1
|
Furrer R, Handschin C. Biomarkers of aging: from molecules and surrogates to physiology and function. Physiol Rev 2025; 105:1609-1694. [PMID: 40111763 DOI: 10.1152/physrev.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Many countries face an unprecedented challenge in aging demographics. This has led to an exponential growth in research on aging, which, coupled to a massive financial influx of funding in the private and public sectors, has resulted in seminal insights into the underpinnings of this biological process. However, critical validation in humans has been hampered by the limited translatability of results obtained in model organisms, additionally confined by the need for extremely time-consuming clinical studies in the ostensible absence of robust biomarkers that would allow monitoring in shorter time frames. In the future, molecular parameters might hold great promise in this regard. In contrast, biomarkers centered on function, resilience, and frailty are available at the present time, with proven predictive value for morbidity and mortality. In this review, the current knowledge of molecular and physiological aspects of human aging, potential antiaging strategies, and the basis, evidence, and potential application of physiological biomarkers in human aging are discussed.
Collapse
|
2
|
Chen D, Yao H, Qiu X, Xu L, Ou Y, Xin J, Lu S, Li M, Geng Y, Zhang Y, Hu M, Ren Z, Wu JQ. Purification, Structural Analysis and Bioactivity of Pueraria montana Polysaccharide. Foods 2025; 14:1359. [PMID: 40282761 PMCID: PMC12026434 DOI: 10.3390/foods14081359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Pueraria montana is a medicinal and edible plant widely distributed in Asia. It has antipyretic, analgesic, and anti-inflammatory properties. In this study, a novel polysaccharide (PMPS-A1) was obtained through purification, and its biological activity was investigated. Structural analysis revealed that PMPS-A1 was composed of fructose and glucose, with a molecular weight of 12168 Da. The main chain structure was →1)-β-D-Fruf-(2→, →4)-α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, and →4)-α-D-Glcp-(1→. The branched chain of α-D-Glcp-(1→3)-α-D-Glcp-(1→ and α-D-Glcp-(1→ connected to the O-3 and O-6 positions of residue →3,4)-α-D-Glcp-(1→ and →4,6)-α-D-Glcp-(1→, respectively. In vitro, PMPS-A1 had a favorable scavenging ability of the hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and downregulated the expression of interleukin-6 and nitric oxide in lipopolysaccharide-induced RAW264.7 macrophages. In addition, the Caenorhabditis model assay demonstrated that PMPS-A1 decreased the buildup of lipofuscin and reactive oxygen species. Overall, these results enhance our knowledge of the chemical composition and bioactivity of a Pueraria montana polysaccharide and point to the potential use of PMPS-A1 for antioxidant and anti-aging qualities, providing a theoretical basis for the medicinal and edible application of Pueraria montana polysaccharide.
Collapse
Affiliation(s)
- Dandan Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China;
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Xiang Qiu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Lang Xu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Jianghui Xin
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Shengjia Lu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Yan Geng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Minxiu Hu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.Y.); (X.Q.); (L.X.); (Y.O.); (J.X.); (S.L.); (M.L.); (Y.G.); (Y.Z.); (M.H.)
| | - Zhiming Ren
- JiangMen Industrial Technology Research Institute, Guangdong Academy of Sciences, Jiangmen 529020, China
| | - Jia-Qiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China;
| |
Collapse
|
3
|
Yang Y, Mayo A, Levy T, Raz N, Shenhar B, Jarosz DF, Alon U. Compression of morbidity by interventions that steepen the survival curve. Nat Commun 2025; 16:3340. [PMID: 40199852 PMCID: PMC11978790 DOI: 10.1038/s41467-025-57807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
Longevity research aims to extend the healthspan while minimizing the duration of disability and morbidity, known as the sickspan. Most longevity interventions in model organisms extend healthspan, but it is not known whether they compress sickspan relative to the lifespan. Here, we present a theory that predicts which interventions compress relative sickspan, based on the shape of the survival curve. Interventions such as caloric restriction that extend mean lifespan while preserving the shape of the survival curve, are predicted to extend the sickspan proportionally, without compressing it. Conversely, a subset of interventions that extend lifespan and steepen the shape of the survival curve are predicted to compress the relative sickspan. We explain this based on the saturating-removal mathematical model of aging, and present evidence from longitudinal health data in mice, Caenorhabditis elegans and Drosophila melanogaster. We apply this theory to identify potential interventions for compressing the sickspan in mice, and to combinations of longevity interventions. This approach offers potential strategies for compressing morbidity and extending healthspan.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Center for Interdisciplinary Studies, Westlake University, Hangzhou, Zhejiang, China.
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naveh Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ben Shenhar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel F Jarosz
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Driscoll M, Sedore CA, Onken B, Coleman-Hulbert AL, Johnson E, Phillips PC, Lithgow G. NIA Caenorhabditis Intervention Testing Program: identification of robust and reproducible pharmacological interventions that promote longevity across experimentally accessible, genetically diverse populations. GeroScience 2025:10.1007/s11357-025-01627-4. [PMID: 40178707 DOI: 10.1007/s11357-025-01627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
A core facet of the National Institute on Aging's mission is to identify pharmacological interventions that can promote human healthy aging and long life. As part of the comprehensive effort toward that goal, the NIA Division of Biology of Aging established the Caenorhabditis Intervention Testing Program (CITP) in 2013. The C. elegans model (with an ~ 21 day lifespan) has led the field in dissection of longevity genetics and offers features that allow for relatively rapid testing and for the potential elaboration of biological mechanisms engaged by candidate geroprotectants. CITP builds on this foundation by utilizing a genetically diverse set of intervention test strains so that "subjects" represent genetic diversity akin to that that between mouse and humans. Another distinctive aspect of the CITP is a dedicated focus on reproducibility of longevity outcomes as labs at three independent test sites confirm positive outcomes. The overall goal of the Caenorhabditis Intervention Testing Program (CITP) is to identify robust and reproducible pro-longevity interventions affecting genetically diverse cohorts in the Caenorhabditis genus. A strong Data Collection Center supports data collection and dissemination. Pharmacological interventions tested by CITP can be nominated by the general public, directed by in-house screens, or supported by published scientific literature. As of December 2024, CITP tested > 75 compounds and conducted > 725,000 animal assays over 891 trials. We identified 12 compounds that confer a ≥ 20% increase in median lifespan to reproducibly and robustly extend lifespan across multiple strains and labs. Five of these interventions have pro-longevity impact reported in the mouse literature (most CITP positive interventions are not tested yet in mouse). As part of the celebration of the 50th Anniversary of the NIA, we review the development history and accomplishments of the CITP program, and we comment on translation and the promise of advancing understanding of fundamental aging biology that includes the pharmacological intervention/health interface.
Collapse
Affiliation(s)
- Monica Driscoll
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | | | - Brian Onken
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
5
|
Espinoza SE, Broder JC, Wolfe R, Ernst ME, Shah RC, Orchard SG, Woods RL, Ryan J, Murray A. Frailty incidence by diabetes treatment regimens in older adults with diabetes mellitus in the ASPirin in Reducing Events in the Elderly Study. GeroScience 2025:10.1007/s11357-025-01598-6. [PMID: 40097879 DOI: 10.1007/s11357-025-01598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Diabetes mellitus is a major risk factor for frailty in older adults, and studies suggest that frailty risk may differ by diabetes treatment regimen. To investigate the association between diabetes medication use and frailty, we conducted an observational cohort analysis of older adults with diabetes enrolled in the ASPirin in Reducing Events in the Elderly (ASPREE) study. Diabetes at baseline (N = 2045) was defined as self-reported diabetes, fasting blood glucose levels > 125 mg/dL, or use of diabetes medication. Diabetes medication exposure at baseline was categorized as use of metformin only (monotherapy) (N = 545), metformin combined with other diabetes medications (N = 420), other diabetes medications only (N = 200), or no diabetes medications (N = 880). Frailty was defined using a modified Fried frailty phenotype (presence of ≥ 3 of 5 criteria) and a deficit accumulation frailty index (FI, score > 0.21/1.00). Mixed effects ordinal logistic regression models revealed the odds of frailty at baseline were highest for the other diabetes medications only group, but this difference remained consistent over follow-up. After adjustment for covariates, including baseline pre-frailty, no differences in the rates of Fried or FI frailty were observed among the diabetes medication exposure groups. These findings suggest that diabetes medication exposure in older adults with diabetes does not directly impact frailty risk.
Collapse
Affiliation(s)
- Sara E Espinoza
- Center for Translational Geroscience, Diabetes and Aging Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite B113, Los Angeles, CA, 90048, USA.
| | - Jonathan C Broder
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Michael E Ernst
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Iowa, Iowa City, IA, USA
- Department of Family Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Raj C Shah
- Department of Family and Preventive Medicine, Rush University, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush University, Chicago, IL, USA
| | - Suzanne G Orchard
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Anne Murray
- Berman Center for Outcomes & Clinical Research, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Medicine, Geriatrics Division, Hennepin Healthcare, Minneapolis, MN, USA
| |
Collapse
|
6
|
Mao K, Wang R, Karpoff K, Kerr D, Banerjee P, Friedman JM, Huffman DM. Salutary effects of transdermal curcumin on multiple indices of health span in rodent models of normal aging and hypertension. GeroScience 2025:10.1007/s11357-025-01607-8. [PMID: 40088391 DOI: 10.1007/s11357-025-01607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Geroscience has helped to usher in a new and exciting era of aging drug development and evaluation of novel and repurposed agents, as well as natural compounds purported to target one or more aging hallmarks. Among the latter, curcumin has long been pursued as a promising strategy but has failed to provide convincing evidence in human trials. Oral intake is the typical route of administration tested for the vast majority of gerotherapeutic candidates, including curcumin, but efficacy is dependent upon good oral bioavailability and pharmacokinetics. However, unlike FDA-approved oral medications, many natural compounds, such as curcumin, have poor oral bioavailability, which may explain their limited success in translation. To overcome these inherent limitations, we tested a novel solvent-based formulation of concentrated curcumin (VASCEPTOR®), developed for effective skin penetration and delivery of high amounts of bioactive curcuminoids directly to the circulation on aging and age-related conditions. We demonstrate that short-term topical treatment (7.5 mg per dose) with VASCEPTOR® twice per week can improve both vascular health in a rat model of hypertension, while a late-life intervention in aged mice improves multiple indices of health span, including improved exercise tolerance, motor coordination, diastolic function (p < 0.05), a reduction in frailty status (p < 0.05) and expression of some age-related markers in tissues, particular heart and kidney. Thus, these data suggest that the therapeutic potential of curcumin can potentially be dramatically enhanced by topical delivery and, along with other promising candidates, should be prioritized for further development, testing and deployment to potentially target some manifestations of aging in humans.
Collapse
Affiliation(s)
- Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building, Room 201, Bronx, NY, USA
| | - Ruixuan Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building, Room 201, Bronx, NY, USA
| | - Kateryna Karpoff
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building, Room 201, Bronx, NY, USA
| | - Daniel Kerr
- The Center for Developmental Neuroscience, CUNY College of Staten Island, Staten Island, NY, 10314, USA
| | - Probal Banerjee
- Department of Chemistry, CUNY College of Staten Island, Staten Island, NY, 10314, USA
| | - Joel M Friedman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Vascarta Inc, Summit, NJ, 07901, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building, Room 201, Bronx, NY, USA.
| |
Collapse
|
7
|
Nadeem J, Sultana R, Parveen A, Kim SY. Recent Advances in Anti-Aging Therapeutic Strategies Targeting DNA Damage Response and Senescence-Associated Secretory Phenotype-Linked Signaling Cascade. Cell Biochem Funct 2025; 43:e70046. [PMID: 40008426 DOI: 10.1002/cbf.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Aging is considered the contributory accumulation of abruptions occurring through cell signaling cascades, which ultimately cause changes in physical functions, cell fate, and damage across all organ systems. DNA damage response (DDR) also occurs through telomere shortening, tumor formation, mitochondrial dysfunction, and so forth. Cellular aging occurs through cell cycle arrest, which is the result of extended DDR cascade signaling networks via MDC1, 53BP1, H2AX, ATM, ARF, P53, P13-Akt, BRAF, Sirtuins, NAD + , and so forth. These persistent cell cycle arrests initiated by DDR and other associated stress-induced signals promote a permanent state of cell cycle arrest called senescence-associated secretory phenotype (SASP). However, cellular aging gets accelerated with faulty DNA repair systems, and the produced senescent cells further generate various promoting contributors to age-related dysfunctional diseases including SASP. Any changes to these factors contribute to age-related disease development. Therefore, this review explores anti-aging factors targeting DDR and SASP regulation and their detailed signaling networks. In addition, it allows researchers to identify anti-aging targets and anti-aging therapeutic strategies based on identified and nonidentified targets.
Collapse
Affiliation(s)
- Jawad Nadeem
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Razia Sultana
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Amna Parveen
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| |
Collapse
|
8
|
Peng S, Ou Y, Zhang Y, Yao H, Chen WH. Extraction Optimization and Bioactivity of Polysaccharides from Ganoderma leucocontextum Spores. Pharmaceuticals (Basel) 2025; 18:241. [PMID: 40006054 PMCID: PMC11859662 DOI: 10.3390/ph18020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Oxidative stress is associated with the occurrence and progress of aging. Natural polysaccharides have attracted considerable attention in the field of antioxidants and anti-aging products due to their superior biological activity and low toxicity. Ganoderma leucocontextum is primarily found in the Tibetan plateau region and is classified as a subspecies of Ganoderma. Known as the famous white Ganoderma, it is a precious food and medicine that has potent biological activity, including antitumor, hypoglycemic, and immune regulation. Since available resources are limited, there are few studies on the spore of Ganoderma leucocontextum. Methods: In this work, a polysaccharide (named GLSP) was extracted from the spore of Ganoderma leucocontextum using a fast, simple, efficient, and environmentally friendly extraction process: the three-phase partitioning (TPP) method. Results: The extraction condition was optimized under the Box-Behnken design (BBD): ratio of the solute to the solvent, 1:21.126 (w/v); (NH4)2SO4 concentration, 30% (w/v); ratio of the slurry to tert-butanol, 1:1.945 (v/v); and shaking temperature, 54.136 °C. Furthermore, a polysaccharide termed GLSP-A1 was purified from GLSP by column chromatography. The basic physicochemical properties were analyzed by molecular weight, Fourier transform infrared spectroscopy, monosaccharide composition, and scanning electron microscopy. Conclusions: GLSP-A1 down-regulated the expression of the pro-inflammation cytokines interleukin-6 and interleukin-1β, indicating favorable in vitro anti-inflammatory properties. In vivo, the effect of GLSP-A1 on aging was examined using the Caenorhabditis model. The results showed that GLSP-A1 reduced reactive oxygen species levels and lipofuscin accumulation. In general, these findings improve our understanding of the chemical content and bioactivity of a polysaccharide from Ganoderma leucocontextum spore and highlight the possibility of GLSP-A1 being utilized in dietary supplements for its anti-aging properties.
Collapse
Affiliation(s)
- Siying Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China;
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.O.); (Y.Z.)
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.O.); (Y.Z.)
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.O.); (Y.Z.)
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.O.); (Y.Z.)
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China;
| |
Collapse
|
9
|
Ungvari A, Gulej R, Patai R, Papp Z, Toth A, Szabó AÁ, Podesser BK, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Maier AB, Csiszar A, Ungvari Z. Sex-specific mechanisms in vascular aging: exploring cellular and molecular pathways in the pathogenesis of age-related cardiovascular and cerebrovascular diseases. GeroScience 2025; 47:301-337. [PMID: 39754010 PMCID: PMC11872871 DOI: 10.1007/s11357-024-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 03/04/2025] Open
Abstract
Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases. Critical analysis of both preclinical and clinical studies reveals significant sex-specific variations in these mechanisms, which could be pivotal in understanding the disparity in disease morbidity and mortality between sexes. The review highlights key molecular pathways, including oxidative stress, inflammation, and autophagy, and their differential roles in the vascular aging of males and females. We argue that recognizing these sex-specific differences is crucial for developing targeted therapeutic strategies aimed at preventing and managing age-related vascular pathologies. The implications for personalized medicine and potential areas for future research are also explored, emphasizing the need for a nuanced approach to the study and treatment of vascular aging.
Collapse
Affiliation(s)
- Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Á Szabó
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
- Reynolds Section of Geriatrics and Palliative Medicine, Department of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- @AgeSingapore, Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Yang Y, Wu Y, Xiang L, Picardo M, Zhang C. Deciphering the role of skin aging in pigmentary disorders. Free Radic Biol Med 2025; 227:638-655. [PMID: 39674424 DOI: 10.1016/j.freeradbiomed.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Skin aging is a complex biological process involving intrinsic and extrinsic factors. Skin aging contains alterations at the tissue, cellular, and molecular levels. Currently, there is increasing evidence that skin aging occurs not only in time-dependent chronological aging but also plays a role in skin pigmentary disorders. This review provides an in-depth analysis of the impact of skin aging on different types of pigmentary disorders, including both hyperpigmentation disorders such as melasma and senile lentigo and hypopigmentation disorders such as vitiligo, idiopathic guttate hypomelanosis and graying of hair. In addition, we explore the mechanisms of skin aging on pigmentation regulation and suggest several potential therapeutic approaches for skin aging and aging-related pigmentary disorders.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata, IDI-RCCS, Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China.
| |
Collapse
|
11
|
Barbut D, Perni M, Zasloff M. Anti-aging properties of the aminosterols of the dogfish shark. NPJ AGING 2024; 10:62. [PMID: 39702521 DOI: 10.1038/s41514-024-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The development of anti-aging drugs is challenged by both the apparent complexity of the physiological mechanisms involved in aging and the likelihood that many of these mechanisms remain unknown. As a consequence, the development of anti-aging compounds based on the rational targeting of specific pathways has fallen short of the goal. To date, the most impressive compound is rapamycin, a natural bacterial product initially identified as an antifungal, and only subsequently discovered to have anti-aging properties. In this review, we focus on two aminosterols from the dogfish shark, Squalus acanthias, that we discovered initially as broad-spectrum anti-microbial agents. This review is the first to gather together published studies conducted both in vitro and in numerous vertebrate species to demonstrate that these compounds target aging pathways at the cellular level and provide benefits in multiple aging-associated conditions in relevant animal models and in humans. The dogfish aminosterols should be recognized as potential anti-aging drugs.
Collapse
Affiliation(s)
- Denise Barbut
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michele Perni
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michael Zasloff
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA.
- MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, 20010, USA.
| |
Collapse
|
12
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
13
|
Tanaka Y, Amano T, Nakamura A, Deguchi M, Takahashi A, Tsuji S, Murakami T. mTOR inhibitors potentially preserve fertility in female patients with haematopoietic malignancies: a narrative review. Ann Hematol 2024; 103:4953-4969. [PMID: 39537993 DOI: 10.1007/s00277-024-06090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Haematologic malignancies are considered among the more common adolescent and young adult (AYA) cancers. Many female AYA patients with haematopoietic malignancies face impaired fertility. Haematologic malignancies patients tend to be treated with more aggressive systemic chemotherapy than that of solid tumours. In adult women, treatment-related contraception causes age-related fertility loss. Graft-versus-host disease (GVHD) after allogeneic haematopoietic stem cell transplantation is associated with decreased fertility. Ovarian cryopreservation is often indicated for haematopoietic malignancies; however, follicle loss associated with ovarian cryopreservation and ovarian minimal residual disease, which result in the withdrawal of the transplantation, are important issues. These problems may not be fully addressed by conventional methods of fertility preservation, such as oocyte, embryo, and ovarian cryopreservation, leaving room for research into new treatment approaches, such as fertility preservation drugs. In recent years, preclinical studies have shown that mTOR inhibitors may preserve chemotherapy-induced follicular loss, may have follicle-preserving effects on follicle loss associated with cryopreservation and transplantation of ovarian tissue, may have fertility-preserving effects on aging-related infertility. Clinical studies have shown that mTOR inhibitors may have the potential for indirect fertility preservation by controlling GVHD, have a limited anti-tumor effect against haematopoietic malignancies. The purpose of this article is to outline the various issues faced by female survivors of haematopoietic malignancies and discuss the potential of mTOR inhibitors as a safe treatment option. Based on current research, mTOR inhibitors seem promising and innovative fertility preservation agents regarding preclinical conditions, and further study, including clinical trials, should be expected.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan.
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Akiko Nakamura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mari Deguchi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| |
Collapse
|
14
|
Obata F, Miura M. Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Annu Rev Genet 2024; 58:19-41. [PMID: 38857535 DOI: 10.1146/annurev-genet-111523-102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Life activities are supported by the intricate metabolic network that is fueled by nutrients. Nutritional and genetic studies in model organisms have determined that dietary restriction and certain mutations in the insulin signaling pathway lead to lifespan extension. Subsequently, the detailed mechanisms of aging as well as various nutrient signaling pathways and their relationships have been investigated in a wide range of organisms, from yeast to mammals. This review summarizes the roles of nutritional and metabolic signaling in aging and lifespan with a focus on amino acids, the building blocks of organisms. We discuss how lifespan is affected by the sensing, transduction, and metabolism of specific amino acids and consider the influences of life stage, sex, and genetic background on the nutritional control of aging. Our goal is to enhance our understanding of how nutrients affect aging and thus contribute to the biology of aging and lifespan.
Collapse
Affiliation(s)
- Fumiaki Obata
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan;
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan;
| |
Collapse
|
15
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
16
|
Mitchell W, Pharaoh G, Tyshkovskiy A, Campbell M, Marcinek DJ, Gladyshev VN. The mitochondrial-targeted peptide therapeutic elamipretide improves cardiac and skeletal muscle function during aging without detectable changes in tissue epigenetic or transcriptomic age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620676. [PMID: 39554099 PMCID: PMC11565897 DOI: 10.1101/2024.10.30.620676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Aging-related decreases in cardiac and skeletal muscle function are strongly associated with various comorbidities. Elamipretide (ELAM), a novel mitochondrial-targeted peptide, has demonstrated broad therapeutic efficacy in ameliorating disease conditions associated with mitochondrial dysfunction across both clinical and pre-clinical models. ELAM is proposed to restore mitochondrial bioenergetic function by stabilizing inner membrane structure and increasing oxidative phosphorylation coupling and efficiency. Although ELAM treatment effectively attenuates physiological declines in multiple tissues in rodent aging models, it remains unclear whether these functional improvements correlate with favorable changes in molecular biomarkers of aging. Herein, we investigated the impact of 8-week ELAM treatment on pre- and post- measures of C57BL/6J mice frailty, skeletal muscle, and cardiac muscle function, coupled with post-treatment assessments of biological age and affected molecular pathways. We found that health status, as measured by frailty index, cardiac strain, diastolic function, and skeletal muscle force are significantly diminished with age, with skeletal muscle force changing in a sex-dependent manner. Conversely, ELAM mitigated frailty accumulation and was able to partially reverse these declines, as evidenced by treatment-induced increases in cardiac strain and muscle fatigue resistance. Despite these improvements, we did not detect statistically significant changes in gene expression or DNA methylation profiles indicative of molecular reorganization or reduced biological age in most ELAM-treated groups. However, pathway analyses revealed that ELAM treatment showed pro-longevity shifts in gene expression such as upregulation of genes involved in fatty acid metabolism, mitochondrial translation and oxidative phosphorylation, and downregulation of inflammation. Together, these results indicate that ELAM treatment is effective at mitigating signs of sarcopenia and heart failure in an aging mouse model, but that these functional improvements occur independently of detectable changes in epigenetic and transcriptomic age. Thus, some age-related changes in function may be uncoupled from changes in molecular biological age.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Gavin Pharaoh
- Department of Radiology, University of Washington, Seattle, WA 98195 United States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Matthew Campbell
- Department of Radiology, University of Washington, Seattle, WA 98195 United States
| | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98195 United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 United States
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| |
Collapse
|
17
|
Yu Y, Lin K, Wu H, Hu M, Yang X, Wang J, Grillari J, Chen J. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:20. [PMID: 39358480 PMCID: PMC11447201 DOI: 10.1186/s13619-024-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Lin
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Haoyu Wu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingli Hu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejie Yang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jie Wang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, 1200, Vienna, Austria
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
18
|
Jiang N, Gelfond J, Liu Q, Strong R, Nelson JF. The Gehan test identifies life-extending compounds overlooked by the log-rank test in the NIA Interventions Testing Program: Metformin, Enalapril, caffeic acid phenethyl ester, green tea extract, and 17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride. GeroScience 2024; 46:4533-4541. [PMID: 38630424 PMCID: PMC11335987 DOI: 10.1007/s11357-024-01161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
The National Institute on Aging Interventions Testing Program (ITP) has so far identified 12 compounds that extend the lifespan of genetically heterogeneous mice using the log-rank test. However, the log-rank test is relatively insensitive to any compound that does not uniformly reduce mortality across the lifespan. This test may thus miss compounds that only reduce mortality before midlife, for example, a plausible outcome if a compound only mitigates risk factors before midlife or if its efficacy is reduced at later ages. We therefore reanalyzed all data collected by the ITP from 2004-2022 using the Gehan test, which is more sensitive to mortality differences earlier in the life course and does not assume a uniformly reduced mortality hazard across the lifespan. The Gehan test identified 5 additional compounds, metformin, enalapril, 17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride (17-DMAG), caffeic acid phenethyl ester (CAPE), and green tea extract (GTE), which significantly increased survival but were previously missed by the log-rank test. Three (metformin, enalapril, and 17-DMAG) were only effective in males and two (CAPE and GTE) were only effective in females. In addition, 1,3-butanediol, which by log-rank analysis increased survival in females but not males, increased survival in males by the Gehan test. These results suggest that statistical tests sensitive to non-uniformity of drug efficacy across the lifespan should be included in the standard statistical testing protocol to minimize overlooking geroprotective interventions.
Collapse
Affiliation(s)
- Nisi Jiang
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio; San Antonio, San Antonio, TX, U.S.A
- Department of Cellular and Integrative Physiology, UT Health San Antonio; San Antonio, San Antonio, TX, U.S.A
| | - Jonathan Gelfond
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio; San Antonio, San Antonio, TX, U.S.A
- Department of Population Health Sciences, UT Health San Antonio; San Antonio, San Antonio, TX, U.S.A
| | - Qianqian Liu
- Department of Population Health Sciences, UT Health San Antonio; San Antonio, San Antonio, TX, U.S.A
| | - Randy Strong
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio; San Antonio, San Antonio, TX, U.S.A
- Department of Pharmacology, UT Health San Antonio; San Antonio, San Antonio, TX, U.S.A
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, U.S.A
| | - James F Nelson
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio; San Antonio, San Antonio, TX, U.S.A..
- Department of Cellular and Integrative Physiology, UT Health San Antonio; San Antonio, San Antonio, TX, U.S.A..
| |
Collapse
|
19
|
Liu Y, Fang M, Tu X, Mo X, Zhang L, Yang B, Wang F, Kim YB, Huang C, Chen L, Fan S. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 2024; 16:3305. [PMID: 39408272 PMCID: PMC11478989 DOI: 10.3390/nu16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Aging is a natural biological process influenced by multiple factors and is a significant contributor to various chronic diseases. Slowing down the aging process and extending health span have been pursuits of the scientific field. Methods: Examination of the effects of dietary polyphenols on hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Results: Polyphenols, abundant in nature, exhibit numerous biological activities, including antioxidant effects, free radical scavenging, neuroprotection, and anti-aging properties. These compounds are generally safe and effective in potentially slowing aging and preventing age-related disorders. Conclusions: The review encourages the development of novel therapeutic strategies using dietary polyphenols to create holistic anti-aging therapies and nutritional supplements.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Lu Zhang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| |
Collapse
|
20
|
Dos Santos E, Cochemé HM. Pharmacology of Aging: Drosophila as a Tool to Validate Drug Targets for Healthy Lifespan. AGING BIOLOGY 2024; 2:20240034. [PMID: 39346601 PMCID: PMC7616647 DOI: 10.59368/agingbio.20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Finding effective therapies to manage age-related conditions is an emerging public health challenge. Although disease-targeted treatments are important, a preventive approach focused on aging can be more efficient. Pharmacological targeting of aging-related processes can extend lifespan and improve health in animal models. However, drug development and translation are particularly challenging in geroscience. Preclinical studies have survival as a major endpoint for drug screening, which requires years of research in mammalian models. Shorter-lived invertebrates can be exploited to accelerate this process. In particular, the fruit fly Drosophila melanogaster allows the validation of new drug targets using precise genetic tools and proof-of-concept experiments on drugs impacting conserved aging processes. Screening for clinically approved drugs that act on aging-related targets may further accelerate translation and create new tools for aging research. To date, 31 drugs used in clinical practice have been shown to extend the lifespan of flies. Here, we describe recent advances in the pharmacology of aging, focusing on Drosophila as a tool to repurpose these drugs and study age-related processes.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
21
|
Lim SHY, Hansen M, Kumsta C. Molecular Mechanisms of Autophagy Decline during Aging. Cells 2024; 13:1364. [PMID: 39195254 PMCID: PMC11352966 DOI: 10.3390/cells13161364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Macroautophagy (hereafter autophagy) is a cellular recycling process that degrades cytoplasmic components, such as protein aggregates and mitochondria, and is associated with longevity and health in multiple organisms. While mounting evidence supports that autophagy declines with age, the underlying molecular mechanisms remain unclear. Since autophagy is a complex, multistep process, orchestrated by more than 40 autophagy-related proteins with tissue-specific expression patterns and context-dependent regulation, it is challenging to determine how autophagy fails with age. In this review, we describe the individual steps of the autophagy process and summarize the age-dependent molecular changes reported to occur in specific steps of the pathway that could impact autophagy. Moreover, we describe how genetic manipulations of autophagy-related genes can affect lifespan and healthspan through studies in model organisms and age-related disease models. Understanding the age-related changes in each step of the autophagy process may prove useful in developing approaches to prevent autophagy decline and help combat a number of age-related diseases with dysregulated autophagy.
Collapse
Affiliation(s)
- Shaun H. Y. Lim
- Graduate School of Biological Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Malene Hansen
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA;
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Caroline Kumsta
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA;
| |
Collapse
|
22
|
Keizer HG, Brands R, Oosting RS, Seinen W. A comprehensive model for the biochemistry of ageing, senescence and longevity. Biogerontology 2024; 25:615-626. [PMID: 38441836 DOI: 10.1007/s10522-024-10097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 07/02/2024]
Abstract
Various models for ageing, each focussing on different biochemical and/or cellular pathways have been proposed. This has resulted in a complex and non-coherent portrayal of ageing. Here, we describe a concise and comprehensive model for the biochemistry of ageing consisting of three interacting signalling hubs. These are the nuclear factor kappa B complex (NFκB), controlling the innate immune system, the mammalian target for rapamycin complex, controlling cell growth, and the integrated stress responses, controlling homeostasis. This model provides a framework for most other, more detailed, biochemical pathways involved in ageing, and explains why ageing involves chronic inflammation, cellular senescence, and vulnerability to environmental stress, while starting with the spontaneous formation of advanced glycation end products. The totality of data underlying this model suggest that the gradual inhibition of the AMPK-ISR probably determines the maximal lifespan. Based on this model, anti-ageing drugs in general, are expected to show hormetic dose response curves. This complicates the process of dose-optimization. Due to its specific mechanism of action, the anti-aging drug alkaline phosphatase is an exception to this rule, because it probably exhibits saturation kinetics.
Collapse
Affiliation(s)
| | - R Brands
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Ronald Sake Oosting
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Willem Seinen
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
23
|
Katsube M, Ishimoto T, Fukushima Y, Kagami A, Shuto T, Kato Y. Ergothioneine promotes longevity and healthy aging in male mice. GeroScience 2024; 46:3889-3909. [PMID: 38446314 PMCID: PMC11226696 DOI: 10.1007/s11357-024-01111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Healthy aging has emerged as a crucial issue with the increase in the geriatric population worldwide. Food-derived sulfur-containing amino acid ergothioneine (ERGO) is a potential dietary supplement, which exhibits various beneficial effects in experimental animals although the preventive effects of ERGO on aging and/or age-related impairments such as frailty and cognitive impairment are unclear. We investigated the effects of daily oral supplementation of ERGO dissolved in drinking water on lifespan, frailty, and cognitive impairment in male mice from 7 weeks of age to the end of their lives. Ingestion of 4 ~ 5 mg/kg/day of ERGO remarkably extended the lifespan of male mice. The longevity effect of ERGO was further supported by increase in life and non-frailty spans of Caenorhabditis elegans in the presence of ERGO. Compared with the control group, the ERGO group showed significantly lower age-related declines in weight, fat mass, and average and maximum movement velocities at 88 weeks of age. This was compatible with dramatical suppression by ERGO of the age-related increments in plasma biomarkers (BMs) such as the chemokine ligand 9, creatinine, symmetric dimethylarginine, urea, asymmetric dimethylarginine, quinolinic acid, and kynurenine. The oral intake of ERGO also rescued age-related impairments in learning and memory ability, which might be associated with suppression of the age-related decline in hippocampal neurogenesis and TDP43 protein aggregation and promotion of microglial shift to the M2 phenotype by ERGO ingestion. Ingestion of ERGO may promote longevity and healthy aging in male mice, possibly through multiple biological mechanisms.
Collapse
Affiliation(s)
- Makoto Katsube
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan
| | | | - Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Asuka Kagami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
24
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
25
|
Alcaráz N, Salcedo-Tello P, González-Barrios R, Torres-Arciga K, Guzmán-Ramos K. Underlying Mechanisms of the Protective Effects of Lifestyle Factors On Age-Related Diseases. Arch Med Res 2024; 55:103014. [PMID: 38861840 DOI: 10.1016/j.arcmed.2024.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The rise in life expectancy has significantly increased the occurrence of age-related chronic diseases, leading to escalating expenses for both society and individuals. Among the main factors influencing health and lifespan, lifestyle takes a forefront position. Specifically, nutrition, mental activity, and physical exercise influence the molecular and functional mechanisms that contribute to the prevention of major age-related diseases. Gaining deeper insights into the mechanisms that drive the positive effects of healthy lifestyles is valuable for creating interventions to prevent or postpone the development of chronic degenerative diseases. This review summarizes the main mechanisms that underlie the positive effect of lifestyle factors in counteracting the major age-related diseases involving brain health, musculoskeletal function, cancer, frailty, and cardiovascular diseases, among others. This knowledge will help to identify high-risk populations for targeted intervention trials and discover new biomarkers associated with healthy aging.
Collapse
Affiliation(s)
- Nicolás Alcaráz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Salcedo-Tello
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México
| | - Karla Torres-Arciga
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Mexico State, Mexico.
| |
Collapse
|
26
|
Barinda AJ, Hardi H, Louisa M, Khatimah NG, Marliau RM, Felix I, Fadhillah MR, Jamal AK. Repurposing effect of cardiovascular-metabolic drug to increase lifespan: a systematic review of animal studies and current clinical trial progress. Front Pharmacol 2024; 15:1373458. [PMID: 38966557 PMCID: PMC11223003 DOI: 10.3389/fphar.2024.1373458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
With the increase in life expectancy, aging has emerged as a significant health concern. Due to its various mechanisms of action, cardiometabolic drugs are often repurposed for other indications, including aging. This systematic review analyzed and highlighted the repositioning potential of cardiometabolic drugs to increase lifespan as an aging parameter in animal studies and supplemented by information from current clinical trial registries. Systematic searching in animal studies was performed based on PICO: "animal," "cardiometabolic drug," and "lifespan." All clinical trial registries were also searched from the WHO International Clinical Trial Registry Platform (ICTRP). Analysis of 49 animal trials and 10 clinical trial registries show that various cardiovascular and metabolic drugs have the potential to target lifespan. Metformin, acarbose, and aspirin are the three most studied drugs in animal trials. Aspirin and acarbose are the promising ones, whereas metformin exhibits various results. In clinical trial registries, metformin, omega-3 fatty acid, acarbose, and atorvastatin are currently cardiometabolic drugs that are repurposed to target aging. Published clinical trial results show great potential for omega-3 and metformin in healthspan. Systematic Review Registration: crd.york.ac.uk/prospero/display_record.php?RecordID=457358, identifier: CRD42023457358.
Collapse
Affiliation(s)
- Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Harri Hardi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nurul Gusti Khatimah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Rheza Meida Marliau
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Immanuel Felix
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Muhamad Rizqy Fadhillah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Arief Kurniawan Jamal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
27
|
Poudel SB, Ruff RR, Yildirim G, Miller RA, Harrison DE, Strong R, Kirsch T, Yakar S. Development of primary osteoarthritis during aging in genetically diverse UM-HET3 mice. Arthritis Res Ther 2024; 26:118. [PMID: 38851726 PMCID: PMC11161968 DOI: 10.1186/s13075-024-03349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Primary osteoarthritis (OA) occurs without identifiable underlying causes such as previous injuries or specific medical conditions. Age is a major contributing factor to OA, and as one ages, various joint tissues undergo gradual change, including degeneration of the articular cartilage, alterations in subchondral bone (SCB) morphology, and inflammation of the synovium. METHODS We investigated the prevalence of primary OA in aged, genetically diverse UM-HET3 mice. Articular cartilage (AC) integrity and SCB morphology were assessed in 182 knee joints of 22-25 months old mice using the Osteoarthritis Research Society International (OARSI) scoring system and micro-CT, respectively. Additionally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. RESULTS Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13, inducible nitric oxide synthase, and the NLR family pyrin domain containing-3 inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and β-galactosidase, also correlated with AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. CONCLUSIONS Our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24th Street, New York, NY, 10010-4086, USA
| | - Ryan R Ruff
- David B. Kriser Dental Center, Biostatistics Core, Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, 10010-4086, USA
| | - Gozde Yildirim
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24th Street, New York, NY, 10010-4086, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | | | - Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Barshop Institute for Longevity and Aging Studies and Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Thorsten Kirsch
- Department of Orthopaedic Surgery, NYU Grossman School of Medicine, New York, NY, 10100, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, NY, 10010, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24th Street, New York, NY, 10010-4086, USA.
| |
Collapse
|
28
|
Banse SA, Sedore CA, Johnson E, Coleman-Hulbert AL, Onken B, Hall D, Jackson EG, Huynh P, Foulger AC, Guo S, Garrett T, Xue J, Inman D, Morshead ML, Plummer WT, Chen E, Bhaumik D, Chen MK, Harinath G, Chamoli M, Quinn RP, Falkowski R, Edgar D, Schmidt MO, Lucanic M, Guo M, Driscoll M, Lithgow GJ, Phillips PC. Antioxidants green tea extract and nordihydroguaiaretic acid confer species and strain-specific lifespan and health effects in Caenorhabditis nematodes. GeroScience 2024; 46:2239-2251. [PMID: 37923874 PMCID: PMC10828308 DOI: 10.1007/s11357-023-00978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/08/2023] [Indexed: 11/06/2023] Open
Abstract
The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies-for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.
Collapse
Affiliation(s)
- Stephen A Banse
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Christine A Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | | | - Brian Onken
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - David Hall
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - E Grace Jackson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Phu Huynh
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Anna C Foulger
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Suzhen Guo
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Theo Garrett
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Jian Xue
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Delaney Inman
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | | | - W Todd Plummer
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Dipa Bhaumik
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Michelle K Chen
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Girish Harinath
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Manish Chamoli
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Rose P Quinn
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Ron Falkowski
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daniel Edgar
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Madeline O Schmidt
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Lucanic
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Max Guo
- Division of Aging Biology, National Institute On Aging, Bethesda, MD, 20892-9205, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Gordon J Lithgow
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA.
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
29
|
Jiang N, Cheng CJ, Strong R, Nelson JF. Castration reduces mortality and increases resilience in male mice: what is next? GeroScience 2024; 46:2787-2790. [PMID: 37861928 PMCID: PMC10828236 DOI: 10.1007/s11357-023-00973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
This commentary concerns our recent report that prepubertal castration rescued the shorter lifespan of males, using the first mouse line that robustly shows the same shorter longevity with a similar age-variable mortality disadvantage as human males. This model provides a unique opportunity for research to uncover the basis for this clinically important sex difference in aging. Researchers can now identify the hormones involved, the duration of exposure required, and, most important, the cellular and molecular targets, with the ultimate goal of developing therapeutic interventions to enhance health and reduce mortality without castration-compromising reproductive function.
Collapse
Affiliation(s)
- Nisi Jiang
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, USA
| | - Catherine J Cheng
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, USA
| | - Randy Strong
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Research Service of the South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
| | - James F Nelson
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
30
|
Poudel SB, Frikha-Benayed D, Ruff RR, Yildirim G, Dixit M, Korstanje R, Robinson L, Miller RA, Harrison DE, Strong JR, Schaffler MB, Yakar S. Targeting mitochondrial dysfunction using methylene blue or mitoquinone to improve skeletal aging. Aging (Albany NY) 2024; 16:4948-4964. [PMID: 38535998 PMCID: PMC11006499 DOI: 10.18632/aging.205147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/27/2023] [Indexed: 04/06/2024]
Abstract
Methylene blue (MB) is a well-established antioxidant that has been shown to improve mitochondrial function in both in vitro and in vivo settings. Mitoquinone (MitoQ) is a selective antioxidant that specifically targets mitochondria and effectively reduces the accumulation of reactive oxygen species. To investigate the effect of long-term administration of MB on skeletal morphology, we administered MB to aged (18 months old) female C57BL/J6 mice, as well as to adult male and female mice with a genetically diverse background (UM-HET3). Additionally, we used MitoQ as an alternative approach to target mitochondrial oxidative stress during aging in adult female and male UM-HET3 mice. Although we observed some beneficial effects of MB and MitoQ in vitro, the administration of these compounds in vivo did not alter the progression of age-induced bone loss. Specifically, treating 18-month-old female mice with MB for 6 or 12 months did not have an effect on age-related bone loss. Similarly, long-term treatment with MB from 7 to 22 months or with MitoQ from 4 to 22 months of age did not affect the morphology of cortical bone at the mid-diaphysis of the femur, trabecular bone at the distal-metaphysis of the femur, or trabecular bone at the lumbar vertebra-5 in UM-HET3 mice. Based on our findings, it appears that long-term treatment with MB or MitoQ alone, as a means to reduce skeletal oxidative stress, is insufficient to inhibit age-associated bone loss. This supports the notion that interventions solely with antioxidants may not provide adequate protection against skeletal aging.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- Department of Molecular Pathobiology, David B. Kriser Dental Center, New York University College of Dentistry, New York, NY 10010-4086, USA
| | - Dorra Frikha-Benayed
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA
| | - Ryan R. Ruff
- Department of Epidemiology and Health Promotion, David B. Kriser Dental Center, New York University College of Dentistry, New York, NY 10010-4086, USA
| | - Gozde Yildirim
- Department of Molecular Pathobiology, David B. Kriser Dental Center, New York University College of Dentistry, New York, NY 10010-4086, USA
| | - Manisha Dixit
- Department of Molecular Pathobiology, David B. Kriser Dental Center, New York University College of Dentistry, New York, NY 10010-4086, USA
| | - Ron Korstanje
- Jackson Aging Center, Nathan Shock Center for Excellence in the Basic Biology of Aging, The Jackson’s Laboratories, Aging Center, Bar Harbor, ME 04609, USA
| | - Laura Robinson
- Jackson Aging Center, Nathan Shock Center for Excellence in the Basic Biology of Aging, The Jackson’s Laboratories, Aging Center, Bar Harbor, ME 04609, USA
| | - Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - John R. Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Mitchell B. Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA
| | - Shoshana Yakar
- Department of Molecular Pathobiology, David B. Kriser Dental Center, New York University College of Dentistry, New York, NY 10010-4086, USA
| |
Collapse
|
31
|
Bramwell LR, Frankum R, Harries LW. Repurposing Drugs for Senotherapeutic Effect: Potential Senomorphic Effects of Female Synthetic Hormones. Cells 2024; 13:517. [PMID: 38534362 PMCID: PMC10969307 DOI: 10.3390/cells13060517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Repurposing previously approved drugs may fast track the route to the clinic for potential senotherapeutics and improves the inefficiency of the clinical drug development pipeline. We performed a repurposing screen of 240 clinically approved molecules in human primary dermal fibroblasts for their effects on CDKN2A expression. Molecules demonstrating effects on CDKN2A expression underwent secondary screening for senescence-associated beta galactosidase (SAB) activity, based on effect size, direction, and/or molecule identity. Selected molecules then underwent a more detailed assessment of senescence phenotypes including proliferation, apoptosis, DNA damage, senescence-associated secretory phenotype (SASP) expression, and regulators of alternative splicing. A selection of the molecules demonstrating effects on senescence were then used in a new bioinformatic structure-function screen to identify common structural motifs. In total, 90 molecules displayed altered CDKN2A expression at one or other dose, of which 15 also displayed effects on SAB positivity in primary human dermal fibroblasts. Of these, 3 were associated with increased SAB activity, and 11 with reduced activity. The female synthetic sex hormones-diethylstilboestrol, ethynyl estradiol and levonorgestrel-were all associated with a reduction in aspects of the senescence phenotype in male cells, with no effects visible in female cells. Finally, we identified that the 30 compounds that decreased CDKN2A activity the most had a common substructure linked to this function. Our results suggest that several drugs licensed for other indications may warrant exploration as future senotherapies, but that different donors and potentially different sexes may respond differently to senotherapeutic compounds. This underlines the importance of considering donor-related characteristics when designing drug screening platforms.
Collapse
Affiliation(s)
| | | | - Lorna W. Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK; (L.R.B.); (R.F.)
| |
Collapse
|
32
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Antiaging Strategies and Remedies: A Landscape of Research Progress and Promise. ACS Chem Neurosci 2024; 15:408-446. [PMID: 38214973 PMCID: PMC10853939 DOI: 10.1021/acschemneuro.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Aging is typified by a gradual loss of physiological fitness and accumulation of cellular damage, leading to deteriorated functions and enhanced vulnerability to diseases. Antiaging research has a long history throughout civilization, with many efforts put forth to understand and prevent the effects of aging. Multiple strategies aiming to promote healthy aging and extend the lifespan have been developed including lifestyle adjustments, medical treatments, and social programs. A multitude of antiaging medicines and remedies have also been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent research related to antiaging strategies and treatments. We review the recent advances and delineate trends in research headway of antiaging knowledge and practice across time, geography, and development pipelines. We further assess the state-of-the-art antiaging approaches and explore their correlations with age-related diseases. The landscape of antiaging drugs has been outlined and explored. Well-recognized and novel, currently evaluated antiaging agents have also been summarized. Finally, we review clinical applications of antiaging products with their development pipelines. The objective of this review is to summarize current knowledge on preventive strategies and treatment remedies in the field of aging, to outline challenges and evaluate growth opportunities, in order to further efforts to solve the problems that remain.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
33
|
Harrison DE, Strong R, Reifsnyder P, Rosenthal N, Korstanje R, Fernandez E, Flurkey K, Ginsburg BC, Murrell MD, Javors MA, Lopez-Cruzan M, Nelson JF, Willcox BJ, Allsopp R, Watumull DM, Watumull DG, Cortopassi G, Kirkland JL, Tchkonia T, Choi YG, Yousefzadeh MJ, Robbins PD, Mitchell JR, Acar M, Sarnoski EA, Bene MR, Salmon A, Kumar N, Miller RA. Astaxanthin and meclizine extend lifespan in UM-HET3 male mice; fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate do not significantly affect lifespan in either sex at the doses and schedules used. GeroScience 2024; 46:795-816. [PMID: 38041783 PMCID: PMC10828146 DOI: 10.1007/s11357-023-01011-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023] Open
Abstract
In genetically heterogeneous (UM-HET3) mice produced by the CByB6F1 × C3D2F1 cross, the Nrf2 activator astaxanthin (Asta) extended the median male lifespan by 12% (p = 0.003, log-rank test), while meclizine (Mec), an mTORC1 inhibitor, extended the male lifespan by 8% (p = 0.03). Asta was fed at 1840 ± 520 (9) ppm and Mec at 544 ± 48 (9) ppm, stated as mean ± SE (n) of independent diet preparations. Both were started at 12 months of age. The 90th percentile lifespan for both treatments was extended in absolute value by 6% in males, but neither was significant by the Wang-Allison test. Five other new agents were also tested as follows: fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate. None of these increased lifespan significantly at the dose and method of administration tested in either sex. Amounts of dimethyl fumarate in the diet averaged 35% of the target dose, which may explain the absence of lifespan effects. Body weight was not significantly affected in males by any of the test agents. Late life weights were lower in females fed Asta and Mec, but lifespan was not significantly affected in these females. The male-specific lifespan benefits from Asta and Mec may provide insights into sex-specific aspects of aging.
Collapse
Affiliation(s)
- David E Harrison
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Peter Reifsnyder
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Ron Korstanje
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Kevin Flurkey
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Brett C Ginsburg
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Meredith D Murrell
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Martin A Javors
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - James F Nelson
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Physiology, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Bradley J Willcox
- John A. Burns School of Medicine, University of Hawai'I at Mānoa, Honolulu, HI, USA
| | - Richard Allsopp
- John A. Burns School of Medicine, University of Hawai'I at Mānoa, Honolulu, HI, USA
| | | | | | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | | | | | | | | | | | | | - Murat Acar
- Department of Basic Medical Sciences, School of Medicine, Koç University, 34450, Istanbul, Turkey
| | - Ethan A Sarnoski
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Michael R Bene
- Department of Molecular Medicine, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Adam Salmon
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Molecular Medicine, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Navasuja Kumar
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Mitteldorf J. Biological Clocks: Why We Need Them, Why We Cannot Trust Them, How They Might Be Improved. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:356-366. [PMID: 38622101 DOI: 10.1134/s0006297924020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 04/17/2024]
Abstract
Late in life, the body is at war with itself. There is a program of self-destruction (phenoptosis) implemented via epigenetic and other changes. I refer to these as type (1) epigenetic changes. But the body retains a deep instinct for survival, and other epigenetic changes unfold in response to a perception of accumulated damage (type (2)). In the past decade, epigenetic clocks have promised to accelerate the search for anti-aging interventions by permitting prompt, reliable, and convenient measurement of their effects on lifespan without having to wait for trial results on mortality and morbidity. However, extant clocks do not distinguish between type (1) and type (2). Reversing type (1) changes extends lifespan, but reversing type (2) shortens lifespan. This is why all extant epigenetic clocks may be misleading. Separation of type (1) and type (2) epigenetic changes will lead to more reliable clock algorithms, but this cannot be done with statistics alone. New experiments are proposed. Epigenetic changes are the means by which the body implements phenoptosis, but they do not embody a clock mechanism, so they cannot be the body's primary timekeeper. The timekeeping mechanism is not yet understood, though there are hints that it may be (partially) located in the hypothalamus. For the future, we expect that the most fundamental measurement of biological age will observe this clock directly, and the most profound anti-aging interventions will manipulate it.
Collapse
|
35
|
Poudel SB, Ruff RR, Yildirim G, Miller RA, Harrison DE, Strong R, Kirsch T, Yakar S. Development of primary osteoarthritis during aging in genetically diverse UM-HET3 mice. RESEARCH SQUARE 2024:rs.3.rs-3858256. [PMID: 38343826 PMCID: PMC10854287 DOI: 10.21203/rs.3.rs-3858256/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Primary osteoarthritis (OA) occurs without identifiable underlying causes such as previous injuries or specific medical conditions. Age is a major contributing factor to OA, and as one ages, various joint tissues undergo gradual change, including degeneration of the articular cartilage, alterations in subchondral bone (SCB) morphology, and inflammation of the synovium. Methods We investigated the prevalence of primary OA in aged, genetically diverse UM-HET3 mice. Articular cartilage (AC) integrity and SCB morphology were assessed in 182 knee joints of 22-25 months old mice using the Osteoarthritis Research Society International (OARSI) scoring system and micro-CT, respectively. Additionally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. Results Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13, inducible nitric oxide synthase, and the NLR family pyrin domain containing-3 inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and β-galactosidase, also correlated with AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. Conclusions Our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| | - Ryan R Ruff
- David B. Kriser Dental Center, Biostatistics Core, Department of Epidemiology and Health Promotion, New York University College of Dentistry New York, NY 10010-4086
| | - Gozde Yildirim
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies and Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Thorsten Kirsch
- Department of Orthopaedic Surgery, NYU Grossman School of Medicine, and Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, NY
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| |
Collapse
|
36
|
Nassar K, El-Mekawey D, Elmasry AE, Refaey MS, El-Sayed Ghoneim M, Elshaier YAMM. The significance of caloric restriction mimetics as anti-aging drugs. Biochem Biophys Res Commun 2024; 692:149354. [PMID: 38091837 DOI: 10.1016/j.bbrc.2023.149354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Aging is an intricate process characterized by the gradual deterioration of the physiological integrity of a living organism. This unfortunate phenomenon inevitably leads to a decline in functionality and a heightened susceptibility to the ultimate fate of mortality. Therefore, it is of utmost importance to implement interventions that possess the capability to reverse or preempt age-related pathology. Caloric restriction mimetics (CRMs) refer to a class of molecules that have been observed to elicit advantageous outcomes on both health and longevity in various model organisms and human subjects. Notably, these compounds offer a promising alternative to the arduous task of adhering to a caloric restriction diet and mitigate the progression of the aging process and extend the duration of life in laboratory animals and human population. A plethora of molecular signals have been linked to the practice of caloric restriction, encompassing Insulin-like Growth Factor 1 (IGF1), Mammalian Target of Rapamycin (mTOR), the Adenosine Monophosphate-Activated Protein Kinase (AMPK) pathway, and Sirtuins, with particular emphasis on SIRT1. Therefore, this review will center its focus on several compounds that act as CRMs, highlighting their molecular targets, chemical structures, and mechanisms of action. Moreover, this review serves to underscore the significant relationship between post COVID-19 syndrome, antiaging, and importance of utilizing CRMs. This particular endeavor will serve as a comprehensive guide for medicinal chemists and other esteemed researchers, enabling them to meticulously conceive and cultivate novel molecular entities with the potential to function as efficacious antiaging pharmaceutical agents.
Collapse
Affiliation(s)
- Khloud Nassar
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Doaa El-Mekawey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Ahmed E Elmasry
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt.
| | - Yaseen A M M Elshaier
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| |
Collapse
|
37
|
Poudel SB, Ruff RR, Yildirim G, Miller RA, Harrison DE, Strong R, Kirsch T, Yakar S. Development of primary osteoarthritis during aging in genetically diverse UM-HET3 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.16.571693. [PMID: 38168298 PMCID: PMC10760163 DOI: 10.1101/2023.12.16.571693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This study investigated the prevalence and progression of primary osteoarthritis (OA) in aged UM-HET3 mice. Using the Osteoarthritis Research Society International (OARSI) scoring system, we assessed articular cartilage (AC) integrity in 182 knee joints of 22-25 months old mice. Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13 (MMP-13), inducible nitric oxide synthase (iNOS), and the NLR family pyrin domain containing-3 (NLRP3) inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and β-galactosidase, also correlated with AC scores. Using micro-CT, we examined the correlations between subchondral bone (SCB) morphology traits and AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Finally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. In conclusion, our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.
Collapse
|
38
|
Bartke A, Hascup E, Hascup K. Responses to Many Anti-Aging Interventions Are Sexually Dimorphic. World J Mens Health 2024; 42:29-38. [PMID: 37118966 PMCID: PMC10782120 DOI: 10.5534/wjmh.230015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 04/30/2023] Open
Abstract
There is increasing appreciation that sex differences are not limited to reproductive organs or traits related to reproduction and that sex is an important biological variable in most characteristics of a living organism. The biological process of aging and aging-related traits are no exception and exhibit numerous, often major, sex differences. This article explores one aspect of these differences, namely sex differences in the responses to anti-aging interventions. Aging can be slowed down and/or postponed by a variety of environmental ("lifestyle"), genetic or pharmacological interventions. Although many, particularly older studies utilized only one sex of experimental animals, there is considerable evidence that responses to these interventions can be very different in females and males. Calorie restriction (CR), that is reducing food intake without malnutrition can extend longevity in both sexes, but specific metabolic alterations and health benefits induced by CR are not the same in women and men. In laboratory mice, several of the genetic alterations that reduce insulin-like growth factor I (IGF-1) signaling extend longevity more effectively in females or in females only. Beneficial effects of rapamycin, an inhibitor of mTOR signaling, on mouse longevity are greater in females. In contrast, several anti-aging compounds, including a weak estrogen, 17 alpha estradiol, extend longevity of male, but not female, mice. Apparently, fundamental mechanisms of aging are not identical in females and males and it is essential to use both sexes in studies aimed at identifying novel anti-aging interventions. Recommendations for lifestyle modifications, drugs, and dietary supplements to maintain good health and functionality into advanced age and to live longer will likely need to be tailored to the sex of the user.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Erin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
39
|
Lagger C, Ursu E, Equey A, Avelar RA, Pisco AO, Tacutu R, de Magalhães JP. scDiffCom: a tool for differential analysis of cell-cell interactions provides a mouse atlas of aging changes in intercellular communication. NATURE AGING 2023; 3:1446-1461. [PMID: 37919434 PMCID: PMC10645595 DOI: 10.1038/s43587-023-00514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Dysregulation of intercellular communication is a hallmark of aging. To better quantify and explore changes in intercellular communication, we present scDiffCom and scAgeCom. scDiffCom is an R package, relying on approximately 5,000 curated ligand-receptor interactions, that performs differential intercellular communication analysis between two conditions from single-cell transcriptomics data. Built upon scDiffCom, scAgeCom is an atlas of age-related cell-cell communication changes covering 23 mouse tissues from 58 single-cell RNA sequencing datasets from Tabula Muris Senis and the Calico murine aging cell atlas. It offers a comprehensive resource of tissue-specific and sex-specific aging dysregulations and highlights age-related intercellular communication changes widespread across the whole body, such as the upregulation of immune system processes and inflammation, the downregulation of developmental processes, angiogenesis and extracellular matrix organization and the deregulation of lipid metabolism. Our analysis emphasizes the relevance of the specific ligands, receptors and cell types regulating these processes. The atlas is available online ( https://scagecom.org ).
Collapse
Affiliation(s)
- Cyril Lagger
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Altos Labs, San Diego, CA, USA
| | - Eugen Ursu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anaïs Equey
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Angela Oliveira Pisco
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Insitro, Inc., South San Francisco, USA
| | - Robi Tacutu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
40
|
Srivastava V, Gross E. Mitophagy-promoting agents and their ability to promote healthy-aging. Biochem Soc Trans 2023; 51:1811-1846. [PMID: 37650304 PMCID: PMC10657188 DOI: 10.1042/bst20221363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with age. Many age-associated diseases, including Alzheimer's and Parkinson's, are characterized by the accumulation of damaged mitochondria and oxidative damage. Therefore, activating the mitophagy process with small molecules is an emerging strategy for treating multiple aging diseases. Recent studies have identified natural and synthetic compounds that promote mitophagy and lifespan. This article aims to summarize the existing knowledge about these substances. For readers' convenience, the knowledge is presented in a table that indicates the chemical data of each substance and its effect on lifespan. The impact on healthspan and the molecular mechanism is reported if known. The article explores the potential of utilizing a combination of mitophagy-inducing drugs within a therapeutic framework and addresses the associated challenges of this strategy. Finally, we discuss the process that balances mitophagy, i.e. mitochondrial biogenesis. In this process, new mitochondrial components are generated to replace the ones cleared by mitophagy. Furthermore, some mitophagy-inducing substances activate biogenesis (e.g. resveratrol and metformin). Finally, we discuss the possibility of combining mitophagy and biogenesis enhancers for future treatment. In conclusion, this article provides an up-to-date source of information about natural and synthetic substances that activate mitophagy and, hopefully, stimulates new hypotheses and studies that promote healthy human aging worldwide.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| | - Einav Gross
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| |
Collapse
|
41
|
Watanabe K, Wilmanski T, Baloni P, Robinson M, Garcia GG, Hoopmann MR, Midha MK, Baxter DH, Maes M, Morrone SR, Crebs KM, Kapil C, Kusebauch U, Wiedrick J, Lapidus J, Pflieger L, Lausted C, Roach JC, Glusman G, Cummings SR, Schork NJ, Price ND, Hood L, Miller RA, Moritz RL, Rappaport N. Lifespan-extending interventions induce consistent patterns of fatty acid oxidation in mouse livers. Commun Biol 2023; 6:768. [PMID: 37481675 PMCID: PMC10363145 DOI: 10.1038/s42003-023-05128-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/10/2023] [Indexed: 07/24/2023] Open
Abstract
Aging manifests as progressive deteriorations in homeostasis, requiring systems-level perspectives to investigate the gradual molecular dysregulation of underlying biological processes. Here, we report systemic changes in the molecular regulation of biological processes under multiple lifespan-extending interventions. Differential Rank Conservation (DIRAC) analyses of mouse liver proteomics and transcriptomics data show that mechanistically distinct lifespan-extending interventions (acarbose, 17α-estradiol, rapamycin, and calorie restriction) generally tighten the regulation of biological modules. These tightening patterns are similar across the interventions, particularly in processes such as fatty acid oxidation, immune response, and stress response. Differences in DIRAC patterns between proteins and transcripts highlight specific modules which may be tightened via augmented cap-independent translation. Moreover, the systemic shifts in fatty acid metabolism are supported through integrated analysis of liver transcriptomics data with a mouse genome-scale metabolic model. Our findings highlight the power of systems-level approaches for identifying and characterizing the biological processes involved in aging and longevity.
Collapse
Affiliation(s)
| | | | - Priyanka Baloni
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | | | | | - Michal Maes
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Charu Kapil
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Jack Wiedrick
- Oregon Health and Science University, Portland, OR, USA
| | - Jodi Lapidus
- Oregon Health and Science University, Portland, OR, USA
| | - Lance Pflieger
- Institute for Systems Biology, Seattle, WA, USA
- Phenome Health, Seattle, WA, USA
| | | | | | | | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Nicholas J Schork
- Department of Quantitative Medicine, The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
- Department of Population Sciences and Molecular and Cell Biology, The City of Hope National Medical Center, Duarte, CA, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, USA
- Thorne HealthTech, New York, NY, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA.
- Phenome Health, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | | | | |
Collapse
|
42
|
Bene M, Salmon AB. Testing the evidence that lifespan-extending compound interventions are conserved across laboratory animal model species. GeroScience 2023; 45:1401-1409. [PMID: 36637786 PMCID: PMC10400519 DOI: 10.1007/s11357-022-00722-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
A growing number of pharmaceutical and small molecule interventions are reported to extend the lifespan of laboratory animals including Caenorhabditis, Drosophila, and mouse. However, the degree to which these pro-longevity interventions are conserved across species is unclear. Here, we took two approaches to ask the question: to what extent do longevity intervention studies in Caenorhabditis and Drosophila recapitulate effects on mouse lifespan? The first approach analyzes all published reports on longevity in the literature collated by the DrugAge database, and the second approach focused on results designed for reproducibility as reported from the NIA-supported Interventions Testing Program (ITP) and the Caenorhabditis Interventions Testing Program (CITP). Using published data sources, we identify only modest sensitivity and specificity of Drosophila interventional studies for identifying pro-longevity compounds in mouse lifespan studies. Surprisingly, reported studies in C. elegans show little predictive value for identifying drugs that extend lifespan in mice. The results therefore suggest caution should be used when making assumptions about the translatability of lifespan-extending compounds across species, including human intervention.
Collapse
Affiliation(s)
- Michael Bene
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Adam B Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA.
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, South Texas Veterans Health Care System, San Antonio, Texas, 78229, USA.
| |
Collapse
|
43
|
Knufinke M, MacArthur MR, Ewald CY, Mitchell SJ. Sex differences in pharmacological interventions and their effects on lifespan and healthspan outcomes: a systematic review. FRONTIERS IN AGING 2023; 4:1172789. [PMID: 37305228 PMCID: PMC10249017 DOI: 10.3389/fragi.2023.1172789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
With an increasing aging population, the burden of age-related diseases magnifies. To alleviate this burden, geroprotection has been an area of intense research focus with the development of pharmacological interventions that target lifespan and/or healthspan. However, there are often sex differences, with compounds mostly tested in male animals. Given the importance of considering both sexes in preclinical research, this neglects potential benefits for the female population, as interventions tested in both sexes often show clear sexual dimorphisms in their biological responses. To further understand the prevalence of sex differences in pharmacological geroprotective intervention studies, we performed a systematic review of the literature according to the PRISMA guidelines. Seventy-two studies met our inclusion criteria and were classified into one of five subclasses: FDA-repurposed drugs, novel small molecules, probiotics, traditional Chinese medicine, and antioxidants, vitamins, or other dietary supplements. Interventions were analyzed for their effects on median and maximal lifespan and healthspan markers, including frailty, muscle function and coordination, cognitive function and learning, metabolism, and cancer. With our systematic review, we found that twenty-two out of sixty-four compounds tested were able to prolong both lifespan and healthspan measures. Focusing on the use of female and male mice, and on comparing their outcomes, we found that 40% of studies only used male mice or did not clarify the sex. Notably, of the 36% of pharmacologic interventions that did use both male and female mice, 73% of these studies showed sex-specific outcomes on healthspan and/or lifespan. These data highlight the importance of studying both sexes in the search for geroprotectors, as the biology of aging is not the same in male and female mice. Systematic Review Registration: [website], identifier [registration number].
Collapse
|
44
|
González-Rodríguez P, Füllgrabe J, Joseph B. The hunger strikes back: an epigenetic memory for autophagy. Cell Death Differ 2023:10.1038/s41418-023-01159-4. [PMID: 37031275 DOI: 10.1038/s41418-023-01159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Historical and demographical human cohorts of populations exposed to famine, as well as animal studies, revealed that exposure to food deprivation is associated to lasting health-related effects for the exposed individuals, as well as transgenerational effects in their offspring that affect their diseases' risk and overall longevity. Autophagy, an evolutionary conserved catabolic process, serves as cellular response to cope with nutrient starvation, allowing the mobilization of an internal source of stored nutrients and the production of energy. We review the evidence obtained in multiple model organisms that support the idea that autophagy induction, including through dietary regimes based on reduced food intake, is in fact associated to improved health span and extended lifespan. Thereafter, we expose autophagy-induced chromatin remodeling, such as DNA methylation and histone posttranslational modifications that are known heritable epigenetic marks, as a plausible mechanism for transgenerational epigenetic inheritance of hunger.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Füllgrabe
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
45
|
Suarez LM, Diaz-Del Cerro E, Felix J, Gonzalez-Sanchez M, Ceprian N, Guerra-Perez N, G Novelle M, Martinez de Toda I, De la Fuente M. Sex differences in neuroimmunoendocrine communication. Involvement on longevity. Mech Ageing Dev 2023; 211:111798. [PMID: 36907251 DOI: 10.1016/j.mad.2023.111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Endocrine, nervous, and immune systems work coordinately to maintain the global homeostasis of the organism. They show sex differences in their functions that, in turn, contribute to sex differences beyond reproductive function. Females display a better control of the energetic metabolism and improved neuroprotection and have more antioxidant defenses and a better inflammatory status than males, which is associated with a more robust immune response than that of males. These differences are present from the early stages of life, being more relevant in adulthood and influencing the aging trajectory in each sex and may contribute to the different life lifespan between sexes.
Collapse
Affiliation(s)
- Luz M Suarez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.
| | - Estefania Diaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Judith Felix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica Gonzalez-Sanchez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Noemi Ceprian
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Natalia Guerra-Perez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Marta G Novelle
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain
| | - Irene Martinez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
46
|
Gorbunova V, Seluanov A. Introduction: Progression of the Science of Ageing. Subcell Biochem 2023; 102:1-6. [PMID: 36600127 DOI: 10.1007/978-3-031-21410-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We outline the progression of ageing research from ancient history to present day geroscience. Calorie restriction, genetic mutations, and the involvement of the sirtuins are highlighted, along with pharmaceutical interventions, in particular rapamycin. At the cellular level, replicative senescence and telomere shortening are presented in the history of ageing studies. We discuss the roles of macromolecular damage in ageing including damage to nuclear, and mitochondrial DNA, epigenetic and protein damage. The importance inflammation during ageing "inflammageing" is becoming increasingly recognized. Omics-based biomarkers are now proving to be a promising approach, along with comparative studies on long-lived animals. The science is getting closer to understanding the mechanisms of ageing and developing reliable interventions to improve human health.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA.
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
47
|
Hurvitz N, Elkhateeb N, Sigawi T, Rinsky-Halivni L, Ilan Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. FRONTIERS IN AGING 2022; 3:1044038. [PMID: 36589143 PMCID: PMC9795077 DOI: 10.3389/fragi.2022.1044038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Aging is a complex biological process with multifactorial nature underlined by genetic, environmental, and social factors. In the present paper, we review several mechanisms of aging and the pre-clinically and clinically studied anti-aging therapies. Variability characterizes biological processes from the genome to cellular organelles, biochemical processes, and whole organs' function. Aging is associated with alterations in the degrees of variability and complexity of systems. The constrained disorder principle defines living organisms based on their inherent disorder within arbitrary boundaries and defines aging as having a lower variability or moving outside the boundaries of variability. We focus on associations between variability and hallmarks of aging and discuss the roles of disorder and variability of systems in the pathogenesis of aging. The paper presents the concept of implementing the constrained disease principle-based second-generation artificial intelligence systems for improving anti-aging modalities. The platform uses constrained noise to enhance systems' efficiency and slow the aging process. Described is the potential use of second-generation artificial intelligence systems in patients with chronic disease and its implications for the aged population.
Collapse
Affiliation(s)
- Noa Hurvitz
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Narmine Elkhateeb
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Lilah Rinsky-Halivni
- Braun School of Public Health, Hebrew University of Jerusalem, Jerusalem, Israel,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel,*Correspondence: Yaron Ilan,
| |
Collapse
|
48
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
49
|
Syed MA, Aiyegbusi OL, Marston E, Lord JM, Teare H, Calvert M. Optimising the selection of outcomes for healthy ageing trials: a mixed methods study. GeroScience 2022; 44:2585-2609. [PMID: 36394790 PMCID: PMC9768083 DOI: 10.1007/s11357-022-00690-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Advancing age is associated with chronic diseases which are the largest cause of death and disability in developed countries. With increasing life expectancy and an ageing population, there is a need to conduct trials to extend healthy ageing, including targeting biological ageing processes, and prevent ageing-related diseases. The main objectives of the study are as follows: (i) to review outcome measures utilised in healthy ageing trials focusing on pharmacological therapies, nutritional supplements and medical devices; (ii) to summarise the views of key stakeholders on outcome selection for healthy ageing trials. An analysis of records from the Clinicaltrials.gov database pertaining to healthy ageing trials from inception to May 2022 was conducted. In addition, the findings of a workshop attended by key stakeholders at the 2022 annual UKSPINE conference were qualitatively analysed. Substantial heterogeneity was found in the interventions evaluated and the outcomes utilised by the included studies. Recruitment of participants with diverse backgrounds and the confounding effects of multi-morbidity in older adults were identified as the main challenges of measuring outcomes in healthy ageing trials by the workshop participants. The development of a core outcome set for healthy ageing trials can aid comparability across interventions and within different settings. The workshop provided an important platform to garner a range of perspectives on the challenges with measuring outcomes in this setting. It is critical to initiate such discussions to progress this field and provide practical answers to how healthy ageing trials are designed and structured in the future.
Collapse
Affiliation(s)
- Muslim Abbas Syed
- UK SPINE, University of Birmingham, Birmingham, UK
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
| | - Olalekan Lee Aiyegbusi
- UK SPINE, University of Birmingham, Birmingham, UK.
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK.
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK.
- NIHR SRMRC, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK.
- NIHR Applied Research Collaboration West Midlands, University of Birmingham, Birmingham, UK.
- NIHR Birmingham-Oxford Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK.
| | - Eliot Marston
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Melanie Calvert
- UK SPINE, University of Birmingham, Birmingham, UK
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- NIHR SRMRC, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- NIHR Applied Research Collaboration West Midlands, University of Birmingham, Birmingham, UK
- NIHR Birmingham-Oxford Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
| |
Collapse
|
50
|
Strong R, Miller RA, Cheng CJ, Nelson JF, Gelfond J, Allani SK, Diaz V, Dorigatti AO, Dorigatti J, Fernandez E, Galecki A, Ginsburg B, Hamilton KL, Javors MA, Kornfeld K, Kaeberlein M, Kumar S, Lombard DB, Lopez‐Cruzan M, Miller BF, Rabinovitch P, Reifsnyder P, Rosenthal NA, Bogue MA, Salmon AB, Suh Y, Verdin E, Weissbach H, Newman J, Maccchiarini F, Harrison DE. Lifespan benefits for the combination of rapamycin plus acarbose and for captopril in genetically heterogeneous mice. Aging Cell 2022; 21:e13724. [PMID: 36179270 PMCID: PMC9741502 DOI: 10.1111/acel.13724] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023] Open
Abstract
Mice bred in 2017 and entered into the C2017 cohort were tested for possible lifespan benefits of (R/S)-1,3-butanediol (BD), captopril (Capt), leucine (Leu), the Nrf2-activating botanical mixture PB125, sulindac, syringaresinol, or the combination of rapamycin and acarbose started at 9 or 16 months of age (RaAc9, RaAc16). In male mice, the combination of Rapa and Aca started at 9 months and led to a longer lifespan than in either of the two prior cohorts of mice treated with Rapa only, suggesting that this drug combination was more potent than either of its components used alone. In females, lifespan in mice receiving both drugs was neither higher nor lower than that seen previously in Rapa only, perhaps reflecting the limited survival benefits seen in prior cohorts of females receiving Aca alone. Capt led to a significant, though small (4% or 5%), increase in female lifespan. Capt also showed some possible benefits in male mice, but the interpretation was complicated by the unusually low survival of controls at one of the three test sites. BD seemed to produce a small (2%) increase in females, but only if the analysis included data from the site with unusually short-lived controls. None of the other 4 tested agents led to any lifespan benefit. The C2017 ITP dataset shows that combinations of anti-aging drugs may have effects that surpass the benefits produced by either drug used alone, and that additional studies of captopril, over a wider range of doses, are likely to be rewarding.
Collapse
Affiliation(s)
- Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of PharmacologyBarshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San AntonioTexasUSA
| | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Catherine J. Cheng
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San AntonioTexasUSA
| | - James F. Nelson
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San AntonioTexasUSA
| | - Jonathan Gelfond
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioTexasUSA
| | | | - Vivian Diaz
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San AntonioTexasUSA
| | - Angela Olsen Dorigatti
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Department of Molecular MedicineBarshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San AntonioTexasUSA
| | - Jonathan Dorigatti
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Department of Molecular MedicineBarshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San AntonioTexasUSA
| | - Elizabeth Fernandez
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of PharmacologyBarshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San AntonioTexasUSA
| | - Andrzej Galecki
- Departments of Internal Medicine and BiostatisticsUniversity of Michigan School of Medicine and School of Public HealthAnn ArborMichiganUSA
| | - Brett Ginsburg
- Department of PsychiatryUniversity of Texas Health Science Center at San AntonioTexasUSA
| | - Karyn L. Hamilton
- Department of Health and Exercise Science and the Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Martin A. Javors
- Department of PsychiatryUniversity of Texas Health Science Center at San AntonioTexasUSA
| | - Kerry Kornfeld
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Suja Kumar
- Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - David B. Lombard
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Marisa Lopez‐Cruzan
- Department of PsychiatryUniversity of Texas Health Science Center at San AntonioTexasUSA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma Nathan Shock Center, Oklahoma Center for GeroscienceHarold Hamm Diabetes CenterOklahoma CityOklahomaUSA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | | | | | | | - Adam B. Salmon
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Department of Molecular MedicineBarshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San AntonioTexasUSA
| | - Yousin Suh
- Department of Obstetrics & Gynecology, Department of Genetics & Development, Reproductive Aging ProgramVagelos College of Physicians & Surgeons Columbia UniversityNew YorkNew YorkUSA
| | - Eric Verdin
- Buck Institute for Research on AgingNovatoCaliforniaUSA
- Division of GeriatricsUniversity of California San FranciscoCaliforniaUSA
| | | | - John Newman
- Buck Institute for Research on AgingNovatoCaliforniaUSA
- Division of GeriatricsUniversity of California San FranciscoCaliforniaUSA
| | | | | |
Collapse
|