1
|
Tedaldi AM, Behrouzi P, Grootswagers P. Diet, lifestyle and telomere length: using Copula Graphical Models on NHANES data. Aging (Albany NY) 2025; 17:206194. [PMID: 39883078 DOI: 10.18632/aging.206194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Telomere length has been related to human health and ageing in multiple studies. However, these studies have analyzed a small set of variables, according to pre-formulated hypotheses. We used data from NHANES 1999-2002 to perform a preregistered cross-sectional analysis. From these four years we selected the participants with available leukocyte telomere length measure and with plausible daily energy intake, leading to a total study population of 7096 participants. Then, we divided the participants in three groups according to age: Young 20-39 (n = 2623), Middle 40-59 (n = 2210), Old 60-84 (n = 2263). On each group we performed Copula Graphical Modelling (CGM) to capture the links between the variables of interest, and we conducted certainty and sensitivity analyses to understand the robustness of the results. Blood levels of C-reactive protein and γ-tocopherol, and intake of caffeine and fibers are inversely related to telomere length across the age strata. Sex, race, smoking, physical activity and indicators of socioeconomic status have almost no direct connection with telomeres; however, they are directly linked to C-reactive protein, which in turn is connected to leukocyte telomere length. C-reactive protein is therefore a possible central mediator of the effect of these factors on telomeres.
Collapse
Affiliation(s)
- Angelo M Tedaldi
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Pariya Behrouzi
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, Wageningen, Netherlands
| | - Pol Grootswagers
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
2
|
Hailu EM, Gao X, Needham BL, Seeman T, Lewis TT, Mujahid MS. Associations between historical and contemporary measures of structural racism and leukocyte telomere length: The Multi-Ethnic Study of Atherosclerosis (MESA). Soc Sci Med 2024; 360:117229. [PMID: 39303531 DOI: 10.1016/j.socscimed.2024.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND We assessed the link between two manifestations of structural racism-historical redlining and contemporary racial residential segregation-and baseline and 10-year changes in leukocyte telomere length (LTL). METHODS We used data on Black and Hispanic/Latinx participants from Exams I and V of the Multi-Ethnic Study of Atherosclerosis Stress Ancillary Study (N = 741, age range = 45-84 years). LTL was defined as the ratio of telomeric DNA to a single copy gene (T/S), and 10-year changes were adjusted for regression to the mean. We used 1930s Home Owners' Loan Corporation maps to assign three historical redlining grades (A&B: best/still desirable, C: declining, D: hazardous/redlined) to participants' neighborhoods (census-tracts) at baseline. The Getis-Ord Gi∗ statistic was used to evaluate census-tract level baseline residential segregation (low/moderate/high). RESULTS In mixed-effects regression models accounting for neighborhood clustering, individual characteristics, and current neighborhood environments, those living in highly segregated Black neighborhoods had 0.08 shorter baseline LTL (95% CI: -0.13, -0.04), than those residing in the least segregated neighborhoods. We did not find a relationship between residing in segregated neighborhoods and 10-year LTL changes, and associations between residing in historically redlined neighborhoods and both baseline LTL and 10-year changes in LTL were null. Across discriminatory disinvestment trajectories examined, individuals residing in highly segregated but non-redlined neighborhoods had 0.6 shorter baseline LTL than individuals residing in non-redlined neighborhoods with low/moderate segregation (95% CI: -0.12, -0.01). CONCLUSIONS Our results highlight the impact of racial segregation on cellular aging and underscore the need to ameliorate structural inequities within segregated neighborhoods.
Collapse
Affiliation(s)
- Elleni M Hailu
- Division of Epidemiology, School of Public Health, University of California, Berkeley, 2121 Berkeley Way #5302, Berkeley, CA, 94720, USA.
| | - Xing Gao
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California, San Francisco, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, USA
| | - Teresa Seeman
- Department of Geriatrics, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Tené T Lewis
- Department of Epidemiology, Rollins School of Public Health, Emory University, USA
| | - Mahasin S Mujahid
- Division of Epidemiology, School of Public Health, University of California, Berkeley, 2121 Berkeley Way #5302, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Tucker LA, Bates CJ. Telomere Length and Biological Aging: The Role of Strength Training in 4814 US Men and Women. BIOLOGY 2024; 13:883. [PMID: 39596838 PMCID: PMC11591842 DOI: 10.3390/biology13110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024]
Abstract
Telomere length is an index of cellular aging. Healthy lifestyles are associated with reduced oxidative stress and longer telomeres, whereas unhealthy behaviors are related to shorter telomeres and greater biological aging. This investigation was designed to determine if strength training accounted for differences in telomere length in a random sample of 4814 US adults. Data from the National Health and Nutrition Examination Survey (NHANES) were employed to answer the research questions using a cross-sectional design. Time spent strength training was calculated by multiplying days of strength training per week by minutes per session. Participation in other forms of physical activity was also calculated based on reported involvement in 47 other activities. Weighted multiple regression and partial correlation were used to calculate the mean differences in telomere length across levels of strength training, adjusting for differences in potential confounders. With the demographic covariates controlled, strength training and telomere length were linearly related (F = 14.7, p = 0.0006). Likewise, after adjusting for all the covariates, the linear association remained strong and significant (F = 14.7, p = 0.0006). In this national sample, 90 min per week of strength training was associated with 3.9 years less biological aging, on average. Regular strength training was strongly related to longer telomeres and less biological aging in 4814 US adults.
Collapse
Affiliation(s)
- Larry A. Tucker
- College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | | |
Collapse
|
4
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
McCollum SE, Canter O, Fasanello VJ, Gronsky S, Haussmann MF. Birds of a feather age together: telomere dynamics and social behavior predict life span in female Japanese quail (Coturnix japonica). Front Endocrinol (Lausanne) 2024; 15:1363468. [PMID: 38808110 PMCID: PMC11130416 DOI: 10.3389/fendo.2024.1363468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Social support is vital for mental and physical health and is linked to lower rates of disease and early mortality. Conversely, anti-social behavior can increase mortality risks, both for the initiator and target of the behavior. Chronic stress, which also can increase mortality, may serve as an important link between social behavior and healthy lifespan. There is a growing body of literature in both humans, and model organisms, that chronic social stress can result in more rapid telomere shortening, a measure of biological aging. Here we examine the role of anti-social behavior and social support on physiological markers of stress and aging in the social Japanese quail, Coturnix Japonica. Birds were maintained in groups for their entire lifespan, and longitudinal measures of antisocial behavior (aggressive agonistic behavior), social support (affiliative behavior), baseline corticosterone, change in telomere length, and lifespan were measured. We found quail in affiliative relationships both committed less and were the targets of less aggression compared to birds who were not in these relationships. In addition, birds displaying affiliative behavior had longer telomeres, and longer lifespans. Our work suggests a novel pathway by which social support may buffer against damage at the cellular level resulting in telomere protection and subsequent longer lifespans.
Collapse
Affiliation(s)
- Shannon E. McCollum
- Department of Biology, Bucknell University, Lewisburg, PA, United States
- Cellular and Molecular Biology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Olivia Canter
- Department of Chemistry, Duke University, Durham, NC, United States
| | | | - Sarah Gronsky
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| | - Mark F. Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| |
Collapse
|
6
|
Zhong M, Salberg S, Sampangi S, van der Walt A, Butzkueven H, Mychasiuk R, Jokubaitis V. Leukocyte telomere length in multiple sclerosis: relationship between disability severity and pregnancy history. Mult Scler Relat Disord 2024; 86:105607. [PMID: 38631073 DOI: 10.1016/j.msard.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Aging-related processes contribute to neurodegeneration and disability in multiple sclerosis (MS). Biomarkers of biological aging such as leukocyte telomere length (LTL) could help personalise prognosis. Pregnancy has been shown to be protective against disability accumulation in women with MS, though it is unclear if this effect relates to aging mechanisms or LTL. OBJECTIVES This study aimed to cross-sectionally characterise LTL in a cohort of individuals with MS, and to correlate LTL with disability severity and pregnancy history. METHODS We extracted DNA from the whole blood of 501 people with MS in Melbourne, Australia. Expanded Disability Status Scale (EDSS) score and demographic data, as well as pregnancy history for 197 females, were obtained at sample collection. Additional data were extracted from the MSBase Registry. LTL was determined in base pairs (bp) using real-time quantitative polymerase chain reaction. RESULTS A relationship between EDSS score and shorter LTL was robust to multivariable adjustment for demographic and clinical factors including chronological age, with an adjusted LTL reduction per 1.0 increase in EDSS of 97.1 bp (95 % CI = 9.7-184.5 bp, p = 0.030). Adjusted mediation analysis found chronological age accounted for 33.6 % of the relationship between LTL and EDSS score (p = 0.018). In females with pregnancy data, history of pregnancy was associated with older age (median 49.7 vs 33.0 years, p < 0.001). There were no significant relationships between adjusted LTL and any history of pregnancy (LTL increase of 65.3 bp, 95 % CI = -471.0-601.5 bp, p = 0.81) or number of completed pregnancies (LTL increase of 14.6 bp per pregnancy, 95 % CI = -170.3-199.6 bp, p = 0.87). CONCLUSIONS The correlation between LTL and disability independent of chronological age and other factors points to a link between neurological reserve in MS and biological aging, and a potential research target for pathophysiological and therapeutic mechanisms. Although LTL did not significantly differ by pregnancy history, longitudinal analyses could help identify interactions with prospectively captured pregnancy effects.
Collapse
Affiliation(s)
- Michael Zhong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia.
| | - Sabrina Salberg
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandeep Sampangi
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
7
|
Meesters M, Van Eetvelde M, Martens DS, Nawrot TS, Dewulf M, Govaere J, Opsomer G. Prenatal environment impacts telomere length in newborn dairy heifers. Sci Rep 2023; 13:4672. [PMID: 36949104 PMCID: PMC10033676 DOI: 10.1038/s41598-023-31943-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
Telomere length is associated with longevity and survival in multiple species. In human population-based studies, multiple prenatal factors have been described to be associated with a newborn's telomere length. In the present study, we measured relative leukocyte telomere length in 210 Holstein Friesian heifers, within the first ten days of life. The dam's age, parity, and milk production parameters, as well as environmental factors during gestation were assessed for their potential effect on telomere length. We found that for both primi- and multiparous dams, the telomere length was 1.16% shorter for each day increase in the calf's age at sampling (P = 0.017). The dam's age at parturition (P = 0.045), and the median temperature-humidity index (THI) during the third trimester of gestation (P = 0.006) were also negatively associated with the calves' TL. Investigating multiparous dams separately, only the calf's age at sampling was significantly and negatively associated with the calves' TL (P = 0.025). Results of the present study support the hypothesis that in cattle, early life telomere length is influenced by prenatal factors. Furthermore, the results suggest that selecting heifers born in winter out of young dams might contribute to increased longevity in dairy cattle.
Collapse
Affiliation(s)
- Maya Meesters
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Mieke Van Eetvelde
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Research Unit Environment and Health, Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Manon Dewulf
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan Govaere
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
Telomere Length Changes in Cancer: Insights on Carcinogenesis and Potential for Non-Invasive Diagnostic Strategies. Genes (Basel) 2023; 14:genes14030715. [PMID: 36980987 PMCID: PMC10047978 DOI: 10.3390/genes14030715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Telomere dynamics play a crucial role in the maintenance of chromosome integrity; changes in telomere length may thus contribute to the development of various diseases including cancer. Understanding the role of telomeric DNA in carcinogenesis and detecting the presence of cell-free telomeric DNA (cf-telDNA) in body fluids offer a potential biomarker for novel cancer screening and diagnostic strategies. Liquid biopsy is becoming increasingly popular due to its undeniable benefits over conventional invasive methods. However, the organization and function of cf-telDNA in the extracellular milieu are understudied. This paper provides a review based on 3,398,017 cancer patients, patients with other conditions, and control individuals with the aim to shed more light on the inconsistent nature of telomere lengthening/shortening in oncological contexts. To gain a better understanding of biological factors (e.g., telomerase activation, alternative lengthening of telomeres) affecting telomere homeostasis across different types of cancer, we summarize mechanisms responsible for telomere length maintenance. In conclusion, we compare tissue- and liquid biopsy-based approaches in cancer assessment and provide a brief outlook on the methodology used for telomere length evaluation, highlighting the advances of state-of-the-art approaches in the field.
Collapse
|
9
|
Bolhuis E, Belsky J, Frankenhuis WE, Shalev I, Hastings WJ, Tollenaar MS, O’Donnell KJ, McGill MG, Pokhvisneva I, Lin DT, MacIsaac JL, Kobor MS, de Weerth C, Beijers R. Attachment insecurity and the biological embedding of reproductive strategies: Investigating the role of cellular aging. Biol Psychol 2022; 175:108446. [DOI: 10.1016/j.biopsycho.2022.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/02/2022]
|
10
|
The association of measures of body shape and adiposity with incidence of cardiometabolic disease from an ageing perspective. GeroScience 2022; 45:463-476. [PMID: 36129566 PMCID: PMC9886769 DOI: 10.1007/s11357-022-00654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
While obesity increases the risk of developing cardiometabolic diseases (CMDs), these associations seem to attenuate with increasing age, albeit studied poorly. The present study aimed to investigate the associations between adiposity and CMDs in sex-specific groups of chronological age and leukocyte telomere length (LTL) as a measure of biological age. We investigated the associations between BMI, a body shape index, waist-to-hip ratio (adjusted for BMI) and total body fat, and incident coronary artery disease (CAD), type 2 diabetes (T2D) and ischemic stroke (IS) in 413,017 European-ancestry participants of the UK Biobank without CMD at baseline. We assessed the change in the associations between adiposity and CMD over strata of increasing chronological age or decreasing LTL. Participants (56% women) had a median (IQR) age of 57.0 (50.0-63.0) years. The median follow-up time was 12 years. People with higher BMI had a higher risk of incident CAD (HR 1.14 (95% confidence interval [CI] 1.13, 1.16)), T2D (HR 1.70 (95% CI 1.68, 1.72)) and IS (HR 1.09 (95% CI 1.06, 1.12)). In groups based on chronological age and LTL, adiposity measures were associated with higher risk of CAD and T2D in both men and women, but these associations attenuated with increasing chronological age (Pinteractions < 0.001), but not with decreasing LTL (Pinteraction men = 0.85; Pinteraction women = 0.27). Increased (abdominal) adiposity was associated with higher risk of incident CMDs, which attenuated with increasing chronological age but not with decreasing LTL. Future research may validate these findings using different measures of biological age.
Collapse
|
11
|
Seibt K, Ghaffari M, Scheu T, Koch C, Sauerwein H. Effects of different feeding levels during a 14-week preweaning phase in dairy heifer calves on telomere length and mitochondrial DNA copy number in blood. J Dairy Sci 2022; 105:8509-8522. [DOI: 10.3168/jds.2022-21891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
|
12
|
Saini D, Jain V, Das B. Evaluation of natural chronic low dose radiation exposure on telomere length and transcriptional response of shelterin complex in individuals residing in Kerala coast, India. Mutat Res 2022; 825:111797. [PMID: 36116241 DOI: 10.1016/j.mrfmmm.2022.111797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The high level natural radiation areas (HLNRA) of Kerala coast provide unique opportunity to study the biological effect of chronic low dose ionizing radiation (LDIR) on human population below 100 mSv. The radiation level in this area varies from < 1.0-45 mGy /year due to patchy distribution of monazite in the sand, which contains 232Th (8-10%), 238U (0.3%), and their decay products. Telomere length attrition has been correlated to DNA damage due to genotoxic agents. The objective of the present study is to evaluate the effect of natural chronic LDIR exposure on telomere length and transcriptional response of telomere specific and DNA damage repair genes in peripheral blood mononuclear cells (PBMCs) of individuals from normal level natural radiation areas (NLNRA) and HLNRA of Kerala coast, southwest India. Blood samples were collected from 71 random male donors (24-80 years) from NLNRA (≤1.50 mGy/year; N = 19) and two HLNRA dose groups [1.51-10 mGy/year (N = 17); > 10 mGy/year, (N = 35)]. Genomic DNA was isolated from PBMCs and relative telomere length (RTL) was determined using real time q-PCR. Radio-adaptive response (RAR) study was carried out in PBMCs of 40 random males from NLNRA (N = 20) and HLNRA (>10 mGy/year; N = 20), where PBMCs were given a challenged dose of 2.0 Gy gamma radiation at 4 h. Transcriptional profile of telomere specific (TRF1, TRF2, POT1, TIN2, TPP1, RAP1), DNA damage response (RAD17, ATM, CHEK1) and base excision repair pathway (BER) (OGG1, XRCC1, NTH1, NEIL1, MUTYH, MBD4) genes were analysed at basal level and after a challenge dose of 2.0 Gy at 4 h. Our results did not show any significant effect of chronic LDR on RTL among the individuals from NLNRA and two HLNRA groups (p = 0.195). However, influence of age on RTL was clearly evident among NLNRA and HLNRA individuals. At basal level, TRF1, TRF2, TIN2, MBD4, NEIL1 and RAD17 showed significant up-regulation, whereas XRCC1 was significantly down regulated in HLNRA individuals. After a challenge dose of 2.0 Gy, significant transcriptional up-regulation was observed at telomere specific (TRF2, POT1) and BER (MBD4, NEIL1) genes in HLNRA individuals as compared to NLNRA suggesting their role in RAR. In conclusion, elevated level of natural chronic LDR exposure did not have any adverse effect on telomere length in Kerala coast. Significant transcriptional response at TRF2, MBD4 and NEIL1 at basal level and with a challenge dose of 2.0 Gy suggested their active involvement in efficient repair and telomere maintenance in individuals from HLNRA of Kerala coast.
Collapse
Affiliation(s)
- Divyalakshmi Saini
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Mumbai University, Fort Mumbai, India
| | - Vinay Jain
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai 400 094, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Mumbai University, Fort Mumbai, India; Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai 400 094, India.
| |
Collapse
|
13
|
Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A. Genetic, parental and lifestyle factors influence telomere length. Commun Biol 2022; 5:565. [PMID: 35681050 PMCID: PMC9184499 DOI: 10.1038/s42003-022-03521-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022] Open
Abstract
The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, 197101, Russia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Carmen Cenit
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Microbial Ecology, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna-Valencia, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands.
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
14
|
Raftopoulou C, Paltoglou G, Charmandari E. Association between Telomere Length and Pediatric Obesity: A Systematic Review. Nutrients 2022; 14:nu14061244. [PMID: 35334902 PMCID: PMC8949519 DOI: 10.3390/nu14061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Objective: Telomere length (TL) is a robust marker of biological aging, and increased telomere attrition is noted in adults with obesity. The primary objective of this systematic review was to summarize current knowledge on the effects of childhood obesity in TL. The secondary objective was to assess the effect of weight management interventions in TL. Methods: The following databases were searched: PubMed, Scopus, Web of Science and Heal-link.gr from inception to September 2021. The search was performed using the following combinations of terms: “telomer*” [All Fields] AND (“length” [All Fields] OR “lengths” [All Fields]) AND “obes*” [All Fields] AND (“child*” [All Fields] OR “adolescen*” [All Fields]). Results: A total of 16 original articles were included in this systematic review. Eleven of them were cross-sectional and five were lifestyle interventions. Conclusions: There was a tendency towards a negative association between childhood obesity and TL. Life-style interventions in children have been associated with increased TL peripherally, indicating a possible association of the redistribution of younger cells in the periphery with the favorable effect of these interventions. Further prospective studies with larger sample sizes that employ other markers of cell aging would potentially elucidate this important mechanistic relation.
Collapse
Affiliation(s)
- Christina Raftopoulou
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
- Correspondence: ; Tel./Fax: +30-213-2013-384
| |
Collapse
|
15
|
Al-Muraikhy S, Sellami M, Domling AS, Rizwana N, Agouni A, Al-Khelaifi F, Donati F, Botre F, Diboun I, Elrayess MA. Metabolic Signature of Leukocyte Telomere Length in Elite Male Soccer Players. Front Mol Biosci 2021; 8:727144. [PMID: 34977149 PMCID: PMC8716766 DOI: 10.3389/fmolb.2021.727144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction: Biological aging is associated with changes in the metabolic pathways. Leukocyte telomere length (LTL) is a predictive marker of biological aging; however, the underlying metabolic pathways remain largely unknown. The aim of this study was to investigate the metabolic alterations and identify the metabolic predictors of LTL in elite male soccer players. Methods: Levels of 837 blood metabolites and LTL were measured in 126 young elite male soccer players who tested negative for doping abuse at anti-doping laboratory in Italy. Multivariate analysis using orthogonal partial least squares (OPLS), univariate linear models and enrichment analyses were conducted to identify metabolites and metabolic pathways associated with LTL. Generalized linear model followed by receiver operating characteristic (ROC) analysis were conducted to identify top metabolites predictive of LTL. Results: Sixty-seven metabolites and seven metabolic pathways showed significant associations with LTL. Among enriched pathways, lysophospholipids, benzoate metabolites, and glycine/serine/threonine metabolites were elevated with longer LTL. Conversely, monoacylglycerols, sphingolipid metabolites, long chain fatty acids and polyunsaturated fatty acids were enriched with shorter telomeres. ROC analysis revealed eight metabolites that best predict LTL, including glutamine, N-acetylglutamine, xanthine, beta-sitosterol, N2-acetyllysine, stearoyl-arachidonoyl-glycerol (18:0/20:4), N-acetylserine and 3-7-dimethylurate with AUC of 0.75 (0.64-0.87, p < 0.0001). Conclusion: This study characterized the metabolic activity in relation to telomere length in elite soccer players. Investigating the functional relevance of these associations could provide a better understanding of exercise physiology and pathophysiology of elite athletes.
Collapse
Affiliation(s)
- Shamma Al-Muraikhy
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Drug Design, University of Groningen, Groningen, Netherlands
| | - Maha Sellami
- Department of Physical Education (PE), College of Education, Qatar University, Doha, Qatar
| | | | - Najeha Rizwana
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit (BPRU), QU Health, Qatar University, Doha, Qatar
| | | | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Ilhame Diboun
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mohamed A Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit (BPRU), QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
16
|
van der Spek A, Karamujić-Čomić H, Pool R, Bot M, Beekman M, Garmaeva S, Arp PP, Henkelman S, Liu J, Alves AC, Willemsen G, van Grootheest G, Aubert G, Ikram MA, Jarvelin MR, Lansdorp P, Uitterlinden AG, Zhernakova A, Slagboom PE, Penninx BWJH, Boomsma DI, Amin N, van Duijn CM. Fat metabolism is associated with telomere length in six population-based studies. Hum Mol Genet 2021; 31:1159-1170. [PMID: 34875050 DOI: 10.1093/hmg/ddab281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Telomeres are repetitive DNA sequences located at the end of chromosomes, which are associated to biological aging, cardiovascular disease, cancer, and mortality. Lipid and fatty acid metabolism have been associated with telomere shortening. We have conducted an in-depth study investigating the association of metabolic biomarkers with telomere length (LTL). We performed an association analysis of 226 metabolic biomarkers with LTL using data from 11 775 individuals from six independent population-based cohorts (BBMRI-NL consortium). Metabolic biomarkers include lipoprotein lipids and subclasses, fatty acids, amino acids, glycolysis measures and ketone bodies. LTL was measured by quantitative polymerase chain reaction or FlowFISH. Linear regression analysis was performed adjusting for age, sex, lipid-lowering medication and cohort-specific covariates (model 1) and additionally for body mass index (BMI) and smoking (model 2), followed by inverse variance-weighted meta-analyses (significance threshold pmeta = 6.5x10-4). We identified four metabolic biomarkers positively associated with LTL, including two cholesterol to lipid ratios in small VLDL (S-VLDL-C % and S-VLDL-ce %) and two omega-6 fatty acid ratios (FAw6/FA and LA/FA). After additionally adjusting for BMI and smoking, these metabolic biomarkers remained associated with LTL with similar effect estimates. In addition, cholesterol esters in very small VLDL (XS-VLDL-ce) became significantly associated with LTL (p = 3.6x10-4). We replicated the association of FAw6/FA with LTL in an independent dataset of 7845 individuals (p = 1.9x10-4). To conclude, we identified multiple metabolic biomarkers involved in lipid and fatty acid metabolism that may be involved in LTL biology. Longitudinal studies are needed to exclude reversed causation.
Collapse
Affiliation(s)
- Ashley van der Spek
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,SkylineDx B.V., Rotterdam, The Netherlands
| | - Hata Karamujić-Čomić
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, The Netherlands.,BBMRI-NL: Infrastructure for the Application of Metabolomics Technology in Epidemiology (RP4), The Netherlands
| | - Mariska Bot
- Department of Psychiatry and GGZ in Geest, Amsterdam Public Health research institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pascal P Arp
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jun Liu
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, The Netherlands
| | - Gerard van Grootheest
- Department of Psychiatry and GGZ in Geest, Amsterdam Public Health research institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, V5Z 1L3 British Columbia, Canada
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, V5Z 1L3 British Columbia, Canada.,Departments of Medical Genetics and Hematology, University of British Columbia, Vancouver, V6T 1Z4 British Columbia, Canada
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry and GGZ in Geest, Amsterdam Public Health research institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, The Netherlands.,BBMRI-NL: Infrastructure for the Application of Metabolomics Technology in Epidemiology (RP4), The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Johansson B, Thorvaldsson V. What Matters and What Matters Most for Survival After age 80? A Multidisciplinary Exploration Based on Twin Data. Front Psychol 2021; 12:723027. [PMID: 34630233 PMCID: PMC8492959 DOI: 10.3389/fpsyg.2021.723027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Given research and public interest for conditions related to an extended lifespan, we addressed the questions of what matters and what matters most for subsequent survival past age 80. The data was drawn from the population-based and multidisciplinary Swedish OCTO Twin Study, in which a sample (N = 699) consisting of identical and same-sex fraternal twin pairs, followed from age 80 until death, provided detailed data on health, physical functioning, life style, personality, and sociodemographic conditions. Information concerning date of birth and death were obtained from population census register. We estimated heritability using an ACE model and evaluated the role of multiple predictors for the mortality-related hazard rate using Cox regression. Our findings confirmed a low heritability of 12%. As expected, longer survival was associated with being a female, an apolipoprotein E (APOE) e4 allele non-carrier, and a non-smoker. Several diseases were found to be associated with shorter survival (cerebrovascular, dementia, Parkinson's, and diabetes) as well as certain health conditions (high diastolic blood pressure, low body mass index, and hip fracture). Stronger grip and better lung function, as well as better vision (but not hearing), and better cognitive function (self-evaluated and measured) was related to longer survival. Social embeddedness, better self-evaluated health, and life-satisfaction were also significantly associated with longer survival. After controlling for the impact of comorbidity, functional markers, and personality-related predictors, we found that sex, cerebrovascular diseases, compromised cognitive functioning, self-related health, and life-satisfaction remained as strong predictors. Cancer was only associated with the mortality hazard when accounting for other co-morbidities. The survival estimates were mostly in anticipated directions and contained effect sizes within the expected range. Noteworthy, we found that some of the so-called "soft-markers" remained strong predictors, despite a control for other factors. For example, self-evaluation of health and ratings of life-satisfaction provide additional and valuable information.
Collapse
Affiliation(s)
- Boo Johansson
- Department of Psychology and Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
18
|
Exogenous corticosterone and melanin-based coloration explain variation in juvenile dispersal behaviour in the barn owl (Tyto alba). PLoS One 2021; 16:e0256038. [PMID: 34492014 PMCID: PMC8423310 DOI: 10.1371/journal.pone.0256038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
Natal dispersal affects many processes such as population dynamics. So far, most studies have examined the intrinsic and extrinsic factors that determine the distance between the place of birth and of first breeding. In contrast, few researchers followed the first steps of dispersal soon after fledging. To study this gap, we radio-tracked 95 barn owl nestlings (Tyto alba) to locate their diurnal roost sites from the fledging stage until December. This was used to test whether the age of nest departure, post-fledging movements and dispersal distance were related to melanin-based coloration, which is correlated to fitness-related traits, as well as to corticosterone, a hormone that mediates a number of life history trade-offs and the physiological and behavioural responses to stressful situations. We found that the artificial administration of corticosterone delayed the age when juveniles left their parental home-range in females but not in males. During the first few months after fledging, longer dispersal distances were reached by females compared to males, by individuals marked with larger black feather spots compared to individuals with smaller spots, by larger individuals and by those experimentally treated with corticosterone. We conclude that the onset and magnitude of dispersal is sensitive to the stress hormone corticosterone, melanin-based coloration and body size.
Collapse
|
19
|
Hailu EM, Lewis TT, Needham BL, Lin J, Seeman TE, Mujahid MS. Longitudinal Associations between Discrimination, Neighborhood Social Cohesion, and Telomere Length: The Multi-Ethnic Study of Atherosclerosis (MESA). J Gerontol A Biol Sci Med Sci 2021; 77:glab193. [PMID: 34282826 PMCID: PMC8824602 DOI: 10.1093/gerona/glab193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We aimed to examine if neighborhood social cohesion moderated longitudinal associations between baseline reports of discrimination and 10-year changes in Leukocyte Telomere Length (LTL). METHODS Data are from the Multi-Ethnic Study of Atherosclerosis (MESA; N=1,064; age range 45-84 years). Baseline discrimination was measured using the Major Experiences of Discrimination Scale (MDS; none, 1 domain, ≥2 domains) and the Experiences of Discrimination Scale (EDS; none, moderate, high). Neighborhood social cohesion at baseline was assessed via a community survey within census tract defined neighborhoods. 10-year change in LTL was defined as Regression to the Mean corrected 10-year difference in the ratio of telomeric DNA to a single copy gene (T/S). RESULTS In linear mixed effects models, we found that neighborhood social cohesion modified the effect of baseline reports of MDS on 10-year changes in LTL, independent of sociodemographic characteristics, health behaviors, and health conditions (p(χ 2)=0.01). Among those residing in neighborhoods with low social cohesion, experiencing major discrimination in ≥2 domains was associated with faster LTL attrition over 10-years, compared to reporting no discrimination (β=-0.03; 95% CI: -0.06, -0.003). We found no main associations for either discrimination measure and no interaction between EDS and neighborhood social cohesion. CONCLUSIONS Results indicate that neighborhood social cohesion is an important dimension of the neighborhood context that may moderate the impact of major experiences of discrimination on telomere length attrition. These findings help advance our understanding of the integral role that neighborhood environments play in attenuating the effect of discrimination on accelerated cell aging.
Collapse
Affiliation(s)
- Elleni M Hailu
- Division of Epidemiology, School of Public Health, University of California Berkeley, USA
| | - Tené T Lewis
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, USA
| | - Teresa E Seeman
- Department of Geriatrics, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Mahasin S Mujahid
- Division of Epidemiology, School of Public Health, University of California Berkeley, USA
| |
Collapse
|
20
|
Chang X, Chua KY, Wang L, Liu J, Yuan JM, Khor CC, Heng CK, Koh WP, Dorajoo R. Midlife Leukocyte Telomere Length as an Indicator for Handgrip Strength in Late Life. J Gerontol A Biol Sci Med Sci 2021; 76:172-175. [PMID: 33045076 DOI: 10.1093/gerona/glaa260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Telomere attrition has been proposed as a hallmark of aging. We previously reported on the association between blood leukocyte telomere length (LTL) at midlife and risk of chronic diseases and mortality. METHODS In this study, we investigated the effect of midlife LTL and genetic proxies on 5 markers of aging outcomes, namely handgrip strength, timed up-and-go (TUG), Singapore-modified Mini-Mental State Examination (SM-MMSE) scores, anxiety, and depression indices, measured after a median 20-year follow-up in the Singapore Chinese Health Study (N = 9581). RESULTS We observed a significant association between midlife LTL and handgrip strength later in life (p = .004, padjust = .020), as well as a nominal significant association between midlife LTL and TUG later in life (p = .036, padjust = .180). The weighted Genetic Risk Score (wGRS) comprising 15 previously reported LTL reducing loci in East Asians was not significantly associated with handgrip strength. However, results from Structural Equation Modeling showed that the effect of this wGRS on handgrip strength was mediated through LTL (proportion of wGRS effect on handgrip strength mediated through LTL = 33.3%, p = .010). CONCLUSIONS Longer midlife LTL was associated with increased handgrip strength later in life.
Collapse
Affiliation(s)
- Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Kevin Yiqiang Chua
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pennsylvania.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore
| |
Collapse
|
21
|
Yeap BB, Hui J, Knuiman MW, Flicker L, Divitini ML, Arscott GM, Twigg SM, Almeida OP, Hankey GJ, Golledge J, Norman PE, Beilby JP. U-Shaped Relationship of Leukocyte Telomere Length With All-Cause and Cancer-Related Mortality in Older Men. J Gerontol A Biol Sci Med Sci 2021; 76:164-171. [PMID: 32761187 DOI: 10.1093/gerona/glaa190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Telomeres are essential DNA-protein complexes whose attrition results in cellular dysfunction and senescence. Leukocyte telomere length (LTL) correlates with tissue telomere length, representing a biomarker for biological age. However, its predictive value for mortality risk, and for cardiovascular versus cancer deaths, in older adults remains uncertain. METHOD We studied 3608 community-dwelling men aged 77.0 ± 3.6 years. Leukocyte telomere length was measured using multiplex quantitative PCR, expressed as amount of telomeric DNA relative to single-copy control gene (T/S ratio). Deaths from any cause, cardiovascular disease (CVD), and cancer were ascertained using data linkage. Curve fitting used restricted cubic splines and Cox regression analyses adjusted for age, cardiometabolic risk factors, and prevalent disease. RESULTS There was a U-shaped association of LTL with all-cause mortality. Men with T/S ratio in the middle quartiles had lower mortality (quartiles, Q2 vs Q1, hazard ratio [HR] = 0.86, 95% confidence interval [CI] 0.77-0.97, p = .012; Q3 vs Q1 HR = 0.88, CI 0.79-0.99, p = .032). There was no association of LTL with CVD mortality. There was a U-shaped association of LTL with cancer mortality. Men with LTL in the middle quartiles had lower risk of cancer death (Q2 vs Q1, HR = 0.73, CI 0.59-0.90, p = .004; Q3 vs Q1, HR = 0.75, CI 0.61-0.92, p = .007). CONCLUSIONS In older men, both shorter and longer LTL are associated with all-cause mortality. A similar U-shaped association was seen with cancer deaths, with no association found for cardiovascular deaths. Further research is warranted to explore the prognostic utility of LTL in ageing.
Collapse
Affiliation(s)
- Bu B Yeap
- Medical School, University of Western Australia, Perth, Australia.,Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Matthew W Knuiman
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia.,Department of Endocrinology, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Mark L Divitini
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Gillian M Arscott
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Stephen M Twigg
- Department of Endocrinology, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia.,WA Centre for Health & Ageing, University of Western Australia, Perth, Australia
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia
| | - Paul E Norman
- Medical School, University of Western Australia, Perth, Australia
| | - John P Beilby
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Franke K, Bublak P, Hoyer D, Billiet T, Gaser C, Witte OW, Schwab M. In vivo biomarkers of structural and functional brain development and aging in humans. Neurosci Biobehav Rev 2021; 117:142-164. [PMID: 33308708 DOI: 10.1016/j.neubiorev.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022]
Abstract
Brain aging is a major determinant of aging. Along with the aging population, prevalence of neurodegenerative diseases is increasing, therewith placing economic and social burden on individuals and society. Individual rates of brain aging are shaped by genetics, epigenetics, and prenatal environmental. Biomarkers of biological brain aging are needed to predict individual trajectories of aging and the risk for age-associated neurological impairments for developing early preventive and interventional measures. We review current advances of in vivo biomarkers predicting individual brain age. Telomere length and epigenetic clock, two important biomarkers that are closely related to the mechanistic aging process, have only poor deterministic and predictive accuracy regarding individual brain aging due to their high intra- and interindividual variability. Phenotype-related biomarkers of global cognitive function and brain structure provide a much closer correlation to age at the individual level. During fetal and perinatal life, autonomic activity is a unique functional marker of brain development. The cognitive and structural biomarkers also boast high diagnostic specificity for determining individual risks for neurodegenerative diseases.
Collapse
Affiliation(s)
- K Franke
- Department of Neurology, Jena University Hospital, Jena, Germany.
| | - P Bublak
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - D Hoyer
- Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - C Gaser
- Department of Neurology, Jena University Hospital, Jena, Germany; Department of Psychiatry, Jena University Hospital, Jena, Germany
| | - O W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - M Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
23
|
Tucker LA. Fruit and Vegetable Intake and Telomere Length in a Random Sample of 5448 U.S. Adults. Nutrients 2021; 13:1415. [PMID: 33922436 PMCID: PMC8146059 DOI: 10.3390/nu13051415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
The relationship between fruit and vegetable intake and telomere length was examined using a cross-sectional design and an NHANES random sample of 5448 U.S. adults. Fruit and vegetable (F&V) consumption was assessed using a 24 h recall, and telomere length, an index of cellular aging, was measured using the quantitative polymerase chain reaction method. Telomere length was linearly related to F&V intake when combined (F = 22.7, p < 0.0001) and also when separated as fruit (F = 7.2, p < 0.0121) or vegetables (F = 15.4, p < 0.0005), after adjusting for covariates. Specifically, telomeres were 27.8 base pairs longer for each 100 g (3.5 ounces) of F&V consumed. Because each additional year of chronological age was associated with telomeres that were 14.9 base pairs shorter, when women and men were analyzed together, results indicated that a 100 g (3.5 oz) per day increment in F&V corresponded with 1.9 years less biological aging. When the 75th percentile of F&V intake was compared to the 25th, the difference was 4.4 years of cellular aging. When separated by sex, fruits and vegetables were both related to telomere length in women, but only vegetable intake was predictive of telomere length in men. In conclusion, evidence based on a random sample of U.S. adults indicates that the more the servings of F&V, the longer telomeres tend to be.
Collapse
Affiliation(s)
- Larry A Tucker
- College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
24
|
Heritable variation in telomere length predicts mortality in Soay sheep. Proc Natl Acad Sci U S A 2021; 118:2020563118. [PMID: 33876756 DOI: 10.1073/pnas.2020563118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomere length (TL) is considered an important biomarker of whole-organism health and aging. Across humans and other vertebrates, short telomeres are associated with increased subsequent mortality risk, but the processes responsible for this correlation remain uncertain. A key unanswered question is whether TL-mortality associations arise due to positive effects of genes or early-life environment on both an individual's average lifetime TL and their longevity, or due to more immediate effects of environmental stressors on within-individual TL loss and increased mortality risk. Addressing this question requires longitudinal TL and life history data across the entire lifetimes of many individuals, which are difficult to obtain for long-lived species like humans. Using longitudinal data and samples collected over nearly two decades, as part of a long-term study of wild Soay sheep, we dissected an observed positive association between TL and subsequent survival using multivariate quantitative genetic models. We found no evidence that telomere attrition was associated with increased mortality risk, suggesting that TL is not an important marker of biological aging or exposure to environmental stress in our study system. Instead, we find that among-individual differences in average TL are associated with increased lifespan. Our analyses suggest that this correlation between an individual's average TL and lifespan has a genetic basis. This demonstrates that TL has the potential to evolve under natural conditions, and suggests an important role of genetics underlying the widespread observation that short telomeres predict mortality.
Collapse
|
25
|
Gorenjak V, Petrelis AM, Stathopoulou MG, Visvikis-Siest S. Telomere length determinants in childhood. Clin Chem Lab Med 2021; 58:162-177. [PMID: 31465289 DOI: 10.1515/cclm-2019-0235] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.
Collapse
Affiliation(s)
| | | | | | - Sophie Visvikis-Siest
- University of Lorraine, Inserm, IGE-PCV, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
26
|
Seeker LA, Underwood SL, Wilbourn RV, Dorrens J, Froy H, Holland R, Ilska JJ, Psifidi A, Bagnall A, Whitelaw B, Coffey M, Banos G, Nussey DH. Telomere attrition rates are associated with weather conditions and predict productive lifespan in dairy cattle. Sci Rep 2021; 11:5589. [PMID: 33692400 PMCID: PMC7970942 DOI: 10.1038/s41598-021-84984-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Telomere length is predictive of adult health and survival across vertebrate species. However, we currently do not know whether such associations result from among-individual differences in telomere length determined genetically or by early-life environmental conditions, or from differences in the rate of telomere attrition over the course of life that might be affected by environmental conditions. Here, we measured relative leukocyte telomere length (RLTL) multiple times across the entire lifespan of dairy cattle in a research population that is closely monitored for health and milk production and where individuals are predominantly culled in response to health issues. Animals varied in their change in RLTL between subsequent measurements and RLTL shortened more during early life and following hotter summers which are known to cause heat stress in dairy cows. The average amount of telomere attrition calculated over multiple repeat samples of individuals predicted a shorter productive lifespan, suggesting a link between telomere loss and health. TL attrition was a better predictor of when an animal was culled than their average TL or the previously for this population reported significant TL at the age of 1 year. Our present results support the hypothesis that TL is a flexible trait that is affected by environmental factors and that telomere attrition is linked to animal health and survival traits. Change in telomere length may represent a useful biomarker in animal welfare studies.
Collapse
Affiliation(s)
- Luise A Seeker
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK.
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK.
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jennifer Dorrens
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Biodiversity Dynamics, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Rebecca Holland
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna J Ilska
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
- Royal Veterinary College, University of London, Hatfield, UK
| | | | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mike Coffey
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Georgios Banos
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Codd V, Wang Q, Allara E, Musicha C, Kaptoge S, Stoma S, Jiang T, Hamby SE, Braund PS, Bountziouka V, Budgeon CA, Denniff M, Swinfield C, Papakonstantinou M, Sheth S, Nanus DE, Warner SC, Wang M, Khera AV, Eales J, Ouwehand WH, Thompson JR, Di Angelantonio E, Wood AM, Butterworth AS, Danesh JN, Nelson CP, Samani NJ. Polygenic basis and biomedical consequences of telomere length variation. Nat Genet 2021; 53:1425-1433. [PMID: 34611362 PMCID: PMC8492471 DOI: 10.1038/s41588-021-00944-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Telomeres, the end fragments of chromosomes, play key roles in cellular proliferation and senescence. Here we characterize the genetic architecture of naturally occurring variation in leukocyte telomere length (LTL) and identify causal links between LTL and biomedical phenotypes in 472,174 well-characterized UK Biobank participants. We identified 197 independent sentinel variants associated with LTL at 138 genomic loci (108 new). Genetically determined differences in LTL were associated with multiple biological traits, ranging from height to bone marrow function, as well as several diseases spanning neoplastic, vascular and inflammatory pathologies. Finally, we estimated that, at the age of 40 years, people with an LTL >1 s.d. shorter than the population mean had a 2.5-year-lower life expectancy compared with the group with ≥1 s.d. longer LDL. Overall, we furnish new insights into the genetic regulation of LTL, reveal wide-ranging influences of LTL on physiological traits, diseases and longevity, and provide a powerful resource available to the global research community.
Collapse
Affiliation(s)
- Veryan Codd
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Qingning Wang
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Elias Allara
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Crispin Musicha
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stephen Kaptoge
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Svetlana Stoma
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Tao Jiang
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stephen E. Hamby
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Peter S. Braund
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Vasiliki Bountziouka
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Charley A. Budgeon
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK ,grid.1012.20000 0004 1936 7910School of Population and Global Health, University of Western Australia, Perth, Western Australia Australia
| | - Matthew Denniff
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chloe Swinfield
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Manolo Papakonstantinou
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Shilpi Sheth
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Dominika E. Nanus
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sophie C. Warner
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Minxian Wang
- grid.66859.34Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA
| | - Amit V. Khera
- grid.66859.34Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA ,grid.32224.350000 0004 0386 9924Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA USA
| | - James Eales
- grid.5379.80000000121662407Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Willem H. Ouwehand
- grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge, UK ,grid.52996.310000 0000 8937 2257University College London Hospitals NHS Foundation Trust, London, UK
| | - John R. Thompson
- grid.9918.90000 0004 1936 8411Department of Health Sciences, University of Leicester, Leicester, UK
| | - Emanuele Di Angelantonio
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK
| | - Angela M. Wood
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK ,grid.499548.d0000 0004 5903 3632The Alan Turing Institute, London, UK
| | - Adam S. Butterworth
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK
| | - John N. Danesh
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Christopher P. Nelson
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nilesh J. Samani
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
28
|
Brown R, Hailu EM, Needham BL, Roux AD, Seeman TE, Lin J, Mujahid MS. Neighborhood social environment and changes in leukocyte telomere length: The Multi-Ethnic Study of Atherosclerosis (MESA). Health Place 2020; 67:102488. [PMID: 33276262 DOI: 10.1016/j.healthplace.2020.102488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022]
Abstract
Given limited research on the impact of neighborhood environments on accelerated biological aging, we examined whether changes in neighborhood socioeconomic and social conditions were associated with change in leukocyte telomere length using 10 years of longitudinal data from the Multi-Ethnic Study of Atherosclerosis (years 2000-2011; N = 1031; mean age = 61, SD = 9.4). Leukocyte telomere length change was corrected for regression to the mean and neighborhood was defined as census tract. Neighborhood socioeconomic indicators (factor-based score of income, education, occupation, and wealth of neighborhood) and neighborhood social environment indicators (aesthetic quality, social cohesion, safety) were obtained from the U.S Census/American Community Survey and via study questionnaire, respectively. Results of linear mixed-effects models showed that independent of individual sociodemographic characteristics, each unit of improvement in neighborhood socioeconomic status was associated with slower telomere length attrition over 10-years (β = 0.002; 95% Confidence Interval (CI): 0.0001, 0.004); whereas each unit of increase in safety (β = -0.043; 95% CI: -0.069, -0.016) and overall neighborhood social environment score (β = -0.005; 95% CI: -0.009, -0.0004) were associated with more pronounced telomere attrition, after additionally adjusting for neighborhood socioeconomic status. This study provides support for considerations of the broader social and socioeconomic contexts in relation to biological aging. Future research should explore potential psychosocial mechanisms underlying these associations using longitudinal study designs with repeated observations.
Collapse
Affiliation(s)
- Rashida Brown
- Division of Epidemiology, School of Public Health, University of California Berkeley, 2121 Berkeley Way West #5302, Berkeley, CA, 94720, USA
| | - Elleni M Hailu
- Division of Epidemiology, School of Public Health, University of California Berkeley, 2121 Berkeley Way West #5302, Berkeley, CA, 94720, USA.
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Ana Diez Roux
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, 3215 Market Street, Philadelphia, PA, 19104, USA
| | - Teresa E Seeman
- Department of Geriatrics, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA
| | - Mahasin S Mujahid
- Division of Epidemiology, School of Public Health, University of California Berkeley, 2121 Berkeley Way West #5302, Berkeley, CA, 94720, USA
| |
Collapse
|
29
|
Rivero-Segura NA, Bello-Chavolla OY, Barrera-Vázquez OS, Gutierrez-Robledo LM, Gomez-Verjan JC. Promising biomarkers of human aging: In search of a multi-omics panel to understand the aging process from a multidimensional perspective. Ageing Res Rev 2020; 64:101164. [PMID: 32977058 DOI: 10.1016/j.arr.2020.101164] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
The aging process has been linked to the occurrence of chronic diseases and functional impairments, including cancer, sarcopenia, frailty, metabolic, cardiovascular, and neurodegenerative diseases. Nonetheless, aging is highly variable and heterogeneous and represents a challenge for its characterization. In this sense, intrinsic capacity (IC) stands as a novel perspective by the World Health Organization, which integrates the individual wellbeing, environment, and risk factors to understand aging. However, there is a lack of quantitative and qualitative attributes to define it objectively. Therefore, in this review we attempt to summarize the most relevant and promising biomarkers described in clinical studies at date over different molecular levels, including epigenomics, transcriptomics, proteomics, metabolomics, and the microbiome. To aid gerontologists, geriatricians, and biomedical researchers to understand the aging process through the IC. Aging biomarkers reflect the physiological state of individuals and the underlying mechanisms related to homeostatic changes throughout an individual lifespan; they demonstrated that aging could be measured independently of time (that may explain its heterogeneity) and to be helpful to predict age-related syndromes and mortality. In summary, we highlight the areas of opportunity and gaps of knowledge that must be addressed to fully integrate biomedical findings into clinically useful tools and interventions.
Collapse
Affiliation(s)
| | - O Y Bello-Chavolla
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - O S Barrera-Vázquez
- Departamento de Famacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - J C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico.
| |
Collapse
|
30
|
Carroll JE, Mahrer NE, Shalowitz MU, Ramey S, Schetter CD. Prenatal maternal stress prospectively relates to shorter child buccal cell telomere length. Psychoneuroendocrinology 2020; 121:104841. [PMID: 32927181 PMCID: PMC9531598 DOI: 10.1016/j.psyneuen.2020.104841] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Prenatal exposure to stress increases risk for suboptimal child and adult mental and physical health outcomes, hypothesized to occur via fetal exposure to maternal stress hormones that alter growth and development. One proposed pathway through which stress exposure in utero could affect the offspring is by accelerating cellular aging in the form of telomere attrition. We tested this hypothesis in a cohort of 111 mother-child dyads, where mothers were assessed over 6 or more years, beginning prior to conception, and later during pregnancy, postpartum, and when the children were 3-5 years old. Adjusting for child age and concurrent maternal stress, we found that higher maternal perceived stress in the 3rd trimesters of pregnancy was predictive of shorter child buccal telomere length (bTL) (β = -0.24, p < .05), while maternal preconception and postpartum maternal stress were not associated with bTL (all p's > 0.42). These findings suggest a vulnerable time period in pregnancy when maternal stress influences offspring telomere length, suggesting the early embedding of adult disease might occur through biological aging pathways.
Collapse
Affiliation(s)
- Judith E. Carroll
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, CA
| | - Nicole E. Mahrer
- University of California, Los Angeles, Department of Psychology,University of La Verne, Department of Psychology
| | | | - Sharon Ramey
- Virginia Tech, Departments of Psychology, Neuroscience, and Human Development, Fralin Biomedical Research Institute, Department of Psychiatry & Behavioral Medicine and Pediatrics
| | | |
Collapse
|
31
|
Leukocyte telomere length is associated with iron overload in male adults with hereditary hemochromatosis. Biosci Rep 2020; 40:226596. [PMID: 33026063 PMCID: PMC7584811 DOI: 10.1042/bsr20201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Hereditary hemochromatosis (HH) is a primary iron overload (IO) condition. Absolute telomere length (ATL) is a marker of cellular aging and DNA damage associated with chronic diseases and mortality. Aim: To evaluate the relationship between ATL and IO in patients with HH. Methods: Cross-sectional study including 25 patients with HH: 8 with IO and 17 without IO (ferritin < 300 ng/ml) and 25 healthy controls. Inclusion criteria were: age > 18 years, male sex and HH diagnosis. Patients with diabetes or other endocrine and autoimmune diseases were excluded. ATL was measured by real-time PCR. Results: HH patients with IO were older (P<0.001) and showed higher ferritin concentration (P<0.001). Patients with HH, disregarding the iron status, showed higher glucose and body mass index (BMI) than controls (both P<0.01). ATL was shorter in patients with IO than controls [with IO: 8 (6–14), without IO: 13 (9–20), and controls: 19 (15–25) kilobase pairs, P<0.01]; with a linear trend within groups (P for trend <0.01). Differences in ATL remained statistically significant after adjusting by age, BMI and glucose (P<0.05). Discussion: Patients with IO featured shorter ATL while patients without IO showed only mild alterations vs. controls. Screening for IO is encouraged to prevent iron-associated cellular damage and early telomere attrition.
Collapse
|
32
|
Ryan CP. "Epigenetic clocks": Theory and applications in human biology. Am J Hum Biol 2020; 33:e23488. [PMID: 32845048 DOI: 10.1002/ajhb.23488] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
All humans age, but how we age-and how fast-differs considerably from person to person. This deviation between apparent age and chronological age is often referred to as "biological age" (BA) and until recently robust tools for studying BA have been scarce. "Epigenetic clocks" are starting to change this. Epigenetic clocks use predictable changes in the epigenome, usually DNA methylation, to estimate chronological age with unprecedented accuracy. More importantly, deviations between epigenetic age and chronological age predict a broad range of health outcomes and mortality risks better than chronological age alone. Thus, epigenetic clocks appear to capture fundamental molecular processes tied to BA and can serve as powerful tools for studying health, development, and aging across the lifespan. In this article, I review epigenetic clocks, especially as they relate to key theoretical and applied issues in human biology. I first provide an overview of how epigenetic clocks are constructed and what we know about them. I then discuss emerging applications of particular relevance to human biologists-those related to reproduction, life-history, stress, and the environment. I conclude with an overview of the methods necessary for implementing epigenetic clocks, including considerations of study design, sample collection, and technical considerations for processing and interpreting epigenetic clocks. The goal of this review is to highlight some of the ways that epigenetic clocks can inform questions in human biology, and vice versa, and to provide human biologists with the foundational knowledge necessary to successfully incorporate epigenetic clocks into their research.
Collapse
Affiliation(s)
- Calen P Ryan
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
33
|
de Baca TC, Prather AA, Lin J, Sternfeld B, Adler N, Epel ES, Puterman E. Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study. Mol Psychiatry 2020; 25:1141-1153. [PMID: 31455861 PMCID: PMC7044034 DOI: 10.1038/s41380-019-0482-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023]
Abstract
Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals.
Collapse
Affiliation(s)
- Tomás Cabeza de Baca
- Division of Cardiology, 400 Parnassus Ave., AC-16, Box 0369, San Francisco, CA 94143, USA, University of California, San Francisco
| | - Aric A. Prather
- Department of Psychiatry, University of California San Francisco
| | - Jue Lin
- Biochemistry and Biophysics, University of California, San Francisco
| | | | - Nancy Adler
- Department of Psychiatry, University of California San Francisco
| | - Elissa S. Epel
- Department of Psychiatry, University of California San Francisco
| | - Eli Puterman
- School of Kinesiology, University of British Columbia, Vancouver, War Memorial Gymnasium, Room 210, 6081 University Boulevard, Vancouver, BC V6T 1Z1
| |
Collapse
|
34
|
Rentscher KE, Carroll JE, Mitchell C. Psychosocial Stressors and Telomere Length: A Current Review of the Science. Annu Rev Public Health 2020; 41:223-245. [DOI: 10.1146/annurev-publhealth-040119-094239] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing literature suggests that exposure to adverse social conditions may accelerate biological aging, offering one mechanism through which adversity may increase risk for age-related disease. As one of the most extensively studied biological markers of aging, telomere length (TL) provides a valuable tool to understand potential influences of social adversity on the aging process. Indeed, a sizeable literature now links a wide range of stressors to TL across the life span. The aim of this article is to review and evaluate this extant literature with a focus on studies that investigate psychosocial stress exposures and experiences in early life and adulthood. We conclude by outlining potential biological and behavioral mechanisms through which psychosocial stress may influence TL, and we discuss directions for future research in this area.
Collapse
Affiliation(s)
- Kelly E. Rentscher
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA;,
| | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA;,
| | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan 48106, USA
| |
Collapse
|
35
|
Schmidt CW. Telomere Length and Air Pollution: Observations in Women Who Use Biomass Cookstoves. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:34005. [PMID: 32186410 PMCID: PMC7137914 DOI: 10.1289/ehp6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
|
36
|
Arbeev KG, Verhulst S, Steenstrup T, Kark JD, Bagley O, Kooperberg C, Reiner AP, Hwang SJ, Levy D, Fitzpatrick AL, Christensen K, Yashin AI, Aviv A. Association of Leukocyte Telomere Length With Mortality Among Adult Participants in 3 Longitudinal Studies. JAMA Netw Open 2020; 3:e200023. [PMID: 32101305 PMCID: PMC7137690 DOI: 10.1001/jamanetworkopen.2020.0023] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Leukocyte telomere length (LTL) is a trait associated with risk of cardiovascular disease and cancer, the 2 major disease categories that largely define longevity in the United States. However, it remains unclear whether LTL is associated with the human life span. OBJECTIVE To examine whether LTL is associated with the life span of contemporary humans. DESIGN, SETTING, AND PARTICIPANTS This cohort study included 3259 adults of European ancestry from the Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), and Women's Health Initiative (WHI). Leukocyte telomere length was measured in 1992 and 1997 in the CHS, from 1995 to 1998 in the FHS, and from 1993 to 1998 in the WHI. Data analysis was conducted from February 2017 to December 2019. MAIN OUTCOMES AND MEASURES Death and LTL, measured by Southern blots of the terminal restriction fragments, were the main outcomes. Cause of death was adjudicated by end point committees. RESULTS The analyzed sample included 3259 participants (2342 [71.9%] women), with a median (range) age of 69.0 (50.0-98.0) years at blood collection. The median (range) follow-up until death was 10.9 (0.2-23.0) years in CHS, 19.7 (3.4-23.0) years in FHS, and 16.6 (0.5-20.0) years in WHI. During follow-up, there were 1525 deaths (482 [31.6%] of cardiovascular disease; 373 [24.5%] of cancer, and 670 [43.9%] of other or unknown causes). Short LTL, expressed in residual LTL, was associated with increased mortality risk. Overall, the hazard ratio for all-cause mortality for a 1-kilobase decrease in LTL was 1.34 (95% CI, 1.21-1.47). This association was stronger for noncancer causes of death (cardiovascular death: hazard ratio, 1.28; 95% CI, 1.08-1.52; cancer: hazard ratio, 1.13; 95% CI, 0.93-1.36; and other causes: hazard ratio, 1.53; 95% CI, 1.32-1.77). CONCLUSIONS AND RELEVANCE The results of this study indicate that LTL is associated with a natural life span limit in contemporary humans.
Collapse
Affiliation(s)
- Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Troels Steenstrup
- Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of South Denmark, Odense, Denmark
| | - Jeremy D. Kark
- Epidemiology Unit, Hebrew University–Hadassah School of Public Health and Community Medicine, Jerusalem, Israel
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- The Framingham Heart Study, Framingham, Massachusetts
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- The Framingham Heart Study, Framingham, Massachusetts
| | | | - Kaare Christensen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| |
Collapse
|
37
|
Beijers R, Hartman S, Shalev I, Hastings W, Mattern BC, de Weerth C, Belsky J. Testing three hypotheses about effects of sensitive-insensitive parenting on telomeres. Dev Psychol 2020; 56:237-250. [PMID: 31961192 PMCID: PMC7391860 DOI: 10.1037/dev0000879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Telomeres are the protective DNA-protein sequences appearing at the ends of chromosomes; they shorten with each cell division and are considered a biomarker of aging. Shorter telomere length and greater erosion have been associated with compromised physical and mental health and are hypothesized to be affected by early life stress. In the latter case, most work has relied on retrospective measures of early life stressors. The Dutch research (n = 193) presented herein tested 3 hypotheses prospectively regarding effects of sensitive-insensitive parenting during the first 2.5 years on telomere length at age 6, when first measured, and change over the following 4 years. It was predicted that (1) less sensitive parenting would predict shorter telomeres and greater erosion and that such effects would be most pronounced in children (2) exposed to prenatal stress and/or (3) who were highly negatively emotional as infants. Results revealed, only, that prenatal stress amplified parenting effects on telomere change-in a differential-susceptibility-related manner: Prenatally stressed children displayed more erosion when they experienced insensitive parenting and less erosion when they experienced sensitive parenting. Mechanisms that might initiate greater postnatal plasticity as a result of prenatal stress are highlighted and future work outlined. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jay Belsky
- Department of Human Development and Family Studies
| |
Collapse
|
38
|
Frankenhuis WE, Walasek N. Modeling the evolution of sensitive periods. Dev Cogn Neurosci 2020; 41:100715. [PMID: 31999568 PMCID: PMC6994616 DOI: 10.1016/j.dcn.2019.100715] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/09/2019] [Accepted: 10/01/2019] [Indexed: 11/28/2022] Open
Abstract
In the past decade, there has been monumental progress in our understanding of the neurobiological basis of sensitive periods. Little is known, however, about the evolution of sensitive periods. Recent studies have started to address this gap. Biologists have built mathematical models exploring the environmental conditions in which sensitive periods are likely to evolve. These models investigate how mechanisms of plasticity can respond optimally to experience during an individual's lifetime. This paper discusses the central tenets, insights, and predictions of these models, in relation to empirical work on humans and other animals. We also discuss which future models are needed to improve the bridge between theory and data, advancing their synergy. Our paper is written in an accessible manner and for a broad audience. We hope our work will contribute to recently emerging connections between the fields of developmental neuroscience and evolutionary biology.
Collapse
Affiliation(s)
| | - Nicole Walasek
- Behavioural Science Institute, Radboud University, the Netherlands
| |
Collapse
|
39
|
Longitudinal changes in leukocyte telomere length and mortality in elderly Swedish men. Aging (Albany NY) 2019; 10:3005-3016. [PMID: 30375983 PMCID: PMC6224259 DOI: 10.18632/aging.101611] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/19/2018] [Indexed: 11/25/2022]
Abstract
Telomere length (TL) is considered an indicator of aging and age-related diseases, but longitudinal studies on TL changes and mortality are few. We therefore analyzed TL and longitudinal changes in TL in relation to all-cause, cardiovascular, and cancer mortality in 247 elderly Swedish men. TL was determined by the qPCR method at ages 71 and 81 and subsequent mortality cases were identified from the Swedish cause-of-death registry. Cox proportional hazard ratios were calculated during a mean follow-up of 7.4 years, during which 178 deaths occurred. Short telomeres at baseline was strongly associated with mortality risks, with a 40 to 70% increased risk of all-cause mortality, and a 2-fold increased risk of cancer mortality. Longitudinal changes in TL revealed shortening in 83% of individuals, whilst 10% extended their telomeres. TL attrition did not predict all-cause or cancer mortality, but we found a 60% decreased risk for cardiovascular mortality in those who shortened their telomeres. Our data show an increased risk of mortality in individuals with short baseline telomeres, but no relations to all-cause, and cancer mortality for changes in TL. Intriguingly, our data indicate lower risk of cardiovascular mortality with shortening of telomeres. The latter should be interpreted cautiously.
Collapse
|
40
|
Ilska-Warner JJ, Psifidi A, Seeker LA, Wilbourn RV, Underwood SL, Fairlie J, Whitelaw B, Nussey DH, Coffey MP, Banos G. The Genetic Architecture of Bovine Telomere Length in Early Life and Association With Animal Fitness. Front Genet 2019; 10:1048. [PMID: 31749836 PMCID: PMC6843005 DOI: 10.3389/fgene.2019.01048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Health and survival are key goals for selective breeding in farm animals. Progress, however, is often limited by the low heritability of these animal fitness traits in addition to measurement difficulties. In this respect, relevant early-life biomarkers may be useful for breeding purposes. Telomere length (TL), measured in leukocytes, is a good candidate biomarker since TL has been associated with health, ageing, and stress in humans and other species. However, telomere studies are very limited in farm animals. Here, we examined the genetic background, genomic architecture, and factors affecting bovine TL measurements in early life, and the association of the latter with animal fitness traits expressed later in life associated with survival, longevity, health, and reproduction. We studied two TL measurements, one at birth (TLB) and another during the first lactation (TLFL) of a cow. We performed a genome-wide association study of dairy cattle TL, the first in a non-human species, and found that TLB and TLFL are complex, polygenic, moderately heritable, and highly correlated traits. However, genomic associations with distinct chromosomal regions were identified for the two traits suggesting that their genomic architecture is not identical. This is reflected in changes in TL throughout an individual’s life. TLB had a significant association with survival, length of productive life and future health status of the animal, and could be potentially used as an early-life biomarker for disease predisposition and longevity in dairy cattle.
Collapse
Affiliation(s)
- Joanna J Ilska-Warner
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Royal Veterinary College, University of London, London, United Kingdom
| | - Luise A Seeker
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Fairlie
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mike P Coffey
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Georgios Banos
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
41
|
van der Spek A, Broer L, Draisma HHM, Pool R, Albrecht E, Beekman M, Mangino M, Raag M, Nyholt DR, Dharuri HK, Codd V, Amin N, de Geus EJC, Deelen J, Demirkan A, Yet I, Fischer K, Haller T, Henders AK, Isaacs A, Medland SE, Montgomery GW, Mooijaart SP, Strauch K, Suchiman HED, Vaarhorst AAM, van Heemst D, Wang-Sattler R, Whitfield JB, Willemsen G, Wright MJ, Martin NG, Samani NJ, Metspalu A, Eline Slagboom P, Spector TD, Boomsma DI, van Duijn CM, Gieger C. Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium. Sci Rep 2019; 9:11623. [PMID: 31406173 PMCID: PMC6690953 DOI: 10.1038/s41598-019-47282-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/26/2019] [Indexed: 01/03/2023] Open
Abstract
Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10−6), methionine (p-value = 9.2 × 10−5), tyrosine (p-value = 2.1 × 10−4), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10−4), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10−4), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10−4). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality.
Collapse
Affiliation(s)
- Ashley van der Spek
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Linda Broer
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Harmen H M Draisma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Section of Genomics of Common Disease, Imperial College London, Burlington Danes Building Room E301, Du Cane Road, London, W12 0NN, UK
| | - René Pool
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,BBMRI-NL: Infrastructure for the Application of Metabolomics Technology in Epidemiology (RP4), Utrecht, The Netherlands
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Mait Raag
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Harish K Dharuri
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Joris Deelen
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Idil Yet
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | - Krista Fischer
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anjali K Henders
- The Institute for Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), and Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Simon P Mooijaart
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany
| | - H Eka D Suchiman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Anika A M Vaarhorst
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Gonneke Willemsen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,BBMRI-NL: Infrastructure for the Application of Metabolomics Technology in Epidemiology (RP4), Utrecht, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands. .,Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands. .,Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
42
|
Li S, Yang M, Carter E, Schauer JJ, Yang X, Ezzati M, Goldberg MS, Baumgartner J. Exposure–Response Associations of Household Air Pollution and Buccal Cell Telomere Length in Women Using Biomass Stoves. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87004. [PMID: 31393791 PMCID: PMC6792380 DOI: 10.1289/ehp4041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Telomere shortening is associated with early mortality and chronic disease. Recent studies indicate that environmental exposures, including urban and traffic-related air pollution, may shorten telomeres. Associations between exposure to household air pollution from solid fuel stoves and telomere length have not been evaluated. METHODS Among 137 rural Chinese women using biomass stoves ([Formula: see text] of age), we measured 48-h personal exposures to fine particulate matter [PM [Formula: see text] in aerodynamic diameter ([Formula: see text])] and black carbon and collected oral DNA on up to three occasions over a period of 2.5 y. Relative telomere length (RTL) was quantified using a modified real-time polymerase chain reaction protocol. Mixed effects regression models were used to investigate the exposure–response associations between household air pollution and RTL, adjusting for key sociodemographic, behavioral, and environmental covariates. RESULTS Women's daily exposures to air pollution ranged from [Formula: see text] for [Formula: see text] ([Formula: see text]) and [Formula: see text] for black carbon ([Formula: see text]). Natural cubic spline models indicated a mostly linear association between increased exposure to air pollution and shorter RTL, except at very high concentrations where there were few observations. We thus modeled the linear associations with all observations, excluding the highest 3% and 5% of exposures. In covariate-adjusted models, an interquartile range (IQR) increase in exposure to black carbon ([Formula: see text]) was associated with shorter RTL [all observations: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]); excluding highest 5% exposures: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text])]. Further adjustment for outdoor temperature brought the estimates closer to zero [all observations: [Formula: see text] (95% CI: [Formula: see text], 0.06); excluding highest 5% exposures: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text])]. Models with [Formula: see text] as the exposure metric followed a similar pattern. CONCLUSION Telomere shortening, which is a biomarker of biological aging and chronic disease, may be associated with exposure to air pollution in settings where household biomass stoves are commonly used. https://doi.org/10.1289/EHP4041.
Collapse
Affiliation(s)
- Sabrina Li
- Institute for Health and Social Policy, McGill University, Montreal, Quebec, Canada
| | - Ming Yang
- Cancer Research Center, Shandong University, Jinan, China
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
- Institute on the Environment, University of Minnesota, Minneapolis, Minnesota, USA
| | - James J. Schauer
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Majid Ezzati
- School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council and Health Protection Agency (MRC-PHE) Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Mark S. Goldberg
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
- Research Institute, Centre for Outcomes Research and Evaluation, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jill Baumgartner
- Institute for Health and Social Policy, McGill University, Montreal, Quebec, Canada
- Institute on the Environment, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Inflammation and Vascular Ageing: From Telomeres to Novel Emerging Mechanisms. High Blood Press Cardiovasc Prev 2019; 26:321-329. [DOI: 10.1007/s40292-019-00331-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
|
44
|
Carroll JE, Irwin MR, Seeman TE, Diez-Roux AV, Prather AA, Olmstead R, Epel E, Lin J, Redline S. Obstructive sleep apnea, nighttime arousals, and leukocyte telomere length: the Multi-Ethnic Study of Atherosclerosis. Sleep 2019; 42:zsz089. [PMID: 30994174 PMCID: PMC6612669 DOI: 10.1093/sleep/zsz089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
STUDY OBJECTIVES Sleep disturbances and sleep apnea are associated with increased vulnerability to age-related disease, altering molecular pathways affecting biological aging. Telomere length captures one component of biological aging. We evaluated whether objectively assessed sleep and sleep apnea relate to leukocyte telomere length (LTL) in the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS Men and women aged 44-84 years (n = 672) from the MESA Stress and MESA Sleep studies underwent polysomnography and 7 day actigraphy (at Exam 5) and assessment of LTL (at baseline [Exam 1] and about 10 years later [Exam 5]). RESULTS General linear models adjusting for age, sex, race/ethnicity, BMI, physical activity, and smoking found that severe obstructive sleep apnea (OSA; apnea-hypopnea index > 30) was cross-sectionally associated with shorter LTL (p = 0.007). Modest associations of shorter LTL with less rapid eye movement sleep, more stage 1 sleep, wake after sleep onset >30 min, and long sleep duration were found, but these effects were diminished after adjusting for lifestyle and OSA. Exploratory analyses found that higher arousal index at Exam 5 was associated with greater LTL decline over the prior 10 years (p = 0.004). CONCLUSIONS OSA was associated with shorter LTL. Individuals with high-arousal frequency had greater leukocyte telomere attrition over the prior decade. These findings suggest that sleep apnea and sleep fragmentation are associated with accelerated biological aging.
Collapse
Affiliation(s)
- Judith E Carroll
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA
| | - Michael R Irwin
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA
| | - Teresa E Seeman
- Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Ana V Diez-Roux
- Department of Epidemiology, School of Public Health, Drexel University, Philadelphia, PA
| | - Aric A Prather
- Department of Psychiatry, Univeristy of California, San Francisco, CA
| | - Richard Olmstead
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA
| | - Elissa Epel
- Department of Psychiatry, Univeristy of California, San Francisco, CA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA
| | - Susan Redline
- Department of Medicine, Brigham and Women’s Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Ramos-Ibeas P, Pericuesta E, Peral-Sanchez I, Heras S, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Longitudinal analysis of somatic and germ-cell telomere dynamics in outbred mice. Mol Reprod Dev 2019; 86:1033-1043. [PMID: 31209959 DOI: 10.1002/mrd.23218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022]
Abstract
Although telomere length (TL) shortens with age in most tissues, an age-related increase in length has been described in sperm through a mechanism that is not yet fully understood. Changes in TL with age in the same individual have not been explored. This longitudinal study examines TL dynamics in somatic tissue and gametes during an entire lifespan in an outbred mouse population (from 8 to up to 114 weeks of age). Our findings indicate a reduced life expectancy in males compared to females (84.75 ± 9.23 vs. 113.16 ± 0.20 weeks) and significant variability in TL dynamics between individuals. While with aging, a clear reduction in TL was produced in somatic cells and oocytes, telomeres in sperm cells significantly lengthened. Finally, we found evidence indicating that telomere elongation in sperm during aging may be dependent on different mechanisms, such as the survival of spermatogonia with longer telomeres and the alternative lengthening of telomeres mechanism in meiotic and postmeiotic spermatogenic cells.
Collapse
Affiliation(s)
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | - Sonia Heras
- Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
47
|
Telomere length and socioeconomic status at neighborhood and individual levels among 80,000 adults in the Genetic Epidemiology Research on Adult Health and Aging cohort. Environ Epidemiol 2019; 3:e049. [PMID: 33778338 PMCID: PMC7939422 DOI: 10.1097/ee9.0000000000000049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Telomere length (TL) may serve as a biologic marker of aging. We examined neighborhood and individual-level socioeconomic status (SES) in relation to TL. Methods The study included 84,996 non-Hispanic white subjects from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, part of the Research Program on Genes, Environment and Health. Relative TL (T/S) was log2 transformed to improve normality and standardized to have mean 0 and variance 1. Neighborhood SES was measured using the Neighborhood Deprivation Index (NDI), and individual SES was measured by self-reported education level. We fit linear regression models of TL on age, sex, smoking, body mass index, comorbidities, NDI, and education level. We tested for differences in the associations by sex and nonlinearity in the association of NDI with TL. Results Each SD increase in NDI was associated with a decrease of 0.0192 in standardized TL, 95% confidence interval (CI) = -0.0306, -0.0078. There was no evidence of nonlinearity in the association of NDI with TL. We further found that less than high school education was associated with a decrease of 0.1371 in standardized TL, 95% CI = -0.1919, -0.0823 as compared to a college education. There were no differences in the associations by sex. Conclusions We found evidence that both lower neighborhood SES and lower individual-level SES are associated with shorter TL among non-Hispanic whites. Our findings suggest that socioeconomic factors may influence aging by contributing to shorter TL.
Collapse
|
48
|
Pegan TM, Winkler DW, Haussmann MF, Vitousek MN. Brief Increases in Corticosterone Affect Morphology, Stress Responses, and Telomere Length but Not Postfledging Movements in a Wild Songbird. Physiol Biochem Zool 2019; 92:274-285. [DOI: 10.1086/702827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0436. [PMID: 29335375 PMCID: PMC5784057 DOI: 10.1098/rstb.2016.0436] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have principally relied on measurements of telomere length (TL) in leucocytes, which reflects TL in other somatic cells. Leucocyte TL (LTL) displays vast variation across individuals—a phenomenon already observed in newborns. It is highly heritable, longer in females than males and in individuals of African ancestry than European ancestry. LTL is also longer in offspring conceived by older men. The traditional view regards LTL as a passive biomarker of human ageing. However, new evidence suggests that a dynamic interplay between selective evolutionary forces and TL might result in trade-offs for specific health outcomes. From a biological perspective, an active role of TL in ageing-related human diseases could occur because short telomeres increase the risk of a category of diseases related to restricted cell proliferation and tissue degeneration, including cardiovascular disease, whereas long telomeres increase the risk of another category of diseases related to increased proliferative growth, including major cancers. To understand the role of telomere biology in ageing-related diseases, it is essential to expand telomere research to newborns and children and seek further insight into the underlying causes of the variation in TL due to ancestry and geographical location. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’.
Collapse
Affiliation(s)
- Abraham Aviv
- The Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
50
|
Dugdale HL, Richardson DS. Heritability of telomere variation: it is all about the environment! Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0450. [PMID: 29335377 PMCID: PMC5784070 DOI: 10.1098/rstb.2016.0450] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 01/07/2023] Open
Abstract
Individual differences in telomere length have been linked to survival and senescence. Understanding the heritability of telomere length can provide important insight into individual differences and facilitate our understanding of the evolution of telomeres. However, to gain accurate and meaningful estimates of telomere heritability it is vital that the impact of the environment, and how this may vary, is understood and accounted for. The aim of this review is to raise awareness of this important, but much under-appreciated point. We outline the factors known to impact telomere length and discuss the fact that telomere length is a trait that changes with age. We highlight statistical methods that can separate genetic from environmental effects and control for confounding variables. We then review how well previous studies in vertebrate populations including humans have taken these factors into account. We argue that studies to date either use methodological techniques that confound environmental and genetic effects, or use appropriate methods but lack sufficient power to fully separate these components. We discuss potential solutions. We conclude that we need larger studies, which also span longer time periods, to account for changing environmental effects, if we are to determine meaningful estimates of the genetic component of telomere length. This article is part of the theme issue ‘Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Hannah L Dugdale
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|