1
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2024; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
2
|
Udeshi ND, Hart GW, Slawson C. From Fringe to the Mainstream: How ETD MS Brought O-GlcNAc to the Masses. Mol Cell Proteomics 2024; 23:100859. [PMID: 39414231 DOI: 10.1016/j.mcpro.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
O-GlcNAcylation was identified in the 1980s by Torres and Hart and modifies thousands of cellular proteins, yet the regulatory role of O-GlcNAc is still poorly understood compared to the abundance of mechanistic information known for other cycling post-translational modifications like phosphorylation. Many challenges are associated with studying O-GlcNAcylation and are tied to the technical hurdles with analysis by mass spectrometry. Over the years, many research groups have developed important methods to study O-GlcNAcylation revealing its role in the cell, and this perspective aims to review the challenges and innovations around O-GlcNAc research and chronicle the work by Donald F. Hunt and his laboratory, particularly in development of ETD and its application to this field of research.
Collapse
Affiliation(s)
- Namrata D Udeshi
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.
| | - Gerald W Hart
- Department of Biochemistry and Molecular Biology, CCRC, University of Georgia, Athens, Georgia, USA
| | - Chad Slawson
- Department Biochemistry, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
3
|
Bell M, Kane MS, Ouyang X, Young ME, Jegga AG, Chatham JC, Darley-Usmar V, Zhang J. Acute increase of protein O-GlcNAcylation in mice leads to transcriptome changes in the brain opposite to what is observed in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613769. [PMID: 39345543 PMCID: PMC11429956 DOI: 10.1101/2024.09.19.613769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) is explored as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the mechanistic path of using OGA inhibition to treat AD. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using OGA inhibitor Thiamet G (TG), on normal mouse brains. We hypothesized that the transcritome signature in respones to TG treatment provides a comprehensive view of the effect of OGA inhibition. We sacrificed the mice and dissected their brains after 3 hours of saline or 50 mg/kg TG treatment, and then performed mRNA sequencing using NovaSeq PE 150 (n=5 each group). We identified 1,234 significant differentially expressed genes with TG versus saline treatment. Functional enrichment analysis of the upregulated genes identified several upregulated pathways, including genes normally down in AD. Among the downregulated pathways were the cell adhesion pathway as well as genes normally up in AD and aging. When comparing acute to chronic TG treatment, protein autophosphorylation and kinase activity pathways were upregulated, whereas cell adhesion and astrocyte markers were downregulated in both datasets. Interestingly, mitochondrial genes and genes normally down in AD were up in acute treatment and down in chronic treatment. Data from this analysis will enable the evaluation of the mechanisms underlying the potential benefits of OGA inhibition in the treatment of AD. In particular, although OGA inhibitors are promising to treat AD, their downstream chronic effects related to bioenergetics may be a limiting factor. Abstract Figure
Collapse
|
4
|
Zhang D, Qi Y, Inuzuka H, Liu J, Wei W. O-GlcNAcylation in tumorigenesis and its implications for cancer therapy. J Biol Chem 2024; 300:107709. [PMID: 39178944 PMCID: PMC11417186 DOI: 10.1016/j.jbc.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic and reversible posttranslational modification that targets serine and threonine residues in a variety of proteins. Uridine diphospho-N-acetylglucosamine, which is synthesized from glucose via the hexosamine biosynthesis pathway, is the major donor of this modification. O-GlcNAc transferase is the sole enzyme that transfers GlcNAc onto protein substrates, while O-GlcNAcase is responsible for removing this modification. O-GlcNAcylation plays an important role in tumorigenesis and progression through the modification of specific protein substrates. In this review, we discuss the tumor-related biological functions of O-GlcNAcylation and summarize the recent progress in the development of pharmaceutical options to manipulate the O-GlcNAcylation of specific proteins as potential anticancer therapies.
Collapse
Affiliation(s)
- Dize Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States.
| |
Collapse
|
5
|
Li S, Ren W, Zheng J, Li S, Zhi K, Gao L. Role of O-linked N-acetylglucosamine protein modification in oxidative stress-induced autophagy: a novel target for bone remodeling. Cell Commun Signal 2024; 22:358. [PMID: 38987770 PMCID: PMC11238385 DOI: 10.1186/s12964-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
O-linked N-acetylglucosamine protein modification (O-GlcNAcylation) is a dynamic post-translational modification (PTM) involving the covalent binding of serine and/or threonine residues, which regulates bone cell homeostasis. Reactive oxygen species (ROS) are increased due to oxidative stress in various pathological contexts related to bone remodeling, such as osteoporosis, arthritis, and bone fracture. Autophagy serves as a scavenger for ROS within bone marrow-derived mesenchymal stem cells, osteoclasts, and osteoblasts. However, oxidative stress-induced autophagy is affected by the metabolic status, leading to unfavorable clinical outcomes. O-GlcNAcylation can regulate the autophagy process both directly and indirectly through oxidative stress-related signaling pathways, ultimately improving bone remodeling. The present interventions for the bone remodeling process often focus on promoting osteogenesis or inhibiting osteoclast absorption, ignoring the effect of PTM on the overall process of bone remodeling. This review explores how O-GlcNAcylation synergizes with autophagy to exert multiple regulatory effects on bone remodeling under oxidative stress stimulation, indicating the application of O-GlcNAcylation as a new molecular target in the field of bone remodeling.
Collapse
Affiliation(s)
- Shengqian Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
- Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
6
|
Liu Q, Chen C, Fan Z, Song H, Sha Y, Yu L, Wang Y, Qin W, Yi W. O-GlcNAcase regulates pluripotency states of human embryonic stem cells. Stem Cell Reports 2024; 19:993-1009. [PMID: 38942028 PMCID: PMC11252487 DOI: 10.1016/j.stemcr.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/30/2024] Open
Abstract
Understanding the regulation of human embryonic stem cells (hESCs) pluripotency is critical to advance the field of developmental biology and regenerative medicine. Despite the recent progress, molecular events regulating hESC pluripotency, especially the transition between naive and primed states, still remain unclear. Here we show that naive hESCs display lower levels of O-linked N-acetylglucosamine (O-GlcNAcylation) than primed hESCs. O-GlcNAcase (OGA), the key enzyme catalyzing the removal of O-GlcNAc from proteins, is highly expressed in naive hESCs and is important for naive pluripotency. Depletion of OGA accelerates naive-to-primed pluripotency transition. OGA is transcriptionally regulated by EP300 and acts as a transcription regulator of genes important for maintaining naive pluripotency. Moreover, we profile protein O-GlcNAcylation of the two pluripotency states by quantitative proteomics. Together, this study identifies OGA as an important factor of naive pluripotency in hESCs and suggests that O-GlcNAcylation has a broad effect on hESCs homeostasis.
Collapse
Affiliation(s)
- Qianyu Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Chen
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhiya Fan
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 100026, China
| | - Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yutong Sha
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liyang Yu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingjie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 100026, China.
| | - Wen Yi
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Shan S, Zhang Z, Nie J, Wen Y, Wu W, Liu Y, Zhao C. Marine algae-derived oligosaccharide via protein crotonylation of key targeting for management of type 2 diabetes mellitus in the elderly. Pharmacol Res 2024; 205:107257. [PMID: 38866264 DOI: 10.1016/j.phrs.2024.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Global aging is a tendency of the world, as is the increasing prevalence of diabetes, and the two are closely linked. In our early research, Enteromorpha prolifera oligosaccharide (EPO) possesses the excellent ability of anti-oxidative, anti-inflammatory, and anti-diabetic. We aim to further explore the deeper mechanism of how EPO delays aging and regulates glycometabolism. EPO effectively impacts crotonylation procession to enhance glucose metabolism and reduce cell senescence in aging diabetic rats. Crotonylation modification of XPO1 influences the expression of critical genes, including p53, CDK1, and CCNB1, which affect cell cycle regulation and aging. Additionally, EPO improves glucose metabolism by inhibiting the crotonylation modification of HSPA8-K126 and activating the AKT pathway. EPO promotes crotonylation of histones in intestinal cells, influencing the aging process by increasing the butyric acid-producing bacteria Ruminococcaceae. The observed enhancement in pyrimidine metabolism underscores EPO's potential role in regulating intestinal health, presenting a promising avenue for delaying aging. In summary, our findings affirm EPO as a naturally bioactive ingredient with significant potential for anti-aging and antidiabetic interventions.
Collapse
Affiliation(s)
- Shuo Shan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense 32004, Spain
| | - Zijie Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianping Nie
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense 32004, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuning Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Murray M, Davidson L, Ferenbach AT, Lefeber D, van Aalten DMF. Neuroectoderm phenotypes in a human stem cell model of O-GlcNAc transferase associated with intellectual disability. Mol Genet Metab 2024; 142:108492. [PMID: 38759397 DOI: 10.1016/j.ymgme.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.
Collapse
Affiliation(s)
- Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lindsay Davidson
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark
| | - Dirk Lefeber
- Department of Neurology, Department of Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, NL, the Netherlands
| | - Daan M F van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark.
| |
Collapse
|
9
|
Ramakrishnan P. O-GlcNAcylation and immune cell signaling: A review of known and a preview of unknown. J Biol Chem 2024; 300:107349. [PMID: 38718861 PMCID: PMC11180344 DOI: 10.1016/j.jbc.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 06/06/2024] Open
Abstract
The dynamic and reversible modification of nuclear and cytoplasmic proteins by O-GlcNAcylation significantly impacts the function and dysfunction of the immune system. O-GlcNAcylation plays crucial roles under both physiological and pathological conditions in the biochemical regulation of all immune cell functions. Three and a half decades of knowledge acquired in this field is merely sufficient to perceive that what we know is just the prelude. This review attempts to mark out the known regulatory roles of O-GlcNAcylation in key signal transduction pathways and specific protein functions in the immune system and adumbrate ensuing questions toward the unknown functions.
Collapse
Affiliation(s)
- Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA; University Hospitals-Cleveland Medical Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
10
|
Hinshaw DC, Patel M, Shevde LA. A Metabolic Axis of Immune Intractability. Cancer Immunol Res 2024; 12:282-286. [PMID: 38126910 PMCID: PMC10936744 DOI: 10.1158/2326-6066.cir-23-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Immune cells in the tumor niche robustly influence disease progression. Remarkably, in cancer, developmental pathways are reenacted. Many parallels between immune regulation of embryonic development and immune regulation of tumor progression can be drawn, with evidence clearly supporting an immune-suppressive microenvironment in both situations. In these ecosystems, metabolic and bioenergetic circuits guide and regulate immune cell differentiation, plasticity, and functional properties of suppressive and inflammatory immune subsets. As such, there is an emerging pattern of intersection across the dynamic process of ontogeny and the ever-evolving tumor neighborhood. In this article, we focus on the convergence of immune programming during ontogeny and in the tumor microenvironment. Exemplifying dysregulation of Hedgehog (Hh) activity, a key player during ontogeny, we highlight a critical convergence of these fields and the metabolic axis of the nutrient sensing hexosamine biosynthetic pathway (HBP) that integrates glucose, glutamine, amino acids, acetyl CoA, and uridine-5'-triphosphate (UTP), culminating in the synthesis of UDP-GlcNAc, a metabolite that functions as a metabolic and bioenergetic sensor. We discuss an emerging pattern of immune regulation, orchestrated by O-GlcNAcylation of key transcriptional regulators, spurring suppressive activity of dysfunctional immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Dominique C. Hinshaw
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meet Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Senior author
| |
Collapse
|
11
|
Lewis BA. The role of O-GlcNAcylation in RNA polymerase II transcription. J Biol Chem 2024; 300:105705. [PMID: 38311176 PMCID: PMC10906531 DOI: 10.1016/j.jbc.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Eukaryotic RNA polymerase II (RNAPII) is responsible for the transcription of the protein-coding genes in the cell. Enormous progress has been made in discovering the protein activities that are required for transcription to occur, but the effects of post-translational modifications (PTMs) on RNAPII transcriptional regulation are much less understood. Most of our understanding relates to the cyclin-dependent kinases (CDKs), which appear to act relatively early in transcription. However, it is becoming apparent that other PTMs play a crucial role in the transcriptional cycle, and it is doubtful that any sort of complete understanding of this regulation is attainable without understanding the spectra of PTMs that occur on the transcriptional machinery. Among these is O-GlcNAcylation. Recent experiments have shown that the O-GlcNAc PTM likely has a prominent role in transcription. This review will cover the role of the O-GlcNAcylation in RNAPII transcription during initiation, pausing, and elongation, which will hopefully be of interest to both O-GlcNAc and RNAPII transcription researchers.
Collapse
Affiliation(s)
- Brian A Lewis
- Gene Regulation Section/LP, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland, USA.
| |
Collapse
|
12
|
Nelson ZM, Leonard GD, Fehl C. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways. J Biol Chem 2024; 300:105615. [PMID: 38159850 PMCID: PMC10831167 DOI: 10.1016/j.jbc.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways. Along the way, we describe in detail key chemical biology tools that have been developed and applied to determine specific O-GlcNAc roles in these pathways. These tools include metabolic labeling, O-GlcNAc-enhancing RNA aptamers, fluorescent biosensors, proximity labeling tools, nanobody targeting tools, O-GlcNAc cycling inhibitors, light-activated systems, chemoenzymatic labeling, and nutrient reporter assays. An emergent feature of this signaling pathway meta-analysis is the intricate interplay between O-GlcNAc modifications across different signaling systems, underscoring the importance of O-GlcNAc in regulating cellular processes. We highlight the significance of O-GlcNAc in signaling and the role of chemical and biochemical tools in unraveling distinct glycobiological regulatory mechanisms. Collectively, our field has determined effective strategies to probe O-GlcNAc roles in biology. At the same time, this survey of what we do not yet know presents a clear roadmap for the field to use these powerful chemical tools to explore cross-pathway O-GlcNAc interactions in signaling and other major biological pathways.
Collapse
Affiliation(s)
- Zachary M Nelson
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Garry D Leonard
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
13
|
Du P, Zhang X, Lian X, Hölscher C, Xue G. O-GlcNAcylation and Its Roles in Neurodegenerative Diseases. J Alzheimers Dis 2024; 97:1051-1068. [PMID: 38250776 DOI: 10.3233/jad-230955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
As a non-classical post-translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is widely found in human organ systems, particularly in our brains, and is indispensable for healthy cell biology. With the increasing age of the global population, the incidence of neurodegenerative diseases is increasing, too. The common characteristic of these disorders is the aggregation of abnormal proteins in the brain. Current research has found that O-GlcNAcylation dysregulation is involved in misfolding or aggregation of these abnormal proteins to mediate disease progression, but the specific mechanism has not been defined. This paper reviews recent studies on O-GlcNAcylation's roles in several neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, Machado-Joseph's disease, and giant axonal neuropathy, and shows that O-GlcNAcylation, as glucose metabolism sensor, mediating synaptic function, participating in oxidative stress response and signaling pathway conduction, directly or indirectly regulates characteristic pathological protein toxicity and affects disease progression. The existing results suggest that targeting O-GlcNAcylation will provide new ideas for clinical diagnosis, prevention, and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pengyang Du
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomin Zhang
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xia Lian
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guofang Xue
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
Narayanan B, Sinha P, Henry R, Reeves RA, Paolocci N, Kohr MJ, Zachara NE. Cardioprotective O-GlcNAc signaling is elevated in murine female hearts via enhanced O-GlcNAc transferase activity. J Biol Chem 2023; 299:105447. [PMID: 37949223 PMCID: PMC10711226 DOI: 10.1016/j.jbc.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The post-translational modification of intracellular proteins by O-linked β-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.
Collapse
Affiliation(s)
- Bhargavi Narayanan
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Prithvi Sinha
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roger Henry
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell A Reeves
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Mark J Kohr
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Natasha E Zachara
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Department of Oncology at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
16
|
Le Minh G, Esquea EM, Young RG, Huang J, Reginato MJ. On a sugar high: Role of O-GlcNAcylation in cancer. J Biol Chem 2023; 299:105344. [PMID: 37838167 PMCID: PMC10641670 DOI: 10.1016/j.jbc.2023.105344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Recent advances in the understanding of the molecular mechanisms underlying cancer progression have led to the development of novel therapeutic targeting strategies. Aberrant glycosylation patterns and their implication in cancer have gained increasing attention as potential targets due to the critical role of glycosylation in regulating tumor-specific pathways that contribute to cancer cell survival, proliferation, and progression. A special type of glycosylation that has been gaining momentum in cancer research is the modification of nuclear, cytoplasmic, and mitochondrial proteins, termed O-GlcNAcylation. This protein modification is catalyzed by an enzyme called O-GlcNAc transferase (OGT), which uses the final product of the Hexosamine Biosynthetic Pathway (HBP) to connect altered nutrient availability to changes in cellular signaling that contribute to multiple aspects of tumor progression. Both O-GlcNAc and its enzyme OGT are highly elevated in cancer and fulfill the crucial role in regulating many hallmarks of cancer. In this review, we present and discuss the latest findings elucidating the involvement of OGT and O-GlcNAc in cancer.
Collapse
Affiliation(s)
- Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily M Esquea
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Riley G Young
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessie Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
17
|
Huynh DT, Tsolova KN, Watson AJ, Khal SK, Green JR, Li D, Hu J, Soderblom EJ, Chi JT, Evans CS, Boyce M. O-GlcNAcylation regulates neurofilament-light assembly and function and is perturbed by Charcot-Marie-Tooth disease mutations. Nat Commun 2023; 14:6558. [PMID: 37848414 PMCID: PMC10582078 DOI: 10.1038/s41467-023-42227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-β-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc may be a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, suggesting a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kalina N Tsolova
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Abigail J Watson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sai Kwan Khal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jordan R Green
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Di Li
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chantell S Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
18
|
Ha C, Bakshi S, Brahma MK, Potter LA, Chang SF, Sun Z, Benavides GA, He L, Umbarkar P, Zou L, Curfman S, Sunny S, Paterson AJ, Rajasekaran N, Barnes JW, Zhang J, Lal H, Xie M, Darley‐Usmar VM, Chatham JC, Wende AR. Sustained Increases in Cardiomyocyte Protein O-Linked β-N-Acetylglucosamine Levels Lead to Cardiac Hypertrophy and Reduced Mitochondrial Function Without Systolic Contractile Impairment. J Am Heart Assoc 2023; 12:e029898. [PMID: 37750556 PMCID: PMC10727241 DOI: 10.1161/jaha.123.029898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023]
Abstract
Background Lifestyle and metabolic diseases influence the severity and pathogenesis of cardiovascular disease through numerous mechanisms, including regulation via posttranslational modifications. A specific posttranslational modification, the addition of O-linked β-N acetylglucosamine (O-GlcNAcylation), has been implicated in molecular mechanisms of both physiological and pathologic adaptations. The current study aimed to test the hypothesis that in cardiomyocytes, sustained protein O-GlcNAcylation contributes to cardiac adaptations, and its progression to pathophysiology. Methods and Results Using a naturally occurring dominant-negative O-GlcNAcase (dnOGA) inducible cardiomyocyte-specific overexpression transgenic mouse model, we induced dnOGA in 8- to 10-week-old mouse hearts. We examined the effects of 2-week and 24-week dnOGA overexpression, which progressed to a 1.8-fold increase in protein O-GlcNAcylation. Two-week increases in protein O-GlcNAc levels did not alter heart weight or function; however, 24-week increases in protein O-GlcNAcylation led to cardiac hypertrophy, mitochondrial dysfunction, fibrosis, and diastolic dysfunction. Interestingly, systolic function was maintained in 24-week dnOGA overexpression, despite several changes in gene expression associated with cardiovascular disease. Specifically, mRNA-sequencing analysis revealed several gene signatures, including reduction of mitochondrial oxidative phosphorylation, fatty acid, and glucose metabolism pathways, and antioxidant response pathways after 24-week dnOGA overexpression. Conclusions This study indicates that moderate increases in cardiomyocyte protein O-GlcNAcylation leads to a differential response with an initial reduction of metabolic pathways (2-week), which leads to cardiac remodeling (24-week). Moreover, the mouse model showed evidence of diastolic dysfunction consistent with a heart failure with preserved ejection fraction. These findings provide insight into the adaptive versus maladaptive responses to increased O-GlcNAcylation in heart.
Collapse
Affiliation(s)
- Chae‐Myeong Ha
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sayan Bakshi
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Manoja K. Brahma
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Luke A. Potter
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel F. Chang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Zhihuan Sun
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Gloria A. Benavides
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Lihao He
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel Curfman
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sini Sunny
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Andrew J. Paterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | | | - Jarrod W. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Hind Lal
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Min Xie
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Victor M. Darley‐Usmar
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
19
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
20
|
Conte F, Noga MJ, van Scherpenzeel M, Veizaj R, Scharn R, Sam JE, Palumbo C, van den Brandt FCA, Freund C, Soares E, Zhou H, Lefeber DJ. Isotopic Tracing of Nucleotide Sugar Metabolism in Human Pluripotent Stem Cells. Cells 2023; 12:1765. [PMID: 37443799 PMCID: PMC10340731 DOI: 10.3390/cells12131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Metabolism not only produces energy necessary for the cell but is also a key regulator of several cellular functions, including pluripotency and self-renewal. Nucleotide sugars (NSs) are activated sugars that link glucose metabolism with cellular functions via protein N-glycosylation and O-GlcNAcylation. Thus, understanding how different metabolic pathways converge in the synthesis of NSs is critical to explore new opportunities for metabolic interference and modulation of stem cell functions. Tracer-based metabolomics is suited for this challenge, however chemically-defined, customizable media for stem cell culture in which nutrients can be replaced with isotopically labeled analogs are scarcely available. Here, we established a customizable flux-conditioned E8 (FC-E8) medium that enables stem cell culture with stable isotopes for metabolic tracing, and a dedicated liquid chromatography mass-spectrometry (LC-MS/MS) method targeting metabolic pathways converging in NS biosynthesis. By 13C6-glucose feeding, we successfully traced the time-course of carbon incorporation into NSs directly via glucose, and indirectly via other pathways, such as glycolysis and pentose phosphate pathways, in induced pluripotent stem cells (hiPSCs) and embryonic stem cells. Then, we applied these tools to investigate the NS biosynthesis in hiPSC lines from a patient affected by deficiency of phosphoglucomutase 1 (PGM1), an enzyme regulating the synthesis of the two most abundant NSs, UDP-glucose and UDP-galactose.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marek J. Noga
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | - Raisa Veizaj
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rik Scharn
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Chiara Palumbo
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | | | - Eduardo Soares
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Huiqing Zhou
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- GlycoMScan B.V., 5349 AB Oss, The Netherlands
| |
Collapse
|
21
|
Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis Model Mech 2023; 16:dmm049132. [PMID: 37334838 PMCID: PMC10309585 DOI: 10.1242/dmm.049132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.
Collapse
Affiliation(s)
- Michaela Omelková
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christina Dühring Fenger
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
- Amplexa Genetics A/S, Odense 5000, Denmark
| | - Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Veronica M. Pravata
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sergio Galan Bartual
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Allan Bayat
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Andrew T. Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Marios P. Stavridis
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M. F. van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
22
|
Qian Z, Li C, Zhao S, Zhang H, Ma R, Ge X, Jing J, Chen L, Ma J, Yang Y, Zheng L, Zhang K, He Z, Xue M, Lin Y, Jueraitetibaike K, Feng Y, Cao C, Tang T, Sun S, Teng H, Zhao W, Yao B. Age-related elevation of O-GlcNAc causes meiotic arrest in male mice. Cell Death Discov 2023; 9:163. [PMID: 37188682 DOI: 10.1038/s41420-023-01433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
In recent years, the postponement of childbearing has become a critical social issue. Male fertility is negatively associated with age because of testis aging. Spermatogenesis is impaired with age, but the molecular mechanism remains unknown. The dynamic posttranslational modification O-linked N-acetylglucosamine (O-GlcNAc), which is a type of monosaccharide modification, has been shown to drive the process of aging in various systems, but it has not yet been investigated in the testis and male reproductive aging. Thus, this study aims to investigate the alteration of O-GlcNAc with aging and explore the role of O-GlcNAc in spermatogenesis. Here, we demonstrate that the decline in spermatogenesis in aged mice is associated with elevation of O-GlcNAc. O-GlcNAc is specifically localized in differentiating spermatogonia and spermatocytes, indicating its crucial role in meiotic initiation and progression. Mimicking the age-related elevation of O-GlcNAc in young mice by disabling O-GlcNAcase (OGA) using the chemical inhibitor Thiamet-G can recapitulate the impairment of spermatogenesis in aged mice. Mechanistically, the elevation of O-GlcNAc in the testis leads to meiotic pachytene arrest due to defects in synapsis and recombination. Furthermore, decreasing O-GlcNAc in aged testes using an O-GlcNAc transferase (OGT) inhibitor can partially rescue the age-related impairment of spermatogenesis. Our results highlight that O-GlcNAc, as a novel posttranslational modification, participates in meiotic progression and drives the impairment of spermatogenesis during aging.
Collapse
Affiliation(s)
- Zhang Qian
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chuwei Li
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hong Zhang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Li Chen
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yang Yang
- Basic Medical Laboratory, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Lu Zheng
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Kemei Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Zhaowanyue He
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Mengqi Xue
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Ying Lin
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Kadiliya Jueraitetibaike
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yuming Feng
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chun Cao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Ting Tang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Shanshan Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hui Teng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Wei Zhao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
23
|
Taira TM, Ramos-Junior ES, Melo PH, Costa-Silva CC, Alteen MG, Vocadlo DJ, Dias WB, Cunha FQ, Alves-Filho JC, Søe K, Fukada SY. HBP/O-GlcNAcylation Metabolic Axis Regulates Bone Resorption Outcome. J Dent Res 2023; 102:440-449. [PMID: 36749069 DOI: 10.1177/00220345221141043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Osteoclasts play a key role in the regulation of bone mass and are highly active metabolically. Here we show that a metabolic reprogramming toward the hexosamine biosynthetic pathway (HBP) is required not only for osteoclast differentiation but also to determine the bone resorption mode during physiological and pathological bone remodeling. We found that pharmacological inhibition of O-GlcNAc transferase (OGT) significantly reduced protein O-GlcNAcylation and osteoclast differentiation. Accordingly, genetic deletion of OGT also inhibited osteoclast formation and downregulated critical markers related to osteoclasts differentiation and function (NFATc1, αvintegrin, cathepsin K). Indeed, cells treated with OSMI-1, an OGT inhibitor, also reduced nuclear translocation of NFATc1. Furthermore, the addition of exogenous N-acetylglucosamine (GlcNAc) strongly increased osteoclast formation and demineralization ability. Strikingly, our data show for the first time that O-GlcNAcylation facilitates an aggressive trench resorption mode in human cells. The incubation of osteoclasts with exogenous GlcNAc increases the percentage of erosion by trench while having no effect on pit resorption mode. Through time-lapse recording, we documented that osteoclasts making trenches moving across the bone surface are sensitive to GlcNAcylation. Finally, osteoclast-specific Ogt-deficient mice show increased bone density and reduced inflammation-induced bone loss during apical periodontitis model. We show that osteoclast-specific Ogt-deficient mice are less susceptible to develop bacterial-induced periapical lesion. Consistent with this, Ogt-deleted mice showed a decreased number of tartrate-resistant acid phosphatase-positive cells lining the apical periodontitis site. In summary, here we describe a hitherto undiscovered role of the HBP/O-GlcNAcylation axis tuning resorption mode and dictating bone resorption outcome.
Collapse
Affiliation(s)
- T M Taira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
- Department of Pediatric, School of Dentistry of Ribeirão Preto, Preventive and Social Dentistry, University of São Paulo, Ribeirão Preto, Brazil
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
| | - E S Ramos-Junior
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
- Department of Oral Biology & Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - P H Melo
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - C C Costa-Silva
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
| | - M G Alteen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6 Canada
| | - D J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6 Canada
| | - W B Dias
- Laboratório de Glicobiologia Estrutural e Funcional, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, Brazil
| | - F Q Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - J C Alves-Filho
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - K Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
- Clinical Cell Biology, Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
| | - S Y Fukada
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Abstract
O-GlcNAcylation is a dynamic post-translational modification performed by two opposing enzymes: O-GlcNAc transferase and O-GlcNAcase. O-GlcNAcylation is generally believed to act as a metabolic integrator in numerous signalling pathways. The stoichiometry of this modification is tightly controlled throughout all stages of development, with both hypo/hyper O-GlcNAcylation resulting in broad defects. In this Primer, we discuss the role of O-GlcNAcylation in developmental processes from stem cell maintenance and differentiation to cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Ignacy Czajewski
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark
| |
Collapse
|
25
|
Wang Y, Zhang Z, Liu X, Chen N, Zhao Y, Wang C. Molecular dynamic simulations identifying the mechanism of holoenzyme formation by O-GlcNAc transferase and active p38α. Phys Chem Chem Phys 2023; 25:8090-8102. [PMID: 36876722 DOI: 10.1039/d2cp05968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
O-N-Acetylglucosamine transferase (OGT) can catalyze the O-GlcNAc modification of thousands of proteins. The holoenzyme formation of OGT and adaptor protein is the precondition for further recognition and glycosylation of the target protein, while the corresponding mechanism is still open. Here, static and dynamic schemes based on statistics can successfully screen the feasible identifying, approaching, and binding mechanism of OGT and its typical adaptor protein p38α. The most favorable interface, energy contribution of hotspots, and conformational changes of fragments were discovered. The hydrogen bond interactions were verified as the main driving force for the whole process. The distinct characteristic of active and inactive p38α is explored and demonstrates that the phosphorylated tyrosine and threonine will form strong ion-pair interactions with Lys714, playing a key role in the dynamic identification stage. Multiple method combinations from different points of view may be helpful for exploring other systems of the protein-protein interactions.
Collapse
Affiliation(s)
- Yu Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Xiaoyuan Liu
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Nianhang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
26
|
Papanicolaou KN, Jung J, Ashok D, Zhang W, Modaressanavi A, Avila E, Foster DB, Zachara NE, O'Rourke B. Inhibiting O-GlcNAcylation impacts p38 and Erk1/2 signaling and perturbs cardiomyocyte hypertrophy. J Biol Chem 2023; 299:102907. [PMID: 36642184 PMCID: PMC9988579 DOI: 10.1016/j.jbc.2023.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The dynamic cycling of O-linked GlcNAc (O-GlcNAc) on and off Ser/Thr residues of intracellular proteins, termed O-GlcNAcylation, is mediated by the conserved enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase. O-GlcNAc cycling is important in homeostatic and stress responses, and its perturbation sensitizes the heart to ischemic and other injuries. Despite considerable progress, many molecular pathways impacted by O-GlcNAcylation in the heart remain unclear. The mitogen-activated protein kinase (MAPK) pathway is a central signaling cascade that coordinates developmental, physiological, and pathological responses in the heart. The developmental or adaptive arm of MAPK signaling is primarily mediated by Erk kinases, while the pathophysiologic arm is mediated by p38 and Jnk kinases. Here, we examine whether O-GlcNAcylation affects MAPK signaling in cardiac myocytes, focusing on Erk1/2 and p38 in basal and hypertrophic conditions induced by phenylephrine. Using metabolic labeling of glycans coupled with alkyne-azide "click" chemistry, we found that Erk1/2 and p38 are O-GlcNAcylated. Supporting the regulation of p38 by O-GlcNAcylation, the OGT inhibitor, OSMI-1, triggers the phosphorylation of p38, an event that involves the NOX2-Ask1-MKK3/6 signaling axis and also the noncanonical activator Tab1. Additionally, OGT inhibition blocks the phenylephrine-induced phosphorylation of Erk1/2. Consistent with perturbed MAPK signaling, OSMI-1-treated cardiomyocytes have a blunted hypertrophic response to phenylephrine, decreased expression of cTnT (key component of the contractile apparatus), and increased expression of maladaptive natriuretic factors Anp and Bnp. Collectively, these studies highlight new roles for O-GlcNAcylation in maintaining a balanced activity of Erk1/2 and p38 MAPKs during hypertrophic growth responses in cardiomyocytes.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jessica Jung
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenxi Zhang
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Modaressanavi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eddie Avila
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
27
|
Huynh DT, Hu J, Schneider JR, Tsolova KN, Soderblom EJ, Watson AJ, Chi JT, Evans CS, Boyce M. O-GlcNAcylation regulates neurofilament-light assembly and function and is perturbed by Charcot-Marie-Tooth disease mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529563. [PMID: 36865196 PMCID: PMC9980138 DOI: 10.1101/2023.02.22.529563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The neurofilament (NF) cytoskeleton is critical for neuronal morphology and function. In particular, the neurofilament-light (NF-L) subunit is required for NF assembly in vivo and is mutated in subtypes of Charcot-Marie-Tooth (CMT) disease. NFs are highly dynamic, and the regulation of NF assembly state is incompletely understood. Here, we demonstrate that human NF-L is modified in a nutrient-sensitive manner by O-linked-β-N-acetylglucosamine (O-GlcNAc), a ubiquitous form of intracellular glycosylation. We identify five NF-L O-GlcNAc sites and show that they regulate NF assembly state. Interestingly, NF-L engages in O-GlcNAc-mediated protein-protein interactions with itself and with the NF component α-internexin, implying that O-GlcNAc is a general regulator of NF architecture. We further show that NF-L O-GlcNAcylation is required for normal organelle trafficking in primary neurons, underlining its functional significance. Finally, several CMT-causative NF-L mutants exhibit perturbed O-GlcNAc levels and resist the effects of O-GlcNAcylation on NF assembly state, indicating a potential link between dysregulated O-GlcNAcylation and pathological NF aggregation. Our results demonstrate that site-specific glycosylation regulates NF-L assembly and function, and aberrant NF O-GlcNAcylation may contribute to CMT and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Duc T. Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jordan R. Schneider
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kalina N. Tsolova
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC 27710, USA
| | - Abigail J. Watson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chantell S. Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
28
|
Huynh DT, Boyce M. Chemical Biology Approaches to Understanding Neuronal O-GlcNAcylation. Isr J Chem 2023; 63:e202200071. [PMID: 36874376 PMCID: PMC9983623 DOI: 10.1002/ijch.202200071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/16/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a ubiquitous post-translational modification in mammals, decorating thousands of intracellular proteins. O-GlcNAc cycling is an essential regulator of myriad aspects of cell physiology and is dysregulated in numerous human diseases. Notably, O-GlcNAcylation is abundant in the brain and numerous studies have linked aberrant O-GlcNAc signaling to various neurological conditions. However, the complexity of the nervous system and the dynamic nature of protein O-GlcNAcylation have presented challenges for studying of neuronal O-GlcNAcylation. In this context, chemical approaches have been a particularly valuable complement to conventional cellular, biochemical, and genetic methods to understand O-GlcNAc signaling and to develop future therapeutics. Here we review selected recent examples of how chemical tools have empowered efforts to understand and rationally manipulate O-GlcNAcylation in mammalian neurobiology.
Collapse
Affiliation(s)
- Duc Tan Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
29
|
Saha A, Fernández-Tejada A. Chemical biology tools to interrogate the roles of O-GlcNAc in immunity. Front Immunol 2023; 13:1089824. [PMID: 36776401 PMCID: PMC9910173 DOI: 10.3389/fimmu.2022.1089824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of proteins is an essential and dynamic post-translational modification in mammalian cells that is regulated by the action of two enzymes. O-GlcNAc transferase (OGT) incorporates this monosaccharide on serine/threonine residues, whereas O-GlcNAcase (OGA) removes it. This modification is found on thousands of intracellular proteins involved in vital cellular processes, both under physiological and pathological conditions. Aberrant expression of O-GlcNAc has been implicated in diseases such as Alzheimer, diabetes, and cancer, and growing evidence over the last decade has also revealed key implications of O-GlcNAcylation in immunity. While some key signaling pathways involving O-GlcNAcylation in immune cells have been discovered, a complete mechanistic understanding of how O-GlcNAcylated proteins function in the immune system remains elusive, partly because of the difficulties in mapping and quantifying O-GlcNAc sites. In this minireview, we discuss recent progress on chemical biology tools and approaches to investigate the role of O-GlcNAcylation in immune cells, with the intention of encouraging further research and developments in chemical glycoimmunology that can advance our understanding of O-GlcNAc in immunity.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Biscay, Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Biscay, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain,*Correspondence: Alberto Fernández-Tejada,
| |
Collapse
|
30
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Hu CW, Xie J, Jiang J. The Emerging Roles of Protein Interactions with O-GlcNAc Cycling Enzymes in Cancer. Cancers (Basel) 2022; 14:5135. [PMID: 36291918 PMCID: PMC9600386 DOI: 10.3390/cancers14205135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 09/11/2023] Open
Abstract
The dynamic O-GlcNAc modification of intracellular proteins is an important nutrient sensor for integrating metabolic signals into vast networks of highly coordinated cellular activities. Dysregulation of the sole enzymes responsible for O-GlcNAc cycling, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), and the associated cellular O-GlcNAc profile is a common feature across nearly every cancer type. Many studies have investigated the effects of aberrant OGT/OGA expression on global O-GlcNAcylation activity in cancer cells. However, recent studies have begun to elucidate the roles of protein-protein interactions (PPIs), potentially through regions outside of the immediate catalytic site of OGT/OGA, that regulate greater protein networks to facilitate substrate-specific modification, protein translocalization, and the assembly of larger biomolecular complexes. Perturbation of OGT/OGA PPI networks makes profound changes in the cell and may directly contribute to cancer malignancies. Herein, we highlight recent studies on the structural features of OGT and OGA, as well as the emerging roles and molecular mechanisms of their aberrant PPIs in rewiring cancer networks. By integrating complementary approaches, the research in this area will aid in the identification of key protein contacts and functional modules derived from OGT/OGA that drive oncogenesis and will illuminate new directions for anti-cancer drug development.
Collapse
Affiliation(s)
| | | | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
32
|
Protein O-GlcNAcylation and the regulation of energy homeostasis: lessons from knock-out mouse models. J Biomed Sci 2022; 29:64. [PMID: 36058931 PMCID: PMC9443036 DOI: 10.1186/s12929-022-00851-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
O-GlcNAcylation corresponds to the addition of N-Acetylglucosamine (GlcNAc) on serine or threonine residues of cytosolic, nuclear and mitochondrial proteins. This reversible modification is catalysed by a unique couple of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT uses UDP-GlcNAc produced in the hexosamine biosynthesis pathway, to modify proteins. UDP-GlcNAc is at the cross-roads of several cellular metabolisms, including glucose, amino acids and fatty acids. Therefore, OGT is considered as a metabolic sensor that post-translationally modifies proteins according to nutrient availability. O-GlcNAcylation can modulate protein–protein interactions and regulate protein enzymatic activities, stability or subcellular localization. In addition, it can compete with phosphorylation on the same serine or threonine residues, or regulate positively or negatively the phosphorylation of adjacent residues. As such, O-GlcNAcylation is a major actor in the regulation of cell signaling and has been implicated in numerous physiological and pathological processes. A large body of evidence have indicated that increased O-GlcNAcylation participates in the deleterious effects of glucose (glucotoxicity) in metabolic diseases. However, recent studies using mice models with OGT or OGA knock-out in different tissues have shown that O-GlcNAcylation protects against various cellular stresses, and indicate that both increase and decrease in O-GlcNAcylation have deleterious effects on the regulation of energy homeostasis.
Collapse
|
33
|
Moon SP, Pratt MR. Synthesis of O-GlcNAcylated small heat shock proteins. Methods Enzymol 2022; 675:63-82. [PMID: 36220281 PMCID: PMC9968497 DOI: 10.1016/bs.mie.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A protein's structure and function often depend not only on its primary sequence, but also the presence or absence of any number of non-coded posttranslational modifications. Complicating their study is the fact that the physiological consequences of these modifications are context-, protein-, and site-dependent, and there exist no purely biological techniques to unambiguously study their effects. To this end, protein semisynthesis has become an invaluable chemical biology tool to specifically install non-coded or non-native moieties onto proteins in vitro using synthetic and/or recombinant polypeptides. Here, we describe two facets of protein semisynthesis (solid-phase peptide synthesis and expressed protein ligation) and their use in generating site-specifically glycosylated small heat shock proteins for functional studies. The procedures herein require limited specialized equipment, employ mild reaction conditions, and can be extended to myriad other proteins, modifications, and contexts.
Collapse
Affiliation(s)
- Stuart P Moon
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States; Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
34
|
Disruption of O-GlcNAcylation Homeostasis Induced Ovarian Granulosa Cell Injury in Bovine. Int J Mol Sci 2022; 23:ijms23147815. [PMID: 35887161 PMCID: PMC9324263 DOI: 10.3390/ijms23147815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification is a ubiquitous, reversible, and highly dynamic post-translational modification, which takes charge of almost all biological processes examined. However, little information is available regarding the molecular regulation of O-GlcNAcylation in granulosa cell function and glucose metabolism. This study focused on the impact of disrupted O-GlcNAc cycling on the proliferation and apoptosis of bovine granulosa cells, and further aimed to determine how this influenced glucose metabolism. Pharmacological inhibition of OGT with benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside (BADGP) led to decreased cellular O-GlcNAc levels, as well as OGT and OGA protein expressions, whereas increasing O-GlcNAc levels with the OGA inhibitor, O-(2-acetamido-2-deoxy-D-gluco-pyranosylidene) (PUGNAc), resulted in elevated OGA protein expression and decreased OGT protein expression in granulosa cells. Dysregulated O-GlcNAc cycling reduced cell viability, downregulated the proliferation-related genes of CDC42 and PCNA transcripts, upregulated the pro-apoptotic genes of BAX and CASPASE-3 mRNA and the ratio of BAX/BCL-2, and increased the apoptotic rate. Glycolytic enzyme activities of hexokinase and pyruvate kinase, metabolite contents of pyruvate and lactate, mitochondrial membrane potential, ATP levels, and intermediate metabolic enzyme activities of succinate dehydrogenase and malate dehydrogenase involved in the tricarboxylic acid cycle, were significantly impaired in response to altered O-GlcNAc levels. Moreover, inhibition of OGT significantly increased the expression level of thioredoxin-interacting protein (TXNIP), but repression of OGA had no effect. Collectively, our results suggest that perturbation of O-GlcNAc cycling has a profound effect on granulosa cell function and glucose metabolism.
Collapse
|
35
|
Mutanwad KV, Lucyshyn D. Balancing O-GlcNAc and O-fucose in plants. FEBS J 2022; 289:3086-3092. [PMID: 34051053 DOI: 10.1111/febs.16038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
O-linked modification of nuclear and cytosolic proteins with monosaccharides is essential in all eukaryotes. While many aspects of this post-translational modification are highly conserved, there are striking differences between plants and the animal kingdom. In animals, dynamic cycling of O-GlcNAc is established by two essential single copy enzymes, the O-GlcNAc transferase OGT and O-GlcNAc hydrolase OGA. In contrast, plants balance O-GlcNAc with O-fucose modifications, catalyzed by the OGT SECRET AGENT (SEC) and the protein O-fucosyltransferase (POFUT) SPINDLY (SPY). However, specific glycoside hydrolases for either of the two modifications have not yet been identified. Nucleocytoplasmic O-glycosylation is still not very well understood in plants, even though a high number of proteins were found to be affected. One important open question is how specificity is established in a system where only two enzymes modify hundreds of proteins. Here, we discuss the possibility that O-GlcNAc- and O-fucose-binding proteins could introduce an additional flexible layer of regulation in O-glycosylation-mediated signaling pathways, with the potential of integrating internal or external signals.
Collapse
Affiliation(s)
- Krishna Vasant Mutanwad
- Department of Applied Genetics and Cell Biology, Institute for Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Doris Lucyshyn
- Department of Applied Genetics and Cell Biology, Institute for Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
36
|
Schwein PA, Ge Y, Yang B, D’Souza A, Mody A, Shen D, Woo CM. Writing and Erasing O-GlcNAc on Casein Kinase 2 Alpha Alters the Phosphoproteome. ACS Chem Biol 2022; 17:1111-1121. [PMID: 35467332 DOI: 10.1021/acschembio.1c00987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
O-GlcNAc is an essential carbohydrate modification that intersects with phosphorylation signaling pathways via crosstalk on protein substrates or by direct modification of the kinases that write the phosphate modification. Casein kinase 2 alpha (CK2α), the catalytic subunit of the ubiquitously expressed and constitutively active kinase CK2, is modified by O-GlcNAc, but the effect of this modification on the phosphoproteome in cells is unknown. Here, we apply complementary targeted O-GlcNAc editors, nanobody-OGT and -splitOGA, to selectively write and erase O-GlcNAc from a tagged CK2α to measure the effects on the phosphoproteome in cells. These tools effectively and selectively edit the Ser347 glycosite on CK2α. Using quantitative phosphoproteomics, we report 51 phosphoproteins whose enrichment changes as a function of editing O-GlcNAc on CK2α, including HDAC1, HDAC2, ENSA, SMARCAD1, and PABPN1. Specific phosphosites on HDAC1 Ser393 and HDAC2 Ser394, both reported CK2 substrates, are significantly enhanced by O-GlcNAcylation of CK2α. These data will propel future studies on the crosstalk between O-GlcNAc and phosphorylation.
Collapse
Affiliation(s)
- Paul A. Schwein
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Yun Ge
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Alexandria D’Souza
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Alison Mody
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Dacheng Shen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
37
|
Burt RA, Alghusen IM, John Ephrame S, Villar MT, Artigues A, Slawson C. Mapping the O-GlcNAc Modified Proteome: Applications for Health and Disease. Front Mol Biosci 2022; 9:920727. [PMID: 35664676 PMCID: PMC9161079 DOI: 10.3389/fmolb.2022.920727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
O-GlcNAc is a pleotropic, enigmatic post-translational modification (PTM). This PTM modifies thousands of proteins differentially across tissue types and regulates diverse cellular signaling processes. O-GlcNAc is implicated in numerous diseases, and the advent of O-GlcNAc perturbation as a novel class of therapeutic underscores the importance of identifying and quantifying the O-GlcNAc modified proteome. Here, we review recent advances in mass spectrometry-based proteomics that will be critical in elucidating the role of this unique glycosylation system in health and disease.
Collapse
Affiliation(s)
- Rajan A. Burt
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
| | - Ibtihal M. Alghusen
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Sophiya John Ephrame
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Maria T. Villar
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Antonio Artigues
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Chad Slawson
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| |
Collapse
|
38
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
39
|
Bolanle IO, Palmer TM. Targeting Protein O-GlcNAcylation, a Link between Type 2 Diabetes Mellitus and Inflammatory Disease. Cells 2022; 11:cells11040705. [PMID: 35203353 PMCID: PMC8870601 DOI: 10.3390/cells11040705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Unresolved hyperglycaemia, a hallmark of type 2 diabetes mellitus (T2DM), is a well characterised manifestation of altered fuel homeostasis and our understanding of its role in the pathologic activation of the inflammatory system continues to grow. Metabolic disorders like T2DM trigger changes in the regulation of key cellular processes such as cell trafficking and proliferation, and manifest as chronic inflammatory disorders with severe long-term consequences. Activation of inflammatory pathways has recently emerged as a critical link between T2DM and inflammation. A substantial body of evidence has suggested that this is due in part to increased flux through the hexosamine biosynthetic pathway (HBP). The HBP, a unique nutrient-sensing metabolic pathway, produces the activated amino sugar UDP-GlcNAc which is a critical substrate for protein O-GlcNAcylation, a dynamic, reversible post-translational glycosylation of serine and threonine residues in target proteins. Protein O-GlcNAcylation impacts a range of cellular processes, including inflammation, metabolism, trafficking, and cytoskeletal organisation. As increased HBP flux culminates in increased protein O-GlcNAcylation, we propose that targeting O-GlcNAcylation may be a viable therapeutic strategy for the prevention and management of glucose-dependent pathologies with inflammatory components.
Collapse
|
40
|
Lehrke M, Moellmann J, Kahles F, Marx N. Glucose-derived posttranslational modification in cardiovascular disease. Mol Aspects Med 2022; 86:101084. [DOI: 10.1016/j.mam.2022.101084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/21/2022]
|
41
|
Moon S, Javed A, Hard ER, Pratt MR. Methods for Studying Site-Specific O-GlcNAc Modifications: Successes, Limitations, and Important Future Goals. JACS AU 2022; 2:74-83. [PMID: 35098223 PMCID: PMC8791055 DOI: 10.1021/jacsau.1c00455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 06/14/2023]
Abstract
O-GlcNAcylation is a dynamic post-translational modification which affects myriad proteins, cellular functions, and disease states. Its presence or absence modulates protein function via differential protein- and site-specific mechanisms, necessitating innovative techniques to probe the modification in highly selective manners. To this end, a variety of biological and chemical methods have been developed to study specific O-GlcNAc modification events both in vitro and in vivo, each with their own respective strengths and shortcomings. Together, they comprise a potent chemical biology toolbox for the analysis of O-GlcNAcylation (and, in theory, other post-translational modifications) while highlighting the need and space for more facile, generalizable, and biologically authentic techniques.
Collapse
Affiliation(s)
- Stuart
P. Moon
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Eldon R. Hard
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
42
|
Very N, Hardivillé S, Decourcelle A, Thévenet J, Djouina M, Page A, Vergoten G, Schulz C, Kerr-Conte J, Lefebvre T, Dehennaut V, El Yazidi-Belkoura I. Thymidylate synthase O-GlcNAcylation: a molecular mechanism of 5-FU sensitization in colorectal cancer. Oncogene 2022; 41:745-756. [PMID: 34845374 DOI: 10.1038/s41388-021-02121-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Alteration of O-GlcNAcylation, a dynamic posttranslational modification, is associated with tumorigenesis and tumor progression. Its role in chemotherapy response is poorly investigated. Standard treatment for colorectal cancer (CRC), 5-fluorouracil (5-FU), mainly targets Thymidylate Synthase (TS). TS O-GlcNAcylation was reported but not investigated yet. We hypothesize that O-GlcNAcylation interferes with 5-FU CRC sensitivity by regulating TS. In vivo, we observed that combined 5-FU with Thiamet-G (O-GlcNAcase (OGA) inhibitor) treatment had a synergistic inhibitory effect on grade and tumor progression. 5-FU decreased O-GlcNAcylation and, reciprocally, elevation of O-GlcNAcylation was associated with TS increase. In vitro in non-cancerous and cancerous colon cells, we showed that 5-FU impacts O-GlcNAcylation by decreasing O-GlcNAc Transferase (OGT) expression both at mRNA and protein levels. Reciprocally, OGT knockdown decreased 5-FU-induced cancer cell apoptosis by reducing TS protein level and activity. Mass spectrometry, mutagenesis and structural studies mapped O-GlcNAcylated sites on T251 and T306 residues and deciphered their role in TS proteasomal degradation. We reveal a crosstalk between O-GlcNAcylation and 5-FU metabolism in vitro and in vivo that converges to 5-FU CRC sensitization by stabilizing TS. Overall, our data propose that combining 5-FU-based chemotherapy with Thiamet-G could be a new way to enhance CRC response to 5-FU.
Collapse
Affiliation(s)
- Ninon Very
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Stéphan Hardivillé
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Amélie Decourcelle
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Julien Thévenet
- Universté de Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1190-EGID, F-59000, Lille, France
| | - Madjid Djouina
- Université de Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research In Inflammation, F-59000, Lille, France
| | - Adeline Page
- Protein Science Facility, CNRS UMS3444, INSERM US8, UCBL, ENS de Lyon, SFR BioSciences, Lyon, France
| | - Gérard Vergoten
- Université de Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research In Inflammation, F-59000, Lille, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Julie Kerr-Conte
- Universté de Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1190-EGID, F-59000, Lille, France
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Vanessa Dehennaut
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
43
|
Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Nat Chem Biol 2022; 18:8-17. [PMID: 34934185 PMCID: PMC8712397 DOI: 10.1038/s41589-021-00903-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The vast array of cell types of multicellular organisms must individually fine-tune their internal metabolism. One important metabolic and stress regulatory mechanism is the dynamic attachment/removal of glucose-derived sugar N-acetylglucosamine on proteins (O-GlcNAcylation). The number of proteins modified by O-GlcNAc is bewildering, with at least 7,000 sites in human cells. The outstanding challenge is determining how key O-GlcNAc sites regulate a target pathway amidst thousands of potential global sites. Innovative solutions are required to address this challenge in cell models and disease therapy. This Perspective shares critical suggestions for the O-GlcNAc field gleaned from the international O-GlcNAc community. Further, we summarize critical tools and tactics to enable newcomers to O-GlcNAc biology to drive innovation at the interface of metabolism and disease. The growing pace of O-GlcNAc research makes this a timely juncture to involve a wide array of scientists and new toolmakers to selectively approach the regulatory roles of O-GlcNAc in disease.
Collapse
|
44
|
Li R, Li Y, Tian M, Zhang H, Lou L, Liu K, Zhang J, Zhao Y, Zhang J, Le S, Fu X, Zhou Y, Li W, Gao X, Nie Y. Comparative proteomic profiling reveals a pathogenic role for the O-GlcNAcylated AIMP2-PARP1 complex in aging-related hepatic steatosis in mice. FEBS Lett 2022; 596:128-145. [PMID: 34817071 DOI: 10.1002/1873-3468.14242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 11/07/2022]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) increases with aging. However, the mechanism of aging-related NAFLD remains unclear. Herein, we constructed an aging-related hepatic steatosis model and analyzed the differentially expressed proteins (DEPs) in livers from young and old mice using liquid chromatography-mass spectrometry. Five hundred and eighty-eight aging-related DEPs and novel pathways were identified. Aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), the most significantly upregulated protein, promoted poly(ADP-ribose) polymerase 1 (PARP1) activation in aging-related hepatic steatosis. Additionally, mice liver-specific O-GlcNAcase knockout promoted AIMP2 and PARP1 expression. O-GlcNAc transferase (OGT) overexpression and O-GlcNAcase inhibition by genetic or pharmaceutical manipulations increased AIMP2 and PARP1 levels in vitro. Mechanistically, O-GlcNAcylation increased AIMP2 protein stability, leading to its aggregation. Our study reveals O-GlcNAcylated AIMP2 as a novel pathogenic regulator of aging-related hepatic steatosis.
Collapse
Affiliation(s)
- Renlong Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Yan Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Miaomiao Tian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Haohao Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Lijun Lou
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Kun Liu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Jiehao Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Yu Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Jing Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Shuangshuang Le
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Xin Fu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Yao Zhou
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Wenjiao Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Xianchun Gao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
45
|
O-GlcNAcylation of Sox2 at threonine 258 regulates the self-renewal and early cell fate of embryonic stem cells. Exp Mol Med 2021; 53:1759-1768. [PMID: 34819616 PMCID: PMC8639819 DOI: 10.1038/s12276-021-00707-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
Sox2 is a core transcription factor in embryonic stem cells (ESCs), and O-GlcNAcylation is a type of post-translational modification of nuclear-cytoplasmic proteins. Although both factors play important roles in the maintenance and differentiation of ESCs and the serine 248 (S248) and threonine 258 (T258) residues of Sox2 are modified by O-GlcNAcylation, the function of Sox2 O-GlcNAcylation is unclear. Here, we show that O-GlcNAcylation of Sox2 at T258 regulates mouse ESC self-renewal and early cell fate. ESCs in which wild-type Sox2 was replaced with the Sox2 T258A mutant exhibited reduced self-renewal, whereas ESCs with the Sox2 S248A point mutation did not. ESCs with the Sox2 T258A mutation heterologously introduced using the CRISPR/Cas9 system, designated E14-Sox2TA/WT, also exhibited reduced self-renewal. RNA sequencing analysis under self-renewal conditions showed that upregulated expression of early differentiation genes, rather than a downregulated expression of self-renewal genes, was responsible for the reduced self-renewal of E14-Sox2TA/WT cells. There was a significant decrease in ectodermal tissue and a marked increase in cartilage tissue in E14-Sox2TA/WT-derived teratomas compared with normal E14 ESC-derived teratomas. RNA sequencing of teratomas revealed that genes related to brain development had generally downregulated expression in the E14-Sox2TA/WT-derived teratomas. Our findings using the Sox2 T258A mutant suggest that Sox2 T258 O-GlcNAc has a positive effect on ESC self-renewal and plays an important role in the proper development of ectodermal lineage cells. Overall, our study directly links O-GlcNAcylation and early cell fate decisions.
Collapse
|
46
|
Dadgar T, Ebrahimi N, Gholipour AR, Akbari M, Khani L, Ahmadi A, Hamblin MR. Targeting the metabolism of cancer stem cells by energy disruptor molecules. Crit Rev Oncol Hematol 2021; 169:103545. [PMID: 34838705 DOI: 10.1016/j.critrevonc.2021.103545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in various tumor types. CSCs are believed to contribute to tumor metastasis and resistance to conventional therapy. So targeting these cells could be an effective strategy to eliminate tumors and a promising new type of cancer treatment. Alterations in metabolism play an essential role in CSC biology and their resistance to treatment. The metabolic properties pathways in CSCs are different from normal cells, and to some extent, are different from regular tumor cells. Interestingly, CSCs can use other nutrients for their metabolism and growth. The different metabolism causes increased sensitivity of CSCs to agents that disrupt cellular homeostasis. Compounds that interfere with the central metabolic pathways are known as energy disruptors and can reduce CSC survival. This review highlights the differences between regular cancer cells and CSC metabolism and discusses the action mechanisms of energy disruptors at the cellular and molecular levels.
Collapse
Affiliation(s)
- Tahere Dadgar
- Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular & Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Gholipour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Akbari
- Department of Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Khani
- Department of Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
47
|
Sun L, Lv S, Song T. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discov Oncol 2021; 12:54. [PMID: 35201498 PMCID: PMC8777512 DOI: 10.1007/s12672-021-00450-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Prevalent dysregulation of epigenetic modifications plays a pivotal role in cancer. Targeting epigenetic abnormality is a new strategy for cancer therapy. Understanding how conventional oncogenic factors cause epigenetic abnormality is of great basic and translational value. O-GlcNAcylation is a protein modification which affects physiology and pathophysiology. In mammals, O-GlcNAcylation is catalyzed by one single enzyme OGT and removed by one single enzyme OGA. O-GlcNAcylation is affected by the availability of the donor, UDP-GlcNAc, generated by the serial enzymatic reactions in the hexoamine biogenesis pathway (HBP). O-GlcNAcylation regulates a wide spectrum of substrates including many proteins involved in epigenetic modification. Like epigenetic modifications, abnormality of O-GlcNAcylation is also common in cancer. Studies have revealed substantial impact on HBP enzymes and OGT/OGA by oncogenic signals. In this review, we will first summarize how oncogenic signals regulate HBP enzymes, OGT and OGA in cancer. We will then integrate this knowledge with the up to date understanding how O-GlcNAcylation regulates epigenetic machinery. With this, we propose a signal axis from oncogenic signals through O-GlcNAcylation dysregulation to epigenetic abnormality in cancer. Further elucidation of this axis will not only advance our understanding of cancer biology but also provide new revenues towards cancer therapy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
48
|
Writing and erasing O-GlcNAc from target proteins in cells. Biochem Soc Trans 2021; 49:2891-2901. [PMID: 34783346 DOI: 10.1042/bst20210865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a widespread reversible modification on nucleocytoplasmic proteins that plays an important role in many biochemical processes and is highly relevant to numerous human diseases. The O-GlcNAc modification has diverse functional impacts on individual proteins and glycosites, and methods for editing this modification on substrates are essential to decipher these functions. Herein, we review recent progress in developing methods for O-GlcNAc regulation, with a focus on methods for editing O-GlcNAc with protein- and site-selectivity in cells. The applications, advantages, and limitations of currently available strategies for writing and erasing O-GlcNAc and future directions are also discussed. These emerging approaches to manipulate O-GlcNAc on a target protein in cells will greatly accelerate the development of functional studies and enable therapeutic interventions in the O-GlcNAc field.
Collapse
|
49
|
Ramirez DH, Yang B, D'Souza AK, Shen D, Woo CM. Truncation of the TPR domain of OGT alters substrate and glycosite selection. Anal Bioanal Chem 2021; 413:7385-7399. [PMID: 34725712 DOI: 10.1007/s00216-021-03731-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
O-GlcNAc transferase (OGT) is an essential enzyme that installs O-linked N-acetylglucosamine (O-GlcNAc) to thousands of protein substrates. OGT and its isoforms select from these substrates through the tetratricopeptide repeat (TPR) domain, yet the impact of truncations to the TPR domain on substrate and glycosite selection is unresolved. Here, we report the effects of iterative truncations to the TPR domain of OGT on substrate and glycosite selection with the model protein GFP-JunB and the surrounding O-GlcNAc proteome in U2OS cells. Iterative truncation of the TPR domain of OGT maintains glycosyltransferase activity but alters subcellular localization of OGT in cells. The glycoproteome and glycosites modified by four OGT TPR isoforms were examined on the whole proteome and a single target protein, GFP-JunB. We found the greatest changes in O-GlcNAc on proteins associated with mRNA splicing processes and that the first four TPRs of the canonical nucleocytoplasmic OGT had the broadest substrate scope. Subsequent glycosite analysis revealed that alteration to the last four TPRs corresponded to the greatest shift in the resulting O-GlcNAc consensus sequence. This dataset provides a foundation to analyze how perturbations to the TPR domain and expression of OGT isoforms affect the glycosylation of substrates, which will be critical for future efforts in protein engineering of OGT, the biology of OGT isoforms, and diseases associated with the TPR domain of OGT.
Collapse
Affiliation(s)
- Daniel H Ramirez
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alexandria K D'Souza
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dacheng Shen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
50
|
Lu V, Roy IJ, Teitell MA. Nutrients in the fate of pluripotent stem cells. Cell Metab 2021; 33:2108-2121. [PMID: 34644538 PMCID: PMC8568661 DOI: 10.1016/j.cmet.2021.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells model certain features of early mammalian development ex vivo. Medium-supplied nutrients can influence self-renewal, lineage specification, and earliest differentiation of pluripotent stem cells. However, which specific nutrients support these distinct outcomes, and their mechanisms of action, remain under active investigation. Here, we evaluate the available data on nutrients and their metabolic conversion that influence pluripotent stem cell fates. We also discuss key questions open for investigation in this rapidly expanding area of increasing fundamental and practical importance.
Collapse
Affiliation(s)
- Vivian Lu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Irena J Roy
- Developmental and Stem Cell Biology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|