1
|
Martínez-Rivera A, Fetcho RN, Birmingham L, Xu J, Yang R, Foord C, Scala-Chávez D, Mekawy N, Pleil K, Pickel VM, Liston C, Castorena CM, Levitz J, Pan YX, Briand LA, Rajadhyaksha AM, Lee FS. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. SCIENCE ADVANCES 2024; 10:eadq4779. [PMID: 39612328 PMCID: PMC11606496 DOI: 10.1126/sciadv.adq4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments as a complement to opioid-based treatments. Here, we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by cannabinoid receptor 1 (CB1R) within the VTA, as VTA CB1R conditional knockout counteracts JZL184's effects. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together, these findings reveal that 2-AG diminishes the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Robert N. Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lizzie Birmingham
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Diego Scala-Chávez
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Narmin Mekawy
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristen Pleil
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlos M. Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lisa A. Briand
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
2
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
3
|
Kanwal H, Sangineto M, Ciarnelli M, Castaldo P, Villani R, Romano AD, Serviddio G, Cassano T. Potential Therapeutic Targets to Modulate the Endocannabinoid System in Alzheimer's Disease. Int J Mol Sci 2024; 25:4050. [PMID: 38612861 PMCID: PMC11012768 DOI: 10.3390/ijms25074050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease (NDD), is characterized by chronic neuronal cell death through progressive loss of cognitive function. Amyloid beta (Aβ) deposition, neuroinflammation, oxidative stress, and hyperphosphorylated tau proteins are considered the hallmarks of AD pathology. Different therapeutic approaches approved by the Food and Drug Administration can only target a single altered pathway instead of various mechanisms that are involved in AD pathology, resulting in limited symptomatic relief and almost no effect in slowing down the disease progression. Growing evidence on modulating the components of the endocannabinoid system (ECS) proclaimed their neuroprotective effects by reducing neurochemical alterations and preventing cellular dysfunction. Recent studies on AD mouse models have reported that the inhibitors of the fatty acid amide hydrolase (FAAH) and monoacylglycerol (MAGL), hydrolytic enzymes for N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, might be promising candidates as therapeutical intervention. The FAAH and MAGL inhibitors alone or in combination seem to produce neuroprotection by reversing cognitive deficits along with Aβ-induced neuroinflammation, oxidative responses, and neuronal death, delaying AD progression. Their exact signaling mechanisms need to be elucidated for understanding the brain intrinsic repair mechanism. The aim of this review was to shed light on physiology and pathophysiology of AD and to summarize the experimental data on neuroprotective roles of FAAH and MAGL inhibitors. In this review, we have also included CB1R and CB2R modulators with their diverse roles to modulate ECS mediated responses such as anti-nociceptive, anxiolytic, and anti-inflammatory actions in AD. Future research would provide the directions in understanding the molecular mechanisms and development of new therapeutic interventions for the treatment of AD.
Collapse
Affiliation(s)
- Hina Kanwal
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Moris Sangineto
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Martina Ciarnelli
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy;
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| |
Collapse
|
4
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
5
|
Woyach V, Sherman K, Hillard CJ, Hopp FA, Hogan QH, Dean C. Fatty acid amide hydrolase activity in the dorsal periaqueductal gray attenuates neuropathic pain and associated dysautonomia. Am J Physiol Regul Integr Comp Physiol 2022; 323:R749-R762. [PMID: 36154489 PMCID: PMC9639763 DOI: 10.1152/ajpregu.00073.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/29/2022] [Accepted: 09/22/2022] [Indexed: 01/11/2023]
Abstract
The complexity of neuropathic pain and its associated comorbidities, including dysautonomia, make it difficult to treat. Overlap of anatomical regions and pharmacology of sympathosensory systems in the central nervous system (CNS) provide targets for novel treatment strategies. The dorsal periaqueductal gray (dPAG) is an integral component of both the descending pain modulation system and the acute stress response and is critically involved in both analgesia and the regulation of sympathetic activity. Local manipulation of the endocannabinoid signaling system holds great promise to provide analgesia without excessive adverse effects and also influence autonomic output. Inhibition of fatty acid amide hydrolase (FAAH) increases brain concentrations of the endocannabinoid N-arachidonoylethanolamine (AEA) and reduces pain-related behaviors in neuropathic pain models. Neuropathic hyperalgesia and reduced sympathetic tone are associated with increased FAAH activity in the dPAG, which suggests the hypothesis that inhibition of FAAH in the dPAG will normalize pain sensation and autonomic function in neuropathic pain. To test this hypothesis, the effects of systemic or intra-dPAG FAAH inhibition on hyperalgesia and dysautonomia developed after spared nerve injury (SNI) were assessed in male and female rats. Administration of the FAAH inhibitor PF-3845 into the dPAG reduces hyperalgesia behavior and the decrease in sympathetic tone induced by SNI. Prior administration of the CB1 receptor antagonist AM281, attenuated the antihyperalgesic and sympathetic effects of FAAH inhibition. No sex differences were identified. These data support an integrative role for AEA/CB1 receptor signaling in the dPAG contributing to the regulation of both hyperalgesia behavior and altered sympathetic tone in neuropathic pain.
Collapse
Affiliation(s)
- Victoria Woyach
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Katherine Sherman
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Francis A Hopp
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| |
Collapse
|
6
|
Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br J Pharmacol 2022; 179:4300-4310. [PMID: 33786823 PMCID: PMC8481389 DOI: 10.1111/bph.15469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide are among the best studied lipid messengers in the brain. By activating cannabinoid receptors in the CNS, endocannabinoids tune synaptic function, thereby influencing a variety of physiological and behavioural processes. Extensive research conducted over the last few decades has considerably enhanced our understanding of the molecular mechanisms and physiological functions of the endocannabinoid system. It is now well-established that endocannabinoids are synthesized by postsynaptic neurons and serve as retrograde messengers that suppress neurotransmitter release at central synapses. While the detailed mechanisms by which endocannabinoids gate synaptic function and behavioural processes are relatively well characterized, the mechanisms governing endocannabinoid transport at central synapses remain ill defined. Recently, several studies have begun to unravel the mechanisms governing intracellular and intercellular endocannabinoid transport. In this review, we will focus on new advances in the mechanisms of intracellular and synaptic endocannabinoid transport in the CNS. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- Neuroscience Program, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
7
|
Maddukuri S, Patel J, Diaz DA, Chen KL, Wysocka M, Bax C, Li Y, Ravishankar A, Grinnell M, Zeidi M, Reddy N, Concha JSS, Bashir MM, Okawa J, White B, Werth VP. Cannabinoid type 2 receptor (CB2R) distribution in dermatomyositis skin and peripheral blood mononuclear cells (PBMCs) and in vivo effects of Lenabasum TM. Arthritis Res Ther 2022; 24:12. [PMID: 34983619 PMCID: PMC8725283 DOI: 10.1186/s13075-021-02665-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background Lenabasum is a cannabinoid type 2 receptor (CB2R) reverse agonist that demonstrates anti-inflammatory effects in vivo and in vitro in dermatomyositis (DM) and is currently being investigated for therapeutic potential. The purpose of our study is to investigate CB2R distribution as well as the effects of lenabasum in DM. Methods Immunohistochemistry staining (IHC) was utilized to examine immune cell and cytokine production changes in lesional DM skin biopsies from lenabasum and placebo-treated patients. CB2R expression in various immune cell populations within DM skin was investigated with image mass cytometry (IMC), whereas flow cytometry elucidated CB2R expression in DM peripheral blood mononuclear cells (PBMCs) as well as cytokine production by CB2R-expressing cell populations. Results After 12 weeks of lenabasum treatment, IHC staining showed that CD4+ T cells, CB2R, IL-31, IFN-γ, and IFN-β cytokines were downregulated. IFN-γ and IFN-β mRNA decreased in lesional DM skin but not in PBMCs. IMC findings revealed that CB2R was upregulated in DM lesional skin compared to HC skin and DM PBMCs (p<0.05). In DM skin, CB2R was upregulated on dendritic cells, B cells, T cells, and macrophages while dendritic cells had the greatest expression in both DM skin and PBMCs (p<0.05). These CB2R+ cells in the skin produce IL-31, IL-4, IFN-γ, and IFN-β. Conclusion Our findings of differential CB2R expression based on location and cell type suggest modes by which lenabasum may exert anti-inflammatory effects in DM and highlights dendritic cells as potential therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02665-x.
Collapse
Affiliation(s)
- Spandana Maddukuri
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Patel
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - De Anna Diaz
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen L Chen
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Bax
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yubin Li
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adarsh Ravishankar
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison Grinnell
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Majid Zeidi
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Nithin Reddy
- Department of Medicine, Division of Dermatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Josef Symon S Concha
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Muhammad M Bashir
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joyce Okawa
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Victoria P Werth
- Department of Dermatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA. .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. Potentiation of microglial endocannabinoid signaling alleviates neuroinflammation in Alzheimer's disease. Neuropeptides 2021; 90:102196. [PMID: 34508923 DOI: 10.1016/j.npep.2021.102196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) isaprogressive neurodegenerative disorder characterized by chronic inflammation due to the presence of neurotoxic Aβ and tau proteins. Increased microglial activation and inflated immune response are the other factors to be considered in AD pathology. Microglial cells own biochemical machinery that synthesizes and release endocannabinoids. The exploitation of therapeutic actions of endocannabinoid system has newly emerged in the field of Alzheimer's disease. The activation of cannabinoid receptors/ cannabinoid system modulates inflammatory responses. This review assesses the association between the microglial endocannabinoid system and neuroinflammation in AD. The data supporting the anti-inflammatory role of pharmacological agents modulating cannabinoid system are also reviewed.
Collapse
Affiliation(s)
- Deepthi Rapaka
- A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, India.
| | | | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61614, USA
| | - Paul C Adiukwu
- School of Pharmacy, University of Botswana, P/Bag-0022, Gaborone, Botswana
| |
Collapse
|
9
|
On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotox Res 2021; 39:2072-2097. [PMID: 34741755 DOI: 10.1007/s12640-021-00424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is composed of endogenous cannabinoids; components involved in their synthesis, transport, and degradation; and an expansive variety of cannabinoid receptors. Hypofunction or deregulation of the ECS is related to pathological conditions. Consequently, endogenous enhancement of endocannabinoid levels and/or regulation of their metabolism represent promising therapeutic approaches. Several major strategies have been suggested for the modulation of the ECS: (1) blocking endocannabinoids degradation, (2) inhibition of endocannabinoid cellular uptake, and (3) pharmacological modulation of cannabinoid receptors as potential therapeutic targets. Here, we focused in this review on degradation/reuptake inhibitors over cannabinoid receptor modulators in order to provide an updated synopsis of contemporary evidence advancing mechanisms of endocannabinoids as pharmacological tools with therapeutic properties for the treatment of several disorders. For this purpose, we revisited the available literature and reported the latest advances regarding the biomedical properties of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in pre-clinical and clinical studies. We also highlighted anandamide and 2-arachidonoylglycerol reuptake inhibitors with promising results in pre-clinical studies using in vitro and animal models as an outlook for future research in clinical trials.
Collapse
|
10
|
Borkowski K, Pedersen TL, Seyfried NT, Lah JJ, Levey AI, Hales CM, Dammer EB, Blach C, Louie G, Kaddurah-Daouk R, Newman JW. Association of plasma and CSF cytochrome P450, soluble epoxide hydrolase, and ethanolamide metabolism with Alzheimer's disease. Alzheimers Res Ther 2021; 13:149. [PMID: 34488866 PMCID: PMC8422756 DOI: 10.1186/s13195-021-00893-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease, cardiovascular disease, and other cardiometabolic disorders may share inflammatory origins. Lipid mediators, including oxylipins, endocannabinoids, bile acids, and steroids, regulate inflammation, energy metabolism, and cell proliferation with well-established involvement in cardiometabolic diseases. However, their role in Alzheimer's disease is poorly understood. Here, we describe the analysis of plasma and cerebrospinal fluid lipid mediators in a case-control comparison of ~150 individuals with Alzheimer's disease and ~135 healthy controls, to investigate this knowledge gap. METHODS Lipid mediators were measured using targeted quantitative mass spectrometry. Data were analyzed using the analysis of covariates, adjusting for sex, age, and ethnicity. Partial least square discriminant analysis identified plasma and cerebrospinal fluid lipid mediator discriminates of Alzheimer's disease. Alzheimer's disease predictive models were constructed using machine learning combined with stepwise logistic regression. RESULTS In both plasma and cerebrospinal fluid, individuals with Alzheimer's disease had elevated cytochrome P450/soluble epoxide hydrolase pathway components and decreased fatty acid ethanolamides compared to healthy controls. Circulating metabolites of soluble epoxide hydrolase and ethanolamides provide Alzheimer's disease predictors with areas under receiver operator characteristic curves ranging from 0.82 to 0.92 for cerebrospinal fluid and plasma metabolites, respectively. CONCLUSIONS Previous studies report Alzheimer's disease-associated soluble epoxide hydrolase upregulation in the brain and that endocannabinoid metabolism provides an adaptive response to neuroinflammation. This study supports the involvement of P450-dependent and endocannabinoid metabolism in Alzheimer's disease. The results further suggest that combined pharmacological intervention targeting both metabolic pathways may have therapeutic benefits for Alzheimer's disease.
Collapse
Affiliation(s)
- Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, 95616, USA.
| | - Theresa L Pedersen
- Department of Food Science and Technology, University of California - Davis, Davis, CA, 95616, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James J Lah
- Department of Neurology, Emory University, Atlanta, GA, 30329, USA
| | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, GA, 30329, USA
| | - Chadwick M Hales
- Department of Neurology, Emory University, Atlanta, GA, 30329, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27708, USA
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, 27708, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, 95616, USA
- Western Human Nutrition Research Center, United States Department of Agriculture - Agriculture Research Service, Davis, CA, 95616, USA
- Department of Nutrition, University of California - Davis, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Oubraim S, Wang R, Hausknecht KA, Shen RY, Haj-Dahmane S. Tonic Endocannabinoid Signaling Gates Synaptic Plasticity in Dorsal Raphe Nucleus Serotonin Neurons Through Peroxisome Proliferator-Activated Receptors. Front Pharmacol 2021; 12:691219. [PMID: 34262460 PMCID: PMC8273699 DOI: 10.3389/fphar.2021.691219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Endocannabinoids (eCBs), which include 2-arachidonoylglycerol (2-AG) and anandamide (AEA) are lipid signaling molecules involved in the regulation of an array of behavioral and physiological functions. Released by postsynaptic neurons, eCBs mediate both phasic and tonic signaling at central synapses. While the roles of phasic eCB signaling in modulating synaptic functions and plasticity are well characterized, very little is known regarding the physiological roles and mechanisms regulating tonic eCB signaling at central synapses. In this study, we show that both 2-AG and AEA are constitutively released in the dorsal raphe nucleus (DRN), where they exert tonic control of glutamatergic synaptic transmission onto serotonin (5-HT) neurons. The magnitude of this tonic eCB signaling is tightly regulated by the overall activity of neuronal network. Thus, short term in vitro neuronal silencing or blockade of excitatory synaptic transmission abolishes tonic eCB signaling in the DRn. Importantly, in addition to controlling basal synaptic transmission, this study reveals that tonic 2-AG, but not AEA signaling, modulates synaptic plasticity. Indeed, short-term increase in tonic 2-AG signaling impairs spike-timing dependent potentiation (tLTP) of glutamate synapses. This tonic 2-AG-mediated homeostatic control of DRN glutamate synapses is not signaled by canonical cannabinoid receptors, but by intracellular peroxisome proliferator-activated receptor gamma (PPARγ). Further examination reveals that 2-AG mediated activation of PPARγ blocks tLTP by inhibiting nitric oxide (NO), soluble guanylate cyclase, and protein kinase G (NO/sGC/PKG) signaling pathway. Collectively, these results unravel novel mechanisms by which tonic 2-AG signaling integrates network activities and controls the synaptic plasticity in the brain.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Ruixiang Wang
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Kathryn A Hausknecht
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Neuroscience Program, University at Buffalo, Buffalo, NY, United States
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Neuroscience Program, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Mahurkar-Joshi S, Rankin CR, Videlock EJ, Soroosh A, Verma A, Khandadash A, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. The Colonic Mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p Are Downregulated in Irritable Bowel Syndrome and Are Associated With Barrier Function and MAPK Signaling. Gastroenterology 2021; 160:2409-2422.e19. [PMID: 33617890 PMCID: PMC8169529 DOI: 10.1053/j.gastro.2021.02.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Alterations in microRNA (miRNA) and in the intestinal barrier are putative risk factors for irritable bowel syndrome (IBS). We aimed to identify differentially expressed colonic mucosal miRNAs, their targets in IBS compared to healthy controls (HCs), and putative downstream pathways. METHODS Twenty-nine IBS patients (15 IBS with constipation [IBS-C], 14 IBS with diarrhea [IBS-D]), and 15 age-matched HCs underwent sigmoidoscopy with biopsies. A nCounter array was used to assess biopsy specimen-associated miRNA levels. A false discovery rate (FDR) < 10% was considered significant. Real-time polymerase chain reaction (PCR) was used to validate differentially expressed genes. To assess barrier function, trans-epithelial electrical resistance (TEER) and dextran flux assays were performed on Caco-2 intestinal epithelial cells that were transfected with miRNA-inhibitors or control inhibitors. Protein expression of barrier function associated genes was confirmed using western blots. RESULTS Four out of 247 miRNAs tested were differentially expressed in IBS compared to HCs (FDR < 10%). Real-time PCR validation suggested decreased levels of miR-219a-5p and miR-338-3p in IBS (P = .026 and P = .004), and IBS-C (P = .02 and P = .06) vs. HCs as the strongest associations. Inhibition of miR-219a-5p resulted in altered expression of proteasome/barrier function genes. Functionally, miR-219a-5p inhibition enhanced the permeability of intestinal epithelial cells as TEER was reduced (25-50%, P < .05) and dextran flux was increased (P < .01). Additionally, inhibition of miR-338-3p in cells caused alterations in the mitogen-activated protein kinase (MAPK) signaling pathway genes. CONCLUSION Two microRNAs that potentially affect permeability and visceral nociception were identified to be altered in IBS patients. MiR-219a-5p and miR-338-3p potentially alter barrier function and visceral hypersensitivity via neuronal and MAPK signaling and could be therapeutic targets in IBS.
Collapse
Affiliation(s)
- Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Carl Robert Rankin
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Elizabeth Jane Videlock
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Artin Soroosh
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Abhishek Verma
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ariela Khandadash
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
13
|
Diester CM, Lichtman AH, Negus SS. Behavioral Battery for Testing Candidate Analgesics in Mice. II. Effects of Endocannabinoid Catabolic Enzyme Inhibitors and ∆9-Tetrahydrocannabinol. J Pharmacol Exp Ther 2021; 377:242-253. [PMID: 33622769 PMCID: PMC8058502 DOI: 10.1124/jpet.121.000497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Enhanced signaling of the endocannabinoid (eCB) system through inhibition of the catabolic enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) has received increasing interest for development of candidate analgesics. This study compared effects of MAGL and FAAH inhibitors with effects of ∆9-tetrahydrocannabinol (THC) using a battery of pain-stimulated, pain-depressed, and pain-independent behaviors in male and female mice. Intraperitoneal injection of dilute lactic acid (IP acid) served as an acute visceral noxious stimulus to stimulate two behaviors (stretching, facial grimace) and depress two behaviors (rearing, nesting). Nesting and locomotion were also assessed in the absence of IP acid as pain-independent behaviors. THC and a spectrum of six eCB catabolic enzyme inhibitors ranging from MAGL- to FAAH-selective were assessed for effectiveness to alleviate pain-related behaviors at doses that did not alter pain-independent behaviors. The MAGL-selective inhibitor MJN110 produced the most effective antinociceptive profile, with 1.0 mg/kg alleviating IP acid effects on stretching, grimace, and nesting without altering pain-independent behaviors. MJN110 effects on IP acid-depressed nesting had a slow onset and long duration (40 minutes to 6 hours), were blocked by rimonabant, and tended to be greater in females. As inhibitors increased in FAAH selectivity, antinociceptive effectiveness decreased. PF3845, the most FAAH-selective inhibitor, produced no antinociception up to doses that disrupted locomotion. THC decreased IP acid-stimulated stretching and grimace at doses that did not alter pain-independent behaviors; however, it did not alleviate IP acid-induced depression of rearing or nesting. These results support further consideration of MAGL-selective inhibitors as candidate analgesics for acute inflammatory pain. SIGNIFICANCE STATEMENT: This study characterized a spectrum of endocannabinoid catabolic enzyme inhibitors ranging in selectivity from monoacylglycerol lipase-selective to fatty acid amide hydrolase-selective in a battery of pain-stimulated, pain-depressed, and pain-independent behaviors previously pharmacologically characterized in a companion paper. This battery provides a method for prioritizing candidate analgesics by effectiveness to alleviate pain-related behaviors at doses that do not alter pain-independent behaviors, with inclusion of pain-depressed behaviors increasing translational validity and decreasing susceptibility to motor-depressant false positives.
Collapse
Affiliation(s)
- C M Diester
- Department of Pharmacology and Toxicology (C.M.D., A.H.L., S.S.N.), School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - A H Lichtman
- Department of Pharmacology and Toxicology (C.M.D., A.H.L., S.S.N.), School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - S S Negus
- Department of Pharmacology and Toxicology (C.M.D., A.H.L., S.S.N.), School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
14
|
Buisseret B, Guillemot-Legris O, Ben Kouidar Y, Paquot A, Muccioli GG, Alhouayek M. Effects of R-flurbiprofen and the oxygenated metabolites of endocannabinoids in inflammatory pain mice models. FASEB J 2021; 35:e21411. [PMID: 33749884 DOI: 10.1096/fj.202002468r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
Pain is one of the cardinal signs accompanying inflammation. The prostaglandins (PGs), synthetized from arachidonic acid by cyclooxygenase (COX)-2, are major bioactive lipids implicated in inflammation and pain. However, COX-2 is also able to metabolize other lipids, including the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), to give glycerol ester (PG-G) and ethanolamide (PG-EA) derivatives of the PGs. Consequently, COX-2 can be considered as a hub not only controlling PG synthesis, but also PG-G and PG-EA synthesis. As they were more recently characterized, these endocannabinoid metabolites are less studied in nociception compared to PGs. Interestingly R-profens, previously considered as inactive enantiomers of nonsteroidal anti-inflammatory drugs (NSAIDs), are substrate-selective COX inhibitors. Indeed, R-flurbiprofen can selectively block PG-G and PG-EA production, without affecting PG synthesis from COX-2. Therefore, we compared the effect of R-flurbiprofen and S-flurbiprofen in models of inflammatory pain triggered by local administration of lipopolysaccharides (LPS) and carrageenan in mice. Remarkably, the effects of flurbiprofen enantiomers on mechanical hyperalgesia seem to depend on (i) the inflammatory stimuli, (ii) the route of administration, and (iii) the timing of administration. We also assessed the effect of administration of the PG-Gs, PG-EAs, and PGs on LPS-induced mechanical hyperalgesia. Our data support the interest of studying the nonhydrolytic endocannabinoid metabolism in the context of inflammatory pain.
Collapse
Affiliation(s)
- Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Youssef Ben Kouidar
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
15
|
Hermes DJ, Yadav-Samudrala BJ, Xu C, Paniccia JE, Meeker RB, Armstrong ML, Reisdorph N, Cravatt BF, Mackie K, Lichtman AH, Ignatowska-Jankowska BM, Lysle DT, Fitting S. GPR18 drives FAAH inhibition-induced neuroprotection against HIV-1 Tat-induced neurodegeneration. Exp Neurol 2021; 341:113699. [PMID: 33736974 PMCID: PMC8984429 DOI: 10.1016/j.expneurol.2021.113699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 02/03/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models. Considering that markers of neuroinflammation can predict the extent of neuronal injury in HAND patients, we evaluated the neurotoxic effect of HIV-1 Tat-exposed microglia following blockade of fatty acid amid hydrolyze (FAAH), a catabolic enzyme responsible for degradation of endocannabinoids, e.g. anandamide (AEA). In the present study, cultured murine microglia were incubated with Tat and/or a FAAH inhibitor (PF3845). After 24 h, cells were imaged for morphological analysis and microglial conditioned media (MCM) was collected. Frontal cortex neuron cultures (DIV 7–11) were then exposed to MCM, and neurotoxicity was assessed via live cell calcium imaging and staining of actin positive dendritic structures. Results demonstrate a strong attenuation of microglial responses to Tat by PF3845 pretreatment, which is indicated by 1) microglial changes in morphology to a less proinflammatory phenotype using fractal analysis, 2) a decrease in release of neurotoxic cytokines/chemokines (MCP-1/CCL2) and matrix metalloproteinases (MMPs; MMP-9) using ELISA/multiplex assays, and 3) enhanced production of endocannabinoids (AEA) using LC/MS/MS. Additionally, PF3845’s effects on Tat-induced microglial-mediated neurotoxicity, decreased dysregulation of neuronal intracellular calcium and prevented the loss of actin-positive staining and punctate structure in frontal cortex neuron cultures. Interestingly, these observed neuroprotective effects appeared to be independent of cannabinoid receptor activity (CB1R & CB2R). We found that a purported GPR18 antagonist, CID-85469571, blocked the neuroprotective effects of PF3845 in all experiments. Collectively, these experiments increase understanding of the role of FAAH inhibition and Tat in mediating microglial neurotoxicity in the HAND condition.
Collapse
Affiliation(s)
- Douglas J Hermes
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Changqing Xu
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jacqueline E Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Rick B Meeker
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Michael L Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO, United States of America
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO, United States of America
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States of America
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | - Donald T Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| |
Collapse
|
16
|
Ihn HJ, Kim YS, Lim S, Bae JS, Jung JC, Kim YH, Park JW, Wang Z, Koh JT, Bae YC, Baek MC, Park EK. PF-3845, a Fatty Acid Amide Hydrolase Inhibitor, Directly Suppresses Osteoclastogenesis through ERK and NF-κB Pathways In Vitro and Alveolar Bone Loss In Vivo. Int J Mol Sci 2021; 22:ijms22041915. [PMID: 33671948 PMCID: PMC7919013 DOI: 10.3390/ijms22041915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Alveolar bone loss, the major feature of periodontitis, results from the activation of osteoclasts, which can consequently cause teeth to become loose and fall out; the development of drugs capable of suppressing excessive osteoclast differentiation and function is beneficial for periodontal disease patients. Given the difficulties associated with drug discovery, drug repurposing is an efficient approach for identifying alternative uses of commercially available compounds. Here, we examined the effects of PF-3845, a selective fatty acid amide hydrolase (FAAH) inhibitor, on receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis, its function, and the therapeutic potential for the treatment of alveolar bone destruction in experimental periodontitis. PF-3845 significantly suppressed osteoclast differentiation and decreased the induction of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and the expression of osteoclast-specific markers. Actin ring formation and osteoclastic bone resorption were also reduced by PF-3845, and the anti-osteoclastogenic and anti-resorptive activities were mediated by the suppression of phosphorylation of rapidly accelerated fibrosarcoma (RAF), mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase, (ERK) and nuclear factor κB (NF-κB) inhibitor (IκBα). Furthermore, the administration of PF-3845 decreased the number of osteoclasts and the amount of alveolar bone destruction caused by ligature placement in experimental periodontitis in vivo. The present study provides evidence that PF-3845 is able to suppress osteoclastogenesis and prevent alveolar bone loss, and may give new insights into its role as a treatment for osteoclast-related diseases.
Collapse
Affiliation(s)
- Hye-Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Yi-Seul Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
| | - Soomin Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Chang Jung
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Yeo-Hyang Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Zhao Wang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (Z.W.); (J.-T.K.)
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (Z.W.); (J.-T.K.)
| | - Yong-Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.-C.B.); (E.-K.P.); Tel.: +82-53-420-4948 (M.-C.B.); +82-53-420-4995 (E.-K.P.)
| | - Eui-Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
- Correspondence: (M.-C.B.); (E.-K.P.); Tel.: +82-53-420-4948 (M.-C.B.); +82-53-420-4995 (E.-K.P.)
| |
Collapse
|
17
|
Yadav-Samudrala BJ, Fitting S. Mini-review: The therapeutic role of cannabinoids in neuroHIV. Neurosci Lett 2021; 750:135717. [PMID: 33587986 DOI: 10.1016/j.neulet.2021.135717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/25/2022]
Abstract
In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with an inflammatory component that specifically targets the brain and causes a high prevalence of HIV-1-associated neurocognitive disorders (HAND). The endocannabinoid (eCB) system has attracted interest as a target for treatment of neurodegenerative disorders, due to the potential anti-inflammatory and neuroprotective properties of cannabinoids, including its potential therapeutic use in HIV-1 neuropathogenesis. In this review, we summarize what is currently known about the structural and functional changes of the eCB system under conditions of HAND. This will be followed by summarizing the current clinical and preclinical findings on the effects of cannabis use and cannabinoids in the context of HIV-1 infection, with specifically focusing on viral load, cognition, inflammation, and neuroprotection. Lastly, we present some potential future directions to better understand the involvement of the eCB system and the role that cannabis use and cannabinoids play in neuroHIV.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Druggable Targets in Endocannabinoid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:177-201. [PMID: 32894511 DOI: 10.1007/978-3-030-50621-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide. Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling. This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.
Collapse
|
19
|
Hijma HJ, Moss LM, Gal P, Ziagkos D, de Kam ML, Moerland M, Groeneveld GJ. Challenging the challenge: A randomized controlled trial evaluating the inflammatory response and pain perception of healthy volunteers after single-dose LPS administration, as a potential model for inflammatory pain in early-phase drug development. Brain Behav Immun 2020; 88:515-528. [PMID: 32305572 DOI: 10.1016/j.bbi.2020.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND AND AIMS Following an infection, cytokines not only regulate the acute immune response, but also contribute to symptoms such as inflammatory hyperalgesia. We aimed to characterize the acute inflammatory response induced by a human endotoxemia model, and its effect on pain perception using evoked pain tests in two different dose levels. We also attempted to determine whether combining a human endotoxemia challenge with measurement of pain thresholds in healthy subjects could serve as a model to study drug effects on inflammatory pain. METHODS AND RESULTS This was a placebo-controlled, randomized, cross-over study in 24 healthy males. Twelve subjects were administered a bolus of 1 ng/kg LPS intravenously, and twelve 2 ng/kg LPS. Before days of placebo/LPS administration, subjects completed a full study day without study drug administration, but with identical pain threshold testing. Blood sampling and evoked pain tests (electrical burst and -stair, heat, pressure, and cold pressor test) were performed pre-dose and at frequent intervals up to 10hr post-dose. Data were analysed with a repeated-measures ANCOVA. For both dose levels, LPS induced an evident acute inflammatory response, but did not significantly affect any of the pain modalities. In a post-hoc analysis, lowering of pain thresholds was observed in the first 3 h after dosing, corresponding with the peak of the acute inflammatory response around 1-3 h post-dose. CONCLUSION Mild acute systemic inflammation, as induced by 1 ng/kg and 2 ng/kg LPS intravenous administration, did not significantly change pain thresholds in this study. The endotoxemia model in combination with evoked pain tests is not suitable to study acute inflammatory hyperalgesia in healthy males.
Collapse
Affiliation(s)
- H J Hijma
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - L M Moss
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - P Gal
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - D Ziagkos
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands.
| | - M L de Kam
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands.
| | - M Moerland
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - G J Groeneveld
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
20
|
Coutens B, Derreumaux C, Labaste F, Minville V, Guiard BP, Moulédous L, Bounes V, Roussin A, Frances B. Efficacy of multimodal analgesic treatment of severe traumatic acute pain in mice pretreated with chronic high dose of buprenorphine inducing mechanical allodynia. Eur J Pharmacol 2020; 875:172884. [PMID: 31870829 DOI: 10.1016/j.ejphar.2019.172884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
Managing severe acute nociceptive pain in buprenorphine-maintained individuals for opioid use disorder management is challenging owing to the high affinity and very slow dissociation of buprenorphine from μ-opioid receptors that hinders the use of full agonist opioid analgesics. In a translational approach, the aim of this study was to use an animal setting to investigate the effects of a chronic high dose of buprenorphine treatment on nociceptive thresholds before and after applying a severe acute nociceptive traumatic surgery stimulus and to screen postoperative pharmacological analgesic strategies. A chronic treatment of mice with a high dose of buprenorphine (BUP HD, 2 × 200 μg/kg/day; i.p.) revealed significant mechanical allodynia. One and two days after having discontinued buprenorphine administration and having induced a severe nociceptive acute pain by a closed tibial fracture, acute administration of morphine at a dose which has analgesic effects in absence of pretreatment (4.5 mg/kg; i.p.), was ineffective to reduce pain in the BUP HD group. However, mimicking multimodal analgesia strategy used in human postoperative context, the combination of morphine (administered at the same dose) with a NMDA receptor antagonist (ketamine) or an NSAID (ketoprofen) produced antinociceptive responses in these animals. The mouse model of closed tibial fracture could be useful to identify analgesic strategies of postoperative pain for patients with chronic exposure to opioids and suffering from hyperalgesia.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| | - Céline Derreumaux
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - François Labaste
- Hôpital de Rangueil, Centre Hospitalier Universitaire de Toulouse-Rangueil, 31300, Toulouse, France
| | - Vincent Minville
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - Bruno Pierre Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France.
| | - Lionel Moulédous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| | - Vincent Bounes
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - Anne Roussin
- Equipe de Pharmacoépidémiologie UMR1027, Université Paul Sabatier Toulouse III, 31000, Toulouse, France; Centre d'Addictovigilance, Service de Pharmacologie Médicale et Clinique, Centre Hospitalier Universitaire de Toulouse-Purpan, 31000, Toulouse, France
| | - Bernard Frances
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| |
Collapse
|
21
|
Cifani C, Avagliano C, Micioni Di Bonaventura E, Giusepponi ME, De Caro C, Cristiano C, La Rana G, Botticelli L, Romano A, Calignano A, Gaetani S, Micioni Di Bonaventura MV, Russo R. Modulation of Pain Sensitivity by Chronic Consumption of Highly Palatable Food Followed by Abstinence: Emerging Role of Fatty Acid Amide Hydrolase. Front Pharmacol 2020; 11:266. [PMID: 32231568 PMCID: PMC7086305 DOI: 10.3389/fphar.2020.00266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/24/2020] [Indexed: 01/03/2023] Open
Abstract
There is a strong relationship between palatable diet and pain sensitivity, and the cannabinoid and opioid systems might play an important role in this correlation. The palatable diet used in many animal models of obesity is the cafeteria (CAF) diet, based on human food with high sugar, salt, and fat content. In this study, we investigated whether long-term exposure to a CAF diet could modify pain sensitivity and explored the role of the cannabinergic system in this modification. Male Sprague–Dawley rats were divided into two groups: one fed with standard chow only (CO) and the other with extended access (EA) to a CAF diet. Hot plate and tail flick tests were used to evaluate pain sensitivity. At the end of a 40-day CAF exposure, EA rats showed a significant increase in the pain threshold compared to CO rats, finding probably due to up-regulation of CB1 and mu-opioid receptors. Instead, during abstinence from palatable foods, EA animals showed a significant increase in pain sensibility, which was ameliorated by repeated treatment with a fatty acid amide hydrolase inhibitor, PF-3845 (10 mg/kg, intraperitoneally), every other day for 28 days. Ex vivo analysis of the brains of these rats clearly showed that this effect was mediated by mu-opioid receptors, which were up-regulated following repeated treatment of PF-3845. Our data add to the knowledge about changes in pain perception in obese subjects, revealing a key role of CB1 and mu-opioid receptors and their possible pharmacological crosstalk and reinforcing the need to consider this modulation in planning effective pain management for obese patients.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carmen Avagliano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | | | | | - Carmen De Caro
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Giovanna La Rana
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | - Antonio Calignano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Roberto Russo
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
22
|
Dainese E, Oddi S, Simonetti M, Sabatucci A, Angelucci CB, Ballone A, Dufrusine B, Fezza F, De Fabritiis G, Maccarrone M. The endocannabinoid hydrolase FAAH is an allosteric enzyme. Sci Rep 2020; 10:2292. [PMID: 32041998 PMCID: PMC7010751 DOI: 10.1038/s41598-020-59120-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids. Parallel orientation of FAAH monomers likely allows both subunits to simultaneously recruit and cleave substrates. Here, we show full inhibition of human and rat FAAH by means of enzyme inhibitors used at a homodimer:inhibitor stoichiometric ratio of 1:1, implying that occupation of only one of the two active sites of FAAH is enough to fully block catalysis. Single W445Y substitution in rat FAAH displayed the same activity as the wild-type, but failed to show full inhibition at the homodimer:inhibitor 1:1 ratio. Instead, F432A mutant exhibited reduced specific activity but was fully inhibited at the homodimer:inhibitor 1:1 ratio. Kinetic analysis of AEA hydrolysis by rat FAAH and its F432A mutant demonstrated a Hill coefficient of ~1.6, that instead was ~1.0 in the W445Y mutant. Of note, also human FAAH catalysed an allosteric hydrolysis of AEA, showing a Hill coefficient of ~1.9. Taken together, this study demonstrates an unprecedented allosterism of FAAH, and represents a case of communication between two enzyme subunits seemingly controlled by a single amino acid (W445) at the dimer interface. In the light of extensive attempts and subsequent failures over the last decade to develop effective drugs for human therapy, these findings pave the way to the rationale design of new molecules that, by acting as positive or negative heterotropic effectors of FAAH, may control more efficiently its activity.
Collapse
Affiliation(s)
- Enrico Dainese
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Sergio Oddi
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Monica Simonetti
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalaura Sabatucci
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alice Ballone
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Beatrice Dufrusine
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Gianni De Fabritiis
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy.
- Department of Medicine - Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
23
|
Chen J, Liu X, Zhang S, Chen J, Sun H, Zhang L, Zhang Q. Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses. Phys Chem Chem Phys 2020; 22:2262-2275. [DOI: 10.1039/c9cp05704h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, fatty acid binding proteins 5 and 7 (FABP5 and FABP7) have been regarded as the prospective targets for clinically treating multiple diseases related to FABPs.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Xinguo Liu
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Shaolong Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Junxiao Chen
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan
- People's Republic of China
| | - Haibo Sun
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Lin Zhang
- School of Construction Machinery
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Qinggang Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| |
Collapse
|
24
|
Fitzgibbon M, Kerr DM, Henry RJ, Finn DP, Roche M. Endocannabinoid modulation of inflammatory hyperalgesia in the IFN-α mouse model of depression. Brain Behav Immun 2019; 82:372-381. [PMID: 31505257 DOI: 10.1016/j.bbi.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Depression is a well-recognised effect of long-term treatment with interferon-alpha (IFN-α), a widely used treatment for chronic viral hepatitis and malignancy. In addition to the emotional disturbances, high incidences of painful symptoms such as headache and joint pain have also been reported following IFN-α treatment. The endocannabinoid system plays an important role in emotional and nociceptive processing, however it is unknown whether repeated IFN-α administration induces alterations in this system. The present study investigated nociceptive responding in the IFN-α-induced mouse model of depression and associated changes in the endocannabinoid system. Furthermore, the effects of modulating peripheral endocannabinoid tone on inflammatory pain-related behaviour in the IFN-α model was examined. Repeated IFN-α administration (8000 IU/g/day) to male C57/Bl6 mice increased immobility in the forced swim test and reduced sucrose preference, without altering body weight gain or locomotor activity, confirming development of the depressive-like phenotype. There was no effect of repeated IFN-α administration on latency to respond in the hot plate test on day 4 or 7 of treatment, however, formalin-evoked nociceptive behaviour was significantly increased in IFN-α treated mice following 8 days of IFN-α administration. 2-Arachidonoyl glycerol (2-AG) levels in the periaqueductal grey (PAG) and rostroventromedial medulla (RVM), and anandamide (AEA) levels in the RVM, were significantly increased in IFN-α-, but not saline-, treated mice following formalin administration. There was no change in endocannabinoid levels in the prefrontal cortex, spinal cord or paw tissue between saline- or IFNα-treated mice in the presence or absence of formalin. Furthermore, repeated IFN-α and/or formalin administration did not alter mRNA expression of genes encoding the endocannabinoid catabolic enzymes (fatty acid amide hydrolase or monoacylglycerol lipase) or endocannabinoid receptor targets (CB1, CB2 or PPARs) in the brain, spinal cord or paw tissue. Intra plantar administration of PF3845 (1 μg/10 μl) or MJN110 (1 μg/10 μl), inhibitors of AEA and 2-AG catabolism respectively, attenuated formalin-evoked hyperalgesia in IFN-α, but not saline-, treated mice. In summary, increasing peripheral endocannabinoid tone attenuates inflammatory hyperalgesia induced following repeated IFN-α administration. These data provide support for the endocannabinoid system in mediating and modulating heightened pain responding associated with IFNα-induced depression.
Collapse
Affiliation(s)
- Marie Fitzgibbon
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
25
|
Greco R, Demartini C, Zanaboni AM, Tumelero E, Reggiani A, Misto A, Piomelli D, Tassorelli C. FAAH inhibition as a preventive treatment for migraine: A pre-clinical study. Neurobiol Dis 2019; 134:104624. [PMID: 31629892 DOI: 10.1016/j.nbd.2019.104624] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Fatty-acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of endogenous fatty-acid amides, including the endocannabinoid anandamide (AEA). We previously reported that the peripherally restricted FAAH inhibitor URB937, which selectively increases AEA levels outside the central nervous system, reduces hyperalgesia and c-Fos expression in the trigeminal nucleus caudalis (TNC) and the locus coeruleus in an animal model of migraine based on nitroglycerin (NTG) administration. AIM To further investigate the relevance of FAAH inhibition in the NTG animal model of migraine by testing the effects of the globally active FAAH inhibitor URB597. METHODS Our experimental approach involved mapping neuronal c-Fos protein expression, measurement of AEA levels in brain areas and in trigeminal ganglia, evaluation of pain-related behavior and quantification of molecular mediators in rats that received URB597 (2 mg/kg i.p.) either before or after NTG administration (10 mg/kg, i.p.). RESULTS Pre-treatment with URB597 significantly reduced c-Fos immunoreactivity in the TNC and inhibited NTG-induced hyperalgesia in the orofacial formalin test. This behavioral response was associated with a decrease in neuronal nitric oxide synthase, calcitonin gene-related peptide and cytokine gene expression levels in central and peripheral structures. Administration of URB597 after NTG had no such effect. CONCLUSIONS The findings suggest that global FAAH inhibition may offer a therapeutic approach to the prevention, but not the abortive treatment, of migraine attacks. Further studies are needed to elucidate the exact cellular and molecular mechanisms underlying the protective effects of FAAH inhibition.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy.
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Elena Tumelero
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy
| | - Angelo Reggiani
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandra Misto
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Italy
| |
Collapse
|
26
|
Zhou Y, Elmes MW, Sweeney JM, Joseph OM, Che J, Hsu HC, Li H, Deutsch DG, Ojima I, Kaczocha M, Rizzo RC. Identification of Fatty Acid Binding Protein 5 Inhibitors Through Similarity-Based Screening. Biochemistry 2019; 58:4304-4316. [PMID: 31539229 PMCID: PMC6812325 DOI: 10.1021/acs.biochem.9b00625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fatty acid binding protein 5 (FABP5) is a promising target for development of inhibitors to help control pain and inflammation. In this work, computer-based docking (DOCK6 program) was employed to screen ∼2 M commercially available compounds to FABP5 based on an X-ray structure complexed with the small molecule inhibitor SBFI-26 previously identified by our group (also through virtual screening). The goal was discovery of additional chemotypes. The screen resulted in the purchase of 78 candidates, which led to the identification of a new inhibitor scaffold (STK-0) with micromolar affinity and apparent selectivity for FABP5 over FABP3. A second similarity-based screen resulted in three additional hits (STK-15, STK-21, STK-22) from which preliminary SAR could be derived. Notably, STK-15 showed comparable activity to the SBFI-26 reference under the same assay conditions (1.40 vs 0.86 μM). Additional molecular dynamics simulations, free energy calculations, and structural analysis (starting from DOCK-generated poses) revealed that R enantiomers (dihydropyrrole scaffold) of STK-15 and STK-22 have a more optimal composition of functional groups to facilitate additional H-bonds with Arg109 of FABP5. This observation suggests enantiomerically pure compounds could show enhanced activity. Overall, our study highlights the utility of using similarity-based screening methods to discover new inhibitor chemotypes, and the identified FABP5 hits provide a strong starting point for future efforts geared to improve activity.
Collapse
Affiliation(s)
- Yuchen Zhou
- Department of Applied Mathematics & Statistics , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Matthew W Elmes
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States.,Department of Anesthesiology , Stony Brook University , Stony Brook , New York 11794 , United States.,Graduate Program in Molecular and Cellular Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Joseph M Sweeney
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Olivia M Joseph
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Joyce Che
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Hao-Chi Hsu
- Structural Biology Program , Van Andel Institute , Grand Rapids , Michigan 49503 , United States
| | - Huilin Li
- Structural Biology Program , Van Andel Institute , Grand Rapids , Michigan 49503 , United States
| | - Dale G Deutsch
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Iwao Ojima
- Institute of Chemical Biology & Drug Discovery , Stony Brook University , Stony Brook , New York 11794 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Martin Kaczocha
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States.,Department of Anesthesiology , Stony Brook University , Stony Brook , New York 11794 , United States.,Institute of Chemical Biology & Drug Discovery , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics , Stony Brook University , Stony Brook , New York 11794 , United States.,Institute of Chemical Biology & Drug Discovery , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| |
Collapse
|
27
|
Bedse G, Centanni SW, Winder DG, Patel S. Endocannabinoid Signaling in the Central Amygdala and Bed Nucleus of the Stria Terminalis: Implications for the Pathophysiology and Treatment of Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:2014-2027. [PMID: 31373708 PMCID: PMC6779484 DOI: 10.1111/acer.14159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022]
Abstract
High rates of relapse are a chronic and debilitating obstacle to effective treatment of alcohol use disorder (AUD); however, no effective treatments are available to treat symptoms induced by protracted abstinence. In the first part of this 2-part review series, we examine the literature supporting the effects of alcohol exposure within the extended amygdala (EA) neural circuitry. In Part 2, we focus on a potential way to combat negative affect associated with AUD, by exploring the therapeutic potential of the endogenous cannabinoid (eCB) system. The eCB system is a potent modulator of neural activity in the brain, and its ability to mitigate stress and negative affect has long been an area of interest for developing novel therapeutics. This review details the recent advances in our understanding of eCB signaling in 2 key regions of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), and their role in regulating negative affect. Despite an established role for EA eCB signaling in reducing negative affect, few studies have examined the potential for eCB-based therapies to treat AUD-associated negative affect. In this review, we present an overview of studies focusing on eCB signaling in EA and cannabinoid modulation on EA synaptic activity. We further discuss studies suggesting dysregulation of eCB signaling in models of AUD and propose that pharmacological augmentation of eCB could be a novel approach to treat aspects of AUD. Lastly, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and the EA eCB system that could yield new pharmacotherapies targeting negative affective symptoms associated with AUD.
Collapse
Affiliation(s)
- Gaurav Bedse
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| |
Collapse
|
28
|
Jacobs IR, Xu C, Hermes DJ, League AF, Xu C, Nath B, Jiang W, Niphakis MJ, Cravatt BF, Mackie K, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Inhibitory Control Deficits Associated with Upregulation of CB 1R in the HIV-1 Tat Transgenic Mouse Model of Hand. J Neuroimmune Pharmacol 2019; 14:661-678. [PMID: 31372820 PMCID: PMC6898753 DOI: 10.1007/s11481-019-09867-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
In the era of combined antiretroviral therapy, HIV-1 infected individuals are living longer lives; however, longevity is met with an increasing number of HIV-1 associated neurocognitive disorders (HAND) diagnoses. The transactivator of transcription (Tat) is known to mediate the neurotoxic effects in HAND by acting directly on neurons and also indirectly via its actions on glia. The Go/No-Go (GNG) task was used to examine HAND in the Tat transgenic mouse model. The GNG task involves subjects discriminating between two stimuli sets in order to determine whether or not to inhibit a previously trained response. Data reveal inhibitory control deficits in female Tat(+) mice (p = .048) and an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group (p < .05). A significant negative correlation was noted between inhibitory control and IL CB1R expression (r = −.543, p = .045), with CB1R expression predicting 30% of the variance of inhibitory control (R2 = .295, p = .045). Furthermore, there was a significant increase in spontaneous excitatory postsynaptic current (sEPSC) frequencies in Tat(+) compared to Tat(−) mice (p = .008, across sexes). The increase in sEPSC frequency was significantly attenuated by bath application of PF3845, a fatty acid amide hydrolase (FAAH) enzyme inhibitor (p < .001). Overall, the GNG task is a viable measure to assess inhibitory control deficits in Tat transgenic mice and results suggest a potential therapeutic treatment for the observed deficits with drugs which modulate endocannabinoid enzyme activity. Results of the Go/No-Go operant conditioning task reveal inhibitory control deficits in female transgenic Tat(+) mice without significantly affecting males. The demonstrated inhibitory control deficits appear to be associated with an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group. ![]()
Collapse
MESH Headings
- AIDS Dementia Complex/genetics
- AIDS Dementia Complex/metabolism
- AIDS Dementia Complex/psychology
- Animals
- Disease Models, Animal
- Female
- HIV-1
- Inhibition, Psychological
- Limbic Lobe/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neurocognitive Disorders/genetics
- Neurocognitive Disorders/metabolism
- Psychomotor Performance/physiology
- Receptor, Cannabinoid, CB1/biosynthesis
- Receptor, Cannabinoid, CB1/genetics
- Up-Regulation/physiology
- tat Gene Products, Human Immunodeficiency Virus/biosynthesis
- tat Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Ian R Jacobs
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Douglas J Hermes
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexis F League
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Callie Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bhupendra Nath
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Micah J Niphakis
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Somnath Mukhopadhyay
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
29
|
Wu K, Xiu Y, Zhou P, Qiu Y, Li Y. A New Use for an Old Drug: Carmofur Attenuates Lipopolysaccharide (LPS)-Induced Acute Lung Injury via Inhibition of FAAH and NAAA Activities. Front Pharmacol 2019; 10:818. [PMID: 31379583 PMCID: PMC6659393 DOI: 10.3389/fphar.2019.00818] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/24/2019] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI), characterized by a severe inflammatory process, is a complex syndrome that can lead to multisystem organ failure. Fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA) are two potential therapeutic targets for inflammation-related diseases. Herein, we identified carmofur, a 5-fluorouracil-releasing drug and clinically used as a chemotherapeutic agent, as a dual FAAH and NAAA inhibitor. In Raw264.7 macrophages, carmofur effectively reduced the mRNA expression of pro-inflammatory factors, including IL-1β, IL-6, iNOS, and TNF-α, and down-regulated signaling proteins of the nuclear transcription factor κB (NF-κB) pathway. Furthermore, carmofur significantly ameliorated the inflammatory responses and promoted resolution of pulmonary injury in lipopolysaccharide (LPS)-induced ALI mice. The pharmacological effects of carmofur were partially blocked by peroxisome proliferator-activated receptor-α (PPARα) antagonist MK886 and cannabinoid receptor 2 (CB2) antagonist SR144528, indicating that carmofur attenuated LPS-induced ALI in a PPARα- and CB2-dependent mechanism. Our study suggested that carmofur might be a novel therapeutic agent for ALI, and drug repurposing may provide us effective therapeutic strategies for ALI.
Collapse
Affiliation(s)
- Kangni Wu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yanghui Xiu
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Pan Zhou
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China.,Institute of Hematology, Medical College of Xiamem University, Xiamen, China
| | - Yan Qiu
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China.,Institute of Hematology, Medical College of Xiamem University, Xiamen, China
| | - Yuhang Li
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China.,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, China
| |
Collapse
|
30
|
Abstract
A great need exists for the identification of new effective analgesics to treat sustained pain. However, most preclinical nociceptive assays measure behavioral responses evoked by noxious stimuli (ie, pain-stimulated behavior), which presents a challenge to distinguish between motor impairing and antinociceptive effects of drugs. Here, we demonstrate that chronic constriction injury (CCI) of the sciatic nerve elicits common pain-stimulated responses (ie, mechanical allodynia and thermal hyperalgesia) as well as reduces marble burying/digging behaviors that occur during the early stages of the neuropathy and resolve within 1 week. Although drugs representing distinct classes of analgesics (ie, morphine, valdecoxib, and gabapentin) reversed both CCI-induced and CCI-depressed nociceptive measures, diazepam lacked antinociceptive effects in all assays and the kappa-opioid receptor agonist U69593 reversed pain-stimulated, but not pain-depressed behaviors. In addition, we tested drugs targeting distinct components of the endocannabinoid system, including agonists at cannabinoid receptors type 1 (CB1) and type 2 (CB2), as well as inhibitors of the endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase. Each of these drugs reversed all CCI-induced nociceptive measures, with the exception of the fatty acid amide hydrolase inhibitor that reversed pain-stimulated behaviors, only. These findings support the use of the mouse marble-burying assay as a model of pain-depressed behavior within the first week of sciatic nerve injury to examine candidate analgesics. These data also support existing preclinical research that cannabinoid receptor agonists and inhibitors of endocannabinoid-regulating enzymes merit consideration for the treatment of pain.
Collapse
|
31
|
Guerrero-Alba R, Barragán-Iglesias P, González-Hernández A, Valdez-Moráles EE, Granados-Soto V, Condés-Lara M, Rodríguez MG, Marichal-Cancino BA. Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55. Front Pharmacol 2019; 9:1496. [PMID: 30670965 PMCID: PMC6331465 DOI: 10.3389/fphar.2018.01496] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Marijuana extracts (cannabinoids) have been used for several millennia for pain treatment. Regarding the site of action, cannabinoids are highly promiscuous molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply studied and classified. Thus, therapeutic actions, side effects and pharmacological targets for cannabinoids have been explained based on the pharmacology of cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and sometimes contradictory results suggests the existence of other cannabinoid receptors. Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed as putative cannabinoid receptors. According to their expression, GPR18 and GPR55 could be involved in sensory transmission and pain integration. Methods: This article reviews select relevant information about the potential role of GPR18 and GPR55 in the pathophysiology of pain. Results: This work summarized novel data supporting that, besides cannabinoid CB1 and CB2 receptors, GPR18 and GPR55 may be useful for pain treatment. Conclusion: There is evidence to support an antinociceptive role for GPR18 and GPR55.
Collapse
Affiliation(s)
- Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Paulino Barragán-Iglesias
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Eduardo E Valdez-Moráles
- Cátedras CONACYT, Departamento de Cirugía, Centro de Ciencias Biomédicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Martín G Rodríguez
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
32
|
Vučković S, Srebro D, Vujović KS, Vučetić Č, Prostran M. Cannabinoids and Pain: New Insights From Old Molecules. Front Pharmacol 2018; 9:1259. [PMID: 30542280 PMCID: PMC6277878 DOI: 10.3389/fphar.2018.01259] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
Cannabis has been used for medicinal purposes for thousands of years. The prohibition of cannabis in the middle of the 20th century has arrested cannabis research. In recent years there is a growing debate about the use of cannabis for medical purposes. The term ‘medical cannabis’ refers to physician-recommended use of the cannabis plant and its components, called cannabinoids, to treat disease or improve symptoms. Chronic pain is the most commonly cited reason for using medical cannabis. Cannabinoids act via cannabinoid receptors, but they also affect the activities of many other receptors, ion channels and enzymes. Preclinical studies in animals using both pharmacological and genetic approaches have increased our understanding of the mechanisms of cannabinoid-induced analgesia and provided therapeutical strategies for treating pain in humans. The mechanisms of the analgesic effect of cannabinoids include inhibition of the release of neurotransmitters and neuropeptides from presynaptic nerve endings, modulation of postsynaptic neuron excitability, activation of descending inhibitory pain pathways, and reduction of neural inflammation. Recent meta-analyses of clinical trials that have examined the use of medical cannabis in chronic pain present a moderate amount of evidence that cannabis/cannabinoids exhibit analgesic activity, especially in neuropathic pain. The main limitations of these studies are short treatment duration, small numbers of patients, heterogeneous patient populations, examination of different cannabinoids, different doses, the use of different efficacy endpoints, as well as modest observable effects. Adverse effects in the short-term medical use of cannabis are generally mild to moderate, well tolerated and transient. However, there are scant data regarding the long-term safety of medical cannabis use. Larger well-designed studies of longer duration are mandatory to determine the long-term efficacy and long-term safety of cannabis/cannabinoids and to provide definitive answers to physicians and patients regarding the risk and benefits of its use in the treatment of pain. In conclusion, the evidence from current research supports the use of medical cannabis in the treatment of chronic pain in adults. Careful follow-up and monitoring of patients using cannabis/cannabinoids are mandatory.
Collapse
Affiliation(s)
- Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Čedomir Vučetić
- Clinic of Orthopaedic Surgery and Traumatology, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
33
|
Hermes DJ, Xu C, Poklis JL, Niphakis MJ, Cravatt BF, Mackie K, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Neuroprotective effects of fatty acid amide hydrolase catabolic enzyme inhibition in a HIV-1 Tat model of neuroAIDS. Neuropharmacology 2018; 141:55-65. [PMID: 30114402 DOI: 10.1016/j.neuropharm.2018.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/20/2018] [Accepted: 08/12/2018] [Indexed: 12/16/2022]
Abstract
The HIV-1 transactivator of transcription (Tat) is a neurotoxin involved in the pathogenesis of HIV-1 associated neurocognitive disorders (HAND). The neurotoxic effects of Tat are mediated directly via AMPA/NMDA receptor activity and indirectly through neuroinflammatory signaling in glia. Emerging strategies in the development of neuroprotective agents involve the modulation of the endocannabinoid system. A major endocannabinoid, anandamide (N-arachidonoylethanolamine, AEA), is metabolized by fatty acid amide hydrolase (FAAH). Here we demonstrate using a murine prefrontal cortex primary culture model that the inhibition of FAAH, using PF3845, attenuates Tat-mediated increases in intracellular calcium, neuronal death, and dendritic degeneration via cannabinoid receptors (CB1R and CB2R). Live cell imaging was used to assess Tat-mediated increases in [Ca2+]i, which was significantly reduced by PF3845. A time-lapse assay revealed that Tat potentiates cell death while PF3845 blocks this effect. Additionally PF3845 blocked the Tat-mediated increase in activated caspase-3 (apoptotic marker) positive neurons. Dendritic degeneration was characterized by analyzing stained dendritic processes using Imaris and Tat was found to significantly decrease the size of processes while PF3845 inhibited this effect. Incubation with CB1R and CB2R antagonists (SR141716A and AM630) revealed that PF3845-mediated calcium effects were dependent on CB1R, while reduced neuronal death and degeneration was CB2R-mediated. PF3845 application led to increased levels of AEA, suggesting the observed effects are likely a result of increased endocannabinoid signaling at CB1R/CB2R. Our findings suggest that modulation of the endogenous cannabinoid system through inhibition of FAAH may be beneficial in treatment of HAND.
Collapse
Affiliation(s)
- Douglas J Hermes
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Micah J Niphakis
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ken Mackie
- Department of Psychological & Brain Science, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Flannery LE, Kerr DM, Finn DP, Roche M. FAAH inhibition attenuates TLR3-mediated hyperthermia, nociceptive- and anxiety-like behaviour in female rats. Behav Brain Res 2018; 353:11-20. [PMID: 29953903 DOI: 10.1016/j.bbr.2018.06.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023]
Abstract
Aberrant activation of toll-like receptor (TLR)s results in persistent and prolonged neuroinflammation and has been implicated in the pathogenesis and exacerbation of psychiatric and neurodegenerative disorders. TLR3 coordinates the innate immune response to viral infection and recent data have demonstrated that inhibiting fatty acid amide hydrolase (FAAH), the enzyme that primarily metabolizes anandamide, modulates TLR3-mediated neuroinflammation. However, the physiological and behavioural consequences of such modulation are unknown. The present study examined the effect of URB597, a selective FAAH inhibitor, on neuroinflammation, physiological and behavioural alterations following administration of the TLR3 agonist and viral mimetic poly I:C to female rats. URB597 attenuated TLR3-mediated fever, mechanical and cold allodynia, and anxiety-like behaviour in the elevated plus maze and open field arena. There was no effect of URB597 on TLR3-mediated decreases in body weight and no effect in the sucrose preference or forced swim tests. URB597 attenuated the TLR3-mediated increase in the expression of CD11b and CD68, markers of microglia/macrophage activation. In summary, these data demonstrate that enhancing FAAH substrate levels suppresses TLR3-mediated microglia/macrophage activation and associated changes in fever, nociceptive responding and anxiety-related behaviour. These data provide further support for FAAH as a novel therapeutic target for neuroinflammatory disorders.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, School of Medicine, National University of Ireland Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, Ireland.
| |
Collapse
|
35
|
Greco R, Demartini C, Zanaboni AM, Piomelli D, Tassorelli C. Endocannabinoid System and Migraine Pain: An Update. Front Neurosci 2018; 12:172. [PMID: 29615860 PMCID: PMC5867306 DOI: 10.3389/fnins.2018.00172] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS. Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache. Clinical observations, in particular, show that the levels of anandamide (AEA)—one of the two primary endocannabinoid lipids—are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord. AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors. Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna M Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Luk J, Lu Y, Ackermann A, Peng X, Bogdan D, Puopolo M, Komatsu DE, Tong S, Ojima I, Rebecchi MJ, Kaczocha M. Contribution of diacylglycerol lipase β to pain after surgery. J Pain Res 2018; 11:473-482. [PMID: 29551907 PMCID: PMC5842774 DOI: 10.2147/jpr.s157208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) yields arachidonic acid (AA), the precursor to proalgesic eicosanoids including prostaglandin E2 (PGE2). Diacylglycerol lipase β (DAGLβ) is an enzyme that synthesizes 2-AG and its inhibition reduces eicosanoid levels and produces antinociceptive effects in models of inflammatory pain. Here we test whether inhibition of DAGLβ produces antinociceptive effects in a model of postoperative pain. Methods Rats were administered the selective DAGLβ inhibitor KT109 or vehicle and underwent plantar incision. Postsurgical pain/disability was examined using evoked (mechanical hyperalgesia), functional (incapacitance/weight bearing), and functional/spontaneous (locomotion) modalities. Results Activity-based protein profiling confirmed that KT109 inhibited DAGLβ in the lumbar spinal cord (LSC) and brain, confirming that it is a systemically active DAGLβ inhibitor. Treatment with KT109 reduced basal 2-AG, AA, and PGE2 levels in the liver but not the brain, indicating that DAGLβ activity does not significantly contribute to basal PGE2 production within the central nervous system. Plantar incision elevated the levels of 2-AG and PGE2 in the LSC. Although KT109 did not alter postsurgical 2-AG levels in the LSC, it slightly reduced PGE2 levels. In contrast, the clinically efficacious cyclooxygenase inhibitor ketoprofen completely suppressed PGE2 levels in the LSC. Similarly, KT109 had no significant effect upon postsurgical 2-AG, AA, or PGE2 levels at the incision site, while ketoprofen abolished PGE2 production at this location. KT109 and ketoprofen reversed the weight bearing imbalance induced by plantar incision, yet neither KT109 nor ketoprofen had any significant effect on mechanical hyperalgesia. Treatment with ketoprofen partially but significantly rescued the locomotor deficit induced by incision while KT109 was without effect. Conclusion DAGLβ is not the principal enzyme that controls 2-AG derived AA and PGE2 production after surgery, and inhibitors targeting this enzyme are unlikely to be efficacious analgesics superior to those already approved to treat acute postoperative pain.
Collapse
Affiliation(s)
| | - Yong Lu
- Department of Anesthesiology
| | | | | | | | | | | | | | - Iwao Ojima
- Department of Chemistry.,Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | | | - Martin Kaczocha
- Department of Anesthesiology.,Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
37
|
Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, Lichtman AH. The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain. Neuropsychopharmacology 2018; 43:52-79. [PMID: 28857069 PMCID: PMC5719110 DOI: 10.1038/npp.2017.204] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023]
Abstract
A great need exists for the development of new medications to treat pain resulting from various disease states and types of injury. Given that the endogenous cannabinoid (that is, endocannabinoid) system modulates neuronal and immune cell function, both of which play key roles in pain, therapeutics targeting this system hold promise as novel analgesics. Potential therapeutic targets include the cannabinoid receptors, type 1 and 2, as well as biosynthetic and catabolic enzymes of the endocannabinoids N-arachidonoylethanolamine and 2-arachidonoylglycerol. Notably, cannabinoid receptor agonists as well as inhibitors of endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase produce reliable antinociceptive effects, and offer opioid-sparing antinociceptive effects in myriad preclinical inflammatory and neuropathic pain models. Emerging clinical studies show that 'medicinal' cannabis or cannabinoid-based medications relieve pain in human diseases such as cancer, multiple sclerosis, and fibromyalgia. However, clinical data have yet to demonstrate the analgesic efficacy of inhibitors of endocannabinoid-regulating enzymes. Likewise, the question of whether pharmacotherapies aimed at the endocannabinoid system promote opioid-sparing effects in the treatment of pain reflects an important area of research. Here we examine the preclinical and clinical evidence of various endocannabinoid system targets as potential therapeutic strategies for inflammatory and neuropathic pain conditions.
Collapse
Affiliation(s)
- Giulia Donvito
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary A Curry
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Lesley D Schurman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
38
|
Wilkerson JL, Donvito G, Grim TW, Abdullah RA, Ogasawara D, Cravatt BF, Lichtman AH. Investigation of Diacylglycerol Lipase Alpha Inhibition in the Mouse Lipopolysaccharide Inflammatory Pain Model. J Pharmacol Exp Ther 2017; 363:394-401. [PMID: 28970359 PMCID: PMC5698945 DOI: 10.1124/jpet.117.243808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023] Open
Abstract
Diacylglycerol lipase (DAGL) α and β, the major biosynthetic enzymes of the endogenous cannabinoid (endocannabinoid) 2-arachidonylglycerol (2-AG), are highly expressed in the nervous system and immune system, respectively. Genetic deletion or pharmacological inhibition of DAGL-β protects against lipopolysaccharide (LPS)-induced inflammatory responses in mouse peritoneal macrophages and reverses LPS-induced allodynia in mice. To gain insight into the contribution of DAGL-α in LPS-induced allodynia, we tested global knockout mice as well as DO34, a dual DAGL-α/β inhibitor. Intraperitoneal administration of DO34 (30 mg/kg) significantly decreased whole-brain levels of 2-AG (∼83%), anandamide (∼42%), and arachidonic acid (∼58%). DO34 dose-dependently reversed mechanical and cold allodynia, and these antinociceptive effects did not undergo tolerance after 6 days of repeated administration. In contrast, DO34 lacked acute thermal antinociceptive, motor, and hypothermal pharmacological effects in naive mice. As previously reported, DAGL-β (-/-) mice displayed a protective phenotype from LPS-induced allodynia. However, DAGL-α (-/-) mice showed full allodynic responses, similar to their wild-type littermates. Interestingly, DO34 (30 mg/kg) fully reversed LPS-induced allodynia in DAGL-α (+/+) and (-/-) mice, but did not affect the antinociceptive phenotype of DAGL-β (-/-) mice in this model, indicating a DAGL-α-independent site of action. These findings suggest that DAGL-α and DAGL-β play distinct roles in LPS-induced nociception. Whereas DAGL-α appears to be dispensable for the development and expression of LPS-induced nociception, DAGL-β inhibition represents a promising strategy to treat inflammatory pain.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., G.D., T.W.G., R.A.A., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (D.O., B.F.C.)
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., G.D., T.W.G., R.A.A., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (D.O., B.F.C.)
| | - Travis W Grim
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., G.D., T.W.G., R.A.A., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (D.O., B.F.C.)
| | - Rehab A Abdullah
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., G.D., T.W.G., R.A.A., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (D.O., B.F.C.)
| | - Daisuke Ogasawara
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., G.D., T.W.G., R.A.A., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (D.O., B.F.C.)
| | - Benjamin F Cravatt
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., G.D., T.W.G., R.A.A., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (D.O., B.F.C.)
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., G.D., T.W.G., R.A.A., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (D.O., B.F.C.)
| |
Collapse
|
39
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
40
|
Crowe MS, Wilson CD, Leishman E, Prather PL, Bradshaw HB, Banks ML, Kinsey SG. The monoacylglycerol lipase inhibitor KML29 with gabapentin synergistically produces analgesia in mice. Br J Pharmacol 2017; 174:4523-4539. [PMID: 28963716 DOI: 10.1111/bph.14055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Gabapentin is commonly prescribed for nerve pain but may also cause dizziness, sedation and gait disturbances. Similarly, inhibition of the endogenous cannabinoid enzyme monoacylglycerol lipase (MAGL) has antinociceptive and anti-inflammatory properties but also induces sedation in mice at high doses. To limit these side effects, the present study investigated the analgesic effects of coadministering a MAGL inhibitor with gabapentin. EXPERIMENTAL APPROACH Mice subjected to the chronic constriction injury model of neuropathic pain were administered the MAGL inhibitor KML29 (1-40 mg·kg-1 , i.p.), gabapentin (1-50 mg·kg-1 , i.p.) or both compounds. Mice were tested for mechanical and cold allodynia. The function and expression of cannabinoid CB1 receptors in whole brain homogenates and lipid profile of spinal cords were assessed after repeated drug administration. KEY RESULTS The combination of low-dose KML29:gabapentin additively attenuated mechanical allodynia and synergistically reduced cold allodynia. The CB1 antagonist, rimonabant, partially reversed the anti-allodynic effects of KML29:gabapentin in mechanical allodynia but not cold allodynia. The anti-allodynic effects of KML29:gabapentin did not undergo tolerance in mechanical allodynia after repeated administration but produced mild tolerance in cold allodynia. High dose KML29 alone reduced CB1 receptor expression and function, but KML29:gabapentin reduced the density of CB1 receptors but did not alter their function. KML29:gabapentin influenced additional signalling pathways (including fatty acids) other than the pathways activated by a higher dose of either drug alone. CONCLUSION AND IMPLICATIONS These data support the strategy of combining MAGL inhibition with a commonly prescribed analgesic as a therapeutic approach for attenuating neuropathic pain.
Collapse
Affiliation(s)
- Molly S Crowe
- Department of Psychology, West Virginia University, Morgantown, WV, USA.,Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
41
|
Peng X, Studholme K, Kanjiya MP, Luk J, Bogdan D, Elmes MW, Carbonetti G, Tong S, Gary Teng YH, Rizzo RC, Li H, Deutsch DG, Ojima I, Rebecchi MJ, Puopolo M, Kaczocha M. Fatty-acid-binding protein inhibition produces analgesic effects through peripheral and central mechanisms. Mol Pain 2017; 13:1744806917697007. [PMID: 28326944 PMCID: PMC5407663 DOI: 10.1177/1744806917697007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Fatty-acid-binding proteins (FABPs) are intracellular carriers for endocannabinoids, N-acylethanolamines, and related lipids. Previous work indicates that systemically administered FABP5 inhibitors produce analgesia in models of inflammatory pain. It is currently not known whether FABP inhibitors exert their effects through peripheral or central mechanisms. Here, we examined FABP5 distribution in dorsal root ganglia and spinal cord and examined the analgesic effects of peripherally and centrally administered FABP5 inhibitors. Results Immunofluorescence revealed robust expression of FABP5 in lumbar dorsal root ganglia. FABP5 was distributed in peptidergic calcitonin gene-related peptide-expressing dorsal root ganglia and non-peptidergic isolectin B4-expressing dorsal root ganglia. In addition, the majority of dorsal root ganglia expressing FABP5 also expressed transient receptor potential vanilloid 1 (TRPV1) and peripherin, a marker of nociceptive fibers. Intraplantar administration of FABP5 inhibitors reduced thermal and mechanical hyperalgesia in the complete Freund’s adjuvant model of chronic inflammatory pain. In contrast to its robust expression in dorsal root ganglia, FABP5 was sparsely distributed in the lumbar spinal cord and intrathecal administration of FABP inhibitor did not confer analgesic effects. Administration of FABP inhibitor via the intracerebroventricular (i.c.v.) route reduced thermal hyperalgesia. Antagonists of peroxisome proliferator-activated receptor alpha blocked the analgesic effects of peripherally and i.c.v. administered FABP inhibitor while antagonism of cannabinoid receptor 1 blocked the effects of peripheral FABP inhibition and a TRPV1 antagonist blocked the effects of i.c.v. administered inhibitor. Although FABP5 and TRPV1 were co-expressed in the periaqueductal gray region of the brain, which is known to modulate pain, knockdown of FABP5 in the periaqueductal gray using adeno-associated viruses and pharmacological FABP5 inhibition did not produce analgesic effects. Conclusions This study demonstrates that FABP5 is highly expressed in nociceptive dorsal root ganglia neurons and FABP inhibitors exert peripheral and supraspinal analgesic effects. This indicates that peripherally restricted FABP inhibitors may serve as a new class of analgesic and anti-inflammatory agents.
Collapse
Affiliation(s)
- Xiaoxue Peng
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Keith Studholme
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Martha P Kanjiya
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Jennifer Luk
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Diane Bogdan
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Matthew W Elmes
- 2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Gregory Carbonetti
- 2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Simon Tong
- 3 Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Yu-Han Gary Teng
- 3 Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Robert C Rizzo
- 4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.,5 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Huilin Li
- 2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Dale G Deutsch
- 2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- 3 Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Mario J Rebecchi
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Michelino Puopolo
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Martin Kaczocha
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA.,2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
42
|
Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology 2017; 124:105-120. [PMID: 28625720 PMCID: PMC5785108 DOI: 10.1016/j.neuropharm.2017.06.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Stephen G Woodhams
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - David P Finn
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Interdisciplinary Biochemistry Graduate Program, Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
43
|
Shin M, Snyder HW, Donvito G, Schurman LD, Fox TE, Lichtman AH, Kester M, Hsu KL. Liposomal Delivery of Diacylglycerol Lipase-Beta Inhibitors to Macrophages Dramatically Enhances Selectivity and Efficacy in Vivo. Mol Pharm 2017; 15:721-728. [PMID: 28901776 DOI: 10.1021/acs.molpharmaceut.7b00657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diacylglycerol lipase-beta (DAGLβ) hydrolyzes arachidonic acid (AA)-containing diacylglycerols to produce bioactive lipids including endocannabinoids and AA-derived eicosanoids involved in regulation of inflammatory signaling. Previously, we demonstrated that DAGLβ inactivation using the triazole urea inhibitor KT109 blocked macrophage inflammatory signaling and reversed allodynic responses of mice in inflammatory and neuropathic pain models. Here, we tested whether we could exploit the phagocytic capacity of macrophages to localize delivery of DAGLβ inhibitors to these cells in vivo using liposome encapsulated KT109. We used DAGLβ-tailored activity-based probes and chemical proteomic methods to measure potency and selectivity of liposomal KT109 in macrophages and tissues from treated mice. Surprisingly, delivery of ∼5 μg of liposomal KT109 was sufficient to achieve ∼80% inactivation of DAGLβ in macrophages with no apparent activity in other tissues in vivo. Our macrophage-targeted delivery resulted in a >100-fold enhancement in antinociceptive potency compared with free compound in a mouse inflammatory pain model. Our studies describe a novel anti-inflammatory strategy that is achieved by targeted in vivo delivery of DAGLβ inhibitors to macrophages.
Collapse
Affiliation(s)
- Myungsun Shin
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Helena W Snyder
- Department of Materials Science and Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Giulia Donvito
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , Virginia 23298 United States
| | - Lesley D Schurman
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , Virginia 23298 United States
| | - Todd E Fox
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States.,University of Virginia Cancer Center , University of Virginia , Charlottesville , Virginia 22903 , United States
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , Virginia 23298 United States
| | - Mark Kester
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States.,University of Virginia Cancer Center , University of Virginia , Charlottesville , Virginia 22903 , United States
| | - Ku-Lung Hsu
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States.,Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| |
Collapse
|
44
|
Buntyn RW, Alugubelly N, Hybart RL, Mohammed AN, Nail CA, Parker GC, Ross MK, Carr RL. Inhibition of Endocannabinoid-Metabolizing Enzymes in Peripheral Tissues Following Developmental Chlorpyrifos Exposure in Rats. Int J Toxicol 2017; 36:395-402. [PMID: 28820005 DOI: 10.1177/1091581817725272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Repeated developmental exposure to the organophosphate (OP) insecticide chlorpyrifos (CPF) inhibits brain fatty acid amide hydrolase (FAAH) activity at low levels, whereas at higher levels, it inhibits brain monoacylglycerol lipase (MAGL) activity. FAAH and MAGL hydrolyze the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG), respectively. Peripherally, AEA and 2-AG have physiological roles in the regulation of lipid metabolism and immune function, and altering the normal levels of these lipid mediators can negatively affect these processes. Exposure to CPF alters brain endocannabinoid hydrolysis activity, but it is unclear whether low-level exposure alters this activity in peripheral tissues important in metabolic and immune function. Therefore, rat pups were exposed orally from day 10 to 16 to 0.5, 0.75, or 1.0 mg/kg CPF or 0.02 mg/kg PF-04457845 (a specific FAAH inhibitor). At 12 hours postexposure, FAAH, MAGL, and cholinesterase (ChE) activities were determined. All treatments inhibited FAAH activity in brain, spleen, and liver. CPF inhibited ChE activity in spleen and liver (all dosages) and in brain (highest dosage only). CPF inhibited total 2-AG hydrolysis and MAGL-specific activity in brain and spleen (high dosage only). In liver, total 2-AG hydrolysis was inhibited by all treatments and could be attributed to inhibition of non-MAGL-mediated 2-AG hydrolysis, indicating involvement of other enzymes. MAGL-specific activity in liver was inhibited only by the high CPF dosage, whereas PF-04457845 slightly increased this activity. Overall, exposure to low levels of CPF and to PF-04457845 can alter endocannabinoid metabolism in peripheral tissues, thus potentially affecting physiological processes.
Collapse
Affiliation(s)
- Robert W Buntyn
- 1 Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Navatha Alugubelly
- 1 Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Rachel L Hybart
- 1 Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Afzaal N Mohammed
- 1 Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Carole A Nail
- 1 Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Greta C Parker
- 1 Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Matthew K Ross
- 1 Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Russell L Carr
- 1 Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| |
Collapse
|
45
|
Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of Parkinson's disease. Neurochem Int 2017; 110:14-24. [PMID: 28826718 DOI: 10.1016/j.neuint.2017.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 01/07/2023]
Abstract
The modulation of the brain endocannabinoid system has been identified as an option to treat neurodegenerative diseases including Parkinson's disease (PD). Especially the elevation of endocannabinoid levels by inhibition of hydrolytic degradation represents a valuable approach. To evaluate whether monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH) inhibition could be beneficial for PD, we examined in parallel the therapeutic potential of the highly selective MAGL inhibitor KML29 elevating 2-arachidonoylglyerol (2-AG) levels and the highly selective FAAH inhibitor PF-3845 elevating anandamide (AEA) levels in a chronic methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/probenecid) mouse model of PD. Chronic administration of KML29 (10 mg/kg) but not PF-3845 (10 mg/kg) attenuated striatal MPTP/probenecid-induced dopamine depletion. Furthermore, KML29 induced an increase in Gdnf but not Bdnf expression, whereas PF-3845 decreased the MPTP/probenecid-induced Cnr2 expression without any effects on neurotrophin expression. Investigation of treatment-naïve striatal mRNA levels revealed a high presence of Gdnf and Mgll in contrast to Bdnf and Faah. Treatment of primary mouse microglia with 2-AG increased Gdnf but not Bdnf expression, suggesting that microglia might mediate the observed KML29-induced increase in Gdnf. In summary, pharmacological MAGL but not FAAH inhibition in the chronic MPTP/probenecid model attenuated the MPTP/probenecid-induced effects on striatal dopamine levels which were accompanied by an increase in 2-AG levels.
Collapse
|
46
|
Xu C, Hermes DJ, Nwanguma B, Jacobs IR, Mackie K, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska B, Fitting S. Endocannabinoids exert CB 1 receptor-mediated neuroprotective effects in models of neuronal damage induced by HIV-1 Tat protein. Mol Cell Neurosci 2017; 83:92-102. [PMID: 28733129 DOI: 10.1016/j.mcn.2017.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/25/2023] Open
Abstract
In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease that specifically targets the brain and causes HIV-1-associated neurocognitive disorders (HAND). Endocannabinoids (eCBs) elicit neuroprotective and anti-inflammatory actions in several central nervous system (CNS) disease models, but their effects in HAND remain unknown. HIV-1 does not infect neurons, but produces viral toxins, such as transactivator of transcription (Tat), that disrupt neuronal calcium equilibrium and give rise to synaptodendritic injuries and cell death, the former being highly correlated with HAND. Consequently, we tested whether the eCBs N-arachidonoylethanolamine (anandamide/AEA) and 2-arachidonoyl-glycerol (2-AG) offer neuroprotective actions in a neuronal culture model. Specifically, we examined the neuroprotective actions of these eCBs on Tat excitotoxicity in primary cultures of prefrontal cortex neurons (PFC), and whether cannabinoid receptors mediate this neuroprotection. Tat-induced excitotoxicity was reflected by increased intracellular calcium levels, synaptodendritic damage, neuronal excitability, and neuronal death. Further, upregulation of cannabinoid 1 receptor (CB1R) protein levels was noted in the presence of HIV-1 Tat. The direct application of AEA and 2-AG reduced excitotoxic levels of intracellular calcium and promoted neuronal survival following Tat exposure, which was prevented by the CB1R antagonist rimonabant, but not by the CB2R antagonist AM630. Overall, our findings indicate that eCBs protect PFC neurons from Tat excitotoxicity in vitro via a CB1R-related mechanism. Thus, the eCB system possesses promising targets for treatment of neurodegenerative disorders associated with HIV-1 infection.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Douglas J Hermes
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Blessing Nwanguma
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC, USA
| | - Ian R Jacobs
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Kenneth Mackie
- Department of Psychological & Brain Science, Indiana University, Bloomington, IN, USA
| | - Somnath Mukhopadhyay
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Pharmacological inhibition of FAAH modulates TLR-induced neuroinflammation, but not sickness behaviour: An effect partially mediated by central TRPV1. Brain Behav Immun 2017; 62:318-331. [PMID: 28237711 DOI: 10.1016/j.bbi.2017.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of toll-like receptors (TLRs), key components of the innate immune system, has been proposed to underlie and exacerbate a range of central nervous system disorders. Increasing evidence supports a role for the endocannabinoid system in modulating inflammatory responses including those mediated by TLRs, and thus this system may provide an important treatment target for neuroinflammatory disorders. However, the effect of modulating endocannabinoid tone on TLR-induced neuroinflammation in vivo and associated behavioural changes is largely unknown. The present study examined the effect of inhibiting fatty acid amide hydrolyase (FAAH), the primary enzyme responsible for the metabolism of anandamide (AEA), in vivo on TLR4-induced neuroimmune and behavioural responses, and evaluated sites and mechanisms of action. Systemic administration of the FAAH inhibitor PF3845 increased levels of AEA, and related FAAH substrates N-oleoylethanolamide (OEA) and N-palmitoylethanolamide (PEA), in the frontal cortex and hippocampus of rats, an effect associated with an attenuation in the expression of pro- and anti-inflammatory cytokines and mediators measured 2hrs following systemic administration of the TLR4 agonist, lipopolysaccharide (LPS). These effects were mimicked by central i.c.v. administration of PF3845, but not systemic administration of the peripherally-restricted FAAH inhibitor URB937. Central antagonism of TRPV1 significantly attenuated the PF3845-induced decrease in IL-6 expression, effects not observed following antagonism of CB1, CB2, PPARα, PPARγ or GPR55. LPS-induced a robust sickness-like behavioural response and increased the expression of markers of glial activity and pro-inflammatory cytokines over 24hrs. Systemic administration of PF3845 modulated the TLR4-induced expression of neuroimmune mediators and anhedonia without altering acute sickness behaviour. Overall, these findings support an important role for FAAH substrates directly within the brain in the regulation of TLR4-associated neuroinflammation and highlight a role for TRPV1 in partially mediating these effects.
Collapse
|
48
|
A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis. Sci Rep 2017; 7:41121. [PMID: 28112243 PMCID: PMC5253734 DOI: 10.1038/srep41121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022] Open
Abstract
N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. Fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH have been used for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, in part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Collectively, our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants.
Collapse
|
49
|
Volkow ND, Hampson AJ, Baler RD. Don't Worry, Be Happy: Endocannabinoids and Cannabis at the Intersection of Stress and Reward. Annu Rev Pharmacol Toxicol 2017; 57:285-308. [DOI: 10.1146/annurev-pharmtox-010716-104615] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892;
| | - Aidan J. Hampson
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892;
| | - Ruben D. Baler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
50
|
Turcotte C, Blanchet MR, Laviolette M, Flamand N. The CB 2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 2016; 73:4449-4470. [PMID: 27402121 PMCID: PMC5075023 DOI: 10.1007/s00018-016-2300-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022]
Abstract
The CB2 receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB2 receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB2 receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB2 receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB2 receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada.
| |
Collapse
|