inoculated with P. polymyxa exhibited the efficacy to inhibit the growth of R. solani and P. ultimum. Furthermore, P. polymyxa NMA1017 showed plant growth promotion activities, such as siderophore synthesis and nitrogen fixation which can contribute to the crop development.
Collapse
Affiliation(s)
- Belén Chávez-Ramírez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - Jeniffer Chris Kerber-Díaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - Marí Carmen Acoltzi-Conde
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - J Antonio Ibarra
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - María-Soledad Vásquez-Murrieta
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - Paulina Estrada-de Los Santos
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
11
|
Sukhanova E, Zimens E, Kaluzhnaya O, Parfenova V, Belykh O. Epilithic Biofilms in Lake Baikal: Screening and Diversity of PKS and NRPS Genes in the Genomes of Heterotrophic Bacteria. Pol J Microbiol 2019; 67:501-516. [PMID: 30550237 PMCID: PMC7256756 DOI: 10.21307/pjm-2018-060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2018] [Indexed: 11/11/2022] Open
Abstract
A collection of heterotrophic bacteria consisting of 167 strains was obtained from microbial communities of biofilms formed on solid substrates in the littoral zone of Lake Baikal. Based on the analysis of 16S rRNA gene fragments, the isolates were classified to four phyla: Proteobacteria , Firmicutes , Actinobacteria , and Bacteroidetes . To assess their biotechnological potential, bacteria were screened for the presence of PKS (polyketide synthase) and NRPS (non-ribosomal peptide synthetases) genes. PKS genes were detected in 41 strains (25%) and NRPS genes in 73 (43%) strains by PCR analysis. The occurrence of PKS genes in members of the phylum Firmicutes (the genera Bacillus and Paenibacillus ) was 34% and NRPS genes were found in 78%. In Proteobacteria , PKS and NRPS genes were found in 20% and 32%, and in 22% and 22% of Actinobacteria , respectively. For further analysis of PKS and NRPS genes, six Bacillus and Paenibacillus strains with antagonistic activity were selected and underwent phylogenetic analysis of 16S rRNA genes. The identification of PKS and NRPS genes in the strains investigated was demonstrated among the homologues the genes involved in the biosynthesis of antibiotics (bacillaene, difficidine, erythromycin, bacitracin, tridecaptin, and fusaricidin), biosurfactants (iturin, bacillomycin, plipastatin, fengycin, and surfactin) and antitumor agents (epothilone, calyculin, and briostatin). Bacillus spp. 9A and 2A strains showed the highest diversity of PKS and NRPS genes. Bacillus and Paenibacillus strains isolated from epilithic biofilms in Lake Baikal are potential producers of antimicrobial compounds and may be of practical interest for biotechnological purposes. A collection of heterotrophic bacteria consisting of 167 strains was obtained from microbial communities of biofilms formed on solid substrates in the littoral zone of Lake Baikal. Based on the analysis of 16S rRNA gene fragments, the isolates were classified to four phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. To assess their biotechnological potential, bacteria were screened for the presence of PKS (polyketide synthase) and NRPS (non-ribosomal peptide synthetases) genes. PKS genes were detected in 41 strains (25%) and NRPS genes in 73 (43%) strains by PCR analysis. The occurrence of PKS genes in members of the phylum Firmicutes (the genera Bacillus and Paenibacillus) was 34% and NRPS genes were found in 78%. In Proteobacteria, PKS and NRPS genes were found in 20% and 32%, and in 22% and 22% of Actinobacteria, respectively. For further analysis of PKS and NRPS genes, six Bacillus and Paenibacillus strains with antagonistic activity were selected and underwent phylogenetic analysis of 16S rRNA genes. The identification of PKS and NRPS genes in the strains investigated was demonstrated among the homologues the genes involved in the biosynthesis of antibiotics (bacillaene, difficidine, erythromycin, bacitracin, tridecaptin, and fusaricidin), biosurfactants (iturin, bacillomycin, plipastatin, fengycin, and surfactin) and antitumor agents (epothilone, calyculin, and briostatin). Bacillus spp. 9A and 2A strains showed the highest diversity of PKS and NRPS genes. Bacillus and Paenibacillus strains isolated from epilithic biofilms in Lake Baikal are potential producers of antimicrobial compounds and may be of practical interest for biotechnological purposes.
Collapse
Affiliation(s)
- Elena Sukhanova
- Limnological Institute of Siberian Branch of Russian Academy of Sciences , Irkutsk , Russia
| | - Ekaterina Zimens
- Limnological Institute of Siberian Branch of Russian Academy of Sciences , Irkutsk , Russia
| | - Oksana Kaluzhnaya
- Limnological Institute of Siberian Branch of Russian Academy of Sciences , Irkutsk , Russia
| | - Valentina Parfenova
- Limnological Institute of Siberian Branch of Russian Academy of Sciences , Irkutsk , Russia
| | - Olga Belykh
- Limnological Institute of Siberian Branch of Russian Academy of Sciences , Irkutsk , Russia
| |
Collapse
|
12
|
Abdallah Y, Yang M, Zhang M, Masum MMI, Ogunyemi SO, Hossain A, An Q, Yan C, Li B. Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Lett Appl Microbiol 2019; 68:423-429. [PMID: 30659625 DOI: 10.1111/lam.13117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 02/03/2023]
Abstract
The effects and mechanisms of Paenibacillus polymyxa Sx3 on growth promotion and the suppression of bacterial leaf blight in rice were evaluated in this study. The results from a plate assay indicated that Sx3 inhibited the growth of 20 strains of Xanthomonas oryzae pv. oryzae (Xoo). Rice seedling experiments indicated that Sx3 promoted plant growth and suppressed bacterial leaf blight. In addition, bacteriological tests showed that Sx3 was able to fix nitrogen, solubilize phosphate and produce indole acetic acid, indicating that various mechanisms may be involved in the growth promotion by Sx3. The culture filtrate of P. polymyxa Sx3 reduced bacterial growth, biofilm formation and disrupted the cell morphology of Xoo strain GZ 0005, as indicated by the transmission and scanning electron microscopic observations. In addition, MALDI-TOF MS analysis revealed that Sx3 could biosynthesize two types of secondary metabolites fusaricidins and polymyxin P. In summary, this study clearly indicated that P. polymyxa Sx3 has strong in vitro and in vivo antagonistic activity against Xoo, which may be at least partially attributed to its production of secondary metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY: Antagonistic bacteria can grow well in their originating environment. However, it is unclear whether antagonistic bacteria were able to survive in different ecological environments. This study revealed that Paenibacillus polymyxa Sx3 isolated from rhizosphere soil of cotton significantly promoted the plant growth and suppressed bacterial leaf blight in rice. Therefore, it could be inferred that P. polymyxa Sx3 has the potential to be used as biocontrol agents in plants grown in different ecological environments.
Collapse
Affiliation(s)
- Y Abdallah
- State Key laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Department of Plant Pathology, Minia University, El-Minya, Egypt
| | - M Yang
- State Key laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - M Zhang
- State Key laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Md M I Masum
- State Key laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - S O Ogunyemi
- State Key laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - A Hossain
- State Key laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Q An
- State Key laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - C Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China.,Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - B Li
- State Key laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Jarvis KG, Daquigan N, White JR, Morin PM, Howard LM, Manetas JE, Ottesen A, Ramachandran P, Grim CJ. Microbiomes Associated With Foods From Plant and Animal Sources. Front Microbiol 2018; 9:2540. [PMID: 30405589 PMCID: PMC6206262 DOI: 10.3389/fmicb.2018.02540] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Food microbiome composition impacts food safety and quality. The resident microbiota of many food products is influenced throughout the farm to fork continuum by farming practices, environmental factors, and food manufacturing and processing procedures. Currently, most food microbiology studies rely on culture-dependent methods to identify bacteria. However, advances in high-throughput DNA sequencing technologies have enabled the use of targeted 16S rRNA gene sequencing to profile complex microbial communities including non-culturable members. In this study we used 16S rRNA gene sequencing to assess the microbiome profiles of plant and animal derived foods collected at two points in the manufacturing process; post-harvest/pre-retail (cilantro) and retail (cilantro, masala spice mixes, cucumbers, mung bean sprouts, and smoked salmon). Our findings revealed microbiome profiles, unique to each food, that were influenced by the moisture content (dry spices, fresh produce), packaging methods, such as modified atmospheric packaging (mung bean sprouts and smoked salmon), and manufacturing stage (cilantro prior to retail and at retail). The masala spice mixes and cucumbers were comprised mainly of Proteobacteria, Firmicutes, and Actinobacteria. Cilantro microbiome profiles consisted mainly of Proteobacteria, followed by Bacteroidetes, and low levels of Firmicutes and Actinobacteria. The two brands of mung bean sprouts and the three smoked salmon samples differed from one another in their microbiome composition, each predominated by either by Firmicutes or Proteobacteria. These data demonstrate diverse and highly variable resident microbial communities across food products, which is informative in the context of food safety, and spoilage where indigenous bacteria could hamper pathogen detection, and limit shelf life.
Collapse
Affiliation(s)
- Karen G. Jarvis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Ninalynn Daquigan
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Paul M. Morin
- Office of Regulatory Affairs, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, NY, United States
| | - Laura M. Howard
- Office of Regulatory Affairs, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, NY, United States
| | - Julia E. Manetas
- Office of Regulatory Affairs, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, NY, United States
| | - Andrea Ottesen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
14
|
Islam N, Choi J, Baek KH. Antibacterial Activities of Endophytic Bacteria Isolated fromTaxus brevifoliaAgainst Foodborne Pathogenic Bacteria. Foodborne Pathog Dis 2018; 15:269-276. [DOI: 10.1089/fpd.2017.2357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nurul Islam
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jaehyuk Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
15
|
Dunlap CA, Lueschow S, Carrillo D, Rooney AP. Screening of bacteria for antagonistic activity against phytopathogens of avocados. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203. [PMID: 27905924 PMCID: PMC5134293 DOI: 10.1186/s12934-016-0603-7] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Isolated from a wide range of sources, the genus Paenibacillus comprises bacterial species relevant to humans, animals, plants, and the environment. Many Paenibacillus species can promote crop growth directly via biological nitrogen fixation, phosphate solubilization, production of the phytohormone indole-3-acetic acid (IAA), and release of siderophores that enable iron acquisition. They can also offer protection against insect herbivores and phytopathogens, including bacteria, fungi, nematodes, and viruses. This is accomplished by the production of a variety of antimicrobials and insecticides, and by triggering a hypersensitive defensive response of the plant, known as induced systemic resistance (ISR). Paenibacillus-derived antimicrobials also have applications in medicine, including polymyxins and fusaricidins, which are nonribosomal lipopeptides first isolated from strains of Paenibacillus polymyxa. Other useful molecules include exo-polysaccharides (EPS) and enzymes such as amylases, cellulases, hemicellulases, lipases, pectinases, oxygenases, dehydrogenases, lignin-modifying enzymes, and mutanases, which may have applications for detergents, food and feed, textiles, paper, biofuel, and healthcare. On the negative side, Paenibacillus larvae is the causative agent of American Foulbrood, a lethal disease of honeybees, while a variety of species are opportunistic infectors of humans, and others cause spoilage of pasteurized dairy products. This broad review summarizes the major positive and negative impacts of Paenibacillus: its realised and prospective contributions to agriculture, medicine, process manufacturing, and bioremediation, as well as its impacts due to pathogenicity and food spoilage. This review also includes detailed information in Additional files 1, 2, 3 for major known Paenibacillus species with their locations of isolation, genome sequencing projects, patents, and industrially significant compounds and enzymes. Paenibacillus will, over time, play increasingly important roles in sustainable agriculture and industrial biotechnology.
Collapse
Affiliation(s)
- Elliot Nicholas Grady
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Jacqueline MacDonald
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, Dental Science Building Rm. 3014, London, ON N6A 5C1 Canada
| | - Linda Liu
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Alex Richman
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Ze-Chun Yuan
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, Dental Science Building Rm. 3014, London, ON N6A 5C1 Canada
| |
Collapse
|
17
|
Das G, Patra JK, Baek KH. Antibacterial Properties of Endophytic Bacteria Isolated from a Fern Species Equisetum arvense L. Against Foodborne Pathogenic Bacteria Staphylococcus aureus and Escherichia coli O157:H7. Foodborne Pathog Dis 2016; 14:50-58. [PMID: 27754712 DOI: 10.1089/fpd.2016.2192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endophytic bacteria (EB) are a rich source of secondary metabolites with medicinal importance. In this study, EB were isolated from the bottle brush herb Equisetum arvense and identified based on 16S rRNA sequencing. Evaluation of its antibacterial potential was conducted using two common foodborne pathogenic bacteria, Staphylococcus aureus ATCC 12600 and Escherichia coli O157:H7 ATCC 43890. Out of 103 identified EB, three species, Streptomyces albolongus, Dermacoccus sp., and Mycobacterium sp., showed significant antibacterial activity against S. aureus with inhibition zones of 45.34 ± 0.15, 43.28 ± 0.19, and 22.98 ± 0.18 mm, respectively, whereas only two species, Streptomyces griseoaurantiacus (EAL196) and Paenibacillus sp. (EAS116), showed moderate antibacterial activity against E. coli O157:H7 with inhibition zones of 9.41 ± 0.29 and 10.44 ± 0.31 mm, respectively. Furthermore, ethyl acetate extract of S. albolongus, Mycobacterium sp., and Dermacoccus sp. showed antibacterial activity against S. aureus, with inhibition zones of 23.43 ± 0.21, 21.18 ± 0.22, and 19.72 ± 0.10 mm, respectively. The methanol extract of Dermacoccus sp. and Paenibacillus sp. showed antibacterial activity against S. aureus and E. coli O157:H7, with inhibition zones of 11.30 ± 0.17 and 10.01 ± 0.21 mm, respectively. Scanning electron microscopy indicated swollen and lysed cell membranes of pathogens treated with ethyl acetate extract. A possible reason might be, likely due to EB metabolites penetrating the bacterial cell membranes and affecting various metabolic functions resulting in lysis. To the best of our knowledge, this is the first study to report that EB from E. arvense can be used as a source of natural antibacterial compounds against foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Gitishree Das
- 1 Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul , Ilsandong-gu, Republic of Korea
| | - Jayanta Kumar Patra
- 1 Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul , Ilsandong-gu, Republic of Korea
| | - Kwang-Hyun Baek
- 2 Department of Biotechnology, Yeungnam University , Gyeongsan, Republic of Korea
| |
Collapse
|
18
|
Margot H, Stephan R, Tasara T. Mungo bean sprout microbiome and changes associated with culture based enrichment protocols used in detection of Gram-negative foodborne pathogens. MICROBIOME 2016; 4:48. [PMID: 27600392 PMCID: PMC5012049 DOI: 10.1186/s40168-016-0193-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Fresh sprouted seeds have been associated with a number of large outbreaks caused by Salmonella and Shiga toxin-producing E. coli. However, the high number of commensal bacteria found on sprouted seeds hampers the detection of these pathogens. Knowledge about the composition of the sprout microbiome is limited. In this study, the microbiome of mungo bean sprouts and the impact of buffered peptone water (BPW) and Enterobacteriaceae enrichment broth (EE-broth)-based enrichment protocols on this microbiome were investigated. RESULTS Assessments based on aerobic mesophilic colony counts showed similar increases in mungo bean sprout background flora levels independent of the enrichment protocol used. 16S rRNA sequencing revealed a mungo bean sprout microbiome dominated by Proteobacteria and Bacteroidetes. EE-broth enrichment of such samples preserved and increased Proteobacteria dominance while reducing Bacteroidetes and Firmicutes relative abundances. BPW enrichment, however, increased Firmicutes relative abundance while decreasing Proteobacteria and Bacteroidetes levels. Both enrichments also lead to various genus level changes within the Protobacteria and Firmicutes phyla. CONCLUSIONS New insights into the microbiome associated with mungo bean sprout and how it is influenced through BPW and EE-broth-based enrichment strategies used for detecting Gram-negative pathogens were generated. BPW enrichment leads to Firmicutes and Proteobacteria dominance, whereas EE-broth enrichment preserves Proteobacteria dominance in the mungo bean sprout samples. By increasing the relative abundance of Firmicutes, BPW also increases the abundance of Gram-positive organisms including some that might inhibit recovery of Gram-negative pathogens. The use of EE-broth, although preserving and increasing the dominance of Proteobacteria, can also hamper the detection of lowly abundant Gram-negative target pathogens due to outgrowth of such organisms by the highly abundant non-target Proteobacteria genera comprising the mungo bean sprout associated background flora.
Collapse
Affiliation(s)
- Heike Margot
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| |
Collapse
|
19
|
Zain SNM, Flint SH, Bennett R, Tay HS. Characterisation and biofilm screening of the predominant bacteria isolated from whey protein concentrate 80. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13594-015-0264-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Paenibacillus profundus sp. nov., a deep sediment bacterium that produces isocoumarin and peptide antibiotics. Arch Microbiol 2013; 195:247-54. [DOI: 10.1007/s00203-013-0873-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/08/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|
21
|
Patterson MF, McKay AM, Connolly M, Linton M. The effect of high hydrostatic pressure on the microbiological quality and safety of carrot juice during refrigerated storage. Food Microbiol 2012; 30:205-12. [DOI: 10.1016/j.fm.2011.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 11/17/2022]
|
22
|
Wu X, Qian C, Fang H, Wen Y, Zhou J, Zhan Z, Ding R, Li O, Gao H. Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microb Biotechnol 2011; 4:491-502. [PMID: 21375709 PMCID: PMC3815261 DOI: 10.1111/j.1751-7915.2010.00201.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 07/07/2010] [Indexed: 01/08/2023] Open
Abstract
Paenibacillus sp. F6-B70 was selected from several dozens of isolates with activity against methicillin-resistant Staphylococcus aureus using a 16S rDNA-based screening method. F6-B70 contained polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) clusters in its genome revealed by PCR amplification of conserved adenylation and ketosynthase (KS) domains. Phylogenetic data suggested that the strain hosts trans-AT PKSs and their product may be a branched molecule. An antibiotic was subsequently isolated from the methanol extract of F6-B70 cells. The molecular formula of the antibiotic was deduced to be C(33) H(50) NaO(6) ([M + Na](+) , m/z 565.3505) by analysis of electrospray ionization mass spectral data. Elucidation of the structure by nuclear magnetic resonance and infrared spectroscopy revealed that the active compound, paenimacrolidin (PAM), was a novel 22-membered macrolide with side-chains. The new antibiotic, mainly as a bacteriostatic agent, inhibits a couple of multidrug-resistant Staphylococcus sp. strains. The antibiotic capacity of PAM was compromised by its instability, which can be overcome significantly with addition of an anti-oxidant. To our knowledge, this is the first report of the isolation of an active macrolide from paenibacilli, which may be a promising source of novel antibiotics.
Collapse
MESH Headings
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/isolation & purification
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Cluster Analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Macrolides/chemistry
- Macrolides/isolation & purification
- Macrolides/metabolism
- Macrolides/pharmacology
- Magnetic Resonance Spectroscopy
- Metabolic Networks and Pathways/genetics
- Methicillin-Resistant Staphylococcus aureus/drug effects
- Molecular Sequence Data
- Molecular Structure
- Multigene Family
- Paenibacillus/classification
- Paenibacillus/isolation & purification
- Paenibacillus/metabolism
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Spectrometry, Mass, Electrospray Ionization
- Spectrophotometry, Infrared
Collapse
Affiliation(s)
- Xue‐Chang Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
|
24
|
Gu L, Bai Z, Jin B, Zhang J, Li W, Zhuang G, Zhang H. Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater. J Environ Sci (China) 2010; 22:1407-1412. [PMID: 21174972 DOI: 10.1016/s1001-0742(09)60267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A phyllosphere bacterial strain EBL-06 was isolated from wheat leaves. The morphology, cultural characteristics, phospholipid fatty acids, physiological and antagonistic fungus activities of this strain were investigated. A phylogenetic tree was constructed by comparing with the published 16S rDNA sequences of the relevant bacteria. The results showed that the isolate EBL-06 was a strain of Paenibacillus polymyxa; this strain performed a high level of antagonistic fungus activity toward a broad spectrum of phytopathogens, such as Botrytis cinerea, Cladosporium cucumerinum, Fusarium spp. The isolate EBL-06 can grow well using monosodium glutamate wastewater (MGW) and potato wastewater (PW) as culture medium. The maximum yield of 6.5 x 10(9) CFU/mL of the isolate EBL-06 anti-fungus biocontrol agent was reached in 15 hr cultivation at 28 degrees C, pH 6.0-7.5 using the mixture of MGW and PW (1:9).
Collapse
Affiliation(s)
- Likun Gu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Production of chitinolytic enzymes by a strain (BM17) of Paenibacillus pabuli isolated from crab shells samples collected in the east sector of central Tyrrhenian Sea. Int J Biol Macromol 2007; 43:27-31. [PMID: 18076982 DOI: 10.1016/j.ijbiomac.2007.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/23/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Nineteen bacterial isolates were grown in shaken cultures in media containing chitin as carbon source and different additional nitrogen sources such as yeast nitrogen base (YNB), yeast extract (YE), corn steep liquor (CSL) and ammonium sulfate. Strain BM17 showed the highest activity (200 U/l) in medium containing Chitin (1%) and YNB (0.5%). Molecular analysis of the 16S rRNA gene showed that strain BM17 belongs to the species Paenibacillus pabuli (99.72% homology). The enzyme activity started after 12-24 h; exponential enzyme production was recorded from the 24th h and lasted till the 96th h of incubation when activity peaked to decrease thereafter. Medium optimisation was carried out by Response Surface Methodology (RSM) considering the effects of chitin, corn steep liquor and yeast extract. BM17 chitinolytic activity was induced by chitin but the increase of its concentration did not have significant effects on the enzyme activity. By contrast, the nitrogen source, particularly YE, strongly affected the enzyme production.
Collapse
|