1
|
Zhao HN, Kvitne KE, Brungs C, Mohan S, Charron-Lamoureux V, Bittremieux W, Tang R, Schmid R, Lamichhane S, El Abiead Y, Andalibi MS, Mannochio-Russo H, Ambre M, Avalon NE, Bryant M, Caraballo-Rodríguez AM, Maya MC, Chin L, Ellis RJ, Franklin D, Girod S, Gomes PWP, Hansen L, Heaton R, Iudicello JE, Jarmusch AK, Khatib L, Letendre S, Magyari S, McDonald D, Mohanty I, Cumsille A, Moore DJ, Rajkumar P, Ross DH, Sapre H, Shahneh MRZ, Thomas SP, Tribelhorn C, Tubb HM, Walker C, Wang CX, Xing S, Zemlin J, Zuffa S, Wishart DS, Kaddurah-Daouk R, Wang M, Raffatellu M, Zengler K, Pluskal T, Xu L, Knight R, Tsunoda SM, Dorrestein PC. Empirically establishing drug exposure records directly from untargeted metabolomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617109. [PMID: 39416075 PMCID: PMC11482764 DOI: 10.1101/2024.10.07.617109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Despite extensive efforts, extracting information on medication exposure from clinical records remains challenging. To complement this approach, we developed the tandem mass spectrometry (MS/MS) based GNPS Drug Library. This resource integrates MS/MS data for drugs and their metabolites/analogs with controlled vocabularies on exposure sources, pharmacologic classes, therapeutic indications, and mechanisms of action. It enables direct analysis of drug exposure and metabolism from untargeted metabolomics data independent of clinical records. Our library facilitates stratification of individuals in clinical studies based on the empirically detected medications, exemplified by drug-dependent microbiota-derived N-acyl lipid changes in a cohort with human immunodeficiency virus. The GNPS Drug Library holds potential for broader applications in drug discovery and precision medicine.
Collapse
|
2
|
Alhosan N, Cavallo D, Santiago M, Kelly E, Henderson G. Slow dissociation kinetics of fentanyls and nitazenes correlates with reduced sensitivity to naloxone reversal at the μ-opioid receptor. Br J Pharmacol 2024. [PMID: 39437833 DOI: 10.1111/bph.17376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Fentanyls and nitazenes are μ-opioid receptor agonists responsible for a large number of opioid overdose deaths. Here, we determined the potency, dissociation kinetics and antagonism by naloxone at the μ receptor of several fentanyl and nitazene analogues, compared to morphine and DAMGO. EXPERIMENTAL APPROACH In vitro assays of G protein activation and signalling and arrestin recruitment were performed. AtT20 cells expressing μ receptors were loaded with a membrane potential dye and changes in fluorescence used to determine agonist potency, dissociation kinetics and susceptibility to antagonism by naloxone. BRET experiments were undertaken in HEK293T cells expressing μ receptors to assess Gi protein activation and β-arrestin 2 recruitment. KEY RESULTS The apparent rate of agonist dissociation from the μ receptor varied: morphine, DAMGO, alfentanil and fentanyl dissociated rapidly, whereas isotonitazene, etonitazene, ohmefentanyl and carfentanil dissociated slowly. Slowly dissociating agonists were more resistant to antagonism by naloxone. For carfentanil, the slow apparent rate of dissociation was not because of G protein receptor kinase-mediated arrestin recruitment as its apparent rate of dissociation was not increased by inhibition of G protein-coupled receptor kinases (GRKs) with Compound 101. The in vitro relative potencies of fentanyls and nitazenes compared to morphine were much lower than that previously observed in in vivo experiments. CONCLUSIONS AND IMPLICATIONS With fentanyls and nitazenes that slowly dissociate from the μ receptor, antagonism by naloxone is pseudo-competitive. In overdoses involving fentanyls and nitazenes, higher doses of naloxone may be required for reversal than those normally used to reverse heroin overdose.
Collapse
Affiliation(s)
- Norah Alhosan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Damiana Cavallo
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Marina Santiago
- Macquarie Medical School, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Hornegger H, Anisimova AS, Muratovic A, Bourgeois B, Spinetti E, Niedermoser I, Covino R, Madl T, Karagöz GE. IGF2BP1 phosphorylation in the disordered linkers regulates ribonucleoprotein condensate formation and RNA metabolism. Nat Commun 2024; 15:9054. [PMID: 39426983 PMCID: PMC11490574 DOI: 10.1038/s41467-024-53400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a conserved RNA-binding protein that regulates RNA stability, localization and translation. IGF2BP1 is part of various ribonucleoprotein (RNP) condensates. However, the mechanism that regulates its assembly into condensates remains unknown. By using proteomics, we demonstrate that phosphorylation of IGF2BP1 at S181 in a disordered linker is regulated in a stress-dependent manner. Phosphomimetic mutations in two disordered linkers, S181E and Y396E, modulate RNP condensate formation by IGF2BP1 without impacting its binding affinity for RNA. Intriguingly, the S181E mutant, which lies in linker 1, impairs IGF2BP1 condensate formation in vitro and in cells, whereas a Y396E mutant in the second linker increases condensate size and dynamics. Structural approaches show that the first linker binds RNAs nonspecifically through its RGG/RG motif, an interaction weakened in the S181E mutant. Notably, linker 2 interacts with IGF2BP1's folded domains and these interactions are partially impaired in the Y396E mutant. Importantly, the phosphomimetic mutants impact IGF2BP1's interaction with RNAs and remodel the transcriptome in cells. Our data reveal how phosphorylation modulates low-affinity interaction networks in disordered linkers to regulate RNP condensate formation and RNA metabolism.
Collapse
Affiliation(s)
- Harald Hornegger
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Aleksandra S Anisimova
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Adnan Muratovic
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
| | - Benjamin Bourgeois
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Elena Spinetti
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Isabell Niedermoser
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
- Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Azalim-Neto P, Noël F, Silva SC, Villar JAFP, Barbosa L, O'Doherty GA, Quintas LEM. Simplified Method for Kinetic and Thermodynamic Screening of Cardiotonic Steroids through the K +-Dependent Phosphatase Activity of Na +/K +-ATPase with Chromogenic pNPP Substrate. Mol Pharmacol 2024; 106:225-239. [PMID: 39187390 PMCID: PMC11493336 DOI: 10.1124/molpharm.124.000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
The antitumor effect of cardiotonic steroids (CTS) has stimulated the search for new methods to evaluate both kinetic and thermodynamic aspects of their binding to Na+/K+-ATPase (IUBMB Enzyme Nomenclature). We propose a real-time assay based on a chromogenic substrate for phosphatase activity (pNPPase activity), using only two concentrations with an inhibitory progression curve, to obtain the association rate (kon ), dissociation rate (koff ), and equilibrium (Ki ) constants of CTS for the structure-kinetics relationship in drug screening. We show that changing conditions (from ATPase to pNPPase activity) resulted in an increase of Ki of the cardenolides digitoxigenin, essentially due to a reduction of kon In contrast, the Ki of the structurally related bufadienolide bufalin increased much less due to the reduction of its koff partially compensating the decrease of its kon When evaluating the kinetics of 15 natural and semisynthetic CTS, we observed that both kon and koff correlated with Ki (Spearman test), suggesting that differences in potency depend on variations of both kon and koff A rhamnose in C3 of the steroidal nucleus enhanced the inhibitory potency by a reduction of koff rather than an increase of kon Raising the temperature did not alter the koff of digitoxin, generating a ΔH‡ (koff ) of -10.4 ± 4.3 kJ/mol, suggesting a complex dissociation mechanism. Based on a simple and inexpensive methodology, we determined the values of kon , koff , and Ki of the CTS and provided original kinetics and thermodynamics differences between CTS that could help the design of new compounds. SIGNIFICANCE STATEMENT: This study describes a fast, simple, and cost-effective method for the measurement of phosphatase pNPPase activity enabling structure-kinetics relationships of Na+/K+-ATPase inhibitors, which are important compounds due to their antitumor effect and endogenous role. Using 15 compounds, some of them original, this study was able to delineate the kinetics and/or thermodynamics differences due to the type of sugar and lactone ring present in the steroid structure.
Collapse
Affiliation(s)
- Pedro Azalim-Neto
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (P.A.-N., F.N., L.E.M.Q.); Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (S.C.S., J.A.F.P.V.); Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (L.B.); and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (G.A.O.)
| | - François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (P.A.-N., F.N., L.E.M.Q.); Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (S.C.S., J.A.F.P.V.); Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (L.B.); and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (G.A.O.)
| | - Simone C Silva
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (P.A.-N., F.N., L.E.M.Q.); Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (S.C.S., J.A.F.P.V.); Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (L.B.); and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (G.A.O.)
| | - José A F P Villar
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (P.A.-N., F.N., L.E.M.Q.); Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (S.C.S., J.A.F.P.V.); Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (L.B.); and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (G.A.O.)
| | - Leandro Barbosa
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (P.A.-N., F.N., L.E.M.Q.); Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (S.C.S., J.A.F.P.V.); Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (L.B.); and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (G.A.O.)
| | - George A O'Doherty
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (P.A.-N., F.N., L.E.M.Q.); Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (S.C.S., J.A.F.P.V.); Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (L.B.); and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (G.A.O.)
| | - Luis Eduardo M Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (P.A.-N., F.N., L.E.M.Q.); Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (S.C.S., J.A.F.P.V.); Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ) Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil (L.B.); and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (G.A.O.)
| |
Collapse
|
5
|
Irsal RA, Gholam GM, Dwicesaria MA, Mansyah TF, Chairunisa F. Exploring the potential of Scabiosa columbaria in Alzheimer's disease treatment: An in silico approach. J Taibah Univ Med Sci 2024; 19:947-960. [PMID: 39397872 PMCID: PMC11470288 DOI: 10.1016/j.jtumed.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Objectives Alzheimer's disease (AD) is posing an increasing global threat and currently lacks effective treatments. Therefore, this study was aimed at exploring phytochemicals in Scabiosa columbaria (S. columbaria) as inhibitors of acetylcholinesterase (AChE), β-site APP cleavage enzyme 1 (BACE1), and TNF-α converting enzyme (TACE) in AD. S. columbaria contains various bioactive compounds, such as chlorogenic acid, linalool, and catechins, which are known for their detoxification properties, capacity to resist and manage harmful moisture buildup, and therapeutic roles in COVID-19. Several studies have also shown that S. columbaria extract has strong antioxidant activity, and may potentially decrease neuroinflammation in AD. Therefore, this study investigated the interactions between S. columbaria phytochemicals and key enzymes associated with AD, thus providing opportunities for the development of new therapeutic candidates. Methods A total of 27 phytochemicals were evaluated for their inhibitory activity against AChE, BACE1, and TACE with YASARA Structure. ADMET profiles and toxicity were assessed. The top candidate compounds underwent 100 ns MD simulations. Results All ligands met Lipinski's rule and showed low toxicity. Catechins, compared with the known drug galantamine, showed higher inhibitory activity and interacted with additional active sites on AChE, thus suggesting potentially higher efficacy. Moreover, chlorogenic acid showed stronger inhibitory activity against TACE than the control drug (aryl-sulfonamide), thereby suggesting a different mechanism of action. MD simulation revealed that the formed complexes had good stability. However, further exploration is necessary. Conclusion S. columbaria derivative compounds are promising drug candidates because of their properties, including the affinity of chlorogenic acid toward TACE and hydrogen bond enhancing ligand-receptor interactions. MD simulation indicated stable ligand-protein complexes, and the radius of gyration and MM-PBSA calculations revealed favorable binding and interaction energies. Our findings demonstrate the identified compounds' potential for further drug development.
Collapse
Affiliation(s)
- Riyan A.P. Irsal
- Biomatics, Bogor, West Java, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Gusnia M. Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics, Malang, Indonesia
| | - Maheswari A. Dwicesaria
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Tiyara F. Mansyah
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | | |
Collapse
|
6
|
Collins M, Ibeanu N, Grabowska WR, Awwad S, Khaw PT, Brocchini S, Khalili H. Bispecific FpFs: a versatile tool for preclinical antibody development. RSC Chem Biol 2024:d4cb00130c. [PMID: 39347456 PMCID: PMC11427889 DOI: 10.1039/d4cb00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
We previously described FpFs 1̲ (Fab-PEG-Fab) as binding mimetics of IgGs. FpFs are prepared with di(bis-sulfone) conjugation reagents 3̲ that undergo disulfide rebridging conjugation with the accessible disulfide of each Fab (Scheme 1). We have now prepared bispecific FpFs 2̲ (bsFpF and Fab1-PEG-Fab2) as potential bispecific antibody mimetics with the intent that bsFpFs could be used in preclinical antibody development since sourcing bispecific antibodies may be challenging during preclinical research. The di(bis-sulfone) reagent 3̲ was first used to prepare a bsFpF 2̲ by the sequential conjugation of a first Fab and then a second Fab to another target (Scheme 2). Seeking to improve bsFpF synthesis, the asymmetric conjugation reagent, bis-sulfone bis-sulfide 1̲6̲, with different thiol conjugation reactivities at each terminus (Scheme 4) was examined and the bsFpFs appeared to be formed at similar conversion to the di(bis-sulfone) reagent 3̲. To explore the advantages of using common intermediates in the preparation of bsFpF families, we investigated bsFpF synthesis with a protein conjugation-ligation approach (Scheme 5). Reagents with a bis-sulfone moiety for conjugation on one PEG terminus and a ligation moiety on the other terminus were examined. Bis-sulfone PEG trans-cyclooctene (TCO) 2̲8̲ and bis-sulfone PEG tetrazine (Tz) 3̲0̲ were used to prepare several bsFpFs targeting various therapeutic targets (TNF-α, IL6R, IL17, and VEGF) and tissue affinity targets (hyaluronic acid and collagen II). Surface plasmon resonance (SPR) binding studies indicated that there was little difference between the dissociation rate constant (k d) for the unmodified Fab, mono-conjugated PEG-Fab and the corresponding Fab in a bsFpF. The Fab association rate (k a) in the bsFpF was slower than for PEG-Fab, which may be because of mass differences that influence SPR results. These observations suggest that each Fab will bind to its target independently of the other Fab and that bsFpF binding profiles can be estimated using the corresponding PEG-Fab conjugates.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London London UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Sahar Awwad
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Hanieh Khalili
- School of Pharmacy, University College London London UK
- School of Biomedical Science, University of West London London W5 5RF UK
| |
Collapse
|
7
|
Ferrer F, Tetu P, Dousset L, Lebbe C, Ciccolini J, Combarel D, Meyer N, Paci A, Bouchet S. Tyrosine kinase inhibitors in cancers: Treatment optimization - Part II. Crit Rev Oncol Hematol 2024; 200:104385. [PMID: 38810843 DOI: 10.1016/j.critrevonc.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Real-life populations are more heterogeneous than those included in prospective clinical studies. In cancer patients, comorbidities and co-medications favor the appearance of severe adverse effects which can significantly impact quality of life and treatment effectiveness. Most of tyrosine kinase inhibitors (TKI) have been developed with flat oral dosing exposing patients to the risk of poor adherence due to side effects. Additionally, genetic or physiological factors, differences in diet, and drug-drug interactions can lead to inter-individual variability affecting treatment outcomes and increasing the risk of adverse events. Knowledge of the different factors of variability allows individualized patient management. This review examines the effects of adherence, food intake, and pharmaceutical form on the pharmacokinetics of oral TKI, as well as evaluating pharmacokinetics considerations improving TKI management. Concentration-effectiveness and concentration-toxicity data are presented for the selected TKI, and a simple therapeutic drug monitoring schema is outlined to help individualize dosing of oral TKI.
Collapse
Affiliation(s)
- Florent Ferrer
- Department of Pharmacology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France; SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - Pauline Tetu
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - Léa Dousset
- Dermatology Department, Bordeaux University Hospital, Bordeaux, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - Céleste Lebbe
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - Joseph Ciccolini
- SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - David Combarel
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, Châtenay-Malabry 92 296, France
| | - Nicolas Meyer
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Université Paul Sabatier-Toulouse III, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche, Toulouse 1037-CRCT, France
| | - Angelo Paci
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, Châtenay-Malabry 92 296, France
| | - Stéphane Bouchet
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Département de Pharmacologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.
| |
Collapse
|
8
|
Kenakin T. Know your molecule: pharmacological characterization of drug candidates to enhance efficacy and reduce late-stage attrition. Nat Rev Drug Discov 2024; 23:626-644. [PMID: 38890494 DOI: 10.1038/s41573-024-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Despite advances in chemical, computational and biological sciences, the rate of attrition of drug candidates in clinical development is still high. A key point in the small-molecule discovery process that could provide opportunities to help address this challenge is the pharmacological characterization of hit and lead compounds, culminating in the selection of a drug candidate. Deeper characterization is increasingly important, because the 'quality' of drug efficacy, at least for G protein-coupled receptors (GPCRs), is now understood to be much more than activation of commonly evaluated pathways such as cAMP signalling, with many more 'efficacies' of ligands that could be harnessed therapeutically. Such characterization is being enabled by novel assays to characterize the complex behaviour of GPCRs, such as biased signalling and allosteric modulation, as well as advances in structural biology, such as cryo-electron microscopy. This article discusses key factors in the assessments of the pharmacology of hit and lead compounds in the context of GPCRs as a target class, highlighting opportunities to identify drug candidates with the potential to address limitations of current therapies and to improve the probability of them succeeding in clinical development.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Obi P, Gc JB, Mariasoosai C, Diyaolu A, Natesan S. Application of Generative Artificial Intelligence in Predicting Membrane Partitioning of Drugs: Combining Denoising Diffusion Probabilistic Models and MD Simulations Reduces the Computational Cost to One-Third. J Chem Theory Comput 2024; 20:5866-5881. [PMID: 38942732 DOI: 10.1021/acs.jctc.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The optimal interaction of drugs with plasma membranes and membranes of subcellular organelles is a prerequisite for desirable pharmacology. Importantly, for drugs targeting the transmembrane lipid-facing sites of integral membrane proteins, the relative affinity of a drug to the bilayer lipids compared to the surrounding aqueous phase affects the partitioning, access, and binding of the drug to the target site. Molecular dynamics (MD) simulations, including enhanced sampling techniques such as steered MD, umbrella sampling (US), and metadynamics, offer valuable insights into the interactions of drugs with the membrane lipids and water in atomistic detail. However, these methods are computationally prohibitive for the high-throughput screening of drug candidates. This study shows that applying denoising diffusion probabilistic models (DDPMs), a generative AI method, to US simulation data reduces the computational cost significantly. Specifically, the models used only partial (one-third) data from the US simulations and reproduced the complete potential of mean force (PMF) profiles for three FDA-approved drugs (β2-adrenergic agonists) and ∼20 biologically relevant chemicals with known experimentally characterized bilayer locations. Intriguingly, the model can predict the solvation-free energies for partitioning and crossing the bilayer, preferred bilayer locations (low-energy well), and orientations of the ligands with high accuracy. The results indicate that DDPMs can be used to characterize the complete membrane partitioning profile of drug molecules using fewer umbrella sampling simulations at select positions along the bilayer normal (z-axis), irrespective of their amphiphilic-lipophilic-cephalophilic characteristics.
Collapse
Affiliation(s)
- Peter Obi
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Jeevan B Gc
- The Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Charles Mariasoosai
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Ayobami Diyaolu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
10
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
11
|
Vlachodimou A, Bouma J, De Cleyn M, Berthelot D, Pype S, Bosmans JP, van Vlijmen H, Wroblowski B, Heitman LH, IJzerman AP. Kinetic profiling of novel spirobenzo-oxazinepiperidinone derivatives as equilibrative nucleoside transporter 1 inhibitors. Purinergic Signal 2024; 20:193-205. [PMID: 37423967 PMCID: PMC10997566 DOI: 10.1007/s11302-023-09948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Evaluation of kinetic parameters of drug-target binding, kon, koff, and residence time (RT), in addition to the traditional in vitro parameter of affinity is receiving increasing attention in the early stages of drug discovery. Target binding kinetics emerges as a meaningful concept for the evaluation of a ligand's duration of action and more generally drug efficacy and safety. We report the biological evaluation of a novel series of spirobenzo-oxazinepiperidinone derivatives as inhibitors of the human equilibrative nucleoside transporter 1 (hENT1, SLC29A1). The compounds were evaluated in radioligand binding experiments, i.e., displacement, competition association, and washout assays, to evaluate their affinity and binding kinetic parameters. We also linked these pharmacological parameters to the compounds' chemical characteristics, and learned that separate moieties of the molecules governed target affinity and binding kinetics. Among the 29 compounds tested, 28 stood out with high affinity and a long residence time of 87 min. These findings reveal the importance of supplementing affinity data with binding kinetics at transport proteins such as hENT1.
Collapse
Affiliation(s)
- Anna Vlachodimou
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Michel De Cleyn
- Janssen Research and Development, Antwerpseweg 30, 2340, Beerse, Belgium
| | - Didier Berthelot
- Janssen Research and Development, Antwerpseweg 30, 2340, Beerse, Belgium
| | - Stefan Pype
- Janssen Research and Development, Antwerpseweg 30, 2340, Beerse, Belgium
| | - Jean-Paul Bosmans
- Janssen Research and Development, Antwerpseweg 30, 2340, Beerse, Belgium
| | - Herman van Vlijmen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Janssen Research and Development, Antwerpseweg 30, 2340, Beerse, Belgium
| | | | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
12
|
Meng H, Cui Z, Yu Y, Li Y, Jiang S, Liu Y. From Molecular Dynamics to Taste Sensory Perception: A Comprehensive Study on the Interaction of Umami Peptides with the T1R1/T1R3-VFT Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6533-6543. [PMID: 38488059 DOI: 10.1021/acs.jafc.3c09598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The research on the umami receptor-ligand interaction is crucial for understanding umami perception. This study integrated molecular simulations, sensory evaluation, and biosensor technology to analyze the interaction between umami peptides and the umami receptor T1R1/T1R3-VFT. Molecular dynamics simulations were used to investigate the dissociation process of seven umami peptides with the umami receptor T1R1/T1R3-VFT, and by calculating the potential mean force curve using the Jarzynski equation, it was found that the binding free energy of umami peptide is between -58.80 and -12.17 kcal/mol, which had a strong correlation with the umami intensity obtained by time intensity sensory evaluation. Through correlation analysis, the dissociation rate constants (0.0126-0.394 1/s) of umami peptides were found to have a great impact on umami perception. The faster the dissociation rate of umami peptides from receptors, the stronger the perceived intensity of the umami taste. This research aims to elucidate the relationship between the umami peptide-receptor interaction and umami perception, providing theoretical support for the exploration of umami perception mechanisms.
Collapse
Affiliation(s)
- Hengli Meng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanyang Yu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingqiu Li
- Secondary College of Cereals and Tourism, Guangxi Vocational College of Technology and Business, Nanning 530005, China
| | - Shui Jiang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Cobongela SZZ, Makatini MM, May B, Njengele-Tetyana Z, Bambo MF, Sibuyi NRS. Antibacterial Activity and Cytotoxicity Screening of Acyldepsipeptide-1 Analogues Conjugated to Silver/Indium/Sulphide Quantum Dots. Antibiotics (Basel) 2024; 13:183. [PMID: 38391569 PMCID: PMC10886425 DOI: 10.3390/antibiotics13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
The continuous rise in bacterial infections and antibiotic resistance is the driving force behind the search for new antibacterial agents with novel modes of action. Antimicrobial peptides (AMPs) have recently gained attention as promising antibiotic agents with the potential to treat drug-resistant infections. Several AMPs have shown a lower propensity towards developing resistance compared to conventional antibiotics. However, these peptides, especially acyldepsipeptides (ADEPs) present with unfavorable pharmacokinetic properties, such as high toxicity and low bioavailability. Different ways to improve these peptides to be drug-like molecules have been explored, and these include using biocompatible nano-carriers. ADEP1 analogues (SC005-8) conjugated to gelatin-capped Silver/Indium/Sulfide (AgInS2) quantum dots (QDs) improved the antibacterial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa), and Gram-positive (Bacillus subtilis, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus) bacteria. The ADEP1 analogues exhibited minimum inhibition concentrations (MIC) between 63 and 500 µM, and minimum bactericidal concentrations (MBC) values between 125 and 750 µM. The AgInS2-ADEP1 analogue conjugates showed enhanced antibacterial activity as evident from the MIC and MBC values, i.e., 1.6-25 µM and 6.3-100 µM, respectively. The AgInS2-ADEP1 analogue conjugates were non-toxic against HEK-293 cells at concentrations that showed antibacterial activity. The findings reported herein could be helpful in the development of antibacterial treatment strategies.
Collapse
Affiliation(s)
- Sinazo Z Z Cobongela
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Maya M Makatini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Bambesiwe May
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Randburg 2194, South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort 1705, South Africa
| | - Zikhona Njengele-Tetyana
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
- Wits RHI, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Mokae F Bambo
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Nicole R S Sibuyi
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Randburg 2194, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
14
|
Gormal RS, Martinez-Marmol R, Brooks AJ, Meunier FA. Location, location, location: Protein kinase nanoclustering for optimised signalling output. eLife 2024; 13:e93902. [PMID: 38206309 PMCID: PMC10783869 DOI: 10.7554/elife.93902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates and perform their critical functions, PK localisation is therefore tightly regulated in space and time, relying upon a range of clustering mechanisms. These include post-translational modifications, protein-protein and protein-lipid interactions, as well as liquid-liquid phase separation, allowing spatial restriction and ultimately regulating access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclustering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a cellular quantal unit of signalling output capable of integration and regulation in space and time. We will specifically outline the various super-resolution microscopy approaches currently used to elucidate the composition and mechanisms driving PK nanoscale clustering and explore the pathological consequences of altered kinase clustering in the context of neurodegenerative disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Andrew J Brooks
- Frazer Institute, The University of QueenslandWoolloongabbaAustralia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- School of Biomedical Sciences, The University of QueenslandSt LuciaAustralia
| |
Collapse
|
15
|
Zhang P, Wang K, Hu T, Xu M, You X, Chen M, Tang X, Hu H, Jiang Y, Zhao W, Tan S. A novel fully human anti-NT-ANGPTL3 antibody from phage display library exhibits potent ApoB, TG, and LDL-C lowering activities in hyperlipidemia mice. FASEB J 2024; 38:e23399. [PMID: 38174870 DOI: 10.1096/fj.202301564rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Dyslipidemia is characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and TG-rich lipoprotein (TGRLs) in circulation, and is closely associated with the incidence and development of cardiovascular disease. Angiopoietin-like protein 3 (ANGPTL3) deficiency has been identified as a cause of familial combined hypolipidemia in humans, which allows it to be an important therapeutic target for reducing plasma lipids. Here, we report the discovery and characterization of a novel fully human antibody F1519-D95aA against N-terminal ANGPTL3 (NT-ANGPTL3), which potently inhibits NT-ANGPTL3 with a KD as low as 9.21 nM. In hyperlipidemic mice, F1519-D95aA shows higher apolipoprotein B (ApoB) and TG-lowering, and similar LDL-C reducing activity as compared to positive control Evinacumab (56.50% vs 26.01% decrease in serum ApoB levels, 30.84% vs 25.28% decrease in serum TG levels, 23.32% vs 22.52% decrease in serum LDLC levels, relative to vehicle group). Molecular docking and binding energy calculations reveal that the F1519-D95aA-ANGPTL3 complex (10 hydrogen bonds, -65.51 kcal/mol) is more stable than the Evinacumab-ANGPTL3 complex (4 hydrogen bonds, -63.76 kcal/mol). Importantly, F1519-D95aA binds to ANGPTL3 with different residues in ANGPTL3 from Evinacumab, suggesting that F1519-D95aA may be useful for the treatment of patients resistant to Evinacumab. In conclusion, F1519-D95aA is a novel fully human anti-NT-ANGPTL3 antibody with potent plasma ApoB, TG, and LDL-C lowering activities, which can potentially serve as a therapeutic agent for hyperlipidemia and relevant cardiovascular diseases.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Ke Wang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Tuo Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Menglong Xu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Xiangyan You
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Manman Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Xuan Tang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Huajing Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Yiwei Jiang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
16
|
Rubina, Moin ST. Attempting Well-Tempered Funnel Metadynamics Simulations for the Evaluation of the Binding Kinetics of Methionine Aminopeptidase-II Inhibitors. J Chem Inf Model 2023; 63:7729-7743. [PMID: 38059911 DOI: 10.1021/acs.jcim.3c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Understanding the unbinding kinetics of protein-ligand complexes is considered a significant approach for the design of ligands with desired specificity and safety. In recent years, enhanced sampling methods have emerged as effective tools for studying the unbinding kinetics of protein-ligand complexes at the atomistic level. MetAP-II is a target for the treatment of cancer for which not a single effective drug is available yet. The identification of the dissociation rate of ligands from the complexes often serves as a better predictor for in vivo efficacy than the ligands' binding affinity. Here, funnel-based restraint well-tempered metadynamics simulations were applied to predict the residence time of two ligands bound to MetAP-II, along with the ligand association and dissociation mechanism involving the identification of the binding hotspot during ligand egress. The ligand-egressing route revealed by metadynamics simulations also correlated with the identified pathways from the CAVER analysis and by the enhanced sampling simulation using PLUMED. Ligand 1 formed a strong H-bond interaction with GLU364 estimating a higher residence time of 28.22 ± 5.29 ns in contrast to ligand 2 with a residence time of 19.05 ± 3.58 ns, which easily dissociated from the binding pocket of MetAP-II. The results obtained from the simulations were consistent to reveal ligand 1 being superior to ligand 2; however, the experimental data related to residence time were close for both ligands, and no kinetic data were available for ligand 2. The current study could be considered the first attempt to apply an enhanced sampling method for the evaluation of the binding kinetics and thermodynamics of two different classes of ligands to a binuclear metalloprotein.
Collapse
Affiliation(s)
- Rubina
- Third World Center for Science and Technology H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Science University of Karachi, Karachi 75270, Pakistan
| | - Syed Tarique Moin
- Third World Center for Science and Technology H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Science University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
17
|
Sharma S, Joshi S, Kalidindi T, Digwal CS, Panchal P, Lee SG, Zanzonico P, Pillarsetty N, Chiosis G. Unraveling the Mechanism of Epichaperome Modulation by Zelavespib: Biochemical Insights on Target Occupancy and Extended Residence Time at the Site of Action. Biomedicines 2023; 11:2599. [PMID: 37892973 PMCID: PMC10604720 DOI: 10.3390/biomedicines11102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Drugs with a long residence time at their target sites are often more efficacious in disease treatment. The mechanism, however, behind prolonged retention at the site of action is often difficult to understand for non-covalent agents. In this context, we focus on epichaperome agents, such as zelavespib and icapamespib, which maintain target binding for days despite rapid plasma clearance, minimal retention in non-diseased tissues, and rapid metabolism. They have shown significant therapeutic value in cancer and neurodegenerative diseases by disassembling epichaperomes, which are assemblies of tightly bound chaperones and other factors that serve as scaffolding platforms to pathologically rewire protein-protein interactions. To investigate their impact on epichaperomes in vivo, we conducted pharmacokinetic and target occupancy measurements for zelavespib and monitored epichaperome assemblies biochemically in a mouse model. Our findings provide evidence of the intricate mechanism through which zelavespib modulates epichaperomes in vivo. Initially, zelavespib becomes trapped when epichaperomes bound, a mechanism that results in epichaperome disassembly, with no change in the expression level of epichaperome constituents. We propose that the initial trapping stage of epichaperomes is a main contributing factor to the extended on-target residence time observed for this agent in clinical settings. Zelavespib's residence time in tumors seems to be dictated by target disassembly kinetics rather than by frank drug-target unbinding kinetics. The off-rate of zelavespib from epichaperomes is, therefore, much slower than anticipated from the recorded tumor pharmacokinetic profile or as determined in vitro using diluted systems. This research sheds light on the underlying processes that make epichaperome agents effective in the treatment of certain diseases.
Collapse
Affiliation(s)
- Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Chander S. Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Sang-Gyu Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Pat Zanzonico
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Nagavarakishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
18
|
Srinivasan B. Non-equilibrium modalities of inhibition: Characterizing irreversible inhibition for the ErbB receptor family members. Methods Enzymol 2023; 690:85-108. [PMID: 37858541 DOI: 10.1016/bs.mie.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Most drug target interactions for clinically approved small-molecules are non-equilibrium slow-onset, tight-binding or irreversible in nature, with pronounced element of time-dependence of inhibition. Analysis of such modality of inhibition requires a continuous enzyme kinetic measurement that can yield complete progress curves and an automated high-throughput analysis pipeline. Given the increasing emphasis on designing non-equilibrium modes of inhibiting an enzyme target (especially irreversible), the above specified pipeline for data generation and analysis is essential for extracting parameters to guide decisions in early drug discovery. In this manuscript, the methodology and data analysis protocol from our irreversible inhibitor characterization campaigns for the ErbB receptor family members is presented. Guidance is provided on the appropriate design of assay to generate quality data, setting up the analysis and estimation of inactivation rate (kinact) and the pseudo-equilibrium binding affinity (KI) constant (or their ratio kinact/KI) in a high-throughput manner for the inhibitor interacting with the protein target of interest.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
19
|
George AL, Sidgwick FR, Watt JE, Martin MP, Trost M, Marín-Rubio JL, Dueñas ME. Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling. J Proteome Res 2023; 22:2629-2640. [PMID: 37439223 PMCID: PMC10407934 DOI: 10.1021/acs.jproteome.3c00111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 07/14/2023]
Abstract
Thermal proteome profiling (TPP) provides a powerful approach to studying proteome-wide interactions of small therapeutic molecules and their target and off-target proteins, complementing phenotypic-based drug screens. Detecting differences in thermal stability due to target engagement requires high quantitative accuracy and consistent detection. Isobaric tandem mass tags (TMTs) are used to multiplex samples and increase quantification precision in TPP analysis by data-dependent acquisition (DDA). However, advances in data-independent acquisition (DIA) can provide higher sensitivity and protein coverage with reduced costs and sample preparation steps. Herein, we explored the performance of different DIA-based label-free quantification approaches compared to TMT-DDA for thermal shift quantitation. Acute myeloid leukemia cells were treated with losmapimod, a known inhibitor of MAPK14 (p38α). Label-free DIA approaches, and particularly the library-free mode in DIA-NN, were comparable of TMT-DDA in their ability to detect target engagement of losmapimod with MAPK14 and one of its downstream targets, MAPKAPK3. Using DIA for thermal shift quantitation is a cost-effective alternative to labeled quantitation in the TPP pipeline.
Collapse
Affiliation(s)
- Amy L. George
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Frances R. Sidgwick
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Jessica E. Watt
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Mathew P. Martin
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Matthias Trost
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - José Luis Marín-Rubio
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Maria Emilia Dueñas
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| |
Collapse
|
20
|
Fu K, Chen W, Meng M, Zhao H, Yuan H, Wang Y, Ren Y, Yun Y, Guo D. An allosteric modulator of the adenosine A 1 receptor potentiates the antilipolytic effect in rat adipose tissue. Eur J Pharmacol 2023; 951:175777. [PMID: 37182594 DOI: 10.1016/j.ejphar.2023.175777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The adenosine A1 receptor plays important roles in tuning free fatty acid (FFA) levels and represents an attractive target for metabolic disorders. Though remarkable progress has been achieved in the exploitation of effective (orthosteric) A1 receptor agonists in modulating aberrant FFA levels, the effect of A1 receptor allosteric modulation on lipid homeostasis is less investigated. Herein we sought to explore the effect of an allosteric modulator on the action of an A1 receptor orthosteric agonist in regulating the lipolytic process in vitro and in vivo. We examined the binding kinetics of a selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) in the absence or presence of an allosteric modulator (2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)-phenyl]methanone (PD81,723) on rat adipocyte membranes. We also examined the allosteric effects of PD81,723 on mediating the CCPA-induced inhibition of cAMP accumulation, HSL (hormone-sensitive lipase) phosphorylation and FFA production in in vitro and in vivo models. Our results demonstrated that PD81,723 slowed down the dissociation of CCPA from the A1 receptor, which, consequently, potentiated the antilipolytic action of CCPA through downregulating the cAMP/HSL pathway. Our study exemplified the application of A1 receptor allosteric modulators as an alternative for metabolic disease treatments.
Collapse
Affiliation(s)
- Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wenbing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Mingzhu Meng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huimin Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yinan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yi Yun
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, 120 Suzhi Road, Suqian, 223800, Jiangsu, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
21
|
Wagner W, Sobierajska K, Pułaski Ł, Stasiak A, Ciszewski WM. Whole grain metabolite 3,5-dihydroxybenzoic acid is a beneficial nutritional molecule with the feature of a double-edged sword in human health: a critical review and dietary considerations. Crit Rev Food Sci Nutr 2023; 64:8786-8804. [PMID: 37096487 DOI: 10.1080/10408398.2023.2203762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Nonprocessed foodstuffs of plant origin, especially whole-grain cereals, are considered to be health-promoting components of the human diet. While most of their well-studied effects derive from their high fiber content and low glycemic index, the presence of underrated phenolic phytonutrients has recently been brought to the attention of nutritionists. In this review, we report and discuss findings on the sources and bioactivities of 3,5-dihydroxybenzoic acid (3,5-DHBA), which is both a direct dietary component (found, e.g., in apples) and, more importantly, a crucial metabolite of whole-grain cereal-derived alkylresorcinols (ARs). 3,5-DHBA is a recently described exogenous agonist of the HCAR1/GPR81 receptor. We concentrate on the HCAR1-mediated effects of 3,5-DHBA in the nervous system, on the maintenance of cell stemness, regulation of carcinogenesis, and response to anticancer therapy. Unexpectedly, malignant tumors take advantage of HCAR1 expression to sense 3,5-DHBA to support their growth. Thus, there is an urgent need to fully identify the role of whole-grain-derived 3,5-DHBA during anticancer therapy and its contribution in the regulation of vital organs of the body via its specific HCAR1 receptor. We discuss here in detail the possible consequences of the modulatory capabilities of 3,5-DHBA in physiological and pathological conditions in humans.
Collapse
Affiliation(s)
- Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Cao X, Wang P, Zhao W, Yuan H, Hu H, Chen T, Zhang Y, Ren Y, Su L, Fu K, Liu H, Guo D. Structure-Affinity and Structure-Kinetic Relationship Studies of Benzodiazepine Derivatives for the Development of Efficacious Vasopressin V 2 Receptor Antagonists. J Med Chem 2023; 66:3621-3634. [PMID: 36732931 DOI: 10.1021/acs.jmedchem.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vasopressin V2 receptors (V2R) are a promising drug target for autosomal dominant polycystic kidney disease (ADPKD). As previous research demonstrated that the residence time of V2R antagonists is critical to their efficacy in both ex vivo and in vivo models of ADPKD, we performed extensive structure-kinetic relationship (SKR) analyses on a series of benzodiazepine derivatives. We found that subtle structural modifications of the benzodiazepine derivatives dramatically changed their binding kinetics but not their affinity. Compound 18 exhibited a residence time of 77 min, which was 7.7-fold longer than that of the reference compound tolvaptan (TVP). Accordingly, compound 18 exhibited higher efficacy compared to TVP in an in vivo model of ADPKD. Overall, our study exemplifies a kinetics-directed medicinal chemistry effort for the development of efficacious V2R antagonists. We envision that this strategy may also have general applicability in other therapeutic areas.
Collapse
Affiliation(s)
- Xudong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Peng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Wenchao Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Hongtao Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Ting Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Yixiao Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Limin Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| |
Collapse
|
23
|
Le D, Akiyama T, Weiss D, Kim M. Dissociation kinetics of small-molecule inhibitors in Escherichia coli is coupled to physiological state of cells. Commun Biol 2023; 6:223. [PMID: 36841892 PMCID: PMC9968327 DOI: 10.1038/s42003-023-04604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Bioactive small-molecule inhibitors represent a treasure chest for future drugs. In vitro high-throughput screening is a common approach to identify the small-molecule inhibitors that bind tightly to purified targets. Here, we investigate the inhibitor-target binding/unbinding kinetics in E. coli cells using a benzimidazole-derivative DNA inhibitor as a model system. We find that its unbinding rate is not constant but depends on cell growth rate. This dependence is mediated by the cellular activity, forming a feedback loop with the inhibitor's activity. In accordance with this feedback, we find cell-to-cell heterogeneity in inhibitor-target interaction, leading to co-existence of two distinct subpopulations: actively growing cells that dissociate the inhibitors from the targets and non-growing cells that do not. We find similar heterogeneity for other clinical DNA inhibitors. Our studies reveal a mechanism that couples inhibitor-target kinetics to cell physiology and demonstrate the significant effect of this coupling on drug efficacy.
Collapse
Affiliation(s)
- Dai Le
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - David Weiss
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Antibiotic Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA.
- Antibiotic Research Center, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Bakhtiari S, Manshadi MKD, Candas M, Beskok A. Changes in Electrical Capacitance of Cell Membrane Reflect Drug Partitioning-Induced Alterations in Lipid Bilayer. MICROMACHINES 2023; 14:316. [PMID: 36838014 PMCID: PMC9961635 DOI: 10.3390/mi14020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The plasma membrane is a lipid bilayer that establishes the outer boundary of a living cell. The composition of the lipid bilayer influences the membrane's biophysical properties, including fluidity, thickness, permeability, phase behavior, charge, elasticity, and formation of flat sheet or curved structures. Changes in the biophysical properties of the membrane can be occasioned when new entities, such as drug molecules, are partitioned in the bilayer. Therefore, assessing drugs for their effect on the biophysical properties of the lipid bilayer of a cell membrane is critical to understanding specific and non-specific drug action. Previously, we reported a non-invasive technique for real-time characterization of cellular dielectric properties, such as membrane capacitance and cytoplasmic conductivity. In this study, we discuss the potential application of the technique in assessing the biophysical properties of the cell membrane in response to interaction with amiodarone compared to aspirin/acetylsalicylic acid and glucose. Amiodarone is a potent drug used to treat cardiac arrhythmia, but it also exerts various non-specific effects. Compared to aspirin and glucose, we measured a rapid and higher magnitude increase in membrane capacitance on cells under amiodarone treatment. Increased membrane capacitance induced by aspirin and glucose quickly returned to baseline in 15 s, while amiodarone-induced increased capacitance sustained and decreased slowly, approaching baseline or another asymptotic limit in ~2.5 h. Because amiodarone has a strong lipid partitioning property, we reason that drug partitioning alters the lipid bilayer context and subsequently reduces bilayer thickness, leading to an increase in the electrical capacitance of the cell membrane. The presented microfluidic system promises a new approach to assess drug-membrane interactions and delineate specific and non-specific actions of the drug on cells.
Collapse
Affiliation(s)
- Shide Bakhtiari
- Mechanical Engineering Department, Southern Methodist University, Dallas, TX 75275, USA
| | | | - Mehmet Candas
- Department of Biological Sciences, University of Texas at Dallas, Dallas, TX 75080, USA
| | - Ali Beskok
- Mechanical Engineering Department, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
25
|
Xu Q, Mao Z, Yun Y. Adenosine A 1 receptor agonism protection mechanism in intestinal ischemia/reperfusion injury via activation of PI3K/Akt signaling. Exp Ther Med 2022; 25:41. [PMID: 36569432 PMCID: PMC9764055 DOI: 10.3892/etm.2022.11740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a common clinical problem with a high mortality rate, resulting from loss of blood flow to an intestinal segment. Adenosine serves a protective role in intestinal I/R injury; however, its potential mechanism is not completely understood. The present study aimed to investigate the protective effects of adenosine A1 receptor (A1R) agonists CPA and LUF6941 and whether their mechanisms are associated with the PI3K/Akt signaling pathway. To simulate intestinal I/R injury, a cell oxygen-glucose deprivation/reoxygenation (OGD/R) model was established and the human colon cancer cell line (Caco-2) was incubated with A1R agonists before OGD/R treatment. The viability of Caco-2 cells was detected by PI and Cell Counting Kit-8 assay, apoptosis was detected using flow cytometry and western blotting was used to analyze protein expression levels of PI3K, Akt and p53 in Caco-2 cells. A1R agonist pretreatment protected Caco-2 cells against OGD/R-induced cell damage and activated PI3K/Akt signaling. Additionally, apoptosis was inhibited by downregulating phosphorylation of p53 protein, as evidenced by increased cell viability. These findings suggested that A1R agonists decreased OGD/R damage in Caco-2 cells, which may be due to their anti-apoptotic effects and activation of the PI3K/Akt/p53 signal pathway.
Collapse
Affiliation(s)
- Qian Xu
- Department of Pharmacy, Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu 223800, P.R. China,Department of Gastroenterology, Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yi Yun
- Department of Pharmacy, Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu 223800, P.R. China,Correspondence to: Dr Yi Yun, Department of Pharmacy, Affiliated Suqian First People's Hospital of Nanjing Medical University, 120 Suzhilu Street, Sucheng, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
26
|
Marín-Rubio JL, Peltier-Heap RE, Dueñas ME, Heunis T, Dannoura A, Inns J, Scott J, Simpson AJ, Blair HJ, Heidenreich O, Allan JM, Watt JE, Martin MP, Saxty B, Trost M. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia. J Med Chem 2022; 65:12014-12030. [PMID: 36094045 PMCID: PMC9511480 DOI: 10.1021/acs.jmedchem.2c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inflammatory responses are important in cancer, particularly
in the context of monocyte-rich aggressive myeloid neoplasm. We developed
a label-free cellular phenotypic drug discovery assay to identify
anti-inflammatory drugs in human monocytes derived from acute myeloid
leukemia (AML), by tracking several features ionizing from only 2500
cells using matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that
the BCR-ABL inhibitor nilotinib, but not the structurally similar
imatinib, blocks inflammatory responses. In order to identify the
cellular (off-)targets of nilotinib, we performed thermal proteome
profiling (TPP). Unlike imatinib, nilotinib and other later-generation
BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3
signaling axis, which suppressed pro-inflammatory cytokine expression,
cell adhesion, and innate immunity markers in activated monocytes
derived from AML. Thus, our study provides a tool for the discovery
of new anti-inflammatory drugs, which could contribute to the treatment
of inflammation in myeloid neoplasms and other diseases.
Collapse
Affiliation(s)
- José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Rachel E Peltier-Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Joseph Inns
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica E Watt
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Barbara Saxty
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
27
|
Basak S, Li Y, Tao S, Daryaee F, Merino J, Gu C, Delker SL, Phan JN, Edwards TE, Walker SG, Tonge PJ. Structure-Kinetic Relationship Studies for the Development of Long Residence Time LpxC Inhibitors. J Med Chem 2022; 65:11854-11875. [PMID: 36037447 PMCID: PMC10182817 DOI: 10.1021/acs.jmedchem.2c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a promising drug target in Gram-negative bacteria. Previously, we described a correlation between the residence time of inhibitors on Pseudomonas aeruginosa LpxC (paLpxC) and the post-antibiotic effect (PAE) caused by the inhibitors on the growth of P. aeruginosa. Given that drugs with prolonged activity following compound removal may have advantages in dosing regimens, we have explored the structure-kinetic relationship for paLpxC inhibition by analogues of the pyridone methylsulfone PF5081090 (1) originally developed by Pfizer. Several analogues have longer residence times on paLpxC than 1 (41 min) including PT913, which has a residence time of 124 min. PT913 also has a PAE of 4 h, extending the original correlation observed between residence time and PAE. Collectively, the studies provide a platform for the rational modulation of paLpxC inhibitor residence time and the potential development of antibacterial agents that cause prolonged suppression of bacterial growth.
Collapse
Affiliation(s)
- Sneha Basak
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Yong Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Suyuan Tao
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Jonathan Merino
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Chendi Gu
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | - Jenny N. Phan
- McGill University Montreal, Quebec H3A 0G4, Canada Canada
| | | | - Stephen G. Walker
- Department of Oral Biology and Pathology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
28
|
Pharmacodynamic model of slow reversible binding and its applications in pharmacokinetic/pharmacodynamic modeling: review and tutorial. J Pharmacokinet Pharmacodyn 2022; 49:493-510. [PMID: 36040645 PMCID: PMC9578295 DOI: 10.1007/s10928-022-09822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Therapeutic responses of most drugs are initiated by the rate and degree of binding to their receptors or targets. The law of mass action describes the rate of drug-receptor complex association (kon) and dissociation (koff) where the ratio koff/kon is the equilibrium dissociation constant (Kd). Drugs with slow reversible binding (SRB) often demonstrate delayed onset and prolonged pharmacodynamic effects. This report reviews evidence for drugs with SRB features, describes previous pharmacokinetic/pharmacodynamic (PK/PD) modeling efforts of several such drugs, provides a tutorial on the mathematics and properties of SRB models, demonstrates applications of SRB models to additional compounds, and compares PK/PD fittings of SRB with other mechanistic models. We identified and summarized 52 drugs with in vitro-confirmed SRB from a PubMed literature search. Simulations with a SRB model and observed PK/PD profiles showed delayed and prolonged responses and that increasing doses/kon or decreasing koff led to greater expected maximum effects and a longer duration of effects. Recession slopes for return of responses to baseline after single doses were nearly linear with an inflection point that approaches a limiting value at larger doses. The SRB model newly captured literature data for the antihypertensive effects of candesartan and antiallergic effects of noberastine. Their PD profiles could also be fitted with indirect response and biophase models with minimal differences. The applicability of SRB models is probably commonplace, but underappreciated, owing to the need for in vitro confirmation of binding kinetics and the similarity of PK/PD profiles to models with other mechanistic determinants.
Collapse
|
29
|
Garza DL, Hanashima S, Umegawa Y, Murata M, Kinoshita M, Matsumori N, Greimel P. Behavior of Triterpenoid Saponin Ginsenoside Rh2 in Ordered and Disordered Phases in Model Membranes Consisting of Sphingomyelin, Phosphatidylcholine, and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10478-10491. [PMID: 35984899 DOI: 10.1021/acs.langmuir.2c01261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ginsenoside Rh2 (Rh2) is a saponin of medicinal ginseng, and it has attracted much attention for its pharmacological activities. In this study, we investigated the interaction of Rh2 with biological membranes using model membranes. We examined the effects of various lipids on the membrane-disrupting activity of Rh2 and found that cholesterol and sphingomyelin (SM) had no significant effect. Furthermore, the effects of Rh2 on acyl chain packing (DPH anisotropy) and water molecule permeability (GP340 values) did not differ significantly between bilayers containing SM and saturated phosphatidylcholine. These results suggest that the formation of the liquid-ordered (Lo) phase affects the behavior of Rh2 in the membrane rather than a specific interaction of Rh2 with a particular lipid. We investigated the effects of Rh2 on the Lo and liquid-disordered (Ld) phases using surface tension measurements and fluorescence experiments. In the surface tension-area isotherms, we compared the monolayers of the Ld and Lo lipid compositions and found that Rh2 is abundantly bound to both monolayers, with the amount being greater in the Ld phase than in the Lo phase. In addition, the hydration state of the bilayers, mainly consisting of the Lo or Ld phase, showed that Rh2 tends to bind to the surface of the bilayer in both phases. At higher concentrations, Rh2 tends to bind more abundantly to the relatively shallow interior of the Ld phase than the Lo phase. The phase-dependent membrane behavior of Rh2 is probably due to the phase-selective affinity and binding mode of Rh2.
Collapse
Affiliation(s)
- Darcy Lacanilao Garza
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| |
Collapse
|
30
|
Radha G, Naik PK, Lopus M. In vitro characterization and molecular dynamic simulation of shikonin as a tubulin-targeted anticancer agent. Comput Biol Med 2022; 147:105789. [DOI: 10.1016/j.compbiomed.2022.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
|
31
|
Eberle SA, Gustavsson M. A Scintillation Proximity Assay for Real-Time Kinetic Analysis of Chemokine-Chemokine Receptor Interactions. Cells 2022; 11:1317. [PMID: 35455996 PMCID: PMC9024993 DOI: 10.3390/cells11081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Chemokine receptors are extensively involved in a broad range of physiological and pathological processes, making them attractive drug targets. However, despite considerable efforts, there are very few approved drugs targeting this class of seven transmembrane domain receptors to date. In recent years, the importance of including binding kinetics in drug discovery campaigns was emphasized. Therefore, kinetic insight into chemokine-chemokine receptor interactions could help to address this issue. Moreover, it could additionally deepen our understanding of the selectivity and promiscuity of the chemokine-chemokine receptor network. Here, we describe the application, optimization and validation of a homogenous Scintillation Proximity Assay (SPA) for real-time kinetic profiling of chemokine-chemokine receptor interactions on the example of ACKR3 and CXCL12. The principle of the SPA is the detection of radioligand binding to receptors reconstituted into nanodiscs by scintillation light. No receptor modifications are required. The nanodiscs provide a native-like environment for receptors and allow for full control over bilayer composition and size. The continuous assay format enables the monitoring of binding reactions in real-time, and directly accounts for non-specific binding and potential artefacts. Minor adaptations additionally facilitate the determination of equilibrium binding metrics, making the assay a versatile tool for the study of receptor-ligand interactions.
Collapse
Affiliation(s)
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| |
Collapse
|
32
|
Kanai SM, Heffner C, Cox TC, Cunningham ML, Perez FA, Bauer AM, Reigan P, Carter C, Murray SA, Clouthier DE. Auriculocondylar syndrome 2 results from the dominant-negative action of PLCB4 variants. Dis Model Mech 2022; 15:dmm049320. [PMID: 35284927 PMCID: PMC9066496 DOI: 10.1242/dmm.049320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Auriculocondylar syndrome 2 (ARCND2) is a rare autosomal dominant craniofacial malformation syndrome linked to multiple genetic variants in the coding sequence of phospholipase C β4 (PLCB4). PLCB4 is a direct signaling effector of the endothelin receptor type A (EDNRA)-Gq/11 pathway, which establishes the identity of neural crest cells (NCCs) that form lower jaw and middle ear structures. However, the functional consequences of PLCB4 variants on EDNRA signaling is not known. Here, we show, using multiple signaling reporter assays, that known PLCB4 variants resulting from missense mutations exert a dominant-negative interference over EDNRA signaling. In addition, using CRISPR/Cas9, we find that F0 mouse embryos modeling one PLCB4 variant have facial defects recapitulating those observed in hypomorphic Ednra mouse models, including a bone that we identify as an atavistic change in the posterior palate/oral cavity. Remarkably, we have identified a similar osseous phenotype in a child with ARCND2. Our results identify the disease mechanism of ARCND2, demonstrate that the PLCB4 variants cause craniofacial differences and illustrate how minor changes in signaling within NCCs may have driven evolutionary changes in jaw structure and function. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Timothy C. Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Michael L. Cunningham
- University of Washington, Department of Pediatrics, Division of Craniofacial Medicine and Seattle Children's Craniofacial Center, Seattle, WA 98105, USA
| | - Francisco A. Perez
- University of Washington, Department of Radiology and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Aaron M. Bauer
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristan Carter
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
33
|
Sutcliffe KJ, Corey RA, Alhosan N, Cavallo D, Groom S, Santiago M, Bailey C, Charlton SJ, Sessions RB, Henderson G, Kelly E. Interaction With the Lipid Membrane Influences Fentanyl Pharmacology. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2. [PMID: 35909438 PMCID: PMC7613138 DOI: 10.3389/adar.2022.10280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Overdose deaths from fentanyl have reached epidemic proportions in the USA and are increasing worldwide. Fentanyl is a potent opioid agonist that is less well reversed by naloxone than morphine. Due to fentanyl’s high lipophilicity and elongated structure we hypothesised that its unusual pharmacology may be explained by its interactions with the lipid membrane on route to binding to the μ-opioid receptor (MOPr). Through coarse-grained molecular dynamics simulations, electrophysiological recordings and cell signalling assays, we determined how fentanyl and morphine access the orthosteric pocket of MOPr. Morphine accesses MOPr via the aqueous pathway; first binding to an extracellular vestibule, then diffusing into the orthosteric pocket. In contrast, fentanyl may take a novel route; first partitioning into the membrane, before accessing the orthosteric site by diffusing through a ligand-induced gap between the transmembrane helices. In electrophysiological recordings fentanyl-induced currents returned after washout, suggesting fentanyl deposits in the lipid membrane. However, mutation of residues forming the potential MOPr transmembrane access site did not alter fentanyl’s pharmacological profile in vitro. A high local concentration of fentanyl in the lipid membrane, possibly in combination with a novel lipophilic binding route, may explain the high potency and lower susceptibility of fentanyl to reversal by naloxone.
Collapse
Affiliation(s)
- Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Robin A Corey
- Department of Biochemistry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Norah Alhosan
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Damiana Cavallo
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sam Groom
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Marina Santiago
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Chris Bailey
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Steven J Charlton
- Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard B Sessions
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
Lay CS, Thomas DA, Evans JP, Campbell M, McCombe K, Phillipou AN, Gordon LJ, Jones EJ, Riching K, Mahmood M, Messenger C, Carver CE, Gatfield KM, Craggs PD. Development of an intracellular quantitative assay to measure compound binding kinetics. Cell Chem Biol 2022; 29:287-299.e8. [PMID: 34520747 DOI: 10.1016/j.chembiol.2021.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/09/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
Contemporary drug discovery typically quantifies the effect of a molecule on a biological target using the equilibrium-derived measurements of IC50, EC50, or KD. Kinetic descriptors of drug binding are frequently linked with the effectiveness of a molecule in modulating a disease phenotype; however, these parameters are yet to be fully adopted in early drug discovery. Nanoluciferase bioluminescence resonance energy transfer (NanoBRET) can be used to measure interactions between fluorophore-conjugated probes and luciferase fused target proteins. Here, we describe an intracellular NanoBRET competition assay that can be used to quantify cellular kinetic rates of compound binding to nanoluciferase-fused bromodomain and extra-terminal (BET) proteins. Comparative rates are generated using a cell-free NanoBRET assay and by utilizing orthogonal recombinant protein-based methodologies. A screen of known pan-BET inhibitors is used to demonstrate the value of this approach in the investigation of kinetic selectivity between closely related proteins.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Daniel A Thomas
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; Arctoris, Oxford OX14 4SA, UK
| | - John P Evans
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Matthew Campbell
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Kristopher McCombe
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Alexander N Phillipou
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Laurie J Gordon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Emma J Jones
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | | | - Mahnoor Mahmood
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Cassie Messenger
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Charlotte E Carver
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Kelly M Gatfield
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; GSK-Francis Crick Institute Linklabs, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
35
|
Potterton A, Heifetz A, Townsend-Nicholson A. Predicting Residence Time of GPCR Ligands with Machine Learning. Methods Mol Biol 2022; 2390:191-205. [PMID: 34731470 DOI: 10.1007/978-1-0716-1787-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug-target residence time, the duration of binding at a given protein target, has been shown in some protein families to be more significant for conferring efficacy than binding affinity. To carry out efficient optimization of residence time in drug discovery, machine learning models that can predict that value need to be developed. One of the main challenges with predicting residence time is the paucity of data. This chapter outlines all of the currently available ligand kinetic data, providing a repository that contains the largest publicly available source of GPCR-ligand kinetic data to date. To help decipher the features of kinetic data that might be beneficial to include in computational models for the prediction of residence time, the experimental evidence for properties that influence residence time are summarized. Finally, two different workflows for predicting residence time with machine learning are outlined. The first is a single-target model trained on ligand features; the second is a multi-target model trained on features generated from molecular dynamics simulations.
Collapse
Affiliation(s)
- Andrew Potterton
- Structural and Molecular Biology, University College London, London, UK
- Evotec (U.K.) Ltd., Abingdon, Oxfordshire, UK
| | | | | |
Collapse
|
36
|
Liang J, Tran VNN, Hemez C, Abel Zur Wiesch P. Current Approaches of Building Mechanistic Pharmacodynamic Drug-Target Binding Models. Methods Mol Biol 2022; 2385:1-17. [PMID: 34888713 DOI: 10.1007/978-1-0716-1767-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanistic pharmacodynamic models that incorporate the binding kinetics of drug-target interactions have several advantages in understanding target engagement and the efficacy of a drug dose. However, guidelines on how to build and interpret mechanistic pharmacodynamic drug-target binding models considering both biological and computational factors are still missing in the literature. In this chapter, current approaches of building mechanistic PD models and their advantages are discussed. We also present a methodology on how to select a suitable model considering both biological and computational perspectives, as well as summarize the challenges of current mechanistic PD models.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vi Ngoc-Nha Tran
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Colin Hemez
- Graduate Program in Biophysics, Harvard University, Boston, MA, USA
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Blindern, Oslo, Norway.
| |
Collapse
|
37
|
Dickson CJ, Hornak V, Duca JS. Relative Binding Free-Energy Calculations at Lipid-Exposed Sites: Deciphering Hot Spots. J Chem Inf Model 2021; 61:5923-5930. [PMID: 34843243 DOI: 10.1021/acs.jcim.1c01147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relative binding free-energy (RBFE) calculations are experiencing resurgence in the computer-aided drug design of novel small molecules due to performance gains allowed by cutting-edge molecular mechanic force fields and computer hardware. Application of RBFE to soluble proteins is becoming a routine, while recent studies outline necessary steps to successfully apply RBFE at the orthosteric site of membrane-embedded G-protein-coupled receptors (GPCRs). In this work, we apply RBFE to a congeneric series of antagonists that bind to a lipid-exposed, extra-helical site of the P2Y1 receptor. We find promising performance of RBFE, such that it may be applied in a predictive manner on drug discovery programs targeting lipid-exposed sites. Further, by the application of the microkinetic model, binding at a lipid-exposed site can be split into (1) membrane partitioning of the drug molecule followed by (2) binding at the extra-helical site. We find that RBFE can be applied to calculate the free energy of each step, allowing the uncoupling of observed binding free energy from the influence of membrane affinity. This protocol may be used to identify binding hot spots at extra-helical sites and guide drug discovery programs toward optimizing intrinsic activity at the target.
Collapse
Affiliation(s)
- Callum J Dickson
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Viktor Hornak
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jose S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Distinct In Vitro Binding Profile of the Somatostatin Receptor Subtype 2 Antagonist [ 177Lu]Lu-OPS201 Compared to the Agonist [ 177Lu]Lu-DOTA-TATE. Pharmaceuticals (Basel) 2021; 14:ph14121265. [PMID: 34959665 PMCID: PMC8706879 DOI: 10.3390/ph14121265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/14/2023] Open
Abstract
Treatment of neuroendocrine tumours with the radiolabelled somatostatin receptor subtype 2 (SST2) peptide agonist [177Lu]Lu-DOTA-TATE is effective and well-established. Recent studies suggest improved therapeutic efficacy using the SST2 peptide antagonist [177Lu]Lu-OPS201. However, little is known about the cellular mechanisms that lead to the observed differences. In the present in vitro study, we compared kinetic binding, saturation binding, competition binding, cellular uptake and release of [177Lu]Lu-OPS201 versus [177Lu]Lu-DOTA-TATE using HEK cells stably transfected with the human SST2. While [177Lu]Lu-OPS201 and [177Lu]Lu-DOTA-TATE exhibited comparable affinity (KD, 0.15 ± 0.003 and 0.08 ± 0.02 nM, respectively), [177Lu]Lu-OPS201 recognized four times more binding sites than [177Lu]Lu-DOTA-TATE. Competition assays demonstrated that a high concentration of the agonist displaced only 30% of [177Lu]Lu-OPS201 bound to HEK-SST2 cell membranes; an indication that the antagonist binds to additional sites that are not recognized by the agonist. [177Lu]Lu-OPS201 showed faster association and slower dissociation than [177Lu]Lu-DOTA-TATE. Whereas most of [177Lu]Lu-OPS201 remained at the cell surface, [177Lu]Lu-DOTA-TATE was almost completely internalised inside the cell. The present data identified distinct differences between [177Lu]Lu-OPS201 and [177Lu]Lu-DOTA-TATE regarding the recognition of receptor binding sites (higher for [177Lu]Lu-OPS201) and their kinetics (faster association and slower dissociation of [177Lu]Lu-OPS201) that explain, to a great extent, the improved therapeutic efficacy of [177Lu]Lu-OPS201 compared to [177Lu]Lu-DOTA-TATE.
Collapse
|
39
|
Kinetic intracellular assay measures compound binding kinetics at intracellular targets within living cells. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Generation of a Novel High-Affinity Antibody Binding to PCSK9 Catalytic Domain with Slow Dissociation Rate by CDR-Grafting, Alanine Scanning and Saturated Site-Directed Mutagenesis for Favorably Treating Hypercholesterolemia. Biomedicines 2021; 9:biomedicines9121783. [PMID: 34944600 PMCID: PMC8698692 DOI: 10.3390/biomedicines9121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has become an attractive therapeutic strategy for lowering low-density lipoprotein cholesterol (LDL-C). In this study, a novel high affinity humanized IgG1 mAb (named h5E12-L230G) targeting the catalytic domain of human PCSK9 (hPCSK9) was generated by using CDR-grafting, alanine-scanning mutagenesis, and saturated site-directed mutagenesis. The heavy-chain constant region of h5E12-L230G was modified to eliminate the cytotoxic effector functions and mitigate the heterogeneity. The biolayer interferometry (BLI) binding assay and molecular docking study revealed that h5E12-L230G binds to the catalytic domain of hPCSK9 with nanomolar affinity (KD = 1.72 nM) and an extremely slow dissociation rate (koff, 4.84 × 10−5 s−1), which interprets its quite low binding energy (−54.97 kcal/mol) with hPCSK9. Additionally, h5E12-L230G elevated the levels of LDLR and enhanced the LDL-C uptake in HepG2 cells, as well as reducing the serum LDL-C and total cholesterol (TC) levels in hyperlipidemic mouse model with high potency comparable to the positive control alirocumab. Our data indicate that h5E12-L230G is a high-affinity anti-PCSK9 antibody candidate with an extremely slow dissociation rate for favorably treating hypercholesterolemia and relevant cardiovascular diseases.
Collapse
|
41
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
42
|
Yanofsky DJ, Di Trani JM, Król S, Abdelaziz R, Bueler SA, Imming P, Brzezinski P, Rubinstein JL. Structure of mycobacterial CIII 2CIV 2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203). eLife 2021; 10:e71959. [PMID: 34590581 PMCID: PMC8523172 DOI: 10.7554/elife.71959] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
The imidazopyridine telacebec, also known as Q203, is one of only a few new classes of compounds in more than 50 years with demonstrated antituberculosis activity in humans. Telacebec inhibits the mycobacterial respiratory supercomplex composed of complexes III and IV (CIII2CIV2). In mycobacterial electron transport chains, CIII2CIV2 replaces canonical CIII and CIV, transferring electrons from the intermediate carrier menaquinol to the final acceptor, molecular oxygen, while simultaneously transferring protons across the inner membrane to power ATP synthesis. We show that telacebec inhibits the menaquinol:oxygen oxidoreductase activity of purified Mycobacterium smegmatis CIII2CIV2 at concentrations similar to those needed to inhibit electron transfer in mycobacterial membranes and Mycobacterium tuberculosis growth in culture. We then used electron cryomicroscopy (cryoEM) to determine structures of CIII2CIV2 both in the presence and absence of telacebec. The structures suggest that telacebec prevents menaquinol oxidation by blocking two different menaquinol binding modes to prevent CIII2CIV2 activity.
Collapse
Affiliation(s)
- David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
| | - Sylwia Król
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Rana Abdelaziz
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | | | - Peter Imming
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
- Department of Biochemistry, The University of TorontoTorontoCanada
| |
Collapse
|
43
|
Kalwarczyk T, Bielec K, Burdzy K, Holyst R. Influence of molecular rebinding on the reaction rate of complex formation. Phys Chem Chem Phys 2021; 23:19343-19351. [PMID: 34524310 DOI: 10.1039/d1cp02820k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We simulated Brownian diffusion and reaction-diffusion processes to study the influence of molecular rebinding on the reaction rates of bimolecular reactions. We found that the number of rebinding events, Nreb, is proportional to the target's size and inversely proportional to the diffusion coefficient D and simulation time-step Δt. We found the proportionality constant close to π-1/2. We confirmed that Nreb is defined as a ratio of the activation-limited rate constant ka to the diffusion-limited rate constant, kD. We provide the formula describing the reactivity coefficient κ, modelling the transient-native complex transition for the activation-controlled reaction rates. We show that κ is proportional to (D/Δt)1/2. Finally, we apply our rebinding-including reaction rate model to the real reactions of photoacid dissociation and protein association. Based on literature data for both types of reactions, we found the Δt time-scale. We show that for the photodissociation of a proton, the Δt is equal to 171 ± 18 fs and the average number of rebinding events is approximately equal to 40. For proteins, Δt is of the order of 100 ps with around 20 rebinding events. In both cases the timescale is similar to the timescale of fluctuation of the solvent molecules surrounding the reactants; vibrations and bending in the case of photoacid dissociation and diffusional motion for proteins.
Collapse
Affiliation(s)
- Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Krzysztof Bielec
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Krzysztof Burdzy
- Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, USA
| | - Robert Holyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
44
|
Zhang Z, Ghosh A, Connolly PJ, King P, Wilde T, Wang J, Dong Y, Li X, Liao D, Chen H, Tian G, Suarez J, Bonnette WG, Pande V, Diloreto KA, Shi Y, Patel S, Pietrak B, Szewczuk L, Sensenhauser C, Dallas S, Edwards JP, Bachman KE, Evans DC. Gut-Restricted Selective Cyclooxygenase-2 (COX-2) Inhibitors for Chemoprevention of Colorectal Cancer. J Med Chem 2021; 64:11570-11596. [PMID: 34279934 DOI: 10.1021/acs.jmedchem.1c00890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective cyclooxygenase (COX)-2 inhibitors have been extensively studied for colorectal cancer (CRC) chemoprevention. Celecoxib has been reported to reduce the incidence of colorectal adenomas and CRC but is also associated with an increased risk of cardiovascular events. Here, we report a series of gut-restricted, selective COX-2 inhibitors characterized by high colonic exposure and minimized systemic exposure. By establishing acute ex vivo 18F-FDG uptake attenuation as an efficacy proxy, we identified a subset of analogues that demonstrated statistically significant in vivo dose-dependent inhibition of adenoma progression and survival extension in an APCmin/+ mouse model. However, in vitro-in vivo correlation analysis showed their chemoprotective effects were driven by residual systemic COX-2 inhibition, rationalizing their less than expected efficacies and highlighting the challenges associated with COX-2-mediated CRC disease chemoprevention.
Collapse
Affiliation(s)
- Zhuming Zhang
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Avijit Ghosh
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Peter J Connolly
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Peter King
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Thomas Wilde
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Jianyao Wang
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Yawei Dong
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Xueliang Li
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Daohong Liao
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Hao Chen
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Gaochao Tian
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Javier Suarez
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - William G Bonnette
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Vineet Pande
- Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Karen A Diloreto
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Yifan Shi
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Shefali Patel
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Beth Pietrak
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Lawrence Szewczuk
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Carlo Sensenhauser
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Shannon Dallas
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - James P Edwards
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Kurtis E Bachman
- Oncology Discovery, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - David C Evans
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
45
|
Yang H, Li X, Li G, Huang H, Yang W, Jiang X, Sen M, Liu J, Liu Y, Pan Y, Wang G. Accurate quantitative determination of affinity and binding kinetics for tight binding inhibition of xanthine oxidase. Biomed Pharmacother 2021; 139:111664. [PMID: 34243606 DOI: 10.1016/j.biopha.2021.111664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
The accurate quantitative determination of affinity and binding kinetics (BK) for tight binding inhibition is extraordinary important from both the continuous optimization of compounds, particularly in developing structure-activity relationships (SAR), and the prediction of in vivo target occupancy (TO). Due to the unique properties for tight binding inhibition that the inhibitors are characterized by the ultrahigh-affinity, relatively fast association to the target enzyme combined with extremely slow dissociation of the inhibitor-enzyme binary complex, the classical steady state equilibrium methods are no longer valid. Here, we made several recommendations of how to design the optimal experiments and apply special mathematical calculation approaches to quantitatively evaluate the accurate affinity and BK as the examples of two tight binding inhibitors against the xanthine oxidase (XO), as well as compared the differences in the results calculated from the different data analytical methods and analyzed the influence of these differences on the XO engagement in human. Analysis of the results displayed that the accurate apparent dissociation constant (Ki*,app) was 0.2 ± 0.06 nM for topiroxotstat and was 0.45 ± 0.2 nM for febuxostat; that on-rate (kon) was (4.3 ± 1.1) × 106 M-1s-1 for topiroxotstat and was(133.3 ± 3.5) × 106 M-1s-1 for febuxostat, and off-rate (koff) was (1.0±0.2) × 10-5 s-1 for topiroxotstat and was ≤ 0.16 × 10-5 s-1for febuxostat. Moreover, there were significant differences in the Ki*,app and koff values estimated using the appropriate specialized methods for tight binding inhibition versus classical steady state equilibrium methods, with the substantial differences of 14-fold and 32-fold reduction for topiroxostat, respectively, and of 9.6-fold and ≥ 213-fold reduction for febuxostat, while the kon values remain the moderate differences for the two inhibitors. The obvious greater AUC of XO engagement time courses and longer durations of above 70% engagement by the appropriate specialized methods for tight binding inhibition were observed that the results display the differences of 70.1% and 88%, respectively for topiroxostat and of 38.1% and 35.0%, respectively for febuxostat in human liver cell than by classical steady state equilibrium methods. Again, our studies provide several valuable recommendations of the optimal experiment protocols and appropriate analytical approaches for accurately quantitatively assessing the affinity and BK parameters as well as demonstrate the ability of our recommended methods to generate reliable data for tight binding inhibitors against XO.
Collapse
Affiliation(s)
- Haiyang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gang Li
- Beijing Adamadle Biotech Co., Ltd., Beijing 100102, China
| | - Huating Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoquan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Muli Sen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingjing Liu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yanli Pan
- Institute of Information on Traditional Chinese Medicine China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China.
| |
Collapse
|
46
|
Corey EA, Zolotukhin S, Ache BW, Ukhanov K. Mixture interactions at mammalian olfactory receptors are dependent on the cellular environment. Sci Rep 2021; 11:9278. [PMID: 33927269 PMCID: PMC8085013 DOI: 10.1038/s41598-021-88601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Functional characterization of mammalian olfactory receptors (ORs) remains a major challenge to ultimately understanding the olfactory code. Here, we compare the responses of the mouse Olfr73 ectopically expressed in olfactory sensory neurons using AAV gene delivery in vivo and expressed in vitro in cell culture. The response dynamics and concentration-dependence of agonists for the ectopically expressed Olfr73 were similar to those reported for the endogenous Olfr73, however the antagonism previously reported between its cognate agonist and several antagonists was not replicated in vivo. Expressing the OR in vitro reproduced the antagonism reported for short odor pulses, but not for prolonged odor exposure. Our findings suggest that both the cellular environment and the stimulus dynamics shape the functionality of Olfr73 and argue that characterizing ORs in 'native' conditions, rather than in vitro, provides a more relevant understanding of ligand-OR interactions.
Collapse
Affiliation(s)
- Elizabeth A Corey
- Whitney Laboratory, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, Gainesville, FL, USA
- Department of Biology and Neuroscience, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
47
|
Biological Screening and Radiolabeling of Raptinal as a Potential Anticancer Novel Drug in Hepatocellular Carcinoma Model. Eur J Pharm Sci 2021; 158:105653. [DOI: 10.1016/j.ejps.2020.105653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/26/2020] [Accepted: 11/21/2020] [Indexed: 12/21/2022]
|
48
|
Development of a novel, fully human, anti-PCSK9 antibody with potent hypolipidemic activity by utilizing phage display-based strategy. EBioMedicine 2021; 65:103250. [PMID: 33647772 PMCID: PMC7921758 DOI: 10.1016/j.ebiom.2021.103250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) levels by facilitating the degradation of the LDL receptor (LDLR) and is an attractive therapeutic target for hypercholesterolemia intervention. Herein, we generated a novel fully human antibody with favourable druggability by utilizing phage display-based strategy. Methods A potent single-chain variable fragment (scFv) named AP2M21 was obtained by screening a fully human scFv phage display library with hPCSK9, and performing two in vitro affinity maturation processes including CDR-targeted tailored mutagenesis and cross-cloning. Thereafter, it was transformed to a full-length Fc-silenced anti-PCSK9 antibody FAP2M21 by fusing to a modified human IgG1 Fc fragment with L234A/L235A/N297G mutations and C-terminal lysine deletion, thus eliminating its immune effector functions and mitigating mAb heterogeneity. Findings Our data showed that the generated full-length anti-PCSK9 antibody FAP2M21 binds to hPCSK9 with a KD as low as 1.42 nM, and a dramatically slow dissociation rate (koff, 4.68 × 10−6 s−1), which could be attributed to its lower binding energy (-47.51 kcal/mol) than its parent counterpart FAP2 (-30.39 kcal/mol). We verified that FAP2M21 potently inhibited PCSK9-induced reduction of LDL-C uptake in HepG2 cells, with an EC50 of 43.56 nM. Further, in hPCSK9 overexpressed C57BL/6 mice, a single tail i.v. injection of FAP2M21 at 1, 3 and 10 mg/kg, dose-dependently up-regulated hepatic LDLR levels, and concomitantly reduced serum LDL-C by 3.3% (P = 0.658, unpaired Student's t-test), 30.2% (P = 0.002, Mann-Whitney U-test) and 37.2% (P = 0.002, Mann-Whitney U-test), respectively. Interpretation FAP2M21 with potent inhibitory effect on PCSK9 may serve as a promising therapeutic agent for treating hypercholesterolemia and associated cardiovascular diseases.
Collapse
|
49
|
Arsova A, Møller TC, Hellyer SD, Vedel L, Foster SR, Hansen JL, Bräuner-Osborne H, Gregory KJ. Positive Allosteric Modulators of Metabotropic Glutamate Receptor 5 as Tool Compounds to Study Signaling Bias. Mol Pharmacol 2021; 99:328-341. [PMID: 33602724 DOI: 10.1124/molpharm.120.000185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022] Open
Abstract
Positive allosteric modulation of metabotropic glutamate subtype 5 (mGlu5) receptor has emerged as a potential new therapeutic strategy for the treatment of schizophrenia and cognitive impairments. However, positive allosteric modulator (PAM) agonist activity has been associated with adverse side effects, and neurotoxicity has also been observed for pure PAMs. The structural and pharmacological basis of therapeutic versus adverse mGlu5 PAM in vivo effects remains unknown. Thus, gaining insights into the signaling fingerprints, as well as the binding kinetics of structurally diverse mGlu5 PAMs, may help in the rational design of compounds with desired properties. We assessed the binding and signaling profiles of N-methyl-5-(phenylethynyl)pyrimidin-2-amine (MPPA), 3-cyano-N-(2,5-diphenylpyrazol-3-yl)benzamide (CDPPB), and 1-[4-(4-chloro-2-fluoro-phenyl)piperazin-1-yl]-2-(4-pyridylmethoxy)ethenone [compound 2c, a close analog of 1-(4-(2-chloro-4-fluorophenyl)piperazin-1-yl)-2-(pyridin-4-ylmethoxy)ethanone] in human embryonic kidney 293A cells stably expressing mGlu5 using Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and receptor internalization assays. Of the three allosteric ligands, only CDPPB had intrinsic agonist efficacy, and it also had the longest receptor residence time and highest affinity. MPPA was a biased PAM, showing higher positive cooperativity with orthosteric agonists in ERK1/2 phosphorylation and Ca2+ mobilization over IP1 accumulation and receptor internalization. In primary cortical neurons, all three PAMs showed stronger positive cooperativity with (S)-3,5-dihydroxyphenylglycine (DHPG) in Ca2+ mobilization over IP1 accumulation. Our characterization of three structurally diverse mGlu5 PAMs provides further molecular pharmacological insights and presents the first assessment of PAM-mediated mGlu5 internalization. SIGNIFICANCE STATEMENT: Enhancing metabotropic glutamate receptor subtype 5 (mGlu5) activity is a promising strategy to treat cognitive and positive symptoms in schizophrenia. It is increasingly evident that positive allosteric modulators (PAMs) of mGlu5 are not all equal in preclinical models; there remains a need to better understand the molecular pharmacological properties of mGlu5 PAMs. This study reports detailed characterization of the binding and functional pharmacological properties of mGlu5 PAMs and is the first study of the effects of mGlu5 PAMs on receptor internalization.
Collapse
Affiliation(s)
- Angela Arsova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Thor C Møller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Shane D Hellyer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Line Vedel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Simon R Foster
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Jakob L Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Karen J Gregory
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| |
Collapse
|
50
|
Erlendsson S, Teilum K. Binding Revisited-Avidity in Cellular Function and Signaling. Front Mol Biosci 2021; 7:615565. [PMID: 33521057 PMCID: PMC7841115 DOI: 10.3389/fmolb.2020.615565] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
When characterizing biomolecular interactions, avidity, is an umbrella term used to describe the accumulated strength of multiple specific and unspecific interactions between two or more interaction partners. In contrast to the affinity, which is often sufficient to describe monovalent interactions in solution and where the binding strength can be accurately determined by considering only the relationship between the microscopic association and dissociation rates, the avidity is a phenomenological macroscopic parameter linked to several microscopic events. Avidity also covers potential effects of reduced dimensionality and/or hindered diffusion observed at or near surfaces e.g., at the cell membrane. Avidity is often used to describe the discrepancy or the "extra on top" when cellular interactions display binding that are several orders of magnitude stronger than those estimated in vitro. Here we review the principles and theoretical frameworks governing avidity in biological systems and the methods for predicting and simulating avidity. While the avidity and effects thereof are well-understood for extracellular biomolecular interactions, we present here examples of, and discuss how, avidity and the underlying kinetics influences intracellular signaling processes.
Collapse
Affiliation(s)
- Simon Erlendsson
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|