1
|
Mineiro R, Rodrigues Cardoso M, Catarina Duarte A, Santos C, Cipolla-Neto J, Gaspar do Amaral F, Costa D, Quintela T. Melatonin and brain barriers: The protection conferred by melatonin to the blood-brain barrier and blood-cerebrospinal fluid barrier. Front Neuroendocrinol 2024; 75:101158. [PMID: 39395545 DOI: 10.1016/j.yfrne.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier separate the blood from brain tissue and cerebrospinal fluid. These brain barriers are important to maintain homeostasis and complex functions by protecting the brain from xenobiotics and harmful endogenous compounds. The disruption of brain barriers is a characteristic of neurologic diseases. Melatonin is a lipophilic hormone that is mainly produced by the pineal gland. The blood-brain barrier and the blood-cerebrospinal fluid barriers are melatonin-binding sites. Among the several melatonin actions, the most characteristic one is the regulation of sleep-wake cycles, melatonin has anti-inflammatory and antioxidant properties. Since brain barriers disruption can arise from inflammation and oxidative stress, knowing the influence of melatonin on the integrity of brain barriers is extremely important. Therefore, the objective of this review is to gather and discuss the available literature about the regulation of brain barriers by melatonin.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria Rodrigues Cardoso
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| |
Collapse
|
2
|
Bedini A, Boutin JA, Legros C, Zlotos DP, Spadoni G. Industrial and academic approaches to the search for alternative melatonin receptor ligands: An historical survey. J Pineal Res 2024; 76:e12953. [PMID: 38682544 DOI: 10.1111/jpi.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024]
Abstract
The search for melatonin receptor agonists formed the main part of melatonin medicinal chemistry programs for the last three decades. In this short review, we summarize the two main aspects of these programs: the development of all the necessary tools to characterize the newly synthesized ligands at the two melatonin receptors MT1 and MT2, and the medicinal chemist's approaches to find chemically diverse ligands at these receptors. Both strategies are described. It turns out that the main source of tools were industrial laboratories, while the medicinal chemistry was mainly carried out in academia. Such complete accounts are interesting, as they delineate the spirits in which the teams were working demonstrating their strength and innovative character. Most of the programs were focused on nonselective agonists and few of them reached the market. In contrast, discovery of MT1-selective agonists and melatonergic antagonists with proven in vivo activity and MT1 or MT2-selectivity is still in its infancy, despite the considerable interest that subtype selective compounds may bring in the domain, as the physiological respective roles of the two subtypes of melatonin receptors, is still poorly understood. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
MESH Headings
- Ligands
- Humans
- Animals
- Receptor, Melatonin, MT2/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptors, Melatonin/metabolism
- Receptors, Melatonin/agonists
- Melatonin/metabolism
- History, 20th Century
Collapse
Affiliation(s)
- Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, Rouen, France
| | | | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Egypt
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
3
|
Bonnaud A, Dupré C, Legros C, Boutin JA. MT1 Receptor Signaling Pathways by Impedance Measurement. Methods Mol Biol 2022; 2550:201-206. [PMID: 36180694 DOI: 10.1007/978-1-0716-2593-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Melatonin exerts its classical effects of relay of the circadian rhythm through two G protein-coupled receptors, MT1 and MT2. The functions attributed to melatonin are so numerous that the action of this neurohormone should be through several protein targets or through new coupled biochemistry routes at its receptors. In order to better explore and understand these melatonin-dependent activities, we enlarged the functional pathways linked to the activation of the receptors in living system. Impedance has been shown to rely on the shape-shifting capacity of receptor-associated mechanisms. Those changes elicited by an agonist lead to changes in the actual shape of the cells, and thus to their electric conductivity. The impact of those changes onto the physiology of the cells is not completely understood from a mechanistic point of view, but the measure of these changes associated with various ligands at the melatonin receptor(s) might bring new information on melatonin-dependent cell reactivity. The following chapter is a detailed account of the way impedance can be measured in MT1-experssing cells.
Collapse
Affiliation(s)
- Anne Bonnaud
- Pole d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Clémence Dupré
- Pole d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Céline Legros
- Pole d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
- Eurofins Discovery, Celle l'Evescault, France
| | - Jean A Boutin
- Pole d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.
- PHARMADEV (Pharmacochimie et biologie pour le développement), Faculté de Pharmacie, Toulouse, France.
| |
Collapse
|
4
|
Gautier C, Theret I, Lizzo G, Ferry G, Guénin SP, Boutin JA. Why Are We Still Cloning Melatonin Receptors? A Commentary. Methods Mol Biol 2022; 2550:267-281. [PMID: 36180698 DOI: 10.1007/978-1-0716-2593-4_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cloning may seem to be a view from the past. The time before software, computers and AI were invented. It seems to us worth discussing these points in view of our favorite target: the melatoninergic system. In a few stances, it might be important to point out that even in the new era of dry science, there is still a need to experiment and to prove at the bench that our in silico assertions are right. Most of the living animals express to some extend the melatonin receptors. Some of these animal genomes were completely or partially sequenced, and it is tempting to extract from this huge information the sequence(s) of our favorite genes (MLT receptors). Then, why bother cloning, as opposed to simply built the gene and express it in a host cell? Because the genetic boundaries of the expressed sequence(s) are not 100% sure. Because the melatonin receptor gene(s) comprise a first exon 25,000 base pair far from the second one and the limits between this Ex1 and In1-as between In1 and Ex2-are subject to changes that might have a huge impact on the biochemical properties of the receptor, once expressed. Because a receptor is a biochemical entity with characteristics that are important for the functioning of this particular pathway, and more generally, for the functioning of life.
Collapse
Affiliation(s)
- Célia Gautier
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Isabelle Theret
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Giulia Lizzo
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Gilles Ferry
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sophie-Pénélope Guénin
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A Boutin
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.
- Pharma-Dev (Pharmacochimie et Biologie pour le Développement), Faculté de Pharmacie, UMR 152, Université de Toulouse, Toulouse, France.
| |
Collapse
|
5
|
Çakıcı ÖU, Dinçer S. The effect of amino acids on the bladder cycle: a concise review. Amino Acids 2021; 54:13-31. [PMID: 34853916 DOI: 10.1007/s00726-021-03113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
The human bladder maintains a cycle of filling, storing, and micturating throughout an individual's lifespan. The cycle relies on the ability of the bladder to expand without increasing the intravesical pressure, which is only possible with the controlled relaxation of well-complaint muscles and the congruously organized construction of the bladder wall. A competent bladder outlet, which functions in a synchronous fashion with the bladder, is also necessary for this cycle to be completed successfully without deterioration. In this paper, we aimed to review the contemporary physiological findings on bladder physiology and examine the effects of amino acids on clinical conditions affecting the bladder, with special emphasis on the available therapeutic evidence and possible future roles of the amino acids in the treatment of the bladder-related disorders.
Collapse
Affiliation(s)
- Özer Ural Çakıcı
- Attending Urologist, Private Practice, Ankara, Turkey.
- PhD Candidate in Physiology, Department of Physiology, Gazi University, Ankara, Turkey.
| | - Sibel Dinçer
- Professor in Physiology, Department of Physiology, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Shabajee-Alibay P, Bonnaud A, Malpaux B, Delagrange P, Audinot V, Yous S, Boutin JA, Stephan JP, Leprince J, Legros C. A putative new melatonin binding site in sheep brain, MTx: preliminary observations and characteristics. J Pharmacol Exp Ther 2021; 380:JPET-AR-2021-000785. [PMID: 34706966 DOI: 10.1124/jpet.121.000785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
In mammals, MT1 and MT2 melatonin receptors are high affinity G protein-coupled receptors and are thought to be involved in the integration of the melatonin signaling throughout the brain and periphery. In the present study, we describe a new melatonin binding site, named MTx, with a peculiar pharmacological profile. This site had a low affinity for 2-[125I]-melatonin in saturation assays in hypothalamus and retina (pKD = 9.13 {plus minus} 0.05, Bmax = 1.12 {plus minus} 0.11 fmol/mg protein and pKD = 8.81 {plus minus} 0.50, Bmax = 7.65 {plus minus} 2.64 fmol/mg protein, respectively) and a very high affinity, in competition assays, for melatonin (pKi = 13.08 {plus minus} 0.18), and other endogenous compounds. Using autoradiography, we showed a preferential localization of the MTx in periventricular areas of the sheep brain, with a density 3 to 8 times higher than those observed for ovine MT1 In addition, using a set of well-characterized ligands, we showed that this site did not correspond to any of the following receptors: MT1, MT2, MT3 , D1, D2, noradrenergic, nor 5-HT2 Based on its affinity for melatonin, MTx did not seem to be implicated in the integration of cerebral melatonin concentration variations since they were saturating for MTx. Nevertheless, it remained of prime importance because of its periventricular distribution, in close contact with the CSF, and its peculiar pharmacological profile responding to both melatoninergic and serotoninergic compounds. Significance Statement Herein a putative new melatonin binding site is described in sheep brain parts in close contact with the 3rd ventricle. The characteristics of the pharmacological profile of this site is different from anything previously reported in the literature. The present work forms the basis of future full pharmacological characterization.
Collapse
Affiliation(s)
- Preety Shabajee-Alibay
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, UNIROUEN, INSERM 1239, France
| | | | - Benoit Malpaux
- UMR Physiologie de la Reproduction et des Comportements, INRA Val de Loire, France
| | | | | | - Said Yous
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, INSERM, CHU Lille, France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier, France
| | | | - Jérôme Leprince
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, UNIROUEN, INSERM 1239, France
| | | |
Collapse
|
7
|
Lépinay J, Taragnat C, Dubois JP, Chesneau D, Jockers R, Delagrange P, Bozon V. Negative regulation of melatonin secretion by melatonin receptors in ovine pinealocytes. PLoS One 2021; 16:e0255249. [PMID: 34324562 PMCID: PMC8320996 DOI: 10.1371/journal.pone.0255249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023] Open
Abstract
Melatonin (MLT) is a biological modulator of circadian and seasonal rhythms and reproduction. The photoperiodic information is detected by retinal photoreceptors and transmitted through nerve transmissions to the pineal gland, where MLT is synthesized and secreted at night into the blood. MLT interacts with two G protein-coupled receptors, MT1 and MT2. The aim of our work was to provide evidence for the presence of MLT receptors in the ovine pineal gland and define their involvement on melatonin secretion. For the first time, we identified the expression of MLT receptors with the specific 2-[125I]-MLT agonistic radioligand in ovin pinealocytes. The values of Kd and Bmax are 2.24 ± 1.1 nM and 20 ± 6.8 fmol/mg. MLT receptors are functional and inhibit cAMP production and activate ERK1/2 through pertussis toxin-sensitive Gi/o proteins. The MLT receptor antagonist/ inverse agonist luzindole increased cAMP production (189 ± 30%) and MLT secretion (866 ± 13%). The effect of luzindole on MLT secretion was additive with the effect of well-described activators of this pathway such as the β-adrenergic agonist isoproterenol and the α-adrenergic agonist phenylephrine. Co-incubation of all three compounds increased MLT secretion by 1236 ± 199%. These results suggest that MLT receptors are involved in the negative regulation of the synthesis of its own ligand in pinealocytes. While adrenergic receptors promote MLT secretion, MLT receptors mitigate this effect to limit the quantity of MLT secreted by the pineal gland.
Collapse
Affiliation(s)
- Julie Lépinay
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Catherine Taragnat
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Jean-Philippe Dubois
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Didier Chesneau
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Véronique Bozon
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| |
Collapse
|
8
|
Photoperiod alters the choroid plexus response to LPS-induced acute inflammation in EWES. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
This study determined the influence of photoperiod on the expression of toll-like receptor 2 and 4 (TLR2 and TLR4), interleukin 1□ (IL1B), IL-1 receptor type I (IL1R1) and II (IL1R2), interleukin 6 (IL6), the IL-6 receptor (IL6R) and signal transducer (IL6ST), tumor necrosis factor α (TNF), and TNF□ receptor type I (TNFRSF1A) and II (TNFRSF1B) in the choroid plexus (ChP) of ewes with lipopolysaccharide (LPS)-induced acute inflammation. Under short-days (SD, n = 12, anestrous) and long-days (LD, n = 12, synchronized follicular phase), ewes were treated with saline or LPS. Compared to LD conditions, the ewes under SD were characterized by a greater (P<0.05) area under the curve (AUC) of cortisol in the LPS-treated group and by a lower (P<0.05) AUC of prolactin in the saline-treated group. Under both photoperiods, LPS increased (P<0.05) the expression of all examined genes except for TNFRSF1B (only under SD), TNF and TNFRSF1A (no stimulation), and IL6R (decreased (P<0.05) under SD). The LPS-induced increases in TLR2, TLR4, IL1B and its receptors, IL6 and TNFRSF1B were higher (P<0.05) under SD than LD. TLR4 was positively correlated with IL1B and IL6 in both saline- (r2 = 0.64, P<0.01 and r2 = 0.52, P<0.01) and LPS-treated (r2 = 0.81, P<0.0001 and r2 = 0.51, P<0.001) ewes. IL1B (r2 = 0.56, P<0.01 and r2 = 0.77, P<0.0001) and IL6 (r2 = 0.77, P<0.005 and r2 = 0.35, P<0.05) were positively correlated with TLR2 in saline- and LPS-treated ewes, respectively. This indicates that in ewes, the ChP response to acute systemic inflammation is dependent upon the photoperiod with stronger effects being observed under SD. Our results also suggest that gonadal hormones altering TLR4 signaling events are involved in the photoperiodic modulation of the ChP response to LPS. Further experiments are required to explain the mechanism involved in this phenomenon.
Collapse
|
9
|
Characterization of the circadian oscillator in the choroid plexus of rats. Biochem Biophys Res Commun 2020; 524:497-501. [DOI: 10.1016/j.bbrc.2020.01.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 01/01/2023]
|
10
|
Legros C, Dupré C, Brasseur C, Bonnaud A, Bruno O, Valour D, Shabajee P, Giganti A, Nosjean O, Kenakin TP, Boutin JA. Characterization of the various functional pathways elicited by synthetic agonists or antagonists at the melatonin MT 1 and MT 2 receptors. Pharmacol Res Perspect 2020; 8:e00539. [PMID: 31893123 PMCID: PMC6935685 DOI: 10.1002/prp2.539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a neurohormone that translates the circadian rhythm to the peripheral organs through a series of binding sites identified as G protein-coupled receptors MT1 and MT2. Due to minute amounts of receptor proteins in target organs, the main tool of studies of the melatoninergic system is recombinant expression of the receptors in cellular hosts. Although a number of studies exist on these receptors, studies of several signaling pathways using a large number of melatoninergic compounds are rather limited. We chose to fill this gap to better describe a panel of compounds that have been only partially characterized in terms of functionality. First, we characterized HEK cells expressing MT1 or MT2, and several signaling routes with melatonin itself to validate the approach: GTPγS, cAMP production, internalization, β-arrestin recruitment, and cell morphology changes (CellKey ® ). Second, we chose 21 compounds from our large melatoninergic chemical library and characterized them using this panel of signaling pathways. Notably, antagonists were infrequent, and their functionality depended largely on the pathway studied. This will permit redefining the availability of molecular tools that can be used to better understand the in situ activity and roles of these receptors.
Collapse
Affiliation(s)
- Céline Legros
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Clémence Dupré
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Chantal Brasseur
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Anne Bonnaud
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Bruno
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Damien Valour
- Pôle d’Expetise Méthodologie et Valorisation des DonnéesInstitut de Recherches Internationales ServierSuresnesFrance
| | - Preety Shabajee
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Adeline Giganti
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Nosjean
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Present address:
Institut de Recherches Internationales SERVIERSuresnesFrance
| | - Terrence P. Kenakin
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Jean A. Boutin
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Present address:
Institut de Recherches Internationales SERVIERSuresnesFrance
| |
Collapse
|
11
|
Abecia JA, Forcada F, Vázquez MI, Muiño-Blanco T, Cebrián-Pérez JA, Pérez-Pe R, Casao A. Role of melatonin on embryo viability in sheep. Reprod Fertil Dev 2019; 31:82-92. [PMID: 32188544 DOI: 10.1071/rd18308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a natural hormone synthesised in the pineal gland, the activity of which is regulated by day-night perception and dictates seasonal rhythms in reproduction in ovine species. Exogenous melatonin, administered via subcutaneous implants, is used to prolong the breeding season of ewes and can increase the proportion of pregnant ewes (fertility rate) and litter size. The increased proportion of ewes that become pregnant and the number of lambs born per lambing among melatonin-treated sheep may be caused by increased embryo survival, through enhanced luteal function, reduced antiluteolytic mechanisms, or improved embryo quality. This review focuses on the effects of melatonin on embryo viability and summarises the processes by which this hormone affects the ovary, follicle, oocyte, corpus luteum and embryo. Moreover, the effects of melatonin on the mechanisms of invivo maternal recognition of pregnancy in sheep and the protective action that it appears to have on the invitro procedures that are used to obtain healthy embryos are reviewed.
Collapse
Affiliation(s)
- José-Alfonso Abecia
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Fernando Forcada
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - María-Isabel Vázquez
- Departamento de Reproducción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Teresa Muiño-Blanco
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - José A Cebrián-Pérez
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Rosaura Pérez-Pe
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Adriana Casao
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| |
Collapse
|
12
|
Wojtulewicz K, Tomaszewska-Zaremba D, Krawczyńska A, Tomczyk M, Przemysław Herman A. The effect of inflammation on the synthesis of luteinizing hormone and gonadotropin-releasing hormone receptor expression in the pars tuberalis of ewe during different photoperiodic conditions. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study was designed to determine the effect of endotoxin-induced inflammation on luteinizing hormone (LH) synthesis and gonadotropin-releasing hormone (GnRH) receptor expression in the pars tuberalis (PT) of ewes during anestrous season and follicular phase taking into account the time of the day. Moreover, the effect of inflammation on the release of melatonin and its type I receptor gene expression in the PT was also determined. Lipopolysaccharide administration reduced nocturnal release of melatonin only during anestrous season, but it did not influence the gene expression of melatonin type I receptor in the PT. Inflammation inhibited nocturnal increase in the gene and protein expression of LH in the PT during the follicular phase. Since in day-active species nocturnal accumulation of LH protein in the pituitary precedes the LH surge, this lowering of LH content may delay or disturb the surge occurrence. Suppression of LH secretion could have resulted from the decreased sensitivity of the PT on the action of GnRH because inflammation reduced GnRH receptor expression. The study suggests that the ability of endotoxin to suppress LH synthesis in the PT may be another mechanism by which inflammation disturbs reproductive neuroendocrine axis in seasonal breeders.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Monika Tomczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| |
Collapse
|
13
|
Gautier C, Dufour E, Dupré C, Lizzo G, Caignard S, Riest-Fery I, Brasseur C, Legros C, Delagrange P, Nosjean O, Simonneaux V, Boutin JA, Guenin SP. Hamster Melatonin Receptors: Cloning and Binding Characterization of MT₁ and Attempt to Clone MT₂. Int J Mol Sci 2018; 19:E1957. [PMID: 29973510 PMCID: PMC6073278 DOI: 10.3390/ijms19071957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
For many years, it was of interest to identify the sequences encoding the two melatonin receptors (MT₁ and MT₂) from various species. After publishing the basic molecular characterization of the human, rat, mouse, sheep, and platypus MT₁, MT₂, or Mel1c receptors, we began cloning the genes from other animals, such as birds, bats, and vipers. The goal was to advance the receptor crystallization, which could greatly contribute the understanding of the sequence/stability relationship. European hamster MT₁ receptor was cloned for the first time from this gender, was expressed in stable form in cells, and its binding characterized with a sample of 19 melatonin ligands. Siberian hamster (Phodopus sungorus) expresses a non-functional MT₂. We observed that unlike this hamster, the European hamster (Cricetus cricetus) does not have a stop codon in the MT₂ sequence. Thus, we undertook the tedious task of cloning the MT₂ receptor. We partially succeeded, sequencing the complete exon 2 and a fragment of exon 1 (from putative amino acids 12 to 38 and 77 to 323), after several years of efforts. In order to show that the protein parts we cloned were capable to sustain some binding capacities, we designed a chimeric MT₂ receptor using a consensus sequence to replace the unknown amino acids, based on other small rodent MT₂ sequences. This chimeric construct could bind melatonin in the nanomolar range. This work is meant to be the basis for attempts from other laboratories of the community to determine the complete natural sequence of the European hamster MT₂ receptor. The present work is the first to show that, among the hamsters, if the Siberian is a natural knockout for MT₂, the European one is not.
Collapse
Affiliation(s)
- Célia Gautier
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
- Institut des Neurosciences Cellulaires et Intégratives, 67084 Strasbourg, France.
| | - Emilie Dufour
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
| | - Clémence Dupré
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
| | - Giulia Lizzo
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
| | - Sarah Caignard
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
| | - Isabelle Riest-Fery
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
| | - Chantal Brasseur
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
| | - Céline Legros
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
| | - Philippe Delagrange
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
| | - Olivier Nosjean
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
- Institut de Recherches Internationales Servier, 92150 Suresnes, France.
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, 67084 Strasbourg, France.
| | - Jean A Boutin
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
- Institut de Recherches Internationales Servier, 92150 Suresnes, France.
| | - Sophie-Pénélope Guenin
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290 Croissy sur Seine, France.
| |
Collapse
|
14
|
Gautier C, Guenin SP, Riest-Fery I, Perry TJ, Legros C, Nosjean O, Simonneaux V, Grützner F, Boutin JA. Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus). PLoS One 2018. [PMID: 29529033 PMCID: PMC5846726 DOI: 10.1371/journal.pone.0191904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals.
Collapse
MESH Headings
- Animals
- Base Sequence
- COS Cells
- Chlorocebus aethiops
- Cloning, Molecular/methods
- Melatonin/metabolism
- Phylogeny
- Platypus/genetics
- Platypus/metabolism
- Protein Binding
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/chemistry
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Receptors, Melatonin/chemistry
- Receptors, Melatonin/genetics
- Receptors, Melatonin/metabolism
Collapse
Affiliation(s)
- Célia Gautier
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
- Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sophie-Penelope Guenin
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
| | - Isabelle Riest-Fery
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
| | - Tahlia Jade Perry
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Céline Legros
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
| | - Olivier Nosjean
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Valerie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Jean A. Boutin
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
- Institut de Recherches Internationales Servier, Suresnes, France
- * E-mail:
| |
Collapse
|
15
|
Dupré C, Bruno O, Bonnaud A, Giganti A, Nosjean O, Legros C, Boutin JA. Assessments of cellular melatonin receptor signaling pathways: β-arrestin recruitment, receptor internalization, and impedance variations. Eur J Pharmacol 2017; 818:534-544. [PMID: 29154938 DOI: 10.1016/j.ejphar.2017.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
Melatonin receptors belong to the family of G-protein coupled receptors. Agonist-induced receptor activation is terminated with the recruitment of β-arrestin, which leads to receptor internalization. Furthermore, agonist binding induces a shift in cellular shape that translates into a change in the electric impedance of the cell. In the present study, we employed engineered cells to study these internalization-related processes in the context of the two melatonin receptors, MT1 and MT2. To assess these three receptor internalization-related functions and validate the results, we employed four classical ligands of melatonin receptors: the natural agonist melatonin; the super-agonist 2-iodo-melatonin and the two antagonists luzindole and 4-phenyl-2-propionamidotetralin. The assessments confirmed the nature of the agonistic ligands but showed that 4-phenyl-2-propionamidotetralin, a described antagonist, is a biased partial agonist at MT2 with poorer affinity for MT1. The methods are now available to be applied to any receptor system for which multiple signaling pathways must be evaluated for new molecules.
Collapse
Affiliation(s)
- Clémence Dupré
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Olivier Bruno
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Anne Bonnaud
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Adeline Giganti
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Céline Legros
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France.
| |
Collapse
|
16
|
Skipor J, Kowalewska M, Szczepkowska A, Majewska A, Misztal T, Jalynski M, Herman AP, Zabek K. Plasma and cerebrospinal fluid interleukin-1β during lipopolysaccharide-induced systemic inflammation in ewes implanted or not with slow-release melatonin. J Anim Sci Biotechnol 2017; 8:76. [PMID: 29026538 PMCID: PMC5623061 DOI: 10.1186/s40104-017-0206-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022] Open
Abstract
Background Interleukin-1β (IL-1β) is important mediator of inflammatory-induced suppression of reproductive axis at the hypothalamic level. At the beginning of inflammation, the main source of cytokines in the cerebrospinal fluid (CSF) is peripheral circulation, while over time, cytokines produced in the brain are more important. Melatonin has been shown to decrease pro-inflammatory cytokines concentration in the brain. In ewes, melatonin is used to advance the onset of a breading season. Little is known about CSF concentration of IL-1β in ewes and its correlation with plasma during inflammation as well as melatonin action on the concentration of IL-1β in blood plasma and the CSF, and brain barriers permeability in early stage of lipopolysaccharide (LPS)-induced inflammation. Methods Systemic inflammation was induced through LPS administration in melatonin- and sham-implanted ewes. Blood and CSF samples were collected before and after LPS administration and IL-1β and albumin concentration were measured. To assess the functions of brain barriers albumin quotient (QAlb) was used. Expression of IL-1β (Il1B) and its receptor type I (Il1r1) and type II (Il1r2) and matrix metalloproteinase (Mmp) 3 and 9 was evaluated in the choroid plexus (CP). Results Before LPS administration, IL-1β was on the level of 62.0 ± 29.7 pg/mL and 66.4 ± 32.1 pg/mL in plasma and 26.2 ± 5.4 pg/mL and 21.3 ± 8.7 pg/mL in the CSF in sham- and melatonin-implanted group, respectively. Following LPS it increased to 159.3 ± 53.1 pg/mL and 197.8 ± 42.8 pg/mL in plasma and 129.8 ± 54.2 pg/mL and 139.6 ± 51.5 pg/mL in the CSF. No correlations was found between plasma and CSF IL-1β concentration after LPS in both groups. The QAlb calculated before LPS and 6 h after was similar in all groups. Melatonin did not affected mRNA expression of Il1B, Il1r1 and Il1r2 in the CP. The mRNA expression of Mmp3 and Mmp9 was not detected. Conclusions The lack of correlation between plasma and CSF IL-1β concentration indicates that at the beginning of inflammation the local synthesis of IL-1β in the CP is an important source of IL-1β in the CSF. Melatonin from slow-release implants does not affect IL-1β concentration in plasma and CSF in early stage of systemic inflammation.
Collapse
Affiliation(s)
- Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kowalewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anna Majewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Misztal
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna n/Warsaw, Olsztyn, Poland
| | - Marek Jalynski
- Veterinary Medicine Faculty, University of Warmia and Mazury, Olsztyn, Poland
| | - Andrzej P Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna n/Warsaw, Olsztyn, Poland
| | - Katarzyna Zabek
- Department of Sheep and Goat Breeding, Animal Bioengineering Faculty, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
17
|
The effect of melatonin from slow-release implants on basic and TLR-4-mediated gene expression of inflammatory cytokines and their receptors in the choroid plexus in ewes. Res Vet Sci 2017; 113:50-55. [PMID: 28889016 DOI: 10.1016/j.rvsc.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/06/2017] [Accepted: 09/03/2017] [Indexed: 12/18/2022]
Abstract
The present study concerns the effect of melatonin from slow-release implants on the expression of genes coding interleukin-1β (Il1B), inerleukin-6 (Il6), tumour necrosis factor α (Tnf) and their receptors: IL-1 receptor type I (Il1r1) and type II (Il1r2), IL-6 receptor (Il6r) and signal transducer (Il6st), TNFα receptor type I (Tnfrsf1a) and II (Tnfrsf1b) and retinoid-related orphan receptor α (RorA) and Rev.-erbα in the ovine choroid plexus (CP) under basal and lipopolysaccharide (LPS)-challenged conditions. Studies were performed on four groups: 1) sham-implanted and placebo-treated, 2) melatonin-implanted (Melovine, 18mg) and placebo-treated, 3) sham-implanted and LPS-treated (400ng/kg of body weight) and 4) melatonin-implanted and LPS-treated. Under basal conditions, we observed weak expression of Tnf, low expression of Il1B, Il6 and Il1r2 and intermediate expression of other cytokines receptors. LPS treatment induced (P≤0.05) expression in all cytokines and their receptors, except Il6r 3h after the administration. Melatonin attenuated (P≤0.05) LPS-induced up-regulation of Il6 but had no effect on other cytokines and their receptors and up-regulated (P≤0.05) Rev.-erbα expression under basal conditions. This indicates that melatonin from slow-release implants suppresses TLR4-mediated Il6 expression in the ovine CP via a mechanism likely involving clock genes.
Collapse
|
18
|
Boutin JA, Bonnaud A, Brasseur C, Bruno O, Lepretre N, Oosting P, Coumailleau S, Delagrange P, Nosjean O, Legros C. New MT₂ Melatonin Receptor-Selective Ligands: Agonists and Partial Agonists. Int J Mol Sci 2017; 18:E1347. [PMID: 28644418 PMCID: PMC5535840 DOI: 10.3390/ijms18071347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 12/28/2022] Open
Abstract
The search for melatonin receptor agonists and antagonists specific towards one of the receptor subtypes will extend our understanding of the role of this system in relaying circadian information to the body. A series of compounds derived from a hit compound discovered in a screening process led to powerful agonists specific for one of the isoform of the melatonin receptor namely, MT₂. The compounds are based on a poorly explored skeleton in the molecular pharmacology of melatonin. By changing the steric hindrance of one substituent (i.e., from a hydrogen atom to a tributylstannyl group), we identified a possible partial agonist that could lead to antagonist analogues. The functionalities of these compounds were measured with a series of assays, including the binding of GTPγS, the inhibition of the cyclic AMP production, the β-arrestin recruitment, and the cell shape changes as determined by cellular dielectric spectroscopy (CellKey®). The variations between the compounds are discussed.
Collapse
Affiliation(s)
- Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
- Pôle d'Expertise Recherches & BioPharmacie, Institut de Recherches Internationales SERVIER, 92150 Suresnes, France.
| | - Anne Bonnaud
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| | - Chantal Brasseur
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| | - Olivier Bruno
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| | | | | | - Sophie Coumailleau
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| | - Philippe Delagrange
- Pôle d'Innovations Thérapeutiques en Neurosciences, Institut de Recherches, SERVIER, 78290 Croissy-sur-Seine, France.
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
- Pôle d'Expertise Recherches & BioPharmacie, Institut de Recherches Internationales SERVIER, 92150 Suresnes, France.
| | - Céline Legros
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| |
Collapse
|
19
|
González-Arto M, Aguilar D, Gaspar-Torrubia E, Gallego M, Carvajal-Serna M, Herrera-Marcos LV, Serrano-Blesa E, Hamilton TRDS, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA, Casao A. Melatonin MT₁ and MT₂ Receptors in the Ram Reproductive Tract. Int J Mol Sci 2017; 18:ijms18030662. [PMID: 28335493 PMCID: PMC5372674 DOI: 10.3390/ijms18030662] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some melatonin functions in mammals are exerted through MT1 and MT2 receptors. However, there are no reports of their presence in the reproductive tract of the ram, a seasonal species. Thus, we have investigated their existence in the ram testis, epididymis, accessory glands and ductus deferens. Real-time polymerase chain reaction (qPCR) revealed higher levels of m-RNA for both receptors in the testis, ampulla, seminal vesicles, and vas deferens, than in the other organs of the reproductive tract (p < 0.05). Western blot analyses showed protein bands compatible with the MT1 in the testis and cauda epididymis, and for the MT2 in the cauda epididymis and deferent duct. Immunohistochemistry analyses revealed the presence of MT1 receptors in spermatogonias, spermatocytes, and spermatids, and MT2 receptors in the newly-formed spermatozoa in the testis, whereas both receptors were located in the epithelial cells of the ampulla, seminal vesicles, and ductus deferens. Indirect immunofluorescence showed significant differences in the immunolocation of both receptors in spermatozoa during their transit in the epididymis. In conclusion, it was demonstrated that melatonin receptors are present in the ram reproductive tract. These results open the way for new studies on the molecular mechanism of melatonin and the biological significance of its receptors.
Collapse
Affiliation(s)
- Marta González-Arto
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - David Aguilar
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Elena Gaspar-Torrubia
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Margarita Gallego
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Melissa Carvajal-Serna
- Departamento de Producción Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, 11001 Bogotá, Colombia.
| | - Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Edith Serrano-Blesa
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Thais Rose Dos Santos Hamilton
- Dpto. de Reprodução Animal, da Faculdade de Medicina Veterinaria e Zootecnia, da Universidade de São Paulo, 05508 270 São Paulo, Brazil.
| | - Rosaura Pérez-Pé
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Teresa Muiño-Blanco
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - José A Cebrián-Pérez
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Adriana Casao
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
20
|
Kowalewska M, Szczepkowska A, Herman A, Pellicer-Rubio M, Jałyński M, Skipor J. Melatonin from slow-release implants did not influence the gene expression of the lipopolysaccharide receptor complex in the choroid plexus of seasonally anoestrous adult ewes subjected or not to a systemic inflammatory stimulus. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2016.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Tao J, Zhai Y, Park H, Han J, Dong J, Xie M, Gu T, Lewi K, Ji F, Jia W. Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar. PLoS One 2016; 11:e0159946. [PMID: 27494172 PMCID: PMC4975438 DOI: 10.1371/journal.pone.0159946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022] Open
Abstract
Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation.
Collapse
Affiliation(s)
- Jiang Tao
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yue Zhai
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hyun Park
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Junli Han
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jianhui Dong
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ming Xie
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Gu
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Keidren Lewi
- Department of Medicine, Windsor University School of Medicine, St. Kitts & Nevis
| | - Fang Ji
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
- * E-mail: (FJ); (WJ)
| | - William Jia
- Brain Research Centre, Department of Surgery, University of British Columbia, Canada
- * E-mail: (FJ); (WJ)
| |
Collapse
|
22
|
González-Arto M, Vicente-Carrillo A, Martínez-Pastor F, Fernández-Alegre E, Roca J, Miró J, Rigau T, Rodríguez-Gil JE, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA, Casao A. Melatonin receptors MT1 and MT2 are expressed in spermatozoa from several seasonal and nonseasonal breeder species. Theriogenology 2016; 86:1958-68. [PMID: 27448693 DOI: 10.1016/j.theriogenology.2016.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous and multipurpose molecule, and one of its roles is to regulate reproduction in some seasonal mammals. Our group has previously reported the variation in the melatonin levels in ram seminal plasma along the year and identified MT1 and MT2 receptors in ram spermatozoa. The objective of this study was to elucidate whether the presence of melatonin receptors (MT1 and MT2) in the sperm plasma membrane, and melatonin in the seminal plasma is related to seasonal breeding. For this purpose, the presence of melatonin receptors and the levels of melatonin in seminal plasma have been examined in several species: donkey and stallion as long-day breeders; red deer as a wild, short-day, highly seasonal breeder (epididymal spermatozoa); bull as a conventional nonseasonal breeder; boar as a seasonal breeder under management techniques; and dog as possible a seasonal breeder not regulated by melatonin. We have detected measurable levels of melatonin in the seminal plasma of all ejaculated semen samples (from donkey, stallion, boar, bull, and dog). Also, and for the first time, we have demonstrated the presence of MT1 and MT2 melatonin receptors in the spermatozoa of all these species, regardless their type of reproduction or sperm source (ejaculated or epididymal), using indirect immunofluorescence techniques and Western blotting. Our findings suggest that melatonin and melatonin receptors may be universally distributed in the reproductive system of mammals and that the sperm melatonin receptors cells may not be necessarily related with seasonal reproduction. Furthermore, the presence of MT1 at the cytoplasmic droplet in immature ejaculated stallion spermatozoa found in one sample and epididymal red deer spermatozoa suggests that melatonin may be involved in specific functions during spermatogenesis and sperm maturation, like protecting spermatozoa from oxidative damage, this activity being mediated through these receptors.
Collapse
Affiliation(s)
- Marta González-Arto
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | - Jordi Roca
- Departamento de Medicina y Cirugía Animal, Universidad de Murcia, Murcia, Spain
| | - Jordi Miró
- Departamento de Reproducción Animal, Facultad de Veterinaria, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Teresa Rigau
- Departamento de Reproducción Animal, Facultad de Veterinaria, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Joan E Rodríguez-Gil
- Departamento de Reproducción Animal, Facultad de Veterinaria, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Rosaura Pérez-Pé
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Teresa Muiño-Blanco
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - José A Cebrián-Pérez
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Adriana Casao
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
23
|
Legros C, Brasseur C, Delagrange P, Ducrot P, Nosjean O, Boutin JA. Alternative Radioligands for Investigating the Molecular Pharmacology of Melatonin Receptors. J Pharmacol Exp Ther 2016; 356:681-92. [PMID: 26759496 DOI: 10.1124/jpet.115.229989] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
Melatonin exerts a variety of physiologic activities that are mainly relayed through the melatonin receptors MT1 and MT2 Low expressions of these receptors in tissues have led to widespread experimental use of the agonist 2-[(125)I]-iodomelatonin as a substitute for melatonin. We describe three iodinated ligands: 2-(2-[(2-iodo-4,5-dimethoxyphenyl)methyl]-4,5-dimethoxy phenyl) (DIV880) and (2-iodo-N-2-[5-methoxy-2-(naphthalen-1-yl)-1H-pyrrolo[3,2-b]pyridine-3-yl])acetamide (S70254), which are specific ligands at MT2 receptors, and N-[2-(5-methoxy-1H-indol-3-yl)ethyl]iodoacetamide (SD6), an analog of 2-[(125)I]-iodomelatonin with slightly different characteristics. Here, we further characterized these new ligands with regards to their molecular pharmacology. We performed binding experiments, saturation assays, association/dissociation rate measurements, and autoradiography using sheep and rat tissues and recombinant cell lines. Our results showed that [(125)I]-S70254 is receptor, and can be used with both cells and tissue. This radioligand can be used in autoradiography. Similarly, DIV880, a partial agonist [43% of melatonin on guanosine 5'-3-O-(thio)triphosphate binding assay], selective for MT2, can be used as a tool to selectively describe the pharmacology of this receptor in tissue samples. The molecular pharmacology of both human melatonin receptors MT1 and MT2, using a series of 24 ligands at these receptors and the new radioligands, did not lead to noticeable variations in the profiles. For the first time, we described radiolabeled tools that are specific for one of the melatonin receptors (MT2). These tools are amenable to binding experiments and to autoradiography using sheep or rat tissues. These specific tools will permit better understanding of the role and implication in physiopathologic processes of the melatonin receptors.
Collapse
Affiliation(s)
- Céline Legros
- Pôle d'Expertise Biotechnologie, Chimie, Biologie (C.L., C.B., P.Du., O.N., J.A.B.), and Unité de Recherches et Découvertes en Neurosciences (P.De.), Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Chantal Brasseur
- Pôle d'Expertise Biotechnologie, Chimie, Biologie (C.L., C.B., P.Du., O.N., J.A.B.), and Unité de Recherches et Découvertes en Neurosciences (P.De.), Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Philippe Delagrange
- Pôle d'Expertise Biotechnologie, Chimie, Biologie (C.L., C.B., P.Du., O.N., J.A.B.), and Unité de Recherches et Découvertes en Neurosciences (P.De.), Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Pierre Ducrot
- Pôle d'Expertise Biotechnologie, Chimie, Biologie (C.L., C.B., P.Du., O.N., J.A.B.), and Unité de Recherches et Découvertes en Neurosciences (P.De.), Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie, Biologie (C.L., C.B., P.Du., O.N., J.A.B.), and Unité de Recherches et Découvertes en Neurosciences (P.De.), Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie, Biologie (C.L., C.B., P.Du., O.N., J.A.B.), and Unité de Recherches et Découvertes en Neurosciences (P.De.), Institut de Recherches SERVIER, Croissy-sur-Seine, France
| |
Collapse
|
24
|
Henningsen JB, Gauer F, Simonneaux V. RFRP Neurons - The Doorway to Understanding Seasonal Reproduction in Mammals. Front Endocrinol (Lausanne) 2016; 7:36. [PMID: 27199893 PMCID: PMC4853402 DOI: 10.3389/fendo.2016.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/18/2016] [Indexed: 01/03/2023] Open
Abstract
Seasonal control of reproduction is critical for the perpetuation of species living in temperate zones that display major changes in climatic environment and availability of food resources. In mammals, seasonal cues are mainly provided by the annual change in the 24-h light/dark ratio (i.e., photoperiod), which is translated into the nocturnal production of the pineal hormone melatonin. The annual rhythm in this melatonin signal acts as a synchronizer ensuring that breeding occurs when environmental conditions favor survival of the offspring. Although specific mechanisms might vary among seasonal species, the hypothalamic RF (Arg-Phe) amide-related peptides (RFRP-1 and -3) are believed to play a critical role in the central control of seasonal reproduction and in all seasonal species investigated, the RFRP system is persistently inhibited in short photoperiod. Central chronic administration of RFRP-3 in short day-adapted male Syrian hamsters fully reactivates the reproductive axis despite photoinhibitory conditions, which highlights the importance of the seasonal changes in RFRP expression for proper regulation of the reproductive axis. The acute effects of RFRP peptides, however, depend on species and photoperiod, and recent studies point toward a different role of RFRP in regulating female reproductive activity. In this review, we summarize the recent advances made to understand the role and underlying mechanisms of RFRP in the seasonal control of reproduction, primarily focusing on mammalian species.
Collapse
Affiliation(s)
- Jo B. Henningsen
- Institut des Neurosciences Cellulaires et Intégratives, Centre national de la recherche scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - François Gauer
- Institut des Neurosciences Cellulaires et Intégratives, Centre national de la recherche scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, Centre national de la recherche scientifique (CNRS), University of Strasbourg, Strasbourg, France
- *Correspondence: Valérie Simonneaux,
| |
Collapse
|
25
|
Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol 2015; 56:361-83. [PMID: 26514204 PMCID: PMC5091650 DOI: 10.1146/annurev-pharmtox-010814-124742] [Citation(s) in RCA: 397] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin, or 5-methoxy-N-acetyltryptamine, is synthesized and released by the pineal gland and locally in the retina following a circadian rhythm, with low levels during the day and elevated levels at night. Melatonin activates two high-affinity G protein-coupled receptors, termed MT1 and MT2, to exert beneficial actions in sleep and circadian abnormality, mood disorders, learning and memory, neuroprotection, drug abuse, and cancer. Progress in understanding the role of melatonin receptors in the modulation of sleep and circadian rhythms has led to the discovery of a novel class of melatonin agonists for treating insomnia, circadian rhythms, mood disorders, and cancer. This review describes the pharmacological properties of a slow-release melatonin preparation (i.e., Circadin®) and synthetic ligands (i.e., agomelatine, ramelteon, tasimelteon), with emphasis on identifying specific therapeutic effects mediated through MT1 and MT2 receptor activation. Discovery of selective ligands targeting the MT1 or the MT2 melatonin receptors may promote the development of novel and more efficacious therapeutic agents.
Collapse
Affiliation(s)
- Jiabei Liu
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Shannon J Clough
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Anthony J Hutchinson
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Ekue B Adamah-Biassi
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Marina Popovska-Gorevski
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| |
Collapse
|
26
|
Boutin JA. Quinone reductase 2 as a promising target of melatonin therapeutic actions. Expert Opin Ther Targets 2015; 20:303-17. [DOI: 10.1517/14728222.2016.1091882] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jean A Boutin
- Institut de Recherches SERVIER, Pole d’Expertise Biotechnologie, Chimie & Biologie, 125, chemin de Ronde, 78290 Croissy-sur-Seine, France
| |
Collapse
|
27
|
Teixeira-Gomes AP, Harichaux G, Gennetay D, Skipor J, Thiery JC, Labas V, Dufourny L. Photoperiod affects the cerebrospinal fluid proteome: a comparison between short day- and long day-treated ewes. Domest Anim Endocrinol 2015; 53:1-8. [PMID: 26046803 DOI: 10.1016/j.domaniend.2015.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 12/21/2022]
Abstract
Photoperiod is the main physical synchronizer of seasonal functions and a key factor in the modulation of molecule access to cerebrospinal fluid (CSF) in animals. Previous work has shown that photoperiod affects the transfer rate of steroids and protein hormones from blood to CSF and modulates choroid plexus tight junction protein content. We hypothesized that the CSF proteome would also be modified by photoperiod. We tested this hypothesis by comparing CSF obtained from the third ventricle of mature, ovariectomized, estradiol-replaced ewes exposed to long day length (LD) or short day length (SD). Variations in CSF protein expression between SD- or LD-treated ewes were studied in pools of CSF collected for 48 h. Proteins were precipitated, concentrated, and included in a polyacrylamide gel without protein fractionation. After in-gel tryptic digestion of total protein samples, we analyzed the resulting peptides by nanoliquid chromatography coupled with high-resolution tandem mass spectrometry (GeLC-MS/MS). Quantitative analysis was performed using 2 methods based on spectral counting and extracted ion chromatograms. Among 103 identified proteins, 41 were differentially expressed between LD and SD ewes (with P < 0.05 and at least a 1.5-fold difference). Of the 41 differentially expressed proteins, 22 were identified by both methods and 19 using extracted ion chromatograms only. Eighteen proteins were more abundant in LD ewes and 23 were more abundant in SD ewes. These proteins are involved in numerous functions including hormone transport, immune system activity, metabolism, and angiogenesis. To confirm proteomic results, 2 proteins, pigment epithelium-derived factor (PEDF) and gelsolin, for each individual sample of CSF collected under SD or LD were analyzed with Western blots. These results suggest an important photoperiod-dependent change in CSF proteome composition. Nevertheless, additional studies are required to assess the role of each protein in seasonal functions.
Collapse
Affiliation(s)
- A-P Teixeira-Gomes
- Laboratoire de Spectrométrie de Masse, Plate-forme d'Analyse Intégrative des Biomolécules, INRA, F-37380 Nouzilly, France; Unité Mixte de Recherches 1282, Infectiologie et Santé Publique, INRA, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37000 Tours, France
| | - G Harichaux
- Laboratoire de Spectrométrie de Masse, Plate-forme d'Analyse Intégrative des Biomolécules, INRA, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - D Gennetay
- Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - J Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - J-C Thiery
- Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - V Labas
- Laboratoire de Spectrométrie de Masse, Plate-forme d'Analyse Intégrative des Biomolécules, INRA, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - L Dufourny
- Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France.
| |
Collapse
|
28
|
Fathollahi A, Daneshgari F, Hanna-Mitchell AT. Melatonin and Its Role in Lower Urinary Tract Function: An Article Review. Curr Urol 2015; 8:113-8. [PMID: 26889129 DOI: 10.1159/000365701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/20/2015] [Indexed: 01/19/2023] Open
Abstract
This article reviewed the results of studies done on animals that assessed effects of melatonin on bladder function. Melatonin does not change strip relaxation on its own. However, pre-treatment with melatonin decreases contractile responses induced by phenylephrine, acetylcholine, bethanechol and KCl in a dose-dependent manner. The contractile responses induced by the direct calcium channel openers are significantly decreased by melatonin pre-treatment. It also binds to Ca(2+)-activated calmodulin, and prevents it from activating myosin light-chain kinase. It may have direct effects on ion channels which are responsible for regulating bladder contraction. Its other mode of action on bladder occurs via the brain GABAA receptor. Melatonin is an antioxidant. In bladder, treatment with melatonin prevents elevations in malondialdehyde levels, reverses changes in glutathione levels, and decreases myeloperoxidase levels compared with oxidative injury. It can normalize age induced bladder dysfunction through its antioxidant effects, inhibiting smooth muscle contractility directly and restoring impaired contractility via normalization of Ca(2+) handling and sensitizations pathways. It attenuates the severity of cystitis and inflammation. Mast cell proliferation and activation are increased in cystitis, but decrease by melatonin treatment. Also, there is a decrease in expression levels of pro-inflammatory cytokines after melatonin treatment.
Collapse
Affiliation(s)
- Ali Fathollahi
- Urology Institute, Case Western Reserve University, Cleveland, OH., USA
| | - Firouz Daneshgari
- Urology Institute, Case Western Reserve University, Cleveland, OH., USA
| | | |
Collapse
|
29
|
Tosini G, Owino S, Guillaume JL, Jockers R. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. Bioessays 2014; 36:778-87. [PMID: 24903552 PMCID: PMC4151498 DOI: 10.1002/bies.201400017] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications toward type 2 diabetes development, visual functions, sleep disturbances, and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2 , which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1 /MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models.
Collapse
Affiliation(s)
- Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
30
|
Logez C, Berger S, Legros C, Banères JL, Cohen W, Delagrange P, Nosjean O, Boutin JA, Ferry G, Simonin F, Wagner R. Recombinant human melatonin receptor MT1 isolated in mixed detergents shows pharmacology similar to that in mammalian cell membranes. PLoS One 2014; 9:e100616. [PMID: 24959712 PMCID: PMC4069108 DOI: 10.1371/journal.pone.0100616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Abstract
The human melatonin MT1 receptor—belonging to the large family of G protein-coupled receptors (GPCRs)—plays a key role in circadian rhythm regulation and is notably involved in sleep disorders and depression. Structural and functional information at the molecular level are highly desired for fine characterization of this receptor; however, adequate techniques for isolating soluble MT1 material suitable for biochemical and biophysical studies remain lacking. Here we describe the evaluation of a panel of constructs and host systems for the production of recombinant human MT1 receptors, and the screening of different conditions for their solubilization and purification. Our findings resulted in the establishment of an original strategy using a mixture of Fos14 and CHAPS detergents to extract and purify a recombinant human MT1 from Pichia pastoris membranes. This procedure enabled the recovery of relatively pure, monomeric and ligand-binding active MT1 receptor in the near-milligram range. A comparative study based on extensive ligand-binding characterization highlighted a very close correlation between the pharmacological profiles of MT1 purified from yeast and the same receptor present in mammalian cell membranes. The high quality of the purified MT1 was further confirmed by its ability to activate its cognate Gαi protein partner when reconstituted in lipid discs, thus opening novel paths to investigate this receptor by biochemical and biophysical approaches.
Collapse
Affiliation(s)
- Christel Logez
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sylvie Berger
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Céline Legros
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean-Louis Banères
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier 1 and Montpellier 2, Faculté de Pharmacie, Montpellier, France
| | - William Cohen
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Philippe Delagrange
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherche Servier, Croissy-sur-Seine, France
| | - Olivier Nosjean
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A. Boutin
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
- * E-mail:
| | - Gilles Ferry
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Frédéric Simonin
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| | - Renaud Wagner
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| |
Collapse
|
31
|
Dardente H, Hazlerigg DG, Ebling FJP. Thyroid hormone and seasonal rhythmicity. Front Endocrinol (Lausanne) 2014; 5:19. [PMID: 24616714 PMCID: PMC3935485 DOI: 10.3389/fendo.2014.00019] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/10/2014] [Indexed: 12/15/2022] Open
Abstract
Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, UMR085, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut français du cheval et de l’équitation, Nouzilly, France
- *Correspondence: Hugues Dardente, INRA, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, UMR7247, Université François Rabelais de Tours, IFCE, F-37380 Nouzilly, France e-mail:
| | - David G. Hazlerigg
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | | |
Collapse
|
32
|
Legros C, Devavry S, Caignard S, Tessier C, Delagrange P, Ouvry C, Boutin JA, Nosjean O. Melatonin MT₁ and MT₂ receptors display different molecular pharmacologies only in the G-protein coupled state. Br J Pharmacol 2014; 171:186-201. [PMID: 24117008 PMCID: PMC3874706 DOI: 10.1111/bph.12457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Melatonin receptors have been extensively characterized regarding their affinity and pharmacology, mostly using 2-[(125)I]-melatonin as a radioligand. Although [(3)H]-melatonin has the advantage of corresponding to the endogenous ligand of the receptor, its binding has not been well described. EXPERIMENTAL APPROACH We characterized [(3)H]-melatonin binding to the hMT₁ and hMT₂ receptors expressed in a range of cell lines and obtained new insights into the molecular pharmacology of melatonin receptors. KEY RESULTS The binding of [(3)H]-melatonin to the hMT₁ and hMT₂ receptors displayed two sites on the saturation curves. These two binding sites were observed on cell membranes expressing recombinant receptors from various species as well as on whole cells. Furthermore, our GTPγS/NaCl results suggest that these sites on the saturation curves correspond to the G-protein coupled and uncoupled states of the receptors, whose pharmacology was extensively characterized. CONCLUSIONS AND IMPLICATIONS hMT₁ and hMT₂ receptors spontaneously exist in two states when expressed in cell lines; these states can be probed by [(3)H]-melatonin binding. Overall, our results suggest that physiological regulation of the melatonin receptors may result from complex and subtle mechanisms, a small difference in affinity between the active and inactive states of the receptor, and spontaneous coupling to G-proteins.
Collapse
Affiliation(s)
- Céline Legros
- Biotechnologies, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches ServierCroissy-sur-Seine, France
| | - Séverine Devavry
- Biotechnologies, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches ServierCroissy-sur-Seine, France
- INRA, UMR85 Physiologie de la Reproduction et des ComportementsNouzilly, France
- CNRS, UMR6175Nouzilly, France
| | - Sarah Caignard
- Biotechnologies, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches ServierCroissy-sur-Seine, France
| | - Clémence Tessier
- Biotechnologies, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches ServierCroissy-sur-Seine, France
| | - Philippe Delagrange
- Unité de Recherches en Neurosciences, Institut de Recherches ServierCroissy-sur-Seine, France
| | - Christine Ouvry
- Biotechnologies, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches ServierCroissy-sur-Seine, France
| | - Jean A Boutin
- Biotechnologies, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches ServierCroissy-sur-Seine, France
| | - Olivier Nosjean
- Biotechnologies, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches ServierCroissy-sur-Seine, France
| |
Collapse
|
33
|
Guesdon V, Malpaux B, Delagrange P, Spedding M, Cornilleau F, Chesneau D, Haller J, Chaillou E. Rapid effects of melatonin on hormonal and behavioral stressful responses in ewes. Psychoneuroendocrinology 2013; 38:1426-34. [PMID: 23337408 DOI: 10.1016/j.psyneuen.2012.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/17/2023]
Abstract
Sheep are gregarious mammals with complex social interactions. As such, they are very sensitive to social isolation and constitute a relevant animal model to study specifically the biological consequences of social stress. We examined previously the behavioral and endocrine responses in ewes isolated socially in the familiar conspecific withdrawal model (FCW) and showed that stressful responses increased and maintenance behaviors decreased, confirming that social isolation is a strong stressor in sheep. Melatonin synchronizes seasonal and circadian rhythms; and several studies reported its implication in cognitive processes as emotion. Here we investigated its role in the modulation of social stressful responses. Firstly, we studied ewes in the FCW model during the day (characterized by low melatonin levels) and the night (characterized by high melatonin levels). We found lower stressful responses (significant lower levels of cortisol plasma, number of foot pawings, of circling attempts) during the night as compared to the day. To investigate whether these effects were due to melatonin or to darkness, we submitted ewes to FCW during the night with lights on, a condition that suppresses melatonin secretion. Ewes infused with melatonin under these conditions showed decreased stressful responses (significant lower levels cortisol plasma, number of vocalizations, time spent with the head out of the cage) as compared to ewes infused with saline. These findings demonstrate that melatonin diminishes the endocrine and behavioral impact of social isolation in ewes and support the idea that melatonin has a calming effect in socially stressful situations.
Collapse
Affiliation(s)
- Vanessa Guesdon
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Legros C, Matthey U, Grelak T, Pedragona-Moreau S, Hassler W, Yous S, Thomas E, Suzenet F, Folleas B, Lefoulon F, Berthelot P, Caignard DH, Guillaumet G, Delagrange P, Brayer JL, Nosjean O, Boutin JA. New radioligands for describing the molecular pharmacology of MT1 and MT2 melatonin receptors. Int J Mol Sci 2013; 14:8948-62. [PMID: 23698757 PMCID: PMC3676766 DOI: 10.3390/ijms14058948] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022] Open
Abstract
Melatonin receptors have been studied for several decades. The low expression of the receptors in tissues led the scientific community to find a substitute for the natural hormone melatonin, the agonist 2-[125I]-iodomelatonin. Using the agonist, several hundreds of studies were conducted, including the discovery of agonists and antagonists for the receptors and minute details about their molecular behavior. Recently, we attempted to expand the panel of radioligands available for studying the melatonin receptors by using the newly discovered compounds SD6, DIV880, and S70254. These compounds were characterized for their affinities to the hMT1 and hMT2 recombinant receptors and their functionality in the classical GTPS system. SD6 is a full agonist, equilibrated between the receptor isoforms, whereas S70254 and DIV880 are only partial MT2 agonists, with Ki in the low nanomolar range while they have no affinity to MT1 receptors. These new tools will hopefully allow for additions to the current body of information on the native localization of the receptor isoforms in tissues.
Collapse
Affiliation(s)
- Céline Legros
- BPMC, Institut de Recherches SERVIER, 125 chemin de Ronde, Croissy-sur-Seine 78290, France; E-Mails: (C.L.); (O.N.)
| | - Ulrich Matthey
- Celerion Switzerland AG Allmendstrasse 32, Fehraltorf CH-8320, Switzerland; E-Mails: (U.M.); (T.G.)
| | - Teresa Grelak
- Celerion Switzerland AG Allmendstrasse 32, Fehraltorf CH-8320, Switzerland; E-Mails: (U.M.); (T.G.)
| | | | - Werner Hassler
- ANAWA Trading SA, Unterdorfstrasse 21, Wangen CH-8602, Switzerland; E-Mail:
| | - Saïd Yous
- Université Lille Nord de France, F-59000 Lille, France & UDSL, EA GRIIOT, UFR Pharmacie, Lille F-59000, France; E-Mail: (S.Y.); (P.B.)
| | - Emmanuel Thomas
- DIVERCHIM, 6 Rue du Noyer, Roissy 95700, France; E-Mails: (E.T.); (B.F.); (J.-L.B.)
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d’Orléans, rue de Chartres, Orléans 45067, France; E-Mails: (F.S.); (G.G.)
| | - Benoît Folleas
- DIVERCHIM, 6 Rue du Noyer, Roissy 95700, France; E-Mails: (E.T.); (B.F.); (J.-L.B.)
| | - François Lefoulon
- Technologie SERVIER, 27 rue Vignat, Orléans 45000, France; E-Mails: (S.P.-M.); (F.L.)
| | - Pascal Berthelot
- Université Lille Nord de France, F-59000 Lille, France & UDSL, EA GRIIOT, UFR Pharmacie, Lille F-59000, France; E-Mail: (S.Y.); (P.B.)
| | - Daniel-Henri Caignard
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherches SERVIER, 125 chemin de Ronde, Croissy-sur-Seine 78290, France; E-Mails: (D.-H.C.); (P.D.)
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d’Orléans, rue de Chartres, Orléans 45067, France; E-Mails: (F.S.); (G.G.)
| | - Philippe Delagrange
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherches SERVIER, 125 chemin de Ronde, Croissy-sur-Seine 78290, France; E-Mails: (D.-H.C.); (P.D.)
| | - Jean-Louis Brayer
- DIVERCHIM, 6 Rue du Noyer, Roissy 95700, France; E-Mails: (E.T.); (B.F.); (J.-L.B.)
| | - Olivier Nosjean
- BPMC, Institut de Recherches SERVIER, 125 chemin de Ronde, Croissy-sur-Seine 78290, France; E-Mails: (C.L.); (O.N.)
| | - Jean A. Boutin
- BPMC, Institut de Recherches SERVIER, 125 chemin de Ronde, Croissy-sur-Seine 78290, France; E-Mails: (C.L.); (O.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-0155-722-748; Fax: +33-0155-722-810
| |
Collapse
|
35
|
Hazlerigg DG, Wyse CA, Dardente H, Hanon EA, Lincoln GA. Photoperiodic Variation in CD45-Positive Cells and Cell Proliferation in the Mediobasal Hypothalamus of the Soay Sheep. Chronobiol Int 2013; 30:548-58. [DOI: 10.3109/07420528.2012.754450] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Casao A, Gallego M, Abecia JA, Forcada F, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JÁ. Identification and immunolocalisation of melatonin MT(1) and MT(2) receptors in Rasa Aragonesa ram spermatozoa. Reprod Fertil Dev 2013; 24:953-61. [PMID: 22935156 DOI: 10.1071/rd11242] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/26/2012] [Indexed: 12/15/2022] Open
Abstract
The reproductive seasonality of sheep suggests that melatonin receptors may be present in ram spermatozoa. The present study confirms the presence of melatonin MT(1) and MT(2) receptors. The MT(1) receptor was detected using immunocytochemistry, with four sperm subpopulations identified based on the following labelling patterns: (1) one small subpopulation with labelling over the entire head and tail; (2) one of two main subpopulations that exhibited reactivity at the equatorial, post-acrosomal, neck and tail regions; (3) another main subpopulation with equatorial and tail labelling only; and (4) a subpopulation in which staining was detected only in the tail. Immunocytochemistry revealed the presence of the melatonin MT(2) receptor, with intense staining on the acrosome, post-acrosomal region and neck and tail regions of all cells, but not in the equatorial region. Western blot identification of ram protein extracts revealed a 39-kDa band compatible with both MT(1) and MT(2) receptors, a 75-kDa band compatible with MT(1)/MT(2) heterodimerisation, a 32-kDa band compatible with MT(1) receptor activation and a double band of 45-55 kDa that is compatible with MT(2) receptor homodimerisation or heterodimerisation with other G-proteins. In conclusion, we provide evidence of the presence of MT(1) and MT(2) receptors in ram spermatozoa, although the biochemical pathway triggered by these receptors and their function in terms of fertility remains to be elucidated.
Collapse
Affiliation(s)
- Adriana Casao
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón, Universidad de Zaragoza, C/Miguel Servet 177, 500013, Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
37
|
Cardinali DP, Vidal MF, Vigo DE. Agomelatine: Its Role in the Management of Major Depressive Disorder. ACTA ACUST UNITED AC 2012. [DOI: 10.4137/cmpsy.s7989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Circadian rhythm abnormalities, as shown by sleep/wake cycle disturbances, constitute one the most prevalent signs of depressive illness; advances or delays in the circadian phase are documented in patients with major depressive disorder (MDD), bipolar disorder, and seasonal affective disorder (SAD). The disturbances in the amplitude and phase of rhythm in melatonin secretion that occur in patients with depression resemble those seen in chronobiological disorders, thus suggesting a link between disturbed melatonin secretion and depressed mood. Based on this, agomelatine, the first MT1/MT2 melatonergic agonist displaying also 5-HT2C serotonergic antagonism, has been introduced as an antidepressant. Agomelatine has been shown to be effective in several animal models of depression and anxiety and it has beneficial effects in patients with MDD, bipolar disorder, or SAD. Among agomelatine's characteristics are a rapid onset of action and a pronounced effectiveness for correcting circadian rhythm abnormalities and improving the sleep/wake cycle. Agomelatine also improves the 3 functional dimensions of depression—emotional, cognitive, and social—thus aiding in the full recovery of patients to a normal life.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - María F. Vidal
- Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Daniel E. Vigo
- Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
38
|
Devavry S, Legros C, Brasseur C, Delagrange P, Spadoni G, Cohen W, Malpaux B, Boutin JA, Nosjean O. Description of the constitutive activity of cloned human melatonin receptors hMT(1) and hMT(2) and discovery of inverse agonists. J Pineal Res 2012; 53:29-37. [PMID: 22017484 DOI: 10.1111/j.1600-079x.2011.00968.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin receptors have been described to activate different G protein-dependent signaling pathways, both in laboratory, heterologous, cellular models and in physiological conditions. Furthermore, the constitutive activity of G protein-coupled receptors has been shown to be key in physiological and pathological conditions. In the case of melatonin receptors, information is rather scare and concerns only MT1 receptors. In the present report, we show that the G protein-coupled melatonin receptors do have a constitutive, nonmelatonin-induced signaling activity using two cellular models of different origins, the Chinese hamster ovary cell line and Neuro2A, a neuroblastoma cell line. Furthermore, we show that this constitutive activity involves mainly Gi proteins, which is consistent with the common knowledge on the melatonin receptors. Importantly, we also describe, for the first time, inverse agonist properties for melatonin ligands. Although it is clear than more in-depth, biochemistry-based studies will be required to better understand by which pathway(s) the constitutively active melatonin receptors transfer melatonin information into intracellular biochemical events; our data open interesting perspectives for understanding the importance of the constitutive activity of melatonin receptors in physiological conditions.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cloning, Molecular
- Cricetinae
- Cricetulus
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Melatonin/metabolism
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Séverine Devavry
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Szczepkowska A, Wąsowska B, Gilun PD, Lagaraine C, Robert V, Dufourny L, Thiéry JC, Skipor J. Pattern of expression of vascular endothelial growth factor and its receptors in the ovine choroid plexus during long and short photoperiods. Cell Tissue Res 2012; 350:157-66. [PMID: 22622803 PMCID: PMC3462986 DOI: 10.1007/s00441-012-1431-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/04/2012] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF-A) plays an important role in maintaining cerebrospinal fluid (CSF) homeostasis and the function of the choroid plexuses (CPs). The objective of the study was to determine the expression of vascular endothelial growth factor (VEGF-A), tyrosine kinase receptors Flt-1 and KDR and KDR co-receptor neuropilin 1 (NRP-1) in ovine CPs during different photoperiods. CPs were collected from the lateral brain ventricles from ovariectomized, estradiol-treated ewes during long day (LD; 16L:8D, n = 5) and short day (SD; 8L:16D, n = 5) photoperiods. We analyzed mRNA expression levels of two VEGF-A isoforms, VEGF-A120 and VEGF-A164 and our results indicate that VEGF-A164 was the predominant isoform. Expression levels of VEGF-A and Flt-1 were similar during the SD and LD photoperiods. There were significant increases in KDR mRNA and protein expression (p < 0.05) and NRP-1 mRNA expression (p < 0.05) during SD. These data show that expression of KDR and its co-receptor NRP-1 are up-regulated by short photoperiod and that this effect is not dependent on ovarian steroids. Our results suggest that the VEGF-A-system may be involved in photoperiodic plasticity of CP capillaries and may therefore be responsible for photoperiodic changes in the CSF turnover rate in ewes.
Collapse
Affiliation(s)
- Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Batailler M, Mullier A, Sidibe A, Delagrange P, Prévot V, Jockers R, Migaud M. Neuroanatomical distribution of the orphan GPR50 receptor in adult sheep and rodent brains. J Neuroendocrinol 2012; 24:798-808. [PMID: 22512326 DOI: 10.1111/j.1365-2826.2012.02274.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GPR50, formerly known as melatonin-related receptor, is one of three subtypes of the melatonin receptor subfamily, together with the MT(1) and MT(2) receptors. By contrast to these two high-affinity receptor subtypes and despite its high identity with the melatonin receptor family, GPR50 does not bind melatonin or any other known ligand. Specific and reliable immunological tools are therefore needed to be able to elucidate the physiological functions of this orphan receptor that are still largely unknown. We have generated and validated a new specific GPR50 antibody against the ovine GPR50 and used it to analyse the neuroanatomical distribution of the GPR50 in sheep, rat and mouse whole brain. We demonstrated that GPR50-positive cells are widely distributed in various regions, including the hypothalamus and the pars tuberalis of the pituitary, in all the three species studied. GPR50 expressing cells are abundant in the dorsomedial nucleus of the hypothalamus, the periventricular nucleus and the median eminence. In rodents, immunohistochemical studies revealed a broader distribution pattern for the GPR50 protein. GPR50 immunoreactivity is found in the medial preoptic area (MPA), the lateral septum, the lateral hypothalamic area, the bed nucleus of the stria terminalis, the vascular organ of the laminae terminalis and several regions of the amygdala, including the medial nuclei of amygdala. Additionally, in the rat brain, GPR50 protein was localised in the CA1 pyramidal cell layer of the dorsal hippocampus. In mice, moderate to high numbers of GPR50-positive cells were also found in the subfornical organ. Taken together, these results provide an enlarged distribution of GPR50 protein, give further insight into the organisation of the melatoninergic system, and may lay the framework for future studies on the role of the GPR50 in the brain.
Collapse
Affiliation(s)
- M Batailler
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Han JH, Chang IH, Myung SC, Lee MY, Kim WY, Lee SY, Lee SY, Lee SW, Kim KD. A novel pathway underlying the inhibitory effects of melatonin on isolated rat urinary bladder contraction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:37-42. [PMID: 22416218 PMCID: PMC3298824 DOI: 10.4196/kjpp.2012.16.1.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/22/2011] [Accepted: 01/08/2012] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to elucidate the direct effects of melatonin on bladder activity and to determine the mechanisms responsible for the detrusor activity of melatonin in the isolated rat bladder. We evaluated the effects of melatonin on the contractions induced by phenylephrine (PE), acetylcholine (ACh), bethanechol (BCh), KCl, and electrical field stimulation (EFS) in 20 detrusor smooth muscle samples from Sprague-Dawley rats. To determine the mechanisms underlying the inhibitory responses to melatonin, melatonin-pretreated muscle strips were exposed to a calcium channel antagonist (verapamil), three potassium channel blockers [tetraethyl ammonium (TEA), 4-aminopyridine (4-AP), and glibenclamide], a direct voltage-dependent calcium channel opener (Bay K 8644), and a specific calcium/calmodulin-dependent kinase II (CaMKII) inhibitor (KN-93). Melatonin pretreatment (10-8~10-6 M) decreased the contractile responses induced by PE (10-9~10-4 M) and Ach (10-9~10-4 M) in a dose-dependent manner. Melatonin (10-7 M) also blocked contraction induced by high KCl ([KCl]ECF; 35 mM, 70 mM, 105 mM, and 140 mM) and EFS. Melatonin (10-7 M) potentiated the relaxation response of the strips by verapamil, but other potassium channel blockers did not change melatonin activity. Melatonin pretreatment significantly decreased contractile responses induced by Bay K 8644 (10-11~10-7 M). KN-93 enhanced melatonin-induced relaxation. The present results suggest that melatonin can inhibit bladder smooth muscle contraction through a voltage-dependent, calcium-antagonistic mechanism and through the inhibition of the calmodulin/CaMKII system.
Collapse
Affiliation(s)
- June Hyun Han
- Department of Urology, KEPCO Medical Foundation, Han-il General Hospital, Seoul 132-703, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dardente H. Melatonin-dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J Neuroendocrinol 2012; 24:249-66. [PMID: 22070540 DOI: 10.1111/j.1365-2826.2011.02250.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most mammals living at temperate latitudes exhibit marked seasonal variations in reproduction. In long-lived species, it is assumed that timely physiological alternations between a breeding season and a period of sexual rest depend upon the ability of day length (photoperiod) to synchronise an endogenous timing mechanism called the circannual clock. The sheep has been extensively used to characterise the time-measurement mechanisms of seasonal reproduction. Melatonin, secreted only during the night, acts as the endocrine transducer of the photoperiodic message. The present review is concerned with the endocrine mechanisms of seasonal reproduction in sheep and the evidence that long day length and thyroid hormones are mandatory to their proper timing. Recent evidence for a circadian-based molecular mechanism within the pars tuberalis of the pituitary, which ties the short duration melatonin signal reflecting long day length to the hypothalamic increase of triiodothyronine (T3) through a thyroid-stimulating hormone/deiodinase2 paracrine mechanism is presented and evaluated in this context. A parallel is also drawn with the golden hamster, a long-day breeder, aiming to demonstrate that features of seasonality appear to be phylogenetically conserved. Finally, potential mechanisms of T3 action within the hypothalamus/median eminence in relationship to seasonal timing are examined.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA UMR85, CNRS UMR6175, Université de Tours, Nouzilly, Haras Nationaux France.
| |
Collapse
|
43
|
Devavry S, Legros C, Brasseur C, Cohen W, Guenin SP, Delagrange P, Malpaux B, Ouvry C, Cogé F, Nosjean O, Boutin JA. Molecular pharmacology of the mouse melatonin receptors MT₁ and MT₂. Eur J Pharmacol 2011; 677:15-21. [PMID: 22202844 DOI: 10.1016/j.ejphar.2011.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/29/2011] [Accepted: 12/07/2011] [Indexed: 12/15/2022]
Abstract
The main melatonin receptors are two G-protein coupled receptors named MT(1) and MT(2). Having described the molecular pharmacology of the human versions of these receptors, we turned to two of the three species most useful in studying melatonin physiology: rat and sheep (a diurnal species used to understand the relationship between circadian rhythm and depression). We also employed previously used compounds to describe the mouse melatonin receptors; despite the early cloning of mouse receptors, few molecular pharmacology studies on these receptors exist. To our surprise, we detected no major differences between the data obtained from mice and those from other species.
Collapse
Affiliation(s)
- Séverine Devavry
- INRA, UMR85 Physiologie de Reproduction et des Comportements, F-37380 Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dupré SM. Encoding and decoding photoperiod in the mammalian pars tuberalis. Neuroendocrinology 2011; 94:101-12. [PMID: 21778697 DOI: 10.1159/000328971] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
In mammals, the nocturnal melatonin signal is well established as a key hormonal indicator of seasonal changes in day-length, providing the brain with an internal representation of the external photoperiod. The pars tuberalis (PT) of the pituitary gland is the major site of expression of the G-coupled receptor MT1 in the brain and is considered as the main site of integration of the photoperiodic melatonin signal. Recent studies have revealed how the photoperiodic melatonin signal is encoded and conveyed by the PT to the brain and the pituitary, but much remains to be resolved. The development of new animal models and techniques such as cDNA arrays or high throughput sequencing has recently shed the light onto the regulatory networks that might be involved. This review considers the current understanding of the mechanisms driving photoperiodism in the mammalian PT with a particular focus on the seasonal prolactin secretion.
Collapse
Affiliation(s)
- Sandrine M Dupré
- University of Manchester, Faculty of Life Sciences, Manchester, UK.
| |
Collapse
|
45
|
Trecherel E, Batailler M, Chesneau D, Delagrange P, Malpaux B, Chemineau P, Migaud M. Functional characterization of polymorphic variants for ovine MT1 melatonin receptors: possible implication for seasonal reproduction in sheep. Anim Reprod Sci 2010; 122:328-34. [PMID: 21075566 DOI: 10.1016/j.anireprosci.2010.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/08/2010] [Accepted: 10/05/2010] [Indexed: 12/15/2022]
Abstract
In seasonal breeding species, the gene encoding for the melatonin MT(1) receptor (oMT(1)) is highly polymorphic and numerous data have reported the existence of an association between an allele of the receptor and a marked expression of the seasonality of reproduction in ewes. This allele called "m" (previously named "-" allele) carries a mutation leading to the absence of a MnlI restriction site as opposed to the "M" allele (previously named "+" allele) carrying the MnlI restriction site (previously "+" allele). This allows the determination of the three genotypes "M/M" (+/+), "M/m" (+/-) and "m/m" (-/-). This mutation is conservative and could therefore not be causal. However, it is associated with another mutation introducing the change of a valine to an isoleucine in the fifth transmembrane domain of the receptor. Homozygous "M/M" and "m/m" animals consequently express structurally different receptors respectively named oMT(1) Val(220) and oMT(1) Ile(220). The objective of this study was to test whether these polymorphic variants are functionally different. To achieve this goal, we characterized the binding properties and the transduction pathways associated with both variants of the receptors. Using a pharmacological approach, no variation in binding parameters between the two receptors when transiently expressed in COS-7. In stably transfected HEK293 cells, significant differences were detected in the inhibition of cAMP production whereas receptors internalization processes were not different. In conclusion, the possibility that subtle alterations induced by the non conservative mutation in "m/m" animals might modify the perception of the melatoninergic signal is discussed in the context of melatonin action.
Collapse
Affiliation(s)
- E Trecherel
- INRA, Unité Physiologie de la Reproduction et des Comportements, Centre de Tours, Nouzilly, F-37380, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010; 62:343-80. [PMID: 20605968 PMCID: PMC2964901 DOI: 10.1124/pr.110.002832] [Citation(s) in RCA: 400] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT(1) and MT(2), that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer.
Collapse
Affiliation(s)
- Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|