1
|
Chen H, Müller H, Rodovitis VG, Papadopoulos NT, Carey JR. Daily activity profiles over the lifespan of female medflies as biomarkers of aging and longevity. Aging Cell 2024; 23:e14080. [PMID: 38268242 PMCID: PMC11019124 DOI: 10.1111/acel.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
The relationship between the early-age activity of Mediterranean fruit flies (medflies) or other fruit flies and their lifespan has not been much studied, in contrast to the connections between lifespan and diet, sexual signaling, and reproduction. The objective of this study is to assess intra-day and day-to-day activity profiles of female Mediterranean fruit flies and their role as biomarker of longevity as well as to explore the relationships between these activity profiles, diet, and age-at-death throughout the lifespan. We use advanced statistical methods from functional data analysis (FDA). Three distinct patterns of activity variations in early-age activity profiles can be distinguished. A low-caloric diet is associated with a delayed activity peak, while a high-caloric diet is linked with an earlier activity peak. We find that age-at-death of individual medflies is connected to their activity profiles in early life. An increased risk of mortality is associated with increased activity in early age, as well as with a higher contrast between daytime and nighttime activity. Conversely, medflies are more likely to have a longer lifespan when they are fed a medium-caloric diet and when their daily activity is more evenly distributed across the early-age span and between daytime and nighttime. The before-death activity profile of medflies displays two characteristic before-death patterns, where one pattern is characterized by slowly declining daily activity and the other by a sudden decline in activity that is followed by death.
Collapse
Affiliation(s)
- Han Chen
- Department of StatisticsUniversity of California at DavisDavisCaliforniaUSA
| | - Hans‐Georg Müller
- Department of StatisticsUniversity of California at DavisDavisCaliforniaUSA
| | - Vasilis G. Rodovitis
- Department of Agriculture Crop Production and Rural EnvironmentUniversity of ThessalyVolosGreece
| | - Nikos T. Papadopoulos
- Department of Agriculture Crop Production and Rural EnvironmentUniversity of ThessalyVolosGreece
| | - James R. Carey
- Department of EntomologyUniversity of California at DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
Coleman CR, Pallos J, Arreola-Bustos A, Wang L, Raftery D, Promislow DEL, Martin I. Natural Variation in Age-Related Dopamine Neuron Degeneration is Glutathione-Dependent and Linked to Life Span. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580013. [PMID: 38405950 PMCID: PMC10888861 DOI: 10.1101/2024.02.12.580013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Naturally short-lived strains exhibit a loss of dopamine neurons but not generalized neurodegeneration, while long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress and vulnerability to silencing the familial PD gene parkin . Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (GCL) overexpression is sufficient to normalize ROS levels, extend life span and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is frequently reported in idiopathic PD patient brain. Building on this evidence, we detect reduced levels of GCL catalytic and modulatory subunits in brain from PD patients harboring the LRRK2 G2019S mutation, implicating possible glutathione deficits in familial LRRK2-linked PD. Our study across Drosophila and human PD systems suggests that glutathione plays an important role in the influence of aging on PD neurodegeneration.
Collapse
|
3
|
Wen Y, Chen H, Wang Y, Sun Y, Dou F, Du X, Liu T, Chen C. Extracellular vesicle-derived TP53BP1, CD34, and PBX1 from human peripheral blood serve as potential biomarkers for the assessment and prediction of vascular aging. Hereditas 2024; 161:3. [PMID: 38173016 PMCID: PMC10763334 DOI: 10.1186/s41065-023-00306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Vascular aging is an important pathophysiological basis for the senescence of various organs and systems in the human body, and it is a common pathogenetic trigger for many chronic diseases in the elderly. METHODS The extracellular vesicles (EVs) from young and aged umbilical vein endothelial cells were isolated and identified by qPCR the differential expression levels of 47 mRNAs of genes closely related to aging in the two groups. RESULTS There were significant differences in the expression levels of 18 genes (we noted upregulation in PLA2G12A, TP53BP1, CD144, PDE11A, FPGT, SERPINB4, POLD1, and PPFIBP2 and downregulation in ATP2C2, ROBO2, RRM2, GUCY1B1, NAT1-14, VEGFR2, WTAPP1, CD146, DMC1, and GRIK2). Subsequent qPCR identification of the above-mentioned genes in PBMCs and plasma-EVs from the various age groups revealed that the trend in expression levels in peripheral blood plasma-EVs of the different age groups was approximately the same as that in PBMCs. Of these mRNAs, the expression of four genes-PLA2G12A, TP53BP1, OPRL1, and KIAA0895-was commensurate with increasing age. In contradistinction, the expression trend of four genes (CREG1, PBX1, CD34, and SLIT2) was inversely proportional to the increase in age. Finally, by taking their intersection, we determined that the expression of TP53BP1 was upregulated with increasing human age and that CD34 and PBX1 were downregulated with increasing age. CONCLUSION Our study indicates that human peripheral blood plasma-EV-derived TP53BP1, CD34, and PBX1 potentially comprise a noninvasive biomarker for assessing and predicting vascular aging.
Collapse
Affiliation(s)
- Yichao Wen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China
| | - Haiyang Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China
| | - Yu Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yiqing Sun
- Eberly College of Science, Penn State University, University Park, PA, USA
| | - Fangfang Dou
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
5
|
Basova LV, Lindsey A, McGovern A, Rosander A, Delorme-Walker V, ElShamy WM, Pendyala VV, Gaskill PJ, Ellis RJ, Cherner M, Iudicello JE, Marcondes MCG. MRP8/14 Is a Molecular Signature Triggered by Dopamine in HIV Latent Myeloid Targets That Increases HIV Transcription and Distinguishes HIV+ Methamphetamine Users with Detectable CSF Viral Load and Brain Pathology. Viruses 2023; 15:1363. [PMID: 37376663 PMCID: PMC10304659 DOI: 10.3390/v15061363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
There is a significant overlap between HIV infection and substance-use disorders. Dopamine (DA) is the most abundantly upregulated neurotransmitter in methamphetamine abuse, with receptors (DRD1-5) that are expressed by neurons as well as by a large diversity of cell types, including innate immune cells that are the targets of HIV infection, making them responsive to the hyperdopaminergic environment that is characteristic of stimulant drugs. Therefore, the presence of high levels of dopamine may affect the pathogenesis of HIV, particularly in the brain. The stimulation of HIV latently infected U1 promonocytes with DA significantly increased viral p24 levels in the supernatant at 24 h, suggesting effects on activation and replication. Using selective agonists to different DRDs, we found that DRD1 played a major role in activating viral transcription, followed by DRD4, which increased p24 with a slower kinetic rate compared to DRD1. Transcriptome and systems biology analyses led to the identification of a cluster of genes responsive to DA, where S100A8 and S100A9 were most significantly correlated with the early increase in p24 levels following DA stimulation. Conversely, DA increased the expression of these genes' transcripts at the protein level, MRP8 and MRP14, respectively, which form a complex also known as calprotectin. Interestingly, MRP8/14 was able to stimulate HIV transcription in latent U1 cells, and this occurred via binding of the complex to the receptor for an advanced glycosylation end-product (RAGE). Using selective agonists, both DRD1 and DRD4 increased MRP8/14 on the surface, in the cytoplasm, as well as secreted in the supernatants. On the other hand, while DRD1/5 did not affect the expression of RAGE, DRD4 stimulation caused its downregulation, offering a mechanism for the delayed effect via DRD4 on the p24 increase. To cross-validate MRP8/14 as a DA signature with a biomarker value, we tested its expression in HIV+ Meth users' postmortem brain specimens and peripheral cells. MRP8/14+ cells were more frequently identified in mesolimbic areas such as the basal ganglia of HIV+ Meth+ cases compared to HIV+ non-Meth users or to controls. Likewise, MRP8/14+ CD11b+ monocytes were more frequent in HIV+ Meth users, particularly in specimens from participants with a detectable viral load in the CSF. Overall, our results suggest that the MRP8 and MRP14 complex may serve as a signature to distinguish subjects using addictive substances in the context of HIV, and that this may play a role in aggravating HIV pathology by promoting viral replication in people with HIV who use Meth.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | | | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
- Human Biology Program BISP, University of California San Diego, San Diego, CA 92037, USA
| | | | - Wael M. ElShamy
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | | | - Ronald J. Ellis
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92103, USA
| | - Mariana Cherner
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92103, USA
| | - Jennifer E. Iudicello
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92103, USA
| | | |
Collapse
|
6
|
Graham C, Stefanatos R, Yek AEH, Spriggs RV, Loh SHY, Uribe AH, Zhang T, Martins LM, Maddocks ODK, Scialo F, Sanz A. Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies. GeroScience 2022; 44:1961-1974. [PMID: 35355221 PMCID: PMC9616974 DOI: 10.1007/s11357-022-00555-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial reactive oxygen species (mtROS) are cellular messengers essential for cellular homeostasis. In response to stress, reverse electron transport (RET) through respiratory complex I generates high levels of mtROS. Suppression of ROS production via RET (ROS-RET) reduces survival under stress, while activation of ROS-RET extends lifespan in basal conditions. Here, we demonstrate that ROS-RET signalling requires increased electron entry and uninterrupted electron flow through the electron transport chain (ETC). We find that in old fruit flies, ROS-RET is abolished when electron flux is decreased and that their mitochondria produce consistently high levels of mtROS. Finally, we demonstrate that in young flies, limiting electron exit, but not entry, from the ETC phenocopies mtROS generation observed in old individuals. Our results elucidate the mechanism by which ROS signalling is lost during ageing.
Collapse
Affiliation(s)
- Charlotte Graham
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
- Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Angeline E H Yek
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Ruth V Spriggs
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK
- Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Alejandro Huerta Uribe
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
| | - Tong Zhang
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
- Novartis Institutes for BioMedical Research, Shanghai, 201203, China
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Oliver D K Maddocks
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
| | - Filippo Scialo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
- Dipartimento Di Scienze Mediche Traslazionali, Università Degli Studi Della Campania "Luigi Vanvitelli", 80131, Naples, Italy.
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
7
|
Nie C, Li T, Fan M, Wang Y, Sun Y, He R, Zhang X, Qian H, Ying H, Wang L, Li Y. Polyphenols in Highland barley tea inhibit the production of Advanced glycosylation end-products and alleviate the skeletal muscle damage. Mol Nutr Food Res 2022; 66:e2200225. [PMID: 35894228 DOI: 10.1002/mnfr.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Highland barley tea is a kind of caffeine-free cereal tea. Previous studies have shown that it was rich in polyphenol flavonoids. Here, the effect of Highland barley tea polyphenols (HBP) on the production of advanced glycosylation end-products and alleviate the skeletal muscle damage is systematically investigated. METHODS and results: HBP effectively inhibited the formation of AGEs in vitro, and 12 phenolic compounds were identified. In addition, D-galactose was used to construct a mouse senescence model and intervened with different doses of HBP. It was found that high doses of HBP effectively inhibited AGEs in serum and flounder muscle species and increased muscle mass in flounder muscle; also, high doses of HBP increased the expression of the mitochondrial functional protein SIRT3 and decreased the expression of myasthenia-related proteins. Furthermore, cellular experiments showed that AGEs could significantly increase oxidative stress in skeletal muscle. CONCLUSION These data indicate that the relationship between the biological activity and HBP properties is relevant since Highland barley could be a potential functional food to prevent AGEs-mediated skeletal muscle damage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, 510663, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, 510663, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Rodovitis VG, Papanastasiou SA, Bataka EP, Nakas CT, Koulousis NA, Carey JR, Papadopoulos NT. Electronic recording of lifetime locomotory activity patterns of adult medflies. PLoS One 2022; 17:e0269940. [PMID: 35877614 PMCID: PMC9312368 DOI: 10.1371/journal.pone.0269940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Age-specific and diurnal patterns of locomotory activity, can be considered as biomarkers of aging in model organisms and vary across the lifetime of individuals. Τhe Mediterranean fruit fly (medfly), Ceratitis capitata, is a commonly used model-species in studies regarding demography and aging. In the present study, we introduce a modification of the automated locomotory activity electronic device LAM25system (Locomotory Activity Monitor)-Trikinetics, commonly used in short time studies, to record the daily locomotory activity patterns of adult medflies throughout the life. Additionally, fecundity rates and survival of adult medflies were recorded. Male and female medflies were kept in the system tubes and had access to an agar-based gel diet, which provided water and nutrients. The locomotory activity was recorded at every minute by three monitors in the electronic device. The locomotory activity of females was higher than that of males across the different ages. For both sexes locomotory rates were high during the first 20 days of the adult life and decreased in older ages. The activity of males was high in the morning and late afternoon hours, while that of females was constantly high throughout the photophase. Negligible locomotory activity was recorded for both sexes during the nighttime. Males outlived females. Fecundity of females was higher in younger ages. Our results support the adoption of LAM25system in studies addressing aging of insects using medfly as a model organism.
Collapse
Affiliation(s)
- Vasilis G. Rodovitis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Stella A. Papanastasiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Evmorfia P. Bataka
- Laboratory of Biometry, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Christos T. Nakas
- Laboratory of Biometry, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nikos A. Koulousis
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - James R. Carey
- Department of Entomology University of California Davis, Davis, California, United States of America
- Center for the Economics and Demography of Aging University of California Berkeley, Berkeley, California, United States of America
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
9
|
Jayaraj P, Sarkar P, Routh S, Sarathe C, Rajagopal D, Thirumurugan K. A promising discovery of anti-aging chemical conjugate derived from lipoic acid and sesamol established in Drosophila melanogaster. NEW J CHEM 2022. [DOI: 10.1039/d2nj00720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytonutrients, lipoic acid and sesamol, were chemically combined to yield medically important lipoic acid-sesamol conjugate (LSC). NMR and LC-MS/MS techniques were used to determine the chemical structure of LSC. The...
Collapse
|
10
|
Martin N, Hulbert AJ, Bicudo JEPW, Mitchell TW, Else PL. The adult lifespan of the female honey bee (Apis mellifera): Metabolic rate, AGE pigment and the effect of dietary fatty acids. Mech Ageing Dev 2021; 199:111562. [PMID: 34425137 DOI: 10.1016/j.mad.2021.111562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 01/23/2023]
Abstract
Female honey bees can be queens or workers and although genetically identical, workers have an adult lifespan of weeks while queens can live for years. The mechanisms underlying this extraordinary difference remain unknown. This study examines three potential explanations of the queen-worker lifespan difference. Metabolic rates were similar in age-matched queens and workers and thus are not an explanation. The accumulation of fluorescent AGE pigment has been successfully used as a good measure of cellular senescence in many species. Unlike other animals, AGE pigment level reduced during adult life of queens and workers. This unusual finding suggests female honey bees can either modify, or remove from their body, AGE pigment. Another queen-worker difference is that, as adults, workers eat pollen but queens do not. Pollen is a source of polyunsaturated fatty acids. Its consumption explains the queen-worker difference in membrane fat composition of female adult honey bees which has previously been suggested as a cause of the lifespan difference. We were able to produce "queen-worker" membrane differences in workers by manipulation of diet that did not change worker lifespan and we can, thus, also rule out pollen consumption by workers as an explanation of the dramatic queen-worker lifespan difference.
Collapse
Affiliation(s)
- N Martin
- School of Medicine, University of Wollongong, NSW, 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, 2522, Australia; School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW, 2522, Australia
| | - A J Hulbert
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW, 2522, Australia
| | - J E P W Bicudo
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW, 2522, Australia
| | - T W Mitchell
- School of Medicine, University of Wollongong, NSW, 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, 2522, Australia
| | - P L Else
- School of Medicine, University of Wollongong, NSW, 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, 2522, Australia.
| |
Collapse
|
11
|
Giacomello E, Toniolo L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021; 13:2346. [PMID: 34371855 PMCID: PMC8308705 DOI: 10.3390/nu13072346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is a biological process determined by multiple cellular mechanisms, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, that ultimately concur in the functional decline of the individual. The evidence that the old population is steadily increasing and will triplicate in the next 50 years, together with the fact the elderlies are more prone to develop pathologies such as cancer, diabetes, and degenerative disorders, stimulates an important effort in finding specific countermeasures. Calorie restriction (CR) has been demonstrated to modulate nutrient sensing mechanisms, inducing a better metabolic profile, enhanced stress resistance, reduced oxidative stress, and improved inflammatory response. Therefore, CR and CR-mimetics have been suggested as powerful means to slow aging and extend healthy life-span in experimental models and humans. Taking into consideration the difficulties and ethical issues in performing aging research and testing anti-aging interventions in humans, researchers initially need to work with experimental models. The present review reports the major experimental models utilized in the study of CR and CR-mimetics, highlighting their application in the laboratory routine, and their translation to human research.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
12
|
Cayuela H, Dorant Y, Forester BR, Jeffries DL, Mccaffery RM, Eby LA, Hossack BR, Gippet JMW, Pilliod DS, Chris Funk W. Genomic signatures of thermal adaptation are associated with clinal shifts of life history in a broadly distributed frog. J Anim Ecol 2021; 91:1222-1238. [PMID: 34048026 PMCID: PMC9292533 DOI: 10.1111/1365-2656.13545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Temperature is a critical driver of ectotherm life‐history strategies, whereby a warmer environment is associated with increased growth, reduced longevity and accelerated senescence. Increasing evidence indicates that thermal adaptation may underlie such life‐history shifts in wild populations. Single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) can help uncover the molecular mechanisms of temperature‐driven variation in growth, longevity and senescence. However, our understanding of these mechanisms is still limited, which reduces our ability to predict the response of non‐model ectotherms to global temperature change. In this study, we examined the potential role of thermal adaptation in clinal shifts of life‐history traits (i.e. life span, senescence rate and recruitment) in the Columbia spotted frog Rana luteiventris along a broad temperature gradient in the western United States. We took advantage of extensive capture–recapture datasets of 20,033 marked individuals from eight populations surveyed annually for 14–18 years to examine how mean annual temperature and precipitation influenced demographic parameters (i.e. adult survival, life span, senescence rate, recruitment and population growth). After showing that temperature was the main climatic predictor influencing demography, we used RAD‐seq data (50,829 SNPs and 6,599 putative CNVs) generated for 352 individuals from 31 breeding sites to identify the genomic signatures of thermal adaptation. Our results showed that temperature was negatively associated with annual adult survival and reproductive life span and positively associated with senescence rate. By contrast, recruitment increased with temperature, promoting the long‐term viability of most populations. These temperature‐dependent demographic changes were associated with strong genomic signatures of thermal adaptation. We identified 148 SNP candidates associated with temperature including three SNPs located within protein‐coding genes regulating resistance to cold and hypoxia, immunity and reproduction in ranids. We also identified 39 CNV candidates (including within 38 transposable elements) for which normalized read depth was associated with temperature. Our study indicates that both SNPs and structural variants are associated with temperature and could eventually be found to play a functional role in clinal shifts in senescence rate and life‐history strategies in R. luteiventris. These results highlight the potential role of different sources of molecular variation in the response of ectotherms to environmental temperature variation in the context of global warming.
Collapse
Affiliation(s)
- Hugo Cayuela
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Brenna R Forester
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Dan L Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Rebecca M Mccaffery
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Port Angeles, WA, USA
| | - Lisa A Eby
- Wildlife Biology Program, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Blake R Hossack
- US Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT, USA
| | - Jérôme M W Gippet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - David S Pilliod
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Filošević Vujnović A, Jović K, Pištan E, Andretić Waldowski R. Influence of Dopamine on Fluorescent Advanced Glycation End Products Formation Using Drosophila melanogaster. Biomolecules 2021; 11:biom11030453. [PMID: 33803017 PMCID: PMC8002736 DOI: 10.3390/biom11030453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/14/2023] Open
Abstract
Non-enzymatic glycation and covalent modification of proteins leads to Advanced Glycation End products (AGEs). AGEs are biomarkers of aging and neurodegenerative disease, and can be induced by impaired neuronal signaling. The objective of this study was to investigate if manipulation of dopamine (DA) in vitro using the model protein, bovine serum albumin (BSA), and in vivo using the model organism Drosophila melanogaster, influences fluorescent AGEs (fAGEs) formation as an indicator of dopamine-induced oxidation events. DA inhibited fAGEs-BSA synthesis in vitro, suggesting an anti-oxidative effect, which was not observed when flies were fed DA. Feeding flies cocaine and methamphetamine led to increased fAGEs formation. Mutants lacking the dopaminergic transporter or the D1-type showed further elevation of fAGEs accumulation, indicating that the long-term perturbation in DA function leads to higher production of fAGEs. To confirm that DA has oxidative properties in vivo, we fed flies antioxidant quercetin (QUE) together with methamphetamine. QUE significantly decreased methamphetamine-induced fAGEs formation suggesting that the perturbation of DA function in vivo leads to increased oxidation. These findings present arguments for the use of fAGEs as a biomarker of DA-associated neurodegenerative changes and for assessment of antioxidant interventions such as QUE treatment.
Collapse
Affiliation(s)
| | - Katarina Jović
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK;
| | | | - Rozi Andretić Waldowski
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia;
- Correspondence: ; Tel.: +385-51-584-553
| |
Collapse
|
14
|
Scialo F, Sanz A. Coenzyme Q redox signalling and longevity. Free Radic Biol Med 2021; 164:187-205. [PMID: 33450379 DOI: 10.1016/j.freeradbiomed.2021.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Mitochondria are the powerhouses of the cell. They produce a significant amount of the energy we need to grow, survive and reproduce. The same system that generates energy in the form of ATP also produces Reactive Oxygen Species (ROS). Mitochondrial Reactive Oxygen Species (mtROS) were considered for many years toxic by-products of metabolism, responsible for ageing and many degenerative diseases. Today, we know that mtROS are essential redox messengers required to determine cell fate and maintain cellular homeostasis. Most mtROS are produced by respiratory complex I (CI) and complex III (CIII). How and when CI and CIII produce ROS is determined by the redox state of the Coenzyme Q (CoQ) pool and the proton motive force (pmf) generated during respiration. During ageing, there is an accumulation of defective mitochondria that generate high levels of mtROS. This causes oxidative stress and disrupts redox signalling. Here, we review how mtROS are generated in young and old mitochondria and how CI and CIII derived ROS control physiological and pathological processes. Finally, we discuss why damaged mitochondria amass during ageing as well as methods to preserve mitochondrial redox signalling with age.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", 80131, Napoli, Italy
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom.
| |
Collapse
|
15
|
Belyi AA, Alekseev AA, Fedintsev AY, Balybin SN, Proshkina EN, Shaposhnikov MV, Moskalev AA. The Resistance of Drosophila melanogaster to Oxidative, Genotoxic, Proteotoxic, Osmotic Stress, Infection, and Starvation Depends on Age According to the Stress Factor. Antioxidants (Basel) 2020; 9:antiox9121239. [PMID: 33297320 PMCID: PMC7762242 DOI: 10.3390/antiox9121239] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023] Open
Abstract
We studied how aging affects the ability of Drosophila melanogaster to tolerate various types of stress factors. Data were obtained on the resistance of D. melanogaster to oxidative and genotoxic (separately paraquat, Fe3+, Cu2+, and Zn2+ ions), proteotoxic (hyperthermia, Cd2+ ions), and osmotic (NaCl) stresses, starvation, and infection with the pathological Beauveria bassiana fungus at different ages. In all cases, we observed a strong negative correlation between age and stress tolerance. The largest change in the age-dependent decline in survival occurred under oxidative and osmotic stress. In most experiments, we observed that young Drosophila females have higher stress resistance than males. We checked whether it is possible to accurately assess the biological age of D. melanogaster based on an assessment of stress tolerance. We have proposed a new approach for assessing a biological age of D. melanogaster using a two-parameter survival curve model. For the model, we used an algorithm that evaluated the quality of age prediction for different age and gender groups. The best predictions were obtained for females who were exposed to CdCl2 and ZnCl2 with an average error of 0.32 days and 0.36 days, respectively. For males, the best results were observed for paraquat and NaCl with an average error of 0.61 and 0.68 days, respectively. The average accuracy for all stresses in our model was 1.73 days.
Collapse
Affiliation(s)
- Alexei A. Belyi
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Alekseev
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Alexander Y. Fedintsev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Stepan N. Balybin
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Ekaterina N. Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Mikhail V. Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
- Correspondence: ; Tel.: +78-21-231-2894
| |
Collapse
|
16
|
Cohen AA, Legault V, Fülöp T. What if there’s no such thing as “aging”? Mech Ageing Dev 2020; 192:111344. [DOI: 10.1016/j.mad.2020.111344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
|
17
|
The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity. Antioxidants (Basel) 2020; 9:antiox9111132. [PMID: 33203089 PMCID: PMC7696601 DOI: 10.3390/antiox9111132] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
The nonenzymatic adduction of malondialdehyde (MDA) to the protein amino groups leads to the formation of malondialdehyde-lysine (MDALys). The degree of unsaturation of biological membranes and the intracellular oxidative conditions are the main factors that modulate MDALys formation. The low concentration of this modification in the different cellular components, found in a wide diversity of tissues and animal species, is indicative of the presence of a complex network of cellular protection mechanisms that avoid its cytotoxic effects. In this review, we will focus on the chemistry of this lipoxidation-derived protein modification, the specificity of MDALys formation in proteins, the methodology used for its detection and quantification, the MDA-lipoxidized proteome, the metabolism of MDA-modified proteins, and the detrimental effects of this protein modification. We also propose that MDALys is an indicator of the rate of aging based on findings which demonstrate that (i) MDALys accumulates in tissues with age, (ii) the lower the concentration of MDALys the greater the longevity of the animal species, and (iii) its concentration is attenuated by anti-aging nutritional and pharmacological interventions.
Collapse
|
18
|
Lennicke C, Cochemé HM. Redox signalling and ageing: insights from Drosophila. Biochem Soc Trans 2020; 48:367-377. [PMID: 32196546 PMCID: PMC7200633 DOI: 10.1042/bst20190052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Ageing and age-related diseases are major challenges for the social, economic and healthcare systems of our society. Amongst many theories, reactive oxygen species (ROS) have been implicated as a driver of the ageing process. As by-products of aerobic metabolism, ROS are able to randomly oxidise macromolecules, causing intracellular damage that accumulates over time and ultimately leads to dysfunction and cell death. However, the genetic overexpression of enzymes involved in the detoxification of ROS or treatment with antioxidants did not generally extend lifespan, prompting a re-evaluation of the causal role for ROS in ageing. More recently, ROS have emerged as key players in normal cellular signalling by oxidising redox-sensitive cysteine residues within proteins. Therefore, while high levels of ROS may be harmful and induce oxidative stress, low levels of ROS may actually be beneficial as mediators of redox signalling. In this context, enhancing ROS production in model organisms can extend lifespan, with biological effects dependent on the site, levels, and specific species of ROS. In this review, we examine the role of ROS in ageing, with a particular focus on the importance of the fruit fly Drosophila as a powerful model system to study redox processes in vivo.
Collapse
Affiliation(s)
- Claudia Lennicke
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, U.K
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
| | - Helena M. Cochemé
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, U.K
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
| |
Collapse
|
19
|
van Dam E, van Leeuwen LAG, Dos Santos E, James J, Best L, Lennicke C, Vincent AJ, Marinos G, Foley A, Buricova M, Mokochinski JB, Kramer HB, Lieb W, Laudes M, Franke A, Kaleta C, Cochemé HM. Sugar-Induced Obesity and Insulin Resistance Are Uncoupled from Shortened Survival in Drosophila. Cell Metab 2020; 31:710-725.e7. [PMID: 32197072 PMCID: PMC7156915 DOI: 10.1016/j.cmet.2020.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/29/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
High-sugar diets cause thirst, obesity, and metabolic dysregulation, leading to diseases including type 2 diabetes and shortened lifespan. However, the impact of obesity and water imbalance on health and survival is complex and difficult to disentangle. Here, we show that high sugar induces dehydration in adult Drosophila, and water supplementation fully rescues their lifespan. Conversely, the metabolic defects are water-independent, showing uncoupling between sugar-induced obesity and insulin resistance with reduced survival in vivo. High-sugar diets promote accumulation of uric acid, an end-product of purine catabolism, and the formation of renal stones, a process aggravated by dehydration and physiological acidification. Importantly, regulating uric acid production impacts on lifespan in a water-dependent manner. Furthermore, metabolomics analysis in a human cohort reveals that dietary sugar intake strongly predicts circulating purine levels. Our model explains the pathophysiology of high-sugar diets independently of obesity and insulin resistance and highlights purine metabolism as a pro-longevity target.
Collapse
Affiliation(s)
- Esther van Dam
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Lucie A G van Leeuwen
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Eliano Dos Santos
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Joel James
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Lena Best
- Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Claudia Lennicke
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alec J Vincent
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Georgios Marinos
- Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Andrea Foley
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Marcela Buricova
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Joao B Mokochinski
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Holger B Kramer
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, 24105 Kiel, Germany
| | - Matthias Laudes
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Christoph Kaleta
- Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Helena M Cochemé
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
20
|
Krittika S, Yadav P. An overview of two decades of diet restriction studies using Drosophila. Biogerontology 2019; 20:723-740. [PMID: 31375967 DOI: 10.1007/s10522-019-09827-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) is a potent forerunner in aging studies capable of influencing lifespan and improving health in various model organisms even in their old age. Despite the importance of protein and carbohydrates in the diet (regulation of fecundity and body maintenance respectively), different ratio based combinations of these components has played a major role in lifespan extension studies. In spite of differences existing in dietary protocols across laboratories, diet manipulations have evolved as a major area of research in Drosophila lifespan studies, prominently shedding light on the multi-faceted process over the last two decades. Here, we review various advances and technicalities involved in understanding the DR-mediated lifespan alongside discussing the pros and cons of various existing approaches/diets used across labs. The current review also focuses on the importance of life-stage specific DR implementation and their influence on the life-history traits including lifespan and fecundity, by taking examples of results from different studies comprising diet dilution, calorie restriction, protein restriction, carbohydrate: protein ratios and the modulations in various minor diet components. We thereby intend to gather the major advances made in these fields alongside reviewing the practical implementations that need to be made to get a better view of the DR-mediated lifespan studies.
Collapse
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
21
|
Kelly SP, Dawson-Scully K. Natural polymorphism in protein kinase G modulates functional senescence in D rosophila melanogaster. J Exp Biol 2019; 222:jeb.199364. [PMID: 30910834 DOI: 10.1242/jeb.199364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022]
Abstract
The common fruit fly, Drosophila melanogaster, is a well-characterized model for neurological disorders and is widely used to investigate the biology of aging, stress tolerance and pleiotropy. The foraging (for) gene encodes a cGMP-dependent protein kinase (PKG), which has been implicated in several behavioral phenotypes including feeding, sleep, learning and memory, and environmental stress tolerance. We used the well-established Drosophila activity monitor (DAM) to investigate the effects of the conserved NO/cGMP/PKG signaling pathway on functional senescence. Our results show that the polymorphic for gene confers protection during low oxygen stress at the expense of longevity and a decline in locomotor activity with age in D. melanogaster, which suggests a novel role for the PKG pathway in healthy aging and senescence.
Collapse
Affiliation(s)
- Stephanie P Kelly
- Florida Atlantic University, Department of Biological Sciences, Boca Raton, FL 33431, USA
| | - Ken Dawson-Scully
- Florida Atlantic University, Department of Biological Sciences, Boca Raton, FL 33431, USA
| |
Collapse
|
22
|
Ogrodnik M, Salmonowicz H, Gladyshev VN. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell 2019; 18:e12841. [PMID: 30346102 PMCID: PMC6351832 DOI: 10.1111/acel.12841] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding the aging process and ways to manipulate it is of major importance for biology and medicine. Among the many aging theories advanced over the years, the concept most consistent with experimental evidence posits the buildup of numerous forms of molecular damage as a foundation of the aging process. Here, we discuss that this concept integrates well with recent findings on cellular senescence, offering a novel view on the role of senescence in aging and age‐related disease. Cellular senescence has a well‐established role in cellular aging, but its impact on the rate of organismal aging is less defined. One of the most prominent features of cellular senescence is its association with macromolecular damage. The relationship between cell senescence and damage concerns both damage as a molecular signal of senescence induction and accelerated accumulation of damage in senescent cells. We describe the origin, regulatory mechanisms, and relevance of various damage forms in senescent cells. This view on senescent cells as carriers and inducers of damage puts new light on senescence, considering it as a significant contributor to the rise in organismal damage. Applying these ideas, we critically examine current evidence for a role of cellular senescence in aging and age‐related diseases. We also discuss the differential impact of longevity interventions on senescence burden and other types of age‐related damage. Finally, we propose a model on the role of aging‐related damage accumulation and the rate of aging observed upon senescent cell clearance.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Hanna Salmonowicz
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Vadim N. Gladyshev
- Division of Genetics; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston Massachusetts
| |
Collapse
|
23
|
Carroll B, Otten EG, Manni D, Stefanatos R, Menzies FM, Smith GR, Jurk D, Kenneth N, Wilkinson S, Passos JF, Attems J, Veal EA, Teyssou E, Seilhean D, Millecamps S, Eskelinen EL, Bronowska AK, Rubinsztein DC, Sanz A, Korolchuk VI. Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nat Commun 2018; 9:256. [PMID: 29343728 PMCID: PMC5772351 DOI: 10.1038/s41467-017-02746-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival. The cellular mechanisms underlying autophagy are conserved; however it is unclear how they evolved in higher organisms. Here the authors identify two oxidation-sensitive cysteine residues in the autophagy receptor SQSTM1/p62 in vertebrates which allow activation of pro-survival autophagy in stress conditions.
Collapse
Affiliation(s)
- Bernadette Carroll
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Elsje G Otten
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Diego Manni
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Fiona M Menzies
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Graham R Smith
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.,Bioinformatics Support Unit (BSU); Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Diana Jurk
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Niall Kenneth
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Simon Wilkinson
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Joao F Passos
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Johannes Attems
- Institute of Neuroscience (IoN); Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Elisa Teyssou
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM U1127, CNRS UMR7225, Sorbonne Universités, Université Pierre et Marie Curie, University of Paris 06, UPMC-P6 UMRS1127, Hôpital Pitié-Salpêtrière, Paris, France
| | - Danielle Seilhean
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM U1127, CNRS UMR7225, Sorbonne Universités, Université Pierre et Marie Curie, University of Paris 06, UPMC-P6 UMRS1127, Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neuropathologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphanie Millecamps
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM U1127, CNRS UMR7225, Sorbonne Universités, Université Pierre et Marie Curie, University of Paris 06, UPMC-P6 UMRS1127, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | - David C Rubinsztein
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,UK Dementia Research Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
24
|
Tsakiri EN, Gaboriaud-Kolar N, Iliaki KK, Tchoumtchoua J, Papanagnou ED, Chatzigeorgiou S, Tallas KD, Mikros E, Halabalaki M, Skaltsounis AL, Trougakos IP. The Indirubin Derivative 6-Bromoindirubin-3'-Oxime Activates Proteostatic Modules, Reprograms Cellular Bioenergetic Pathways, and Exerts Antiaging Effects. Antioxid Redox Signal 2017; 27:1027-1047. [PMID: 28253732 PMCID: PMC5651956 DOI: 10.1089/ars.2016.6910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Organismal aging can be delayed by mutations that either activate stress responses or reduce the nutrient-sensing pathway signaling; thus, by using Drosophila melanogaster as an in vivo experimental screening platform, we searched for compounds that modulate these pathways. RESULTS We noted that oral administration of the glycogen synthase kinase 3 (Gsk-3) inhibitor 6-bromoindirubin-3'-oxime (6BIO) in Drosophila flies extended healthy life span. 6BIO is not metabolized in fly tissues, modulated bioenergetic pathways, decreased lipid and glucose tissue load, activated antioxidant and proteostatic modules, and enhanced resistance to stressors. Mechanistically, we found that the effects on the stress-responsive pathways were largely dependent on the activity of the transcription factor nuclear factor erythroid 2-related factor (Nrf-2). Genetic inhibition of Gsk-3 largely phenocopied the 6BIO-mediated effects, while high levels of Gsk-3 expression and/or kinase activity suppressed proteostatic modules and reduced flies' longevity; these effects were partially rescued by 6BIO. Also, 6BIO was found to partially reduce the 3-phosphoinositide-dependent protein kinase-1 (Pdpk1) activity, a major effector of the insulin/insulin-like growth factor-1 cell signaling pathways. INNOVATION 6BIO exerts the unique property of increasing stress tolerance and in parallel partially suppressing the nutrient-sensing pathway signaling. CONCLUSION Our findings suggest that the 6BIO scaffold can be used for the development of novel antiaging compounds. Antioxid. Redox Signal. 27, 1027-1047.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Nicolas Gaboriaud-Kolar
- 2 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Kalliopi K Iliaki
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Job Tchoumtchoua
- 2 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Eleni-Dimitra Papanagnou
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Sofia Chatzigeorgiou
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Konstantinos D Tallas
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Emmanuel Mikros
- 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Maria Halabalaki
- 2 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Alexios-Leandros Skaltsounis
- 2 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Ioannis P Trougakos
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| |
Collapse
|
25
|
Kohyama-Koganeya A, Kurosawa M, Hirabayashi Y. Loss of BOSS Causes Shortened Lifespan with Mitochondrial Dysfunction in Drosophila. PLoS One 2017; 12:e0169073. [PMID: 28045997 PMCID: PMC5207625 DOI: 10.1371/journal.pone.0169073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/12/2016] [Indexed: 01/17/2023] Open
Abstract
Aging is a universal process that causes deterioration in biological functions of an organism over its lifetime. There are many risk factors that are thought to contribute to aging rate, with disruption of metabolic homeostasis being one of the main factors that accelerates aging. Previously, we identified a new function for the putative G-protein-coupled receptor, Bride of sevenless (BOSS), in energy metabolism. Since maintaining metabolic homeostasis is a critical factor in aging, we investigated whether BOSS plays a role in the aging process. Here, we show that BOSS affects lifespan regulation. boss null mutants exhibit shortened lifespans, and their locomotor performance and gut lipase activity—two age-sensitive markers—are diminished and similar to those of aged control flies. Reactive oxygen species (ROS) production is also elevated in boss null mutants, and their ROS defense system is impaired. The accumulation of protein adducts (advanced lipoxidation end products [ALEs] and advanced glycation end products [AGEs]) caused by oxidative stress are elevated in boss mutant flies. Furthermore, boss mutant flies are sensitive to oxidative stress challenges, leading to shortened lives under oxidative stress conditions. Expression of superoxide dismutase 2 (SOD2), which is located in mitochondria and normally regulates ROS removal, was decreased in boss mutant flies. Systemic overexpression of SOD2 rescued boss mutant phenotypes. Finally, we observed that mitochondrial mass was greater in boss mutant flies. These results suggest that BOSS affects lifespan by modulating the expression of a set of genes related to oxidative stress resistance and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Ayako Kohyama-Koganeya
- Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - Mizuki Kurosawa
- Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - Yoshio Hirabayashi
- Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
- * E-mail:
| |
Collapse
|
26
|
Kim Y, Nam HG, Valenzano DR. The short-lived African turquoise killifish: an emerging experimental model for ageing. Dis Model Mech 2016; 9:115-29. [PMID: 26839399 PMCID: PMC4770150 DOI: 10.1242/dmm.023226] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model.
Collapse
Affiliation(s)
- Yumi Kim
- Max Planck Institute for Biology of Ageing, D50931, Cologne, Germany Department of New Biology, DGIST, 711-873, Daegu, Republic of Korea
| | - Hong Gil Nam
- Department of New Biology, DGIST, 711-873, Daegu, Republic of Korea Center for Plant Aging Research, Institute for Basic Science, 711-873, Daegu, Republic of Korea
| | | |
Collapse
|
27
|
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev 2016; 160:1-18. [PMID: 27671971 DOI: 10.1016/j.mad.2016.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/30/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Vast evidence supports the view that glycation of proteins is one of the main factors contributing to aging and is an important element of etiopathology of age-related diseases, especially type 2 diabetes mellitus, cataract and neurodegenerative diseases. Counteracting glycation can therefore be a means of increasing both the lifespan and healthspan. In this review, accumulation of glycation products during aging is presented, pathophysiological effects of glycation are discussed and ways of attenuation of the effects of glycation are described, concentrating on prevention of glycation. The effects of glycation and glycation inhibitors on the course of selected age-related diseases, such as Alzheimer's disease, Parkinson's disease and cataract are also reviewed.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35-604 Rzeszów, Poland.
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35-604 Rzeszów, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
28
|
Klepsatel P, Gáliková M, Xu Y, Kühnlein RP. Thermal stress depletes energy reserves in Drosophila. Sci Rep 2016; 6:33667. [PMID: 27641694 PMCID: PMC5027548 DOI: 10.1038/srep33667] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/30/2016] [Indexed: 01/03/2023] Open
Abstract
Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting "memory effect" on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness.
Collapse
Affiliation(s)
- Peter Klepsatel
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Martina Gáliková
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Yanjun Xu
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Ronald P. Kühnlein
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
29
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Going retro: Oxidative stress biomarkers in modern redox biology. Free Radic Biol Med 2016; 98:2-12. [PMID: 26855421 DOI: 10.1016/j.freeradbiomed.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/23/2022]
Abstract
The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece; Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - J N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - V Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - A A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece.
| |
Collapse
|
30
|
Garratt M, Nakagawa S, Simons MJP. Comparative idiosyncrasies in life extension by reduced mTOR signalling and its distinctiveness from dietary restriction. Aging Cell 2016; 15:737-43. [PMID: 27139919 PMCID: PMC4933670 DOI: 10.1111/acel.12489] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 01/15/2023] Open
Abstract
Reduced mechanistic target of rapamycin (mTOR) signalling extends lifespan in yeast, nematodes, fruit flies and mice, highlighting a physiological pathway that could modulate aging in evolutionarily divergent organisms. This signalling system is also hypothesized to play a central role in lifespan extension via dietary restriction. By collating data from 48 available published studies examining lifespan with reduced mTOR signalling, we show that reduced mTOR signalling provides similar increases in median lifespan across species, with genetic mTOR manipulations consistently providing greater life extension than pharmacological treatment with rapamycin. In contrast to the consistency in changes in median lifespan, however, the demographic causes for life extension are highly species specific. Reduced mTOR signalling extends lifespan in nematodes by strongly reducing the degree to which mortality rates increase with age (aging rate). By contrast, life extension in mice and yeast occurs largely by pushing back the onset of aging, but not altering the shape of the mortality curve once aging starts. Importantly, in mice, the altered pattern of mortality induced by reduced mTOR signalling is different to that induced by dietary restriction, which reduces the rate of aging. Effects of mTOR signalling were also sex dependent, but only within mice, and not within flies, thus again species specific. An alleviation of age‐associated mortality is not a shared feature of reduced mTOR signalling across model organisms and does not replicate the established age‐related survival benefits of dietary restriction.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Pathology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Shinichi Nakagawa
- Evolution and Ecology Research Group and School of Biological; Earth and Environmental Sciences; The University of New South Wales; Sydney NSW 2052 Australia
- Diabetes and Metabolism Division; Garvan Institute of Medical Research; Sydney NSW 2010 Australia
| | - Mirre J. P. Simons
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| |
Collapse
|
31
|
Holmbeck MA, Rand DM. Dietary Fatty Acids and Temperature Modulate Mitochondrial Function and Longevity in Drosophila. J Gerontol A Biol Sci Med Sci 2015; 70:1343-54. [PMID: 25910846 PMCID: PMC4612386 DOI: 10.1093/gerona/glv044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
Fluctuations in temperature and resource availability are conditions many organisms contend with in nature. Specific dietary nutrients such as fatty acids play an essential role in reproduction, cold adaptation, and metabolism in a variety of organisms. The present study characterizes how temperature and diet interact to modulate Drosophila physiology and life span. Flies were raised on media containing specific saturated, monounsaturated, or polyunsaturated fatty acids supplements at low concentrations and were placed in varied thermal environments. We found that dietary long-chain polyunsaturated fatty acids improve chill coma recovery and modulate mitochondrial function. Additionally, monounsaturated and polyunsaturated fatty acid food supplements were detrimental to life span regardless of temperature, and antioxidants were able to partially rescue this effect. This study provides insight into environmental modulation of Drosophila physiology and life span.
Collapse
Affiliation(s)
- Marissa A Holmbeck
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island.
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| |
Collapse
|
32
|
Icreverzi A, Cruz AFA, Walker DW, Edgar BA. Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress. Aging Cell 2015. [PMID: 26219626 PMCID: PMC4568977 DOI: 10.1111/acel.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in human diseases, including cancer, and proposed to accelerate aging. The Drosophila Cyclin-dependent protein kinase complex cyclin D/cyclin-dependent kinase 4 (CycD/Cdk4) promotes cellular growth by stimulating mitochondrial biogenesis. Here, we examine the neurodegenerative and aging consequences of altering CycD/Cdk4 function in Drosophila. We show that pan-neuronal loss or gain of CycD/Cdk4 increases mitochondrial superoxide, oxidative stress markers, and neurodegeneration and decreases lifespan. We find that RNAi-mediated depletion of the mitochondrial transcription factor, Tfam, can abrogate CycD/Cdk4's detrimental effects on both lifespan and neurodegeneration. This indicates that CycD/Cdk4's pathological consequences are mediated through altered mitochondrial function and a concomitant increase in reactive oxygen species. In support of this, we demonstrate that CycD/Cdk4 activity levels in the brain affect the expression of a set of 'oxidative stress' genes. Our results indicate that the precise regulation of neuronal CycD/Cdk4 activity is important to limit mitochondrial reactive oxygen species production and prevent neurodegeneration.
Collapse
Affiliation(s)
- Amalia Icreverzi
- Department of Integrative Biology and Physiology University of California Los Angeles Los Angeles CA 90095 USA
| | - Aida Flor A. Cruz
- Basic Science Division Fred Hutchinson Cancer Research Center Seattle WA 98109 USA
| | - David W. Walker
- Department of Integrative Biology and Physiology University of California Los Angeles Los Angeles CA 90095 USA
| | - Bruce A. Edgar
- German Cancer Research Center (DKFZ) & Center for Molecular Biology Heidelberg (ZMBH) Im Neuenheimer Feld 282 D‐69120 Heidelberg Germany
| |
Collapse
|
33
|
Menger KE, James AM, Cochemé HM, Harbour ME, Chouchani ET, Ding S, Fearnley IM, Partridge L, Murphy MP. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster. Cell Rep 2015; 11:1856-65. [PMID: 26095360 PMCID: PMC4508341 DOI: 10.1016/j.celrep.2015.05.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/26/2015] [Accepted: 05/19/2015] [Indexed: 12/26/2022] Open
Abstract
Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT), to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster. The redox state and identity of cysteine residues in flies can be determined by OxICAT Overall cysteine-residue redox state does not change with age H2O2 and paraquat have surprisingly distinct effects on cysteine-residue redox state Fasting for 24 hr dramatically alters the redox state of cysteine residues
Collapse
Affiliation(s)
- Katja E Menger
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK; Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | - Helena M Cochemé
- Institute of Healthy Ageing and GEE, University College London, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | | | - Edward T Chouchani
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115-5730, USA
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK
| | | | - Linda Partridge
- Institute of Healthy Ageing and GEE, University College London, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | | |
Collapse
|
34
|
Kirkwood TBL. Deciphering death: a commentary on Gompertz (1825) 'On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies'. Philos Trans R Soc Lond B Biol Sci 2015; 370. [PMID: 25750242 DOI: 10.1098/rstl.1825.0026.jstor107756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
In 1825, the actuary Benjamin Gompertz read a paper, 'On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies', to the Royal Society in which he showed that over much of the adult human lifespan, age-specific mortality rates increased in an exponential manner. Gompertz's work played an important role in shaping the emerging statistical science that underpins the pricing of life insurance and annuities. Latterly, as the subject of ageing itself became the focus of scientific study, the Gompertz model provided a powerful stimulus to examine the patterns of death across the life course not only in humans but also in a wide range of other organisms. The idea that the Gompertz model might constitute a fundamental 'law of mortality' has given way to the recognition that other patterns exist, not only across the species range but also in advanced old age. Nevertheless, Gompertz's way of representing the function expressive of the pattern of much of adult mortality retains considerable relevance for studying the factors that influence the intrinsic biology of ageing. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Collapse
Affiliation(s)
- Thomas B L Kirkwood
- Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
35
|
Zabuga OG, Koliada AK, Kukharskyy VM, Bazhynova AI, Vaiserman AM. [THE EFFECT OF DIETARY RESTRICTION DURING DEVELOPMENT OF DROSOPHILA MELANOGASTER ON THE ACTIVITY OF ANTIOXIDANT SYSTEM ENZYMES]. ACTA ACUST UNITED AC 2015; 61:114-8. [PMID: 27025052 DOI: 10.15407/fz61.06.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the previous study we demonstrated that dietary restriction only at the development stage of Drosophila melanogaster may impact the life span of adult flies. It was important that we didn't use qualitative (restriction of proteins or other macro- or microelements) and not a calorie restriction as well, but quantitative dietary restriction that was the proportional reduction of all food components in the larval medium. In the situations when the larvae were reared in the medium types, that contained protein and carbohydrate components in concentrations of 90-10% of food components compared to the standard one (100%), the males were characterised with the significant increase in the maximum life span. The average life span was also increased, but only in those male individuals that developed in the medium types, that contained 50% and 60% of food components compared to controls. Such an effect we haven't detected in the female flies. To study the biochemical changes associated with the physiological effects we have determined the activity of the antioxidant enzymes--superoxide dismutase (SOD) and catalase. In the male flies the 50% dietary restriction implemented during the development has led to the significant increase in a SOD and catalase activity. Also the flies of both sexes reared in the medium with the 50% of food components have been characterised with the reduction in the accumulation of glycation end products. According to these results, we suggest that the changes in the activity of antioxidant enzymes may play a role in the increase of the flies life span caused by the dietary restriction during the development.
Collapse
|
36
|
The amazing ubiquitin-proteasome system: structural components and implication in aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:171-237. [PMID: 25619718 DOI: 10.1016/bs.ircmb.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases.
Collapse
|
37
|
Abstract
The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.
Collapse
|
38
|
Le Cunff Y, Baudisch A, Pakdaman K. Evolution of aging: individual life history trade-offs and population heterogeneity account for mortality patterns across species. J Evol Biol 2014; 27:1706-20. [PMID: 24925106 DOI: 10.1111/jeb.12423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022]
Abstract
A broad range of mortality patterns has been documented across species, some even including decreasing mortality over age. Whether there exist a common denominator to explain both similarities and differences in these mortality patterns remains an open question. The disposable soma theory, an evolutionary theory of aging, proposes that universal intracellular trade-offs between maintenance/lifespan and reproduction would drive aging across species. The disposable soma theory has provided numerous insights concerning aging processes in single individuals. Yet, which specific population mortality patterns it can lead to is still largely unexplored. In this article, we propose a model exploring the mortality patterns which emerge from an evolutionary process including only the disposable soma theory core principles. We adapt a well-known model of genomic evolution to show that mortality curves producing a kink or mid-life plateaus derive from a common minimal evolutionary framework. These mortality shapes qualitatively correspond to those of Drosophila melanogaster, Caenorhabditis elegans, medflies, yeasts and humans. Species evolved in silico especially differ in their population diversity of maintenance strategies, which itself emerges as an adaptation to the environment over generations. Based on this integrative framework, we also derive predictions and interpretations concerning the effects of diet changes and heat-shock treatments on mortality patterns.
Collapse
Affiliation(s)
- Y Le Cunff
- CNRS UMR 7592, Institut Jacques Monod, Univ Paris Diderot, Paris, France; Max Planck Research Group on Modelling the Evolution of Aging, Max Planck Institute for Demographic Research, Rostock, Germany
| | | | | |
Collapse
|
39
|
Szwergold BS. Maillard reactions in hyperthermophilic archaea: implications for better understanding of non-enzymatic glycation in biology. Rejuvenation Res 2014; 16:259-72. [PMID: 23634960 DOI: 10.1089/rej.2012.1401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maillard reactions are an unavoidable feature of life that appear to be damaging to cell and organisms. Consequently, all living systems must have ways to protect themselves against this process. As of 2012, several such defense mechanisms have been identified. They are all enzymatic and were found in mesophilic organisms. To date, no systematic study of Maillard reactions and the relevant defense mechanisms has been conducted in thermophiles (50°C-80°C) or hyperthermophiles (80°C-120°C). This is surprisingly because Maillard reactions become significantly faster and potent with increasing temperatures. This review examines this neglected issue in two well-defined sets of hyperthermophiles. My analysis suggests that hyperthermophiles cope with glycation stress by several mechanisms: • Absence of glycation-prone head groups (such as ethanoalamine) from hyperthermophilic phospholipids • Protection of reactive carbohydrates and labile metabolic intermediates by substrate channeling. • Conversion of excess reactive sugars such as glucose to non-reactive compounds including trehalose, di-myo-inositol-phosphate and mannosylglycerate. • Detoxification of methylglyoxal and other ketoaldehydes by conversion to inert products through a variety of reductases and dehydrogenases. • Scavenging of the remaining carbonyls by nucleophilic amines, including a variety of novel polyamines. Disruption of the Maillard process at its early stages, rather than repair of damage caused by it at later stages, appears to be the preferred strategy in the organisms examined. The most unique among these mechanisms appears to be a polyamine-based scavenging system. Undertaking research of the Maillard process in hyperthermophiles is important in its own right and is also likely to provide new insights for the control of these reactions in humans, especially in diseases such as diabetes mellitus.
Collapse
|
40
|
He Y, Jasper H. Studying aging in Drosophila. Methods 2014; 68:129-33. [PMID: 24751824 DOI: 10.1016/j.ymeth.2014.04.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022] Open
Abstract
Drosophila melanogaster represents one of the most important genetically accessible model organisms for aging research. Studies in flies have identified single gene mutations that influence lifespan and have characterized endocrine signaling interactions that control homeostasis systemically. Recent studies have focused on the effects of aging on specific tissues and physiological processes, providing a comprehensive picture of age-related tissue dysfunction and the loss of systemic homeostasis. Here we review methodological aspects of this work and highlight technical considerations when using Drosophila to study aging and age-related diseases.
Collapse
Affiliation(s)
- Ying He
- Buck Institute for Research on Aging, Novato, CA, USA
| | | |
Collapse
|
41
|
Tower J, Landis G, Gao R, Luan A, Lee J, Sun Y. Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. J Gerontol A Biol Sci Med Sci 2014; 69:253-9. [PMID: 23723429 PMCID: PMC3976136 DOI: 10.1093/gerona/glt078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 01/10/2023] Open
Abstract
The cytoplasmic chaperone gene Hsp70 and the mitochondrial chaperone gene Hsp22 are upregulated during normal aging in Drosophila in tissue-general patterns. In addition, Hsp22 reporters are dramatically upregulated during aging in a subset of the oenocytes (liver-like cells). Hsp22 reporter expression varied dramatically between individual oenocytes and between groups of oenocytes located in adjacent body segments, and was negatively correlated with accumulation of age pigment, indicating cell-specific and cell-lineage-specific patterns of oenocyte aging. Conditional transgenic systems were used to express 88 transgenes to search for trans-regulators of the Hsp70 and Hsp22 reporters during aging. The wingless gene increased tissue-general upregulation of both Hsp70 and Hsp22 reporters. In contrast, the mitochondrial genes MnSOD and Hsp22 increased expression of Hsp22 reporters in the oenocytes and decreased accumulation of age pigment in these cells. The data suggest that cell-specific and cell lineage-specific patterns of mitochondrial malfunction contribute to oenocyte aging.
Collapse
Affiliation(s)
- John Tower
- University of Southern California, 1050 Childs Way, RRI 201, Los Angeles, CA 90089-2910.
| | | | | | | | | | | |
Collapse
|
42
|
Naudí A, Jové M, Ayala V, Portero-Otín M, Barja G, Pamplona R. Membrane lipid unsaturation as physiological adaptation to animal longevity. Front Physiol 2013; 4:372. [PMID: 24381560 PMCID: PMC3865700 DOI: 10.3389/fphys.2013.00372] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/29/2013] [Indexed: 01/23/2023] Open
Abstract
The appearance of oxygen in the terrestrial atmosphere represented an important selective pressure for ancestral living organisms and contributed toward setting up the pace of evolutionary changes in structural and functional systems. The evolution of using oxygen for efficient energy production served as a driving force for the evolution of complex organisms. The redox reactions associated with its use were, however, responsible for the production of reactive species (derived from oxygen and lipids) with damaging effects due to oxidative chemical modifications of essential cellular components. Consequently, aerobic life required the emergence and selection of antioxidant defense systems. As a result, a high diversity in molecular and structural antioxidant defenses evolved. In the following paragraphs, we analyze the adaptation of biological membranes as a dynamic structural defense against reactive species evolved by animals. In particular, our goal is to describe the physiological mechanisms underlying the structural adaptation of cellular membranes to oxidative stress and to explain the meaning of this adaptive mechanism, and to review the state of the art about the link between membrane composition and longevity of animal species.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Victòria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Gustavo Barja
- Department of Animal Physiology II, Complutense University Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida) Lleida, Spain
| |
Collapse
|
43
|
Tsakiri EN, Iliaki KK, Höhn A, Grimm S, Papassideri IS, Grune T, Trougakos IP. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic Biol Med 2013; 65:1155-1163. [PMID: 23999505 DOI: 10.1016/j.freeradbiomed.2013.08.186] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/01/2013] [Accepted: 08/23/2013] [Indexed: 01/05/2023]
Abstract
Advanced glycation end product (AGE)-modified proteins are formed by the nonenzymatic glycation of free amino groups of proteins and, along with lipofuscin (a highly oxidized aggregate of covalently cross-linked proteins, sugars, and lipids), have been found to accumulate during aging and in several age-related diseases. As the in vivo effects of diet-derived AGEs or lipofuscin remain elusive, we sought to study the impact of oral administration of glucose-, fructose-, or ribose-modified albumin or of artificial lipofuscin in a genetically tractable model organism. We report herein that continuous feeding of young Drosophila flies with culture medium enriched in AGEs or in lipofuscin resulted in reduced locomotor performance and in accelerated rates of AGE-modified proteins and carbonylated proteins accumulation in the somatic tissues and hemolymph of flies, as well as in a significant reduction of flies health span and life span. These phenotypic effects were accompanied by reduced proteasome peptidase activities in both the hemolymph and the somatic tissues of flies and higher levels of oxidative stress; furthermore, oral administration of AGEs or lipofuscin in flies triggered an upregulation of the lysosomal cathepsin B, L activities. Finally, RNAi-mediated cathepsin D knockdown reduced flies longevity and significantly augmented the deleterious effects of AGEs and lipofuscin, indicating that lysosomal cathepsins reduce the toxicity of diet-derived AGEs or lipofuscin. Our in vivo studies demonstrate that chronic ingestion of AGEs or lipofuscin disrupts proteostasis and accelerates the functional decline that occurs with normal aging.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Kalliopi K Iliaki
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Annika Höhn
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Stefanie Grimm
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Issidora S Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Tilman Grune
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece.
| |
Collapse
|
44
|
Scialo F, Mallikarjun V, Stefanatos R, Sanz A. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 2013; 19:1953-69. [PMID: 22938137 DOI: 10.1089/ars.2012.4900] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Aging is a consequence of the accumulation of cellular damage that impairs the capacity of an aging organism to adapt to stress. The Mitochondrial Free Radical Theory of Aging (MFRTA) has been one of the most influential ideas over the past 50 years. The MFRTA is supported by the accumulation of oxidative damage during aging along with comparative studies demonstrating that long-lived species or individuals produce fewer mitochondrial reactive oxygen species and have lower levels of oxidative damage. RECENT ADVANCES Recently, however, species that combine high oxidative damage with a longer lifespan (i.e., naked mole rats) have been described. Moreover, most of the interventions based on antioxidant supplementation do not increase longevity, as would be predicted by the MFRTA. Studies to date provide a clear understanding that mitochondrial function regulates the rate of aging, but the underlying mechanisms remain unclear. CRITICAL ISSUES Here, we review the reactive oxygen species (ROS)-dependent and ROS-independent mechanisms by which mitochondria can affect longevity. We discuss the role of different ROS (superoxide, hydrogen peroxide, and hydroxyl radical), both as oxidants as well as signaling molecules. We also describe how mitochondria can regulate longevity by ROS-independent mechanisms. We discuss alterations in mitochondrial DNA, accumulation of cellular waste as a consequence of glyco- and lipoxidative damage, and the regulation of DNA maintenance enzymes as mechanisms that can determine longevity without involving ROS. FUTURE DIRECTIONS We also show how the regulation of longevity is a complex process whereby ROS-dependent and ROS-independent mechanisms interact to determine the maximum lifespan of species and individuals.
Collapse
Affiliation(s)
- Filippo Scialo
- 1 Institute of Biomedical Technology and Tampere University Hospital , University of Tampere, Tampere, Finland
| | | | | | | |
Collapse
|
45
|
Nedić O, Rattan SIS, Grune T, Trougakos IP. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic Res 2013; 47 Suppl 1:28-38. [PMID: 23692178 DOI: 10.3109/10715762.2013.806798] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the Maillard chemical process of non- enzymatic glycation of free amino groups of proteins, lipids and nucleic acids. This chemical modification of biomolecules is triggered by endogeneous hyperglycaemic or oxidative stress-related processes. Additionally, AGEs can derive from exogenous, mostly diet-related, sources. Considering that AGE accumulation in tissues correlates with ageing and is a hallmark in several age-related diseases it is not surprising that the role of AGEs in ageing and pathology has become increasingly evident. The receptor for AGEs (RAGE) is a single transmembrane protein being expressed in a wide variety of human cells. RAGE binds a broad repertoire of extracellular ligands and mediates responses to stress conditions by activating multiple signal transduction pathways being mostly responsible for acute and/or chronic inflammation. RAGE activation has been implicated in ageing as well as in a number of age-related diseases, including atherosclerosis, neurodegeneration, arthritis, stoke, diabetes and cancer. Here we present a synopsis of findings that relate to AGEs-reported implication in cell signalling pathways and ageing, as well as in pathology. Potential implications and opportunities for translational research and the development of new therapies are also discussed.
Collapse
Affiliation(s)
- O Nedić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia
| | | | | | | |
Collapse
|
46
|
Ziehm M, Thornton JM. Unlocking the potential of survival data for model organisms through a new database and online analysis platform: SurvCurv. Aging Cell 2013; 12:910-6. [PMID: 23826631 PMCID: PMC3824079 DOI: 10.1111/acel.12121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2013] [Indexed: 12/01/2022] Open
Abstract
Lifespan measurements, also called survival records, are a key phenotype in research on aging. If external hazards are excluded, aging alone determines the mortality in a population of model organisms. Understanding the biology of aging is highly desirable because of the benefits for the wide range of aging-related diseases. However, it is also extremely challenging because of the underlying complexity. Here, we describe SurvCurv, a new database and online resource focused on model organisms collating survival data for storage and analysis. All data in SurvCurv are manually curated and annotated. The database, available at www.ebi.ac.uk/thornton-srv/databases/SurvCurv/, offers various functions including plotting, Cox proportional hazards analysis, mathematical mortality models and statistical tests. It facilitates reanalysis and allows users to analyse their own data and compare it with the largest repository of model-organism data from published experiments, thus unlocking the potential of survival data and demographics in model organisms.
Collapse
Affiliation(s)
- Matthias Ziehm
- EMBL – European Bioinformatics Institute Wellcome Trust Genome Campus Hinxton Cambridge CB10 1SD UK
| | - Janet M. Thornton
- EMBL – European Bioinformatics Institute Wellcome Trust Genome Campus Hinxton Cambridge CB10 1SD UK
| |
Collapse
|
47
|
Tsakiri EN, Sykiotis GP, Papassideri IS, Terpos E, Dimopoulos MA, Gorgoulis VG, Bohmann D, Trougakos IP. Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell 2013; 12:802-13. [PMID: 23738891 DOI: 10.1111/acel.12111] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 11/30/2022] Open
Abstract
The ubiquitin-proteasome system is central to the regulation of cellular proteostasis. Nevertheless, the impact of in vivo proteasome dysfunction on the proteostasis networks and the aging processes remains poorly understood. We found that RNAi-mediated knockdown of 20S proteasome subunits in Drosophila melanogaster resulted in larval lethality. We therefore studied the molecular effects of proteasome dysfunction in adult flies by developing a model of dose-dependent pharmacological proteasome inhibition. Impaired proteasome function promoted several 'old-age' phenotypes and markedly reduced flies' lifespan. In young somatic tissues and in gonads of all ages, loss of proteasome activity induced higher expression levels and assembly rates of proteasome subunits. Proteasome dysfunction was signaled to the proteostasis network by reactive oxygen species that originated from malfunctioning mitochondria and triggered an Nrf2-dependent upregulation of the proteasome subunits. RNAi-mediated Nrf2 knockdown reduced proteasome activities, flies' resistance to stress, as well as longevity. Conversely, inducible activation of Nrf2 in transgenic flies upregulated basal proteasome expression and activity independently of age and conferred resistance to proteotoxic stress. Interestingly, prolonged Nrf2 overexpression reduced longevity, indicating that excessive activation of the proteostasis pathways can be detrimental. Our in vivo studies add new knowledge on the proteotoxic stress-related regulation of the proteostasis networks in higher metazoans. Proteasome dysfunction triggers the activation of an Nrf2-dependent tissue- and age-specific regulatory circuit aiming to adjust the cellular proteasome activity according to temporal and/or spatial proteolytic demands. Prolonged deregulation of this proteostasis circuit accelerates aging.
Collapse
Affiliation(s)
- Eleni N. Tsakiri
- Department of Cell Biology and Biophysics; Faculty of Biology; University of Athens; Panepistimiopolis; Athens 15784; Greece
| | - Gerasimos P. Sykiotis
- Division of Endocrinology; Department of Internal Medicine; University of Patras Medical School; Patras 26500; Greece
| | - Issidora S. Papassideri
- Department of Cell Biology and Biophysics; Faculty of Biology; University of Athens; Panepistimiopolis; Athens 15784; Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics; School of Medicine; University of Athens; Athens 11528; Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics; School of Medicine; University of Athens; Athens 11528; Greece
| | | | - Dirk Bohmann
- Department of Biomedical Genetics; University of Rochester Medical Center; Rochester; NY 14642; USA
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics; Faculty of Biology; University of Athens; Panepistimiopolis; Athens 15784; Greece
| |
Collapse
|
48
|
Analysis of protein glycation using fluorescent phenylboronate gel electrophoresis. Sci Rep 2013; 3:1437. [PMID: 23531746 PMCID: PMC3609018 DOI: 10.1038/srep01437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/04/2013] [Indexed: 11/17/2022] Open
Abstract
Glycated proteins are important biomarkers for age-related disorders, however their analysis is challenging because of the complexity of the protein-carbohydrate adducts. Here we report a method that enables the detection and identification of individual glycated proteins in complex samples using fluorescent boronic acids in gel electrophoresis. Using this method we identified glycated proteins in human serum, insect hemolymph and mouse brain homogenates, confirming this technique as a powerful proteomics tool that can be used for the identification of potential disease biomarkers.
Collapse
|
49
|
Kelly MA, Zieba AP, Buttemer WA, Hulbert AJ. Effect of temperature on the rate of ageing: an experimental study of the blowfly Calliphora stygia. PLoS One 2013; 8:e73781. [PMID: 24019937 PMCID: PMC3760806 DOI: 10.1371/journal.pone.0073781] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/25/2013] [Indexed: 01/26/2023] Open
Abstract
All organisms age, the rate of which can be measured by demographic analysis of mortality rates. The rate of ageing is thermally sensitive in ectothermic invertebrates and we examined the effects of temperature on both demographic rates of ageing and on cellular senescence in the blowfly, Calliphora stygia. The short lifespan of these flies is advantageous for demographic measurements while their large body size permits individual-based biochemical characterisation. Blowflies maintained at temperatures from 12°C to 34°C had a five to six-fold decrease in maximum and average longevity, respectively. Mortality rates were best described by a two-phase Gompertz relation, which revealed the first-phase of ageing to be much more temperature sensitive than the second stage. Flies held at low temperatures had both a slower first-phase rate of ageing and a delayed onset of second-phase ageing, which significantly extended their longevity compared with those at high temperatures. Blowflies that were transferred from 29°C to 15°C had higher first-phase mortality rates than those of flies held at constant 15°C, but their onset of second-phase ageing was deferred beyond that of flies held constantly at this temperature. The accumulation of fluorescent AGE pigment, a measure of cellular oxidative damage, increased steadily over time in all blowflies, irrespective of the temporal pattern of mortality. Pigment accumulated steadily during periods of 'negligible senescence', as measured by minimal rate of mortality, and the rate of accumulation was significantly affected by temperature. Thus accumulation of AGE pigment is more representative of chronological age than a reflection of biological age or a cause of mortality.
Collapse
Affiliation(s)
- Megan A. Kelly
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Adam P. Zieba
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
- School of Health Sciences, University of Wollongong, Wollongong, Australia
| | | | - A. J. Hulbert
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| |
Collapse
|
50
|
Tsakiri EN, Sykiotis GP, Papassideri IS, Gorgoulis VG, Bohmann D, Trougakos IP. Differential regulation of proteasome functionality in reproductive vs. somatic tissues of Drosophila during aging or oxidative stress. FASEB J 2013; 27:2407-20. [PMID: 23457214 PMCID: PMC4050428 DOI: 10.1096/fj.12-221408] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/21/2013] [Indexed: 12/29/2022]
Abstract
Proteasome is central to proteostasis maintenance, as it degrades both normal and damaged proteins. Herein, we undertook a detailed analysis of proteasome regulation in the in vivo setting of Drosophila melanogaster. We report that a major hallmark of somatic tissues of aging flies is the gradual accumulation of ubiquitinated and carbonylated proteins; these effects correlated with a ~50% reduction of proteasome expression and catalytic activities. In contrast, gonads of aging flies were relatively free of proteome oxidative damage and maintained substantial proteasome expression levels and highly active proteasomes. Moreover, gonads of young flies were found to possess more abundant and more active proteasomes than somatic tissues. Exposure of flies to oxidants induced higher proteasome activities specifically in the gonads, which were, independently of age, more resistant than soma to oxidative challenge and, as analyses in reporter transgenic flies showed, retained functional antioxidant responses. Finally, inducible Nrf2 activation in transgenic flies promoted youthful proteasome expression levels in the aged soma, suggesting that age-dependent Nrf2 dysfunction is causative of decreasing somatic proteasome expression during aging. The higher investment in proteostasis maintenance in the gonads plausibly facilitates proteome stability across generations; it also provides evidence in support of the trade-off theories of aging.
Collapse
Affiliation(s)
- Eleni N. Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, Greece
| | - Gerasimos P. Sykiotis
- Division of Endocrinology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Issidora S. Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, Greece
| | - Vassilis G. Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; and
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, Greece
| |
Collapse
|