1
|
Soto I, Macêdo RL, Carneiro L, Briski E, Kouba A, Cuthbert RN, Haubrock PJ. Divergent temporal responses of native macroinvertebrate communities to biological invasions. GLOBAL CHANGE BIOLOGY 2024; 30:e17521. [PMID: 39344526 DOI: 10.1111/gcb.17521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Biological invasions pose a major threat to biodiversity, ecosystem functioning, and human well-being. Non-native species can have severe ecological impacts that are transformative, affecting ecosystems across both short-term and long-term timescales. However, few studies have determined the temporal dynamics of impact between these scales, impeding future predictions as invasion rates continue to rise. Our study uses a meta-analytical approach to dissect the changing taxonomic and functional impacts of biological invasions on native macroinvertebrate populations and communities in freshwater ecosystems across Europe, using a recently collated European long-term time series spanning several decades. Our findings reveal a complex temporal pattern: while initial stages of invasions (i.e. five years after the first record of non-native species) often exhibited benign impacts on macroinvertebrate abundance, richness, or functional diversity, the long-term (i.e. the period following the early invasion) effects became predominantly negative. This pattern was consistent between taxonomic and functional metrics for impacts at both the population and species level, with taxonomic metrics initially positively affected by invasions and functional metrics being more stable before also declining. These results suggest that even initially benign or positively perceived impacts could be eventually superseded by negative consequences. Therefore, understanding the magnitude of invasion effects increasingly requires long-term studies spanning several years or decades to offer insights into effective conservation strategies prioritising immediate and future biodiversity protection efforts. These findings also highlight the importance of integrating multiple taxonomic, functional and temporal components to inform adaptive management approaches to mitigate the negative effects of current and future biological invasions.
Collapse
Affiliation(s)
- Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Rafael L Macêdo
- Graduate Program in Conservation and Ecotourism, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Lais Carneiro
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
| | | | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- Center for Applied Mathematics and Bioinformatics (CAMB), Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| |
Collapse
|
2
|
Soto I, Balzani P, Carneiro L, Cuthbert RN, Macêdo R, Serhan Tarkan A, Ahmed DA, Bang A, Bacela-Spychalska K, Bailey SA, Baudry T, Ballesteros-Mejia L, Bortolus A, Briski E, Britton JR, Buřič M, Camacho-Cervantes M, Cano-Barbacil C, Copilaș-Ciocianu D, Coughlan NE, Courtois P, Csabai Z, Dalu T, De Santis V, Dickey JWE, Dimarco RD, Falk-Andersson J, Fernandez RD, Florencio M, Franco ACS, García-Berthou E, Giannetto D, Glavendekic MM, Grabowski M, Heringer G, Herrera I, Huang W, Kamelamela KL, Kirichenko NI, Kouba A, Kourantidou M, Kurtul I, Laufer G, Lipták B, Liu C, López-López E, Lozano V, Mammola S, Marchini A, Meshkova V, Milardi M, Musolin DL, Nuñez MA, Oficialdegui FJ, Patoka J, Pattison Z, Pincheira-Donoso D, Piria M, Probert AF, Rasmussen JJ, Renault D, Ribeiro F, Rilov G, Robinson TB, Sanchez AE, Schwindt E, South J, Stoett P, Verreycken H, Vilizzi L, Wang YJ, Watari Y, Wehi PM, Weiperth A, Wiberg-Larsen P, Yapıcı S, Yoğurtçuoğlu B, Zenni RD, Galil BS, Dick JTA, Russell JC, Ricciardi A, Simberloff D, Bradshaw CJA, Haubrock PJ. Taming the terminological tempest in invasion science. Biol Rev Camb Philos Soc 2024; 99:1357-1390. [PMID: 38500298 DOI: 10.1111/brv.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 100, Curitiba, 81530-000, Brazil
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Rafael Macêdo
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
| | - Ali Serhan Tarkan
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
| | - Alok Bang
- Biology Group, School of Arts and Sciences, Azim Premji University, Bhopal, Madhya Pradesh, 462010, India
| | - Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Sarah A Bailey
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd, Burlington, Ontario, ON L7S 1A1, Canada
| | - Thomas Baudry
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interaction, UMR, CNRS 7267 Équipe Écologie Évolution Symbiose, 3 rue Jacques Fort, Poitiers, Cedex, 86000, France
| | - Liliana Ballesteros-Mejia
- Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, Centre national de la recherche scientifique, École Pratique des Hautes Études, Sorbonne Université, Université des Antilles, 45 Rue Buffon, Entomologie, Paris, 75005, France
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Alejandro Bortolus
- Grupo de Ecología en Ambientes Costeros. Instituto Patagónico para el Estudio de los Ecosistemas Continentales Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Nacional Patagónico, Boulevard Brown 2915, Puerto Madryn, Chubut, U9120ACD, Argentina
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
| | - J Robert Britton
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Morelia Camacho-Cervantes
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Mexico City, 04510, Mexico
| | - Carlos Cano-Barbacil
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| | - Denis Copilaș-Ciocianu
- Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Akademijos 2, Vilnius, 08412, Lithuania
| | - Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Republic of Ireland
| | - Pierre Courtois
- Centre d'Économie de l'Environnement - Montpellier, Université de Montpellier, Centre national de la recherche scientifique, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut Agro, Avenue Agropolis, Montpellier, 34090, France
| | - Zoltán Csabai
- University of Pécs, Department of Hydrobiology, Ifjúság 6, Pécs, H-7673, Hungary
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno 3, Tihany, H-8237, Hungary
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Cnr R40 and D725 Roads, Nelspruit, 1200, South Africa
| | - Vanessa De Santis
- Water Research Institute-National Research Council, Largo Tonolli 50, Verbania-Pallanza, 28922, Italy
| | - James W E Dickey
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
- Freie Universität Berlin, Institute of Biology, Königin-Luise-Straße 1-3, Berlin, 14195, Germany
| | - Romina D Dimarco
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | | | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-Consejo Nacional de Investigaciones Científicas y Técnicas, CC34, 4107, Yerba Buena, Tucumán, Argentina
| | - Margarita Florencio
- Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, Edificio de Biología, Darwin, 2, 28049, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global, 28049, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Clara S Franco
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Emili García-Berthou
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Daniela Giannetto
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Milka M Glavendekic
- Department of Landscape Architecture and Horticulture, University of Belgrade-Faculty of Forestry, Belgrade, Serbia
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Gustavo Heringer
- Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen (HfWU), Schelmenwasen 4-8, Nürtingen, 72622, Germany
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Ileana Herrera
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Km 2.5 Vía La Puntilla, Samborondón, 091650, Ecuador
- Instituto Nacional de Biodiversidad, Casilla Postal 17-07-8982, Quito, 170501, Ecuador
| | - Wei Huang
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Katie L Kamelamela
- School of Ocean Futures, Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
| | - Natalia I Kirichenko
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Centre 'Krasnoyarsk Science Centre SB RAS', Akademgorodok 50/28, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Institute of Ecology and Geography, 79 Svobodny pr, Krasnoyarsk, 660041, Russia
- Saint Petersburg State Forest Technical University, Institutski Per. 5, Saint Petersburg, 194021, Russia
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Melina Kourantidou
- Department of Business and Sustainability, University of Southern Denmark, Degnevej 14, Esbjerg, 6705, Denmark
- AMURE-Aménagement des Usages des Ressources et des Espaces marins et littoraux, UMR 6308, Université de Bretagne Occidentale, IUEM- Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Plouzané, 29280, France
- Marine Policy Center, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, Bornova, İzmir, 35100, Turkey
| | - Gabriel Laufer
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo, 11800, Uruguay
| | - Boris Lipták
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Slovak Environment Agency, Tajovského 28, Banská Bystrica, 975 90, Slovak Republic
| | - Chunlong Liu
- The Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China
| | - Eugenia López-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Ciudad de México, 11340, Mexico
| | - Vanessa Lozano
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/A, Sassari, 07100, Italy
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
| | - Stefano Mammola
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
- Molecular Ecology Group, Water Research Institute, National Research Council, Corso Tonolli 50, Pallanza, 28922, Italy
- Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, 00100, Finland
| | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, Pavia, 27100, Italy
| | - Valentyna Meshkova
- Department of Entomology, Phytopathology, and Physiology, Ukrainian Research Institute of Forestry and Forest Melioration, Pushkinska 86, Kharkiv, UA-61024, Ukraine
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1283, Suchdol, Prague, 16500, Czech Republic
| | - Marco Milardi
- Southern Indian Ocean Fisheries Agreement (SIOFA), 13 Rue de Marseille, Le Port, La Réunion, 97420, France
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization, 21 bd Richard Lenoir, Paris, 75011, France
| | - Martin A Nuñez
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | - Francisco J Oficialdegui
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague, 16500, Czech Republic
| | - Zarah Pattison
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Daniel Pincheira-Donoso
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Marina Piria
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
- University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife management and Special Zoology, Svetošimunska cesta 25, Zagreb, 10000, Croatia
| | - Anna F Probert
- Zoology Discipline, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Jes Jessen Rasmussen
- Norwegian Institute for Water Research, Njalsgade 76, Copenhagen S, 2300, Denmark
| | - David Renault
- Université de Rennes, Centre national de la recherche scientifique (CNRS), Écosystèmes, biodiversité, évolution, Rennes, 35000, France
| | - Filipe Ribeiro
- Marine and Environmental Sciences Centre / Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa, 31080, Israel
| | - Tamara B Robinson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Axel E Sanchez
- Posgrado en Hidrociencias, Colegio de Postgraduados, Carretera México-Texcoco 36.5 km, Montecillo, Texcoco, C.P. 56264, Mexico
| | - Evangelina Schwindt
- Grupo de Ecología en Ambientes Costeros, Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Brown 2915, Puerto Madryn, U9120ACD, Argentina
| | - Josie South
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter Stoett
- Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada
| | - Hugo Verreycken
- Research Institute for Nature and Forest, Havenlaan 88 Box 73, Brussels, 1000, Belgium
| | - Lorenzo Vilizzi
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Yong-Jian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, F9F4+6FV, Dangui Rd, Hongshan, Wuhan, 430070, China
| | - Yuya Watari
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Priscilla M Wehi
- Te Pūnaha Matatini National Centre of Research Excellence in Complex Systems, University of Auckland, Private Bag 29019, Aotearoa, Auckland, 1142, New Zealand
- Centre for Sustainability, University of Otago, 563 Castle Street North, Dunedin North, Aotearoa, Dunedin, 9016, New Zealand
| | - András Weiperth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Ave 1/C, Budapest, H-1117, Hungary
| | - Peter Wiberg-Larsen
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4-8, Aarhus, 8000, Denmark
| | - Sercan Yapıcı
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, 06800, Turkey
| | - Rafael D Zenni
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Bella S Galil
- Steinhardt Museum of Natural History, Tel Aviv University, Klaunserstr. 12, Tel Aviv, Israel
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - James C Russell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Anthony Ricciardi
- Redpath Museum and Bieler School of Environment, McGill University, 859 Sherbrooke Street West, Montréal, Quebec, Quebec, H3A 0C4, Canada
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Corey J A Bradshaw
- Global Ecology, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 5001, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| |
Collapse
|
3
|
Kharouba HM. Shifting the paradigm: The role of introduced plants in the resiliency of terrestrial ecosystems to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17319. [PMID: 38804095 DOI: 10.1111/gcb.17319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Current ecological communities are in a constant state of flux from climate change and from species introductions. Recent discussion has focused on the positive roles introduced species can play in ecological communities and on the importance of conserving resilient ecosystems, but not how these two ideas intersect. There has been insufficient work to define the attributes needed to support ecosystem resilience to climate change in modern communities. Here, I argue that non-invasive, introduced plant species could play an important role in supporting the resilience of terrestrial ecosystems to climate change. Using examples from multiple taxonomic groups and ecosystems, I discuss how introduced plants can contribute to ecosystem resilience via their roles in plant and insect communities, as well as their associated ecosystem functions. I highlight the current and potential contributions of introduced plants and where there are critical knowledge gaps. Determining when and how introduced plants are contributing to the resilience of ecosystems to climate change will contribute to effective conservation strategies.
Collapse
|
4
|
Eskew EA, Bird BH, Ghersi BM, Bangura J, Basinski AJ, Amara E, Bah MA, Kanu MC, Kanu OT, Lavalie EG, Lungay V, Robert W, Vandi MA, Fichet-Calvet E, Nuismer SL. Reservoir displacement by an invasive rodent reduces Lassa virus zoonotic spillover risk. Nat Commun 2024; 15:3589. [PMID: 38678025 PMCID: PMC11055883 DOI: 10.1038/s41467-024-47991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.
Collapse
Affiliation(s)
- Evan A Eskew
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA.
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Bruno M Ghersi
- One Health Institute, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | | | - Andrew J Basinski
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Mohamed A Bah
- Ministry of Agriculture and Forestry, Freetown, Sierra Leone
| | | | | | | | | | | | | | | | - Scott L Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
5
|
Tasker SJL, Foggo A, Scheers K, van der Loop J, Giordano S, Bilton DT. Nuanced impacts of the invasive aquatic plant Crassula helmsii on Northwest European freshwater macroinvertebrate assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169667. [PMID: 38163603 DOI: 10.1016/j.scitotenv.2023.169667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Invasive alien species are considered one of the greatest threats to global biodiversity, and are particularly problematic in aquatic systems. Given the foundational role of macrophytes in most freshwaters, alien aquatic plant invasions may drive strong bottom-up impacts on recipient biota. Crassula helmsii (New Zealand pygmyweed) is an Australasian macrophyte, now widespread in northwest Europe. Crassula helmsii rapidly invades small lentic waterbodies, where it is generally considered a serious threat to native biodiversity. The precise ecological impacts of this invasion remain poorly understood, however, particularly with respect to macroinvertebrates, which comprise the bulk of freshwater faunal biodiversity. We conducted a field study of ponds, ditches and small lakes across the core of C. helmsii's invasive range (United Kingdom, Belgium and the Netherlands), finding that invaded sites had higher macroinvertebrate taxon richness than uninvaded sites, and that many infrequent and rare macroinvertebrates co-occurred with C. helmsii. Alien macroinvertebrates were more abundant in C. helmsii sites, however, particularly the North American amphipod Crangonyx pseudogracilis. At the order level, water beetle (Coleoptera) richness and abundance were higher in C. helmsii sites, whereas true fly (Diptera) abundance was higher in uninvaded sites. Taxonomic and functional assemblage composition were both impacted by invasion, largely in relation to taxa and traits associated with detritivory, suggesting that the impacts of C. helmsii on macroinvertebrates are partly mediated by the availability and palatability of its detritus. The nuanced effects of C. helmsii on macroinvertebrates found here should encourage further quantitative research on the impacts of this invasive plant, and perhaps prompt a more balanced re-evaluation of its effects on native aquatic macrofauna.
Collapse
Affiliation(s)
- Samuel J L Tasker
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL3 4LL, Devon, United Kingdom.
| | - Andrew Foggo
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL3 4LL, Devon, United Kingdom.
| | - Kevin Scheers
- Freshwater Habitats Team, Institute for Nature and Forest Research (INBO), Havenlaan 88, Box 73, 1000 Brussels, Belgium.
| | - Janneke van der Loop
- Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, the Netherlands; Stichting Bargerveen, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands; Netherlands Centre of Expertise on Exotic Species (NEC-E), Toernooiveld 1, 6525 ED Nijmegen, the Netherlands.
| | - Salvatore Giordano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL3 4LL, Devon, United Kingdom
| | - David T Bilton
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL3 4LL, Devon, United Kingdom; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa.
| |
Collapse
|
6
|
Tensen L, Fischer K. Evaluating hybrid speciation and swamping in wild carnivores with a decision-tree approach. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14197. [PMID: 37811741 DOI: 10.1111/cobi.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 10/10/2023]
Abstract
Hybridization is an important evolutionary force with a principal role in the origin of new species, known as hybrid speciation. However, ongoing hybridization can create hybrid swamping, in which parental genomes are completely lost. This can become a biodiversity threat if it involves species that have adapted to certain environmental conditions and occur nowhere else. Because conservation scientists commonly have a negative attitude toward hybrids, it is important to improve understanding of the influence of interspecific gene flow on the persistence of species. We reviewed the literature on species hybridization to build a list of all known cases in the order Carnivora. To examine the relative impact, we also noted level of introgression, whether fertile offspring were produced, and whether there was mention of negative or positive evolutionary effects (hybrid speciation and swamping). To evaluate the conservation implications of hybrids, we developed a decision-making tree with which to determine which actions should be taken to manage hybrid species. We found 53 hybrids involving 68 unique taxa, which is roughly 23% of all carnivore species. They mainly involved monophyletic (83%) and sympatric species (75%). For 2 species, the outcome of the assessment was to eliminate or restrict the hybrids: Ethiopian wolf (Canis simensis) and Scottish wildcat (Felis silvestris silvestris). Both species hybridize with their domestic conspecifics. For all other cases, we suggest hybrids be protected in the same manner as native species. We found no evidence of genomic extinction in Carnivora. To the contrary, some species appear to be of hybrid origin, such as the Asiatic black bear (Ursus thibetanus) and African golden wolf (Canis lupaster). Other positive outcomes of hybridization are novel genetic diversity, adaptation to extreme environments, and increased reproductive fitness. These outcomes are particularly valuable for counterbalancing genetic drift and enabling adaptive introgression in a human-dominated world.
Collapse
Affiliation(s)
- Laura Tensen
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Klaus Fischer
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
| |
Collapse
|
7
|
Paganelli D, Bellati A, Gazzola A, Bracco F, Pellitteri-Rosa D. Impacts, Potential Benefits and Eradication Feasibility of Aquatic Alien Species in an Integral Natural State Reserve. BIOLOGY 2024; 13:64. [PMID: 38275740 PMCID: PMC10813597 DOI: 10.3390/biology13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Riverine wetlands are stepping-stone environments for the protection of local biodiversity, but they are particularly vulnerable to biological invasions. In order to take action against biological invasions, it is crucial to assess the impacts of alien species. However, it is also important to assess the potential benefits on ecosystem services that alien species could have. Once it has been verified that negative impacts are higher than potential benefits, it is important to propose feasible actions to contrast them. In this study, we assessed eight freshwater alien species recorded in an integral protected wetland using the Invasive Species Effects Assessment Tool (INSEAT) to quantify their negative impacts and potential benefits on ecosystem services. Moreover, for each species, we evaluated the feasibility of the main eradication techniques currently proposed in the literature using the Non-Native Risk Management scheme (NNRM), with the final aim of suggesting effective actions for their management. The INSEAT results indicated that all the assessed species had more impacts than benefits while NNRM provided useful indications on the best practical conservation actions to use for reducing the density, and therefore, the negative impacts on ecosystem services and the local biodiversity of the assessed alien species.
Collapse
Affiliation(s)
- Daniele Paganelli
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (D.P.); (A.G.); (F.B.)
| | - Adriana Bellati
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Andrea Gazzola
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (D.P.); (A.G.); (F.B.)
| | - Francesco Bracco
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (D.P.); (A.G.); (F.B.)
| | - Daniele Pellitteri-Rosa
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (D.P.); (A.G.); (F.B.)
| |
Collapse
|
8
|
Orlóci L, Fekete A. Ornamental Plants and Urban Gardening. PLANTS (BASEL, SWITZERLAND) 2023; 12:4096. [PMID: 38140422 PMCID: PMC10747257 DOI: 10.3390/plants12244096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Urban green areas serve both the mental and physical health of the people living in the settlements; therefore, the ornamental plants used on green areas currently have a prominent role in reducing the effects of climate change and urbanization, as well as in providing ecosystem services. This is a dynamically changing, new field that requires close cooperation with several scientific fields, such as landscape architecture and plant physiology, genetics, plant breeding, and ecology. The monitoring and research of settlement communities as ecological systems greatly serves the perception of the effects of climate change and helps to mitigate them. The sustainability and economic operation of established urban green space systems can be made effective by applying innovative technologies. The Special Issue "Ornamental Plants and Urban Gardening" was launched in 2022 and published 13 articles on the topic until 31 July 2023. The published articles also have a very wide spectrum of topics, which also shows the diversity and the interdisciplinary nature of the scientific field. In the following, we present the main topics of the published articles and the results with which their authors contributed to the enrichment of the scientific field. We present a brief summary of the articles in shorter subsections.
Collapse
Affiliation(s)
- László Orlóci
- Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Albert Fekete
- Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| |
Collapse
|
9
|
Kaplan H, Prahalad V, Kendal D. From Conservation to Connection: Exploring the Role of Nativeness in Shaping People's Relationships with Urban Trees. ENVIRONMENTAL MANAGEMENT 2023; 72:1006-1018. [PMID: 37452854 PMCID: PMC10509121 DOI: 10.1007/s00267-023-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Deciding whether to plant native or non-native trees in public urban green spaces is becoming complex and conflicted, and decisions purely based on biotic nativeness are likely to be hamstrung as climate change and rising urban heat push many native species beyond their natural ranges. Importantly, tree selection considerations by urban planners and environmental managers will have to move beyond a primary focus on securing conservation and ecological outcomes, to elucidate and engage with a growing interest in the socio-cultural values and services of urban trees. Building on emerging theoretical perspectives, this place-based study explores the role that perceptions of nativeness have in shaping people's relationships with native and non-native urban trees and landscapes in an Australian city. Nativeness was associated with a range of subjective meanings including cultural identity, political expression, nature connection, desirable and undesirable traits, and environmental and cultural compatibility. Our findings emphasise that the ways in which urban trees and green spaces are valued and experienced is likely mediated by people's perceptions of nativeness and its importance relative to other attributes. To provision and sustain green spaces that meet the diverse needs and preferences of urban publics, planners and managers need to elucidate and incorporate the nuanced, place-based and multifaceted subjective meanings of nativeness into urban greening decision-making and practice.
Collapse
Affiliation(s)
- Haylee Kaplan
- Healthy Landscapes Research Group, School of Geography, Planning, and Spatial Science, University of Tasmania, Hobart, TAS, Australia.
| | - Vishnu Prahalad
- Healthy Landscapes Research Group, School of Geography, Planning, and Spatial Science, University of Tasmania, Hobart, TAS, Australia
| | - Dave Kendal
- Healthy Landscapes Research Group, School of Geography, Planning, and Spatial Science, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
10
|
Faiad SM, Williams MA, Goodman M, Sokolow S, Olden JD, Mitchell K, Andriantsoa R, Gordon Jones JP, Andriamaro L, Ravoniarimbinina P, Rasamy J, Ravelomanana T, Ravelotafita S, Ravo R, Rabinowitz P, De Leo GA, Wood CL. Temperature affects predation of schistosome-competent snails by a novel invader, the marbled crayfish Procambarus virginalis. PLoS One 2023; 18:e0290615. [PMID: 37703262 PMCID: PMC10499222 DOI: 10.1371/journal.pone.0290615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/12/2023] [Indexed: 09/15/2023] Open
Abstract
The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis-a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish may serve as a predator of schistosome-competent snails in areas where native predators cannot and yet no systematic study to date has been conducted to estimate its predation rate on snails. Here, we experimentally assessed marbled crayfish consumption of uninfected and infected schistosome-competent snails (Biomphalaria glabrata and Bulinus truncatus) across a range of temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found that the relationship between crayfish consumption and temperature is unimodal with a peak at ~27.5°C. Per-capita consumption increased with body size and was not affected either by snail species or their infectious status. We detected a possible satiation effect, i.e., a small but significant reduction in per-capita consumption rate over the 72-hour duration of the predation experiment. Our results suggest that ecological parameters, such as temperature and crayfish weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish invasion on snail host populations.
Collapse
Affiliation(s)
- Sara M. Faiad
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Maureen A. Williams
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
- Department of Biology, McDaniel College, Westminster, MD, United States of America
| | - Maurice Goodman
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
| | - Susanne Sokolow
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Kaitlyn Mitchell
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
| | - Ranja Andriantsoa
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
| | | | - Luciano Andriamaro
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
| | | | - Jeanne Rasamy
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Tsilavina Ravelomanana
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Salohy Ravelotafita
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Ranaivosolo Ravo
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Peter Rabinowitz
- Department of Environmental/Occupational Health Sciences, Global Health, University of Washington, Seattle, WA, United States of America
- Center for One Health Research (COHR), University of Washington, Seattle, WA, United States of America
| | - Giulio A. De Leo
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, CA, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
11
|
Philpott SM, Lucatero A, Andrade S, Hernandez C, Bichier P. Promoting Beneficial Arthropods in Urban Agroecosystems: Focus on Flowers, Maybe Not Native Plants. INSECTS 2023; 14:576. [PMID: 37504583 PMCID: PMC10380228 DOI: 10.3390/insects14070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
(1) Urbanization threatens biodiversity, yet urban native plants support native biodiversity, contributing to conservation and ecosystem services. Within urban agroecosystems, where non-native plants are abundant, native plants may boost the abundance and richness of beneficial arthropods. Nevertheless, current information focuses on pollinators, with little attention being paid to other beneficials, like natural enemies. (2) We examined how the species richness of native plants, garden management, and landscape composition influence the abundance and species richness of all, native, and non-native bees, ladybeetles, ants, and ground-foraging spiders in urban agroecosystems (i.e., urban community gardens) in California. (3) We found that native plants (~10% of species, but only ~2.5% of plant cover) had little influence on arthropods, with negative effects only on non-native spider richness, likely due to the low plant cover provided by native plants. Garden size boosted native and non-native bee abundance and richness and non-native spider richness; floral abundance boosted non-native spider abundance and native and non-native spider richness; and mulch cover and tree and shrub abundance boosted non-native spider richness. Natural habitat cover promoted non-native bee and native ant abundance, but fewer native ladybeetle species were observed. (4) While native plant richness may not strongly influence the abundance and richness of beneficial arthropods, other garden management features could be manipulated to promote the conservation of native organisms or ecosystem services provided by native and non-native organisms within urban agroecosystems.
Collapse
Affiliation(s)
- Stacy M Philpott
- Environmental Studies Department, University of California, Santa Cruz, CA 95064, USA
| | - Azucena Lucatero
- Environmental Studies Department, University of California, Santa Cruz, CA 95064, USA
| | - Sofie Andrade
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, CA 95064, USA
| | - Cameron Hernandez
- Environmental Studies Department, University of California, Santa Cruz, CA 95064, USA
| | - Peter Bichier
- Environmental Studies Department, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Szabó K, Gergely A, Tóth B, Szilágyi K. Assessing the Spontaneous Spread of Climate-Adapted Woody Plants in an Extensively Maintained Collection Garden. PLANTS (BASEL, SWITZERLAND) 2023; 12:1989. [PMID: 37653906 PMCID: PMC10224429 DOI: 10.3390/plants12101989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
Climate change may strongly modify the habitat conditions for many woody plant species. Some species could disappear from their natural habitats and become endangered, while others could adapt well to the changed environmental conditions and continue to survive successfully or even proliferate more easily. A similar process can occur within the artificial urban environment as the hitherto popularly planted urban trees may suffer from the extremities of the urban climate. However, among the planted taxa, there are species that spread spontaneously and appear as weeds in extensively managed gardens. In our study, we evaluated the native and non-native species involved in spontaneous spreading in the institutional garden of Buda Arboretum (Budapest) during the COVID-19 period in 2020-2021 when entry was prohibited, and maintenance went on in a restricted, minimal level. We investigated the correlation between spontaneously settling and planted individuals, and then performed multivariate analyses for native and non-native spreading plants for spatial and quantitative data. During our studies, we observed the spontaneous spreading of 114 woody species, of which 38 are native and 76 are non-native. Taking the total number of individuals into account, we found that, in addition to the 2653 woody species planted, a further 7087 spontaneously emerged weeds developed, which creates an additional task in the maintenance.
Collapse
Affiliation(s)
- Krisztina Szabó
- Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Science (MATE), 1118 Budapest, Hungary
| | - Attila Gergely
- Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Science (MATE), 1118 Budapest, Hungary
| | - Barnabás Tóth
- Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Science (MATE), 1118 Budapest, Hungary
| | - Kinga Szilágyi
- Doctoral School of Landscape Architecture and Landscape Ecology, Hungarian University of Agriculture and Life Science (MATE), 1118 Budapest, Hungary
| |
Collapse
|
13
|
Le Hen G, Balzani P, Haase P, Kouba A, Liu C, Nagelkerke LAJ, Theissen N, Renault D, Soto I, Haubrock PJ. Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161486. [PMID: 36626991 DOI: 10.1016/j.scitotenv.2023.161486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Alien fish substantially impact aquatic communities. However, their effects on trait composition remain poorly understood, especially at large spatiotemporal scales. Here, we used long-term biomonitoring data (1984-2018) from 31 fish communities of the Rhine river in Germany to investigate compositional and functional changes over time. Average total community richness increased by 49 %: it was stable until 2004, then declined until 2010, before increasing until 2018. Average abundance decreased by 9 %. Starting from 198 individuals/m2 in 1984 abundance largely declined to 23 individuals/m2 in 2010 (-88 %), and then consequently increased by 678 % up to 180 individuals/m2 until 2018. Increases in abundance and richness starting around 2010 were mainly driven by the establishment of alien species: while alien species represented 5 % of all species and 0.1 % of total individuals in 1993, it increased to 30 % (7 species) and 32 % of individuals in 2018. Concomitant to the increase in alien species, average native species richness and abundance declined by 26 % and 50 % respectively. We identified increases in temperature, precipitation, abundance and richness of alien fish driving compositional changes after 2010. To get more insights on the impacts of alien species on fish communities, we used 12 biological and 13 ecological traits to compute four trait metrics each. Ecological trait dispersion increased before 2010, probably due to diminishing ecologically similar native species. No changes in trait metrics were measured after 2010, albeit relative shares of expressed trait modalities significantly changing. The observed shift in trait modalities suggested the introduction of new species carrying similar and novel trait modalities. Our results revealed significant changes in taxonomic and trait compositions following alien fish introductions and climatic change. To conclude, our analyses show taxonomic and functional changes in the Rhine river over 35 years, likely indicative of future changes in ecosystem services.
Collapse
Affiliation(s)
- Gwendaline Le Hen
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, 35000 Rennes, France; Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany.
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Chunlong Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, Hubei Province 430072, China
| | - Leopold A J Nagelkerke
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Nikola Theissen
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection, Hauptsitz, Leibnizstraße 10, 45659 Recklinghausen, Germany
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, 35000 Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris cedex 05, France
| | - Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| |
Collapse
|
14
|
Wu S, Chen L, Zhou Y, Xiao F, Liu D, Wang Y. Invasive Plants Have Higher Resistance to Native Generalist Herbivores Than Exotic Noninvasive Congeners. ENVIRONMENTAL ENTOMOLOGY 2023; 52:81-87. [PMID: 36545824 DOI: 10.1093/ee/nvac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 06/17/2023]
Abstract
Research on the invasive plant Phytolacca americana (L.) mostly focuses on its medicinal value and enrichment of heavy metals. However, little is known regarding its impact on native herbivorous insects. In this study, we explored the effects of P. americana and the exotic noninvasive Phytolacca icosandra (L.) on the Spodoptera litura (Fabricius) (native tobacco cutworm) via bioassay, oviposition preference, detoxifying enzyme activity analysis, and phytochemical determination. We found that the oviposition preference index (OPI) of S. litura feeding on P. icosandra was higher than that of P. americana. The developmental duration of S. litura feeding on P. icosandra was shorter than that of P. americana. Additionally, the Acetylcholinesterase (AchE) and Glutathione-S-transferase (GST) activities of S. litura feeding on P. americana were higher than that of S. litura feeding on artificial diets or P. icosandra. The content of lignin and flavonoids in P. americana was relatively high, whereas starch content was relatively low. These findings suggest invasive plants have higher resistance to herbivores, thereby suffering less damage than exotic noninvasive plants.
Collapse
Affiliation(s)
- Shan Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Li Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Yue Zhou
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Feng Xiao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Danfeng Liu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| |
Collapse
|
15
|
Rivest SA, Wolkovich EM, Kharouba HM. Flowering phenology influences butterfly nectar foraging on non-native plants in an oak savanna. Ecology 2023; 104:e4004. [PMID: 36799691 DOI: 10.1002/ecy.4004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
The negative impacts of non-native species have been well documented, but some non-natives can play a positive role in native ecosystems. One way that non-native plants can positively interact with native butterflies is by provisioning nectar. Relatively little is known about the role of phenology in determining native butterfly visitation to non-native plants for nectar, yet flowering time directly controls nectar availability. Here we investigate the phenological patterns of flowering by native and non-native plants and nectar foraging by native butterflies in an oak savanna on Vancouver Island, British Columbia, Canada. We also test whether native butterflies select nectar sources in proportion to their availability. We found that non-native plants were well integrated into butterfly nectar diets (83% of foraging observations) and that visitation to non-natives increased later in the season when native plants were no longer flowering. We also found that butterflies selected non-native flowers more often than expected based on their availability, suggesting that these plants represent a potentially valuable resource. Our study shows that non-native species have the potential to drive key species interactions in seasonal ecosystems. Management regimes focused on eradicating non-native species may need to reconsider their aims and evaluate resources that non-natives provide.
Collapse
Affiliation(s)
| | - E M Wolkovich
- Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
16
|
Vitule JRS, Pelicice FM. Care needed when evaluating the contributions of non-native species. Trends Ecol Evol 2023; 38:499-500. [PMID: 36740537 DOI: 10.1016/j.tree.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Affiliation(s)
- Jean R S Vitule
- Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Setor de Tecnologia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Fernando M Pelicice
- Núcleo de Estudos Ambientais, Programa de Pós-Graduação em Biodiversidade, Ecologia e Conservação (PPGBec), Universidade Federal de Tocantins, Brazil
| |
Collapse
|
17
|
Guiaşu RC, Tindale CW. Logical fallacies persist in invasion biology and blaming the messengers will not improve accountability in this field: a response to Frank et al. BIOLOGY & PHILOSOPHY 2023; 38:3. [PMID: 36683876 PMCID: PMC9845828 DOI: 10.1007/s10539-023-09892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
We analyze the "Logical fallacies and reasonable debates in invasion biology: a response to Guiaşu and Tindale" article by Frank et al., and also discuss this work in the context of recent intense debates in invasion biology, and reactions by leading invasion biologists to critics of aspects of their field. While we acknowledge the attempt by Frank et al., at least in the second half of their paper, to take into account more diverse points of view about non-native species and their complex roles in ecosystems, we also find the accusations of misrepresenting invasion biology, for instance by "cherry-picking" and "constructing 'straw people'", directed at the Guiaşu and Tindale study to be unwarranted. Despite the sometimes harsh responses by leading invasion biologists to critics of their field, we believe that persistent and fundamental problems remain in invasion biology, and we discuss some of these problems in this article. Failing to recognize these problems, and simply dismissing or minimizing legitimate criticisms, will not advance the cause, or enhance the general appeal, of invasion biology and will prevent meaningful progress in understanding the multiple contributions non-native species can bring to various ecosystems worldwide. We recommend taking a more open-minded and pragmatic approach towards non-native species and the novel ecosystems they are an integral part of.
Collapse
Affiliation(s)
- Radu Cornel Guiaşu
- Biology Program, Glendon College, York University, 2275 Bayview Avenue, Toronto, ON M4N 3M6 Canada
| | - Christopher W. Tindale
- Department of Philosophy, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4 Canada
| |
Collapse
|
18
|
Dastres E, Bijani F, Naderi R, Zamani A, Edalat M. Evaluating the habitat suitability modeling of Aceria alhagi and Alhagi maurorum in their native range using machine learning techniques.. [DOI: 10.21203/rs.3.rs-2441475/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Spatial locational modeling techniques are increasingly used in species distribution modeling. However, the implemented techniques differ in their modeling performance. In this study, we tested the predictive accuracy of three algorithms, namely "random forest (RF)," "support vector machine (SVM)," and "boosted regression trees (BRT)" to prepare habitat suitability mapping of an invasive species, Alhagi maurorum, and its potential biological control agent, Aceria alhagi. Location of this study was in Fars Province, southwest of Iran. The spatial distributions of the species were forecasted using GPS devices and GIS software. The probability values of occurrence were then checked using three algorithms. The predictive accuracy of the machine learning (ML) techniques was assessed by computing the “area under the curve (AUC)” of the “receiver-operating characteristic” plot. When the Aceria alhagi was modeled, the AUC values of RF, BRT and SVM were 0.89, 0.81, and 0.79, respectively. However, in habitat suitability models (HSMs) of Alhagi maurorum the AUC values of RF, BRT and SVM were 0.89, 0.80, and 0.73, respectively. The RF model provided significantly more accurate predictions than other algorithms. The importance of factors on the growth and development of Alhagi maurorum and Aceria alhagi was also determined using the partial least squares (PLS) algorithm, and the most crucial factors were the road and slope. Habitat suitability modeling based on algorithms may significantly increase the accuracy of species distribution forecasts, and thus it shows considerable promise for different conservation biological and biogeographical applications.
Collapse
|
19
|
Galappaththi HSSD, de Silva WAPP, Clavijo Mccormick A. A mini-review on the impact of common gorse in its introduced ranges. Trop Ecol 2023; 64:1-25. [PMID: 35531346 PMCID: PMC9059460 DOI: 10.1007/s42965-022-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/25/2021] [Accepted: 03/20/2022] [Indexed: 12/05/2022]
Abstract
It is indisputable that invasive plant species strongly impact the ecosystems they invade. Many of such impacts can be negative and threaten the local species through competition, environmental change, or habitat loss. However, introduced plants may also have positive roles in the ecosystems they invade. This review extracted information from reports on common gorse (Ulex europaeus), one of the top 100 invasive plants on the earth, including its detrimental effects and potential beneficial roles in invaded ecosystems. The reduction of native fauna and flora are the main harmful effects of common gorse identified by the literature review. Soil impoverishment and fire hazards are other negative impacts reported for common gorse that could affect agricultural systems and local economies. Despite the negative impacts, reports of positive ecological services provided by common gorse also exist, e.g., as a nursery plant or habitat for endangered native animals. We also reviewed the known human uses of this plant that could support management strategies through harvest and benefit the local communities, including its use as biofuel, raw matter for xylan extraction, medicine, and food. Finally, our review identified the gaps in the literature regarding the understanding of the beneficial role of common gorse on native ecosystems and potential human uses, especially in the tropics.
Collapse
Affiliation(s)
| | | | - Andrea Clavijo Mccormick
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
20
|
Invading bivalves replaced native Mediterranean bivalves, with little effect on the local benthic community. Biol Invasions 2022; 25:1441-1459. [PMID: 36570095 PMCID: PMC9764321 DOI: 10.1007/s10530-022-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The construction of the Suez Canal connected the Red Sea and the Mediterranean Sea, which allowed rapid marine bio-invasion. Over the last century, several bivalve species have invaded the Levantine basin, yet their distribution and impact on the benthic community have not been thoroughly studied. Large-scale benthic surveys along the rocky substrate of the Israeli Mediterranean coastline indicate that invading bivalves, such as Spondylus spinosus, Brachidontes pharaonis, and Pinctada radiata, now dominate the rocky environment, with densities of tens to hundreds of individuals per m2. No native bivalve specimens were found in any of the transects surveyed. The small-scale ecological effects of the established invading populations on the benthic community were examined over a year using an in-situ exclusion experiment where all invading bivalves were either physically removed or poisoned and kept in place to maintain the physical effect of the shells. Surprisingly, the experimental exclusion showed a little measurable effect of bivalve presence on the invertebrate community in close vicinity (~ 1 m). Bivalve presence had a small, but statistically significant, effect only on the community composition of macroalgae, increasing the abundance of some filamentous macroalgae and reducing the cover of turf. The generally low impact of bivalves removal could be due to (1) wave activity and local currents dispersing the bivalve excreta, (2) high grazing pressure, possibly by invading herbivorous fish, reducing the bottom-up effect of increased nutrient input by the bivalves, or (3) the natural complexity of the rocky habitat masking the contribution of the increased complexity associated with the bivalve's shell. We found that established invading bivalves have replaced native bivalve species, yet their exclusion has a negligible small-scale effect on the local benthic community. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-022-02986-1.
Collapse
|
21
|
Fenouillas P, Ah-Peng C, Amy E, Bracco I, Calichiama L, Cazal E, Gosset M, Ingrassia F, Lavergne C, Lequette B, Notter JC, Pausé JM, Payet G, Payet N, Picot F, Prolhac E, Strasberg D, Thomas H, Triolo J, Turquet V, Rouget M. A research-action process to implement priority areas for alien plant clearing on Reunion Island. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Sax DF, Schlaepfer MA, Olden JD. Valuing the contributions of non-native species to people and nature. Trends Ecol Evol 2022; 37:1058-1066. [PMID: 36210286 DOI: 10.1016/j.tree.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
While decision-making can benefit from considering positive and negative outcomes of change, over the past half-century, research on non-native species has focused predominately on their negative impacts. Here we provide a framework for considering the positive consequences of non-native species relative to relational, instrumental, and intrinsic values. We demonstrate that their beneficial outcomes are common and profoundly important for human well-being. Identified benefits include social cohesion, cultural identity, mental health, food and fuel production, regulation of clean waters, and attenuation of climate change. We argue that long-standing biases against non-native species within the literature have clouded the scientific process and hampered policy advances and sound public understanding. Future research should consider both costs and benefits of non-native species.
Collapse
Affiliation(s)
- Dov F Sax
- Institute at Brown for Environment and Society & Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA.
| | - Martin A Schlaepfer
- Institute of Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Flower-Visiting Insect Assemblages on Fall-Blooming Native California Sage Scrub Shrubs. DIVERSITY 2022. [DOI: 10.3390/d14110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pollinator studies in the endangered California sage scrub ecosystem have focused on spring insect assemblages, when most plant species bloom. Consequently, the insect assemblages using common fall-blooming sage scrub shrubs Lepidospartum squamatum, Ericameria pinifolia, and Baccharis pilularis remain undescribed. Our study aimed to: (1) document flower-visiting insect assemblages on fall-blooming shrubs, (2) assess the efficacy of three sampling techniques in inventorying insect assemblages, and (3) explore, using DNA metabarcoding, which plants are utilized and the extent to which surrounding suburban habitats’ plants are also used. While elevated sampling is required to inventory flower-visiting insects, we describe a diverse assemblage consisting of 123 species. Insect assemblages differed between L. squamatum and B. pilularis, as well as, E. pinifolia and B. pilularis, but not between L. squamatum and E. pinifolia. Direct sampling approaches (netting and photo documentation) collected 115 species not collected by passive malaise traps, highlighting that active observations are required to describe flower-visiting insect assemblages. Sequencing the ITS2 region of pollen from abundant visitors revealed that a majority of pollen is from the sage scrub ecosystem, highlighting its value. Our results indicate that the presence of fall-blooming shrubs may be critical for maintaining diverse sage scrub insect and pollinator assemblages.
Collapse
|
24
|
Osborne BA, Gioria M. Editorial: Biological invaders: Always the bad guys? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1075476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Bobier CA, Allen BL. Compassionate Conservation is indistinguishable from traditional forms of conservation in practice. Front Psychol 2022; 13:750313. [PMID: 36262450 PMCID: PMC9574382 DOI: 10.3389/fpsyg.2022.750313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/29/2022] [Indexed: 11/20/2022] Open
Abstract
Animal welfare and ethics are important factors influencing wildlife conservation practice, and critics are increasingly challenging the underlying ethics and motivations supporting common conservation practices. “Compassionate Conservationists” argue that all conservationists should respect the rights of individual sentient animals and approach conservation problems from a position of compassion, and that doing so requires implementing practices that avoid direct harm to individual animals. In this way Compassionate Conservationists seek to contrast themselves with “Traditional Conservationists” who often express consequentialist decision-making processes that ostensibly aim to dispassionately minimize net animal harms, resulting in the common use of practices that directly harm or kill some animals. Conservationists and other observers might therefore conclude that the two sides of this debate are distinct and/or that their policy proscriptions produce different welfare outcomes for animals. To explore the validity of this conclusion we review the ethical philosophies underpinning two types of Compassionate Conservation—deontology and virtue ethics. Deontology focusses on animal rights or the moral duties or obligations of conservationists, whereas virtue ethics focusses on acting in ways that are virtuous or compassionate. We demonstrate that both types permit the intentional harm and killing of animals when faced with common conservation problems where animals will be harmed no matter what the conservationist does or does not do. We then describe the applied decision-making processes exhibited by Compassionate Conservationists (of both types) and Traditional Conservationists to show that they may each lead to the implementation of similar conservation practices (including lethal control) and produce similar outcomes for animals, despite the perceived differences in their ethical motivations. The widespread presence of wildlife conservation problems that cannot be resolved without causing at least some harm to some animals means that conservationists of all persuasions must routinely make trade-offs between the welfare of some animals over others. Compassionate Conservationists do this from an explicit position of animal rights and/or compassion, whereas Traditional Conservationists respect animal rights and exhibit this same compassion implicitly. These observations lead to the conclusion that Compassionate Conservation is indistinguishable from traditional forms of conservation in practice, and that the apparent disagreement among conservationists primarily concerns the effectiveness of various wildlife management practices at minimizing animal harm, and not the underlying ethics, motivations or morality of those practices.
Collapse
Affiliation(s)
- Christopher A. Bobier
- Department of Theology and Philosophy, Saint Mary's University of Minnesota, Winona, MN, United States
- *Correspondence: Christopher A. Bobier,
| | - Benjamin L. Allen
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
26
|
Shackleton RT, Vimercati G, Probert AF, Bacher S, Kull CA, Novoa A. Consensus and controversy in the discipline of invasion science. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13931. [PMID: 35561048 PMCID: PMC9805150 DOI: 10.1111/cobi.13931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Approaches, values, and perceptions in invasion science are highly dynamic, and like in other disciplines, views among different people can diverge. This has led to debate in the field specifically surrounding the core themes of values, management, impacts, and terminology. Considering these debates, we surveyed 698 scientists and practitioners globally to assess levels of polarization (opposing views) on core and contentious topics. The survey was distributed online (via Google Forms) and promoted through listservs and social media. Although there were generally high levels of consensus among respondents, there was some polarization (scores of ≥0.39 [top quartile]). Relating to values, there was high polarization regarding claims of invasive species denialism, whether invasive species contribute to biodiversity, and how biodiversity reporting should be conducted. With regard to management, there were polarized views on banning the commercial use of beneficial invasive species, the extent to which stakeholders' perceptions should influence management, whether invasive species use alone is an appropriate control strategy, and whether eradication of invasive plants is possible. For impacts, there was high polarization concerning whether invasive species drive or are a side effect of degradation and whether invasive species benefits are understated. For terminology, polarized views related to defining invasive species based only on spread, whether species can be labeled as invasive in their native ranges, and whether language used is too xenophobic. Factor and regression analysis revealed that views were particularly divergent between people working on different invasive taxa (plants and mammals) and in different disciplines (between biologists and social scientists), between academics and practitioners, and between world regions (between Africa and the Global North). Unlike in other studies, age and gender had a limited influence on response patterns. Better integration globally and between disciplines, taxa, and sectors (e.g., academic vs. practitioners) could help build broader understanding and consensus.
Collapse
Affiliation(s)
- Ross T. Shackleton
- Swiss Federal Institute for Forest Snow and Landscape Research WSLBirmensdorfSwitzerland
- Centre for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityStellenboschSouth Africa
- Institute of Geography and SustainabilityUniversity of LausanneLausanneSwitzerland
| | - Giovanni Vimercati
- Department of Biology, Unit Ecology and EvolutionUniversity of FribourgFribourgSwitzerland
| | - Anna F. Probert
- Department of Biology, Unit Ecology and EvolutionUniversity of FribourgFribourgSwitzerland
| | - Sven Bacher
- Department of Biology, Unit Ecology and EvolutionUniversity of FribourgFribourgSwitzerland
| | - Christian A. Kull
- Institute of Geography and SustainabilityUniversity of LausanneLausanneSwitzerland
| | - Ana Novoa
- Department of Invasion EcologyInstitute of Botany, Czech Academy of SciencesPrůhoniceCzech Republic
| |
Collapse
|
27
|
Boltovskoy D, Guiaşu R, Burlakova L, Karatayev A, Schlaepfer MA, Correa N. Misleading estimates of economic impacts of biological invasions: Including the costs but not the benefits. AMBIO 2022; 51:1786-1799. [PMID: 35191001 PMCID: PMC9200917 DOI: 10.1007/s13280-022-01707-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 06/02/2023]
Abstract
The economic costs of non-indigenous species (NIS) are a key factor for the allocation of efforts and resources to eradicate or control baneful invasions. Their assessments are challenging, but most suffer from major flaws. Among the most important are the following: (1) the inclusion of actual damage costs together with various ancillary expenditures which may or may not be indicative of the real economic damage due to NIS; (2) the inclusion of the costs of unnecessary or counterproductive control initiatives; (3) the inclusion of controversial NIS-related costs whose economic impacts are questionable; (4) the assessment of the negative impacts only, ignoring the positive ones that most NIS have on the economy, either directly or through their ecosystem services. Such estimates necessarily arrive at negative and often highly inflated values, do not reflect the net damage and economic losses due to NIS, and can significantly misguide management and resource allocation decisions. We recommend an approach based on holistic costs and benefits that are assessed using likely scenarios and their counter-factual.
Collapse
Affiliation(s)
- Demetrio Boltovskoy
- IEGEBA, Instituto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Radu Guiaşu
- Biology Program, Glendon College, York University, 2275 Bayview Avenue, Toronto, ON M4N 3M6 Canada
| | - Lyubov Burlakova
- Great Lakes Center, SUNY Buffalo State, 1300 Elmwood Ave., Buffalo, NY 14222 USA
| | - Alexander Karatayev
- Great Lakes Center, SUNY Buffalo State, 1300 Elmwood Ave., Buffalo, NY 14222 USA
| | - Martin A. Schlaepfer
- Institute of Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1205 Geneva, Switzerland
| | - Nancy Correa
- Servicio de Hidrografía Naval y Escuela de Ciencias del Mar, Sede Educativa Universitaria, Facultad de la Armada, UNDEF, Av. Montes de Oca 2124, 1271 Buenos Aires, Argentina
| |
Collapse
|
28
|
Vimercati G, Probert AF, Volery L, Bernardo-Madrid R, Bertolino S, Céspedes V, Essl F, Evans T, Gallardo B, Gallien L, González-Moreno P, Grange MC, Hui C, Jeschke JM, Katsanevakis S, Kühn I, Kumschick S, Pergl J, Pyšek P, Rieseberg L, Robinson TB, Saul WC, Sorte CJB, Vilà M, Wilson JRU, Bacher S. The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity. PLoS Biol 2022; 20:e3001729. [PMID: 35972940 PMCID: PMC9380921 DOI: 10.1371/journal.pbio.3001729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions.
Collapse
Affiliation(s)
| | - Anna F. Probert
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Lara Volery
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ruben Bernardo-Madrid
- Department of Integrated Biology, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Vanessa Céspedes
- Laboratory of Aquatic Ecology, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
| | - Franz Essl
- Bioinvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Thomas Evans
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | | | - Laure Gallien
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Jonathan M. Jeschke
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | | | - Ingolf Kühn
- Department Community Ecology, Helmholtz Centre for Environmental Research—UFZ, Halle, Germany
- Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sabrina Kumschick
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, South Africa
| | - Jan Pergl
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Loren Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Tamara B. Robinson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Wolf-Christian Saul
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Cascade J. B. Sorte
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| | - Montserrat Vilà
- Department of Integrated Biology, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - John R. U. Wilson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, South Africa
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
29
|
Hinneberg H, Bamann T, Geue JC, Foerster K, Thomassen HA, Kupfer A. Truly invasive or simply non‐native? Insights from an artificial crested newt hybrid zone. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Heiko Hinneberg
- University of Applied Forest Sciences Rottenburg Germany
- University of Tübingen, Institute of Evolution and Ecology Tübingen Germany
| | | | - Julia C. Geue
- Umeå University, Department of Ecology and Environmental Sciences Umeå Sweden
| | - Katharina Foerster
- University of Tübingen, Institute of Evolution and Ecology Tübingen Germany
| | - Henri A. Thomassen
- University of Tübingen, Institute of Evolution and Ecology Tübingen Germany
| | - Alexander Kupfer
- Department of Zoology, State Museum of Natural History Stuttgart Stuttgart Germany
- Institute of Biology, University of Hohenheim Stuttgart Germany
| |
Collapse
|
30
|
Terrin E, Cottaz C, Fort N, Van Es J, Noble V, Diadema K. Regional strategy for invasive alien plant species: towards an integrative and biogeographic approach to the territory of Provence-Alpes-Côte d’Azur, France. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Vagnon C, Rohr RP, Bersier LF, Cattanéo F, Guillard J, Frossard V. Combining food web theory and population dynamics to assess the impact of invasive species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.913954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The impacts of invasive species on resident communities are driven by a tangle of ecological interactions difficult to quantify empirically. Combining a niche model with a population dynamic model, both allometrically parametrized, may represent a consistent framework to investigate invasive species impacts on resident communities in a food web context when empirical data are scarce. We used this framework to assess the ecological consequences of an invasive apex predator (Silurus glanis) in peri-Alpine lake food webs. Both increases and decreases of resident species abundances were highlighted and differed when accounting for different S. glanis body sizes. Complementarily, the prominence of indirect effects, such as trophic cascades, suggested that common approaches may only capture a restricted fraction of invasion consequences through direct predation or competition. By leveraging widely available biodiversity data, our approach may provide relevant insights for a comprehensive assessment and management of invasive species impacts on aquatic ecosystems.
Collapse
|
32
|
The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02838-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Golebie EJ, van Riper CJ, Arlinghaus R, Gaddy M, Jang S, Kochalski S, Lu Y, Olden JD, Stedman R, Suski C. Words matter: a systematic review of communication in non-native aquatic species literature. NEOBIOTA 2022. [DOI: 10.3897/neobiota.74.79942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
How scientists communicate can influence public viewpoints on invasive species. In the scientific literature, some invasion biologists adopt neutral language, while others use more loaded language, for example by emphasizing the devastating impacts of invasive species and outlining consequences for policy and practice. An evaluation of the use of language in the invasion biology literature does not exist, preventing us from understanding which frames are used and whether there are correlations between message framing in scientific papers and local environmental impacts associated with invasive species. Thus, we conducted a systematic literature review of 278 peer-reviewed articles published from 2008–2018 to understand communication styles adopted by social and natural scientists while reporting on aquatic non-native species research. Species-centered frames (45%) and human-centered frames (55%) were adopted to nearly equal degrees. Negative valence was dominant in that 81.3% of articles highlighted the negative risks and impacts of invasive species. Additionally, the use of terminology was found to broadly align with the stage of invasion, in that “invasive” was most commonly used except when the research was conducted at early stages of invasion, when “non-native” was most commonly used. Terminology use therefore enables readers of scientific papers to infer the status and severity of ongoing invasions. Given that science communication within the peer-reviewed literature affects public understanding of research outcomes, these findings provide an important point of reflection for researchers.
Collapse
|
34
|
Tarr MD. Effects of Non-Native Shrubs on Caterpillars and Shrubland-Dependent Passerines within Three Transmission Line Rights-of-Way in Southeastern New Hampshire. Northeast Nat (Steuben) 2022. [DOI: 10.1656/045.029.m2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Matthew D. Tarr
- University of New Hampshire Cooperative Extension, Durham, NH 03824;
| |
Collapse
|
35
|
Thurman LL, Gross JE, Mengelt C, Beever EA, Thompson LM, Schuurman GW, Hoving CL, Olden JD. Applying assessments of adaptive capacity to inform natural-resource management in a changing climate. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13838. [PMID: 34622995 DOI: 10.1111/cobi.13838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Adaptive capacity (AC)-the ability of a species to cope with or accommodate climate change-is a critical determinant of species vulnerability. Using information on species' AC in conservation planning is key to ensuring successful outcomes. We identified connections between a list of species' attributes (e.g., traits, population metrics, and behaviors) that were recently proposed for assessing species' AC and management actions that may enhance AC for species at risk of extinction. Management actions were identified based on evidence from the literature, a review of actions used in other climate adaptation guidance, and our collective experience in diverse fields of global-change ecology and climate adaptation. Selected management actions support the general AC pathways of persist in place or shift in space, in response to contemporary climate change. Some actions, such as genetic manipulations, can be used to directly alter the ability of species to cope with climate change, whereas other actions can indirectly enhance AC by addressing ecological or anthropogenic constraints on the expression of a species' innate abilities to adapt. Ours is the first synthesis of potential management actions directly linked to AC. Focusing on AC attributes helps improve understanding of how and why aspects of climate are affecting organisms, as well as the mechanisms by which management interventions affect a species' AC and climate change vulnerability. Adaptive-capacity-informed climate adaptation is needed to build connections among the causes of vulnerability, AC, and proposed management actions that can facilitate AC and reduce vulnerability in support of evolving conservation paradigms.
Collapse
Affiliation(s)
- Lindsey L Thurman
- U.S. Geological Survey, Northwest Climate Adaptation Science Center, Corvallis, Oregon, USA
| | - John E Gross
- National Park Service, Climate Change Response Program, Fort Collins, Colorado, USA
| | - Claudia Mengelt
- U.S. Geological Survey, Land Management Research Program, Sacramento, California, USA
| | - Erik A Beever
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, USA
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Laura M Thompson
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, Virginia, USA
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, Tennessee, USA
| | - Gregor W Schuurman
- National Park Service, Climate Change Response Program, Fort Collins, Colorado, USA
| | | | - Julian D Olden
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
36
|
The monitoring of diet and habitat preferences indicates competitive effect of exotic Ictalurus nebulosus on native fish under food-limited conditions. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Determining resource intake of a nonnative fish highlights potential predatory and competitive interactions. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Özenver N, Efferth M, Efferth T. Ethnopharmacology, phytochemistry, chemical ecology and invasion biology of Acanthus mollis L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114833. [PMID: 34785251 DOI: 10.1016/j.jep.2021.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthus mollis L. (Bear's Breeches) is a wide-spread medicinal and ornamental plant and is particularly suited to exemplarily illustrate the diverse aspects of invasion biology by neophytes. Since ancient times, it has been a popular Mediterranean ornamental plant in horticulture and served as model for the decoration of column capitals in architecture. AIM OF THE STUDY In the present review, we aimed to give an overview about ethnopharmacology, phytochemistry, chemical ecology, and invasion biology of A. mollis. Thus, the importance of plantation cultivation in the presence of ecologically problematic species and environmental protection were emphasized. MATERIALS AND METHODS We conducted an extensive literature search via screening PubMed, Scopus, and Web of Science, in order to compile the data about A. mollis and its role on invasion biology and thereby attracting attention to the prominence of the horticultural and agricultural cultivation of plant species with a special focus on A. mollis as a model. RESULTS AND CONCLUSION Phytochemical analyses revealed secondary metabolites from the classes of flavonoids, phenols, phenylpropanoids, anthraquinones arylnaphthalene lignans, phytosterols and others. Extracts of A. mollis and isolated phytochemicals not only exert assorted activities including antioxidant, anti-inflammatory and neuroprotective in murine and human experimental models, but also act against plant parasites (bacteria, insects, mollusks, fungi), protecting the plant from microbial attack and herbivorous predators. A. mollis has been used in traditional medicine to treat dermatological ailments, gastrointestinal diseases, ulcers and even tumors. Nevertheless, the robustness and rapid growth of A. mollis as well as the global horticultural trade facilitated its invasion into fragile ecosystems of Australia, New Zealand, and several other spots around the globe in Northern Europe (Great Britain), Asia (China, India), South Africa, and South America (Argentina). The release of A. mollis from gardens into the wild represents a considerable danger as invasive species are threatening biodiversity and leading to the extinction of domestic plants in the long run. Likewise, the likelihood of other medicinal plants in terms of invasion biology are needed to be fully recognized and discussed.
Collapse
Affiliation(s)
- Nadire Özenver
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany; Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Ankara, Turkey.
| | - Monika Efferth
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany.
| | - Thomas Efferth
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany.
| |
Collapse
|
39
|
Citizen science reveals current distribution, predicted habitat suitability and resource requirements of the introduced African Carder Bee Pseudoanthidium (Immanthidium) repetitum in Australia. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe introduction of non-native bee species is a major driver of ecosystem change resulting in the spread of non-native weeds, alterations to plant-pollinator interactions and competition with native species for food and nesting resources. Our lack of ecological information for many non-native organisms hinders our ability to understand the impacts of species introductions. This is often compounded by the Wallacean Shortfall—a lack of adequate knowledge of a species’ distribution in geographic space. In Australia, the African carder bee (Pseudoanthidium (Immanthidium) repetitum) was first observed in 2000 and has since become one of the most common bees in some regions. Despite its rapid population increase and range expansion, little is known about the ecology or distribution of P. repetitum. In this study, we determine the flower preferences, current distribution and predicted areas at risk of future invasion of P. repetitum using opportunistic data collected from citizen science websites, social media and museum records. We found that the current distribution of P. repetitum in Australia encompasses approximately 332,000 km2 concentrated along the eastern coast. We found considerable suitable habitat outside the current distribution including biodiversity hotspots and world heritage listed natural areas. Pseudoanthidium repetitum foraged on a wide range of plants from many families and can thus be classified as a generalist forager (polylectic). Our results suggest that P. repetitum is well suited for continued expansion in coastal Australia. Our results demonstrate the effective application of opportunistic data in overcoming knowledge gaps in species ecology and modelling of introduced species distribution.
Collapse
|
40
|
Ulyshen MD, Horn S, Hanula JL. Decadal Patterns of Forest and Pollinator Recovery Following the Eradication of an Invasive Shrub. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.832268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive non-native woody shrubs pose a major threat to forested ecosystems in many parts of the world and there is an urgent need for research on the restoration and recovery of these areas. We studied patterns of tree growth and regeneration 13 years after the experimental eradication (by chainsaw or mulching machine followed by herbicide treatments) of Ligustrum sinense Lour. (Chinese privet) from riparian forests in Georgia, United States. We also followed the recovery of bee and butterfly populations using sites with no history of privet invasion as a reference. By the end of the study, the basal area of restored plots was 24% greater, on average, than still-invaded control plots. Because tree growth rates did not differ among treatments, this increase is attributable to the 60% increase in the number of regenerating native stems (dominated by Acer negundo L.) following privet removal. The benefits of privet removal on pollinators were immediate and long-lasting with the richness and abundance of bees and butterflies being consistently higher in restored plots than in control plots. The diversity, abundance, and composition of bees in restored and reference (i.e., never invaded) plots were comparable by the end of the study. This was less true for butterflies, however, possibly due to the legacy effects of privet invasion on plant communities. Our results demonstrate the long-term benefits of removing privet on forest regeneration and pollinator communities. Indeed, without such efforts, it is probable that forest cover will gradually thin and ultimately disappear from privet-invaded areas as overstory trees die without replacement.
Collapse
|
41
|
Inferring the trophic attributes and consequences of co-occurring lake invaders using an allometric niche model. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
42
|
Smyth ERB, Drake DAR. A classification framework for interspecific trade-offs in aquatic ecology. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13762. [PMID: 34057237 DOI: 10.1111/cobi.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
In some cases, wildlife management objectives directed at multiple species can conflict with one another, creating species trade-offs. For managers to effectively identify trade-offs and avoid their undesirable outcomes, they must understand the agents involved and their corresponding interactions. A literature review of interspecific trade-offs within freshwater and marine ecosystems was conducted to illustrate the scope of potential interspecific trade-offs that may occur. We identified common pitfalls that lead to failed recognition of interspecific trade-offs, including, single-species management and limited consideration of the spatial and temporal scale of ecosystems and their management regimes. We devised a classification framework of common interspecific trade-offs within aquatic systems. The classification can help managers determine whether the conflict is species based through direct relationships (i.e., predator-prey, competition, other antagonistic relationships) or indirect relationships involving intermediate species (i.e., conflict-generating species) or whether the conflict is driven by opposing management objectives for species that would otherwise not interact (i.e., nontarget management effects). Once the nature and scope of trade-offs are understood, existing decision-making tools, such as structured decision-making and real-options analysis, can be incorporated to improve the management of aquatic ecosystems. Article Impact Statement: A synthesis of interspecific trade-offs in aquatic ecosystems supports their identification and resolution.
Collapse
Affiliation(s)
- Eric R B Smyth
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| |
Collapse
|
43
|
Kourantidou M, Haubrock PJ, Cuthbert RN, Bodey TW, Lenzner B, Gozlan RE, Nuñez MA, Salles JM, Diagne C, Courchamp F. Invasive alien species as simultaneous benefits and burdens: trends, stakeholder perceptions and management. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02727-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Haubrock PJ, Bernery C, Cuthbert RN, Liu C, Kourantidou M, Leroy B, Turbelin AJ, Kramer AM, Verbrugge LNH, Diagne C, Courchamp F, Gozlan RE. Knowledge gaps in economic costs of invasive alien fish worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149875. [PMID: 34478901 DOI: 10.1016/j.scitotenv.2021.149875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Invasive alien fishes have had pernicious ecological and economic impacts on both aquatic ecosystems and human societies. However, a comprehensive and collective assessment of their monetary costs is still lacking. In this study, we collected and reviewed reported data on the economic impacts of invasive alien fishes using InvaCost, the most comprehensive global database of invasion costs. We analysed how total (i.e. both observed and potential/predicted) and observed (i.e. empirically incurred only) costs of fish invasions are distributed geographically and temporally and assessed which socioeconomic sectors are most affected. Fish invasions have potentially caused the economic loss of at least US$37.08 billion (US2017 value) globally, from just 27 reported species. North America reported the highest costs (>85% of the total economic loss), followed by Europe, Oceania and Asia, with no costs yet reported from Africa or South America. Only 6.6% of the total reported costs were from invasive alien marine fish. The costs that were observed amounted to US$2.28 billion (6.1% of total costs), indicating that the costs of damage caused by invasive alien fishes are often extrapolated and/or difficult to quantify. Most of the observed costs were related to damage and resource losses (89%). Observed costs mainly affected public and social welfare (63%), with the remainder borne by fisheries, authorities and stakeholders through management actions, environmental, and mixed sectors. Total costs related to fish invasions have increased significantly over time, from <US$0.01 million/year in the 1960s to over US$1 billion/year in the 2000s, while observed costs have followed a similar trajectory. Despite the growing body of work on fish invasions, information on costs has been much less than expected, given the overall number of invasive alien fish species documented and the high costs of the few cases reported. Both invasions and their economic costs are increasing, exacerbating the need for improved cost reporting across socioeconomic sectors and geographic regions, for more effective invasive alien fish management.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Camille Bernery
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France; Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA UMR 7208), Muséum National d'Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, France
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany; School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland
| | - Chunlong Liu
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Melina Kourantidou
- Woods Hole Oceanographic Institution, Marine Policy Center, Woods Hole, MA 02543, United States; University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg 6700, Denmark; Institute of Marine Biological Resources and Inland Waters, Hellenic Center for Marine Research, Athens 164 52, Greece
| | - Boris Leroy
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA UMR 7208), Muséum National d'Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, France
| | - Anna J Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France
| | - Andrew M Kramer
- Department of Integrative Biology, University of South Florida, Tampa, USA
| | - Laura N H Verbrugge
- University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Sciences, P. O. Box 27, 00014 Helsinki, Finland; Aalto University, Department of Built Environment, Water & Development Research Group, Tietotie 1E, FI-00076 Aalto, Finland
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France
| | | |
Collapse
|
45
|
Tercel MPTG, Moorhouse‐Gann RJ, Cuff JP, Drake LE, Cole NC, Goder M, Mootoocurpen R, Symondson WOC. DNA metabarcoding reveals introduced species predominate in the diet of a threatened endemic omnivore, Telfair's skink ( Leiolopisma telfairii). Ecol Evol 2022; 12:e8484. [PMID: 35127020 PMCID: PMC8794715 DOI: 10.1002/ece3.8484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
Introduced species can exert disproportionately negative effects on island ecosystems, but their potential role as food for native consumers is poorly studied. Telfair's skinks are endemic omnivores living on Round Island, Mauritius, a globally significant site of biodiversity conservation. We aimed to determine the dietary diversity and key trophic interactions of Telfair's skinks, whether introduced species are frequently consumed, and if diet composition changes seasonally between male and female skinks. We used DNA metabarcoding of skink fecal samples to identify animals (COI) and plants (ITS2) consumed by skinks. There were 389 dietary presence counts belonging to 77 dietary taxa found across the 73 Telfair's skink fecal samples. Introduced taxa were cumulatively consumed more frequently than other categories, accounting for 49.4% of all detections, compared to cryptogenic (20.6%), native (20.6%), and endemic taxa (9.5%). The most frequently consumed introduced species was the ant, Pheidole megacephala, present in 40% of samples. Blue latan palm, Latania loddigesii, was the most frequently consumed endemic species, present in 33% of samples but was only detected in the dry season, when fruits are produced. We found a strong seasonal difference in diet composition explained by the presence of certain plant species solely or primarily in one season and a marked increase in the consumption of animal prey in the dry season. Male and female skinks consumed several taxa at different frequencies. These results present a valuable perspective on the role of introduced species in the trophic network of their invaded ecosystem. Both native and introduced species provide nutritional resources for skinks, and this may have management implications in the context of species conservation and island restoration.
Collapse
Affiliation(s)
| | - Rosemary J. Moorhouse‐Gann
- School of BiosciencesCardiff UniversityCardiffUK
- Durrell Wildlife Conservation TrustTrinityJersey
- Department of Animal & Plant SciencesNERC Biomolecular Analysis FacilitySheffieldUK
| | - Jordan P. Cuff
- School of BiosciencesCardiff UniversityCardiffUK
- Rothamsted Insect Survey, Rothamsted ResearchHarpendenUK
| | | | - Nik C. Cole
- Durrell Wildlife Conservation TrustTrinityJersey
- Mauritian Wildlife FoundationVacoasMauritius
| | | | | | | |
Collapse
|
46
|
Lewis CL, Granek EF. Drivers of zooplankton community composition in a novel ecosystem: Hawai'i mangroves as a case study. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Casey L. Lewis
- Environmental Science and Management Portland State University Portland OR USA
| | - Elise F. Granek
- Environmental Science and Management Portland State University Portland OR USA
| |
Collapse
|
47
|
Simulated encounters with a novel competitor reveal the potential for maladaptive behavioural responses to invasive species. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractDuring the early stage of biological invasions, interactions occur between native and non-native species that do not share an evolutionary history. This can result in ecological naïveté, causing native species to exhibit maladaptive behavioural responses to novel enemies, leading to negative consequences for individual fitness and ecosystem function. The behavioural response of native to non-native species during novel encounters can determine the impact of non-native species, and restrict or facilitate their establishment. In this study we simulated novel encounters between a widespread invasive fish species, the Nile tilapia (Oreochromis niloticus), and a threatened native Manyara tilapia (Oreochromis amphimelas). In the first experiment single adult O. niloticus were presented with a stimulus chamber (a transparent plastic cylinder) which was empty during control trials and contained a pair of juvenile O. amphimelas in stimulus trials. In the second experiment, the reciprocal set up was used, with pairs of juvenile O. amphimelas as the focal species and adult O. niloticus as the stimulus. Both species approached the stimulus chamber more readily during stimulus trials, a behavioural response which would increase the prevalence of interspecific interactions in situ. This included physical aggression, observed from the competitively dominant O. niloticus towards O. amphimelas. Despite an initial lack of fear shown by O. amphimelas, close inspection of the stimulus chamber often resulted in an energetically costly dart response. Under field conditions we predict that naïve native individuals may readily approach O. niloticus, increasing the likelihood of interactions and exacerbating widely reported negative outcomes.
Collapse
|
48
|
Cordell S, Bardwell-Jones C, Ostertag R, Uowolo A, DiManno N. Species Home-Making in Ecosystems: Toward Place-Based Ecological Metrics of Belonging. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.726571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Globalization has undeniably impacted the Earth’s ecosystems, but it has also influenced how we think about natural systems. Three fourths of the world’s forests are now altered by human activity, which challenges our concepts of native ecosystems. The dichotomies of pristine vs. disturbed as well as our view of native and non-native species, have blurred; allowing us to acknowledge new paradigms about how humans and nature interact. We now understand that the use of militaristic language to define the perceived role of a plant species is holding us back from the fact that novel systems (new combinations of all species) can often provide valuable ecosystem services (i.e., water, carbon, nutrients, cultural, and recreation) for creatures (including humans). In reality, ecosystems exist in a gradient from native to intensely managed – and “non-nativeness” is not always a sign of a species having negative effects. In fact, there are many contemporary examples of non-native species providing critical habitat for endangered species or preventing erosion in human-disturbed watersheds. For example, of the 8,000–10,000 non-native species introduced to Hawai‘i, less than 10% of these are self-sustaining and 90 of those pose a danger to native biota and are considered invasive. In this paper, we explore the native/non-native binary, the impacts of globalization and the political language of invasion through the lens of conservation biology and sociology with a tropical island perspective. This lens gives us the opportunity to offer a place-based approach toward the use of empirical observation of novel species interactions that may help in evaluating management strategies that support biodiversity and ecosystem services. Finally, we offer a first attempt at conceptualizing a site-specific approach to develop “metrics of belonging” within an ecosystem.
Collapse
|
49
|
Abstract
AbstractEcosystem services are an important, but often invisible component of the urban landscape. Humans have altered the environment in cities, leading to degraded or missing ecosystem services in many cases. To enhance or replace these services, many urban municipalities are integrating green spaces and infrastructure into urban planning. We have designed an activity to help undergraduate students: 1) recognize the importance of urban ecosystem services, 2) identify when they are degraded or missing, and 3) integrate “green” ideas from multiple sources to propose improvements to them. To help students achieve these goals, we asked them to evaluate an underutilized space on their own campus, and propose a redesign of that space to support ecosystem services. While many students struggled initially to link urban ecosystem services with specific proposed improvements, we found that having students work together in groups for a second redesign often improved understanding and also resulted in more creative and interdisciplinary designs. The exercise also helped students to better identify ecosystem services and allowed them to practice integrating multiple viewpoints while proposing solutions to local environmental problems.
Collapse
|
50
|
Kaplan H, Prahalad V, Kendal D. Native for whom: A mixed‐methods literature review and synthesis to conceptualise biotic nativeness for social research in the urban context. PEOPLE AND NATURE 2021. [DOI: 10.1002/pan3.10274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Haylee Kaplan
- Healthy Landscapes Research Group School of Geography, Planning, & Spatial Sciences University of Tasmania Hobart Tasmania Australia
| | - Vishnu Prahalad
- Healthy Landscapes Research Group School of Geography, Planning, & Spatial Sciences University of Tasmania Hobart Tasmania Australia
| | - Dave Kendal
- Healthy Landscapes Research Group School of Geography, Planning, & Spatial Sciences University of Tasmania Hobart Tasmania Australia
| |
Collapse
|