1
|
Mangan MJ, McCallum HI, West M, Scheele BC, Gillespie GR, Grogan LF. Differential recruitment drives pathogen-mediated competition between species in an amphibian chytridiomycosis system. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3085. [PMID: 39821939 PMCID: PMC11751701 DOI: 10.1002/eap.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 01/30/2025]
Abstract
Pathogens that infect multiple host species have an increased capacity to cause extinctions through parasite-mediated apparent competition. Given unprecedented and continuing losses of biodiversity due to Batrachochytrium dendrobatidis (Bd), the causative fungus of the amphibian skin disease chytridiomycosis, a robust understanding of the mechanisms driving cross-species infection dynamics is essential. Here, we used stage-structured, susceptible-infected compartmental models to explore drivers of Bd-mediated apparent competition between two sympatric amphibians, the critically endangered Litoria spenceri and the non-threatened Litoria lesueurii. We additionally simulated the impact of plausible L. spenceri conservation management interventions on competitive outcomes between these two species. Despite being more susceptible to disease than its competitor, a high relative rate of recruitment allowed the non-threatened L. lesueurii to reach substantially higher densities than L. spenceri in our baseline models, applying a strong absolute force of infection on L. spenceri as an amplifying host. However, simulated management interventions which bolstered L. spenceri recruitment (i.e., captive breeding and release, removal of predatory non-native trout) spurred strong recoveries of L. spenceri while simultaneously (1) increasing the force of Bd infection in the environment and (2) reducing L. lesueurii population density. At high and moderate elevations, combined captive breeding/release and non-native trout removal were sufficient to make L. spenceri the most abundant species. Overall, our results demonstrate the importance of recruitment in moderating pathogen dynamics of multi-host amphibian chytridiomycosis systems. While infection-based parameters are undoubtedly important in Bd management, modifying relative rates of recruitment can substantially alter pathogen-mediated competition between species of an amphibian community.
Collapse
Affiliation(s)
- Madelyn J. Mangan
- Centre for Planetary Health and Food Security, and School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Hamish I. McCallum
- Centre for Planetary Health and Food Security, and School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Matt West
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Wild Research Pty LtdWarrandyteVictoriaAustralia
| | - Ben C. Scheele
- Fenner School of Environment and SocietyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | - Laura F. Grogan
- Centre for Planetary Health and Food Security, and School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
2
|
Kelly M, Cuomo CA, Beukema W, Carranza S, Erens J, Foubert M, Li Z, Lötters S, Schulz V, Steinfartz S, Van Praet S, Veith M, Pasmans F, Martel A. High phenotypic diversity correlated with genomic variation across the European Batrachochytrium salamandrivorans epizootic. PLoS Pathog 2024; 20:e1012579. [PMID: 39413140 PMCID: PMC11515996 DOI: 10.1371/journal.ppat.1012579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 10/28/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024] Open
Abstract
Recognizing the influence of pathogen diversity on infection dynamics is crucial for mitigating emerging infectious diseases. Characterising such diversity is often complex, for instance when multiple pathogen variants exist that interact differently with the environment and host. Here, we explore genotypic and phenotypic variation of Batrachochytrium salamandrivorans (Bsal), an emerging fungal pathogen that is driving declines among an increasing number of European amphibian species. For thirteen isolates, spanning most of the known temporal and geographical Bsal range in Europe, we mapped phenotypic diversity through numerous measurements that describe varying reproductive rates in vitro across a range of temperatures. Bsal isolates are revealed to have different thermal optima and tolerances, with phenotypic variation correlating with genomic diversity. Using a mechanistic niche model of the fire salamander (Salamandra salamandra) as an example, we illustrate how host steady-state body temperature and Bsal thermal range variation may influence pathogen growth through space and time across Europe. Our combined findings show how the identity of emergent pathogen variants may strongly influence when and which host populations are most at risk.
Collapse
Affiliation(s)
- Moira Kelly
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Wouter Beukema
- Reptile, Amphibian and Fish Conservation Netherlands (RAVON), ED Nijmegen, the Netherlands
| | | | - Jesse Erens
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Marleen Foubert
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Zhimin Li
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Stefan Lötters
- Department of Biogeography, Trier University, Trier, Germany
| | - Vanessa Schulz
- Technische Universität Braunschweig, Zoological Institute, Braunschweig, Germany
| | - Sebastian Steinfartz
- University of Leipzig, Institute of Biology, Molecular Evolution and Systematics of Animals, Leipzig, Germany
| | - Sarah Van Praet
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Michael Veith
- Department of Biogeography, Trier University, Trier, Germany
| | - Frank Pasmans
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - An Martel
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| |
Collapse
|
3
|
Noelker JE, Abreu Ruozzi V, Spengler KD, Craig HM, Raffel TR. Dynamic effects of thermal acclimation on chytridiomycosis infection intensity and transmission potential in Xenopus laevis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240789. [PMID: 39263447 PMCID: PMC11387059 DOI: 10.1098/rsos.240789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
The pandemic amphibian pathogen Batrachochytrium dendrobatidis (Bd) can cause more severe infections with variable temperatures owing to delays in host thermal acclimation following temperature shifts. However, little is known about the timing of these acclimation effects or their consequences for Bd transmission. We measured how thermal acclimation affects Bd infection in Xenopus laevis, using a timing-of-exposure treatment to investigate acclimation effect persistence following a temperature shift. Consistent with a delay in host acclimation, warm-acclimated frogs exposed to Bd immediately following a temperature decrease (day 0) developed higher infection intensities than frogs already acclimated to the cool temperature. This acclimation effect was surprisingly persistent (five weeks). Acclimation did not affect infection intensity when Bd exposure occurred one week after the temperature shift, indicating that frogs fully acclimated to new temperatures within 7 days. This suggests that acclimation effect persistence beyond one week post-exposure was caused by carry-over from initially high infection loads, rather than an extended delay in host acclimation. In a second experiment, we replicated the persistent thermal acclimation effects on Bd infection but found no acclimation effects on zoospore production. This suggests that variable temperatures consistently exacerbate individual Bd infection but may not necessarily increase Bd transmission.
Collapse
Affiliation(s)
- James E Noelker
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | | | - Kyle D Spengler
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Hunter M Craig
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Thomas R Raffel
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
4
|
Barragan EM, Hoskins TD, Allmon EB, McQuigg JL, Hamilton MT, Christian EN, Coogan GSM, Searle CL, Choi YJ, Lee LS, Hoverman JT, Sepúlveda MS. Toxicities of Legacy and Current-Use PFAS in an Anuran: Do Larval Exposures Influence Responses to a Terrestrial Pathogen Challenge? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19180-19189. [PMID: 37962853 DOI: 10.1021/acs.est.3c03191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Legacy polyfluoroalkyl substances (PFAS) [perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA)] are being replaced by various other fluorinated compounds, such as hexafluoropropylene oxide dimer acid (GenX). These alternatives are thought to be less bioaccumulative and, therefore, less toxic than legacy PFAS. Contaminant exposures occur concurrently with exposure to natural stressors, including the fungal pathogen Batrachocytrium dendrobatidis (Bd). Despite evidence that other pollutants can increase the adverse effects of Bd on anurans, no studies have examined the interactive effects of Bd and PFAS. This study tested the growth and developmental effects of PFOS, PFOA, and GenX on gray treefrog (Hyla versicolor) tadpoles, followed by a Bd challenge after metamorphosis. Despite PFAS exposure only occurring during the larval stage, carry-over effects on growth were observed post metamorphosis. Further, PFAS interacted with Bd exposure to influence growth; Bd-exposed animals had significantly shorter SVL [snout-vent length (mm)] with significantly increased body condition, among other time-dependent effects. Our data suggest that larval exposure to PFAS can continue to impact growth in the juvenile stage after exposure has ended. Contrary to predictions, GenX affected terrestrial performance more consistently than its legacy congener, PFOA. Given the role of Bd in amphibian declines, further investigation of interactions of PFAS with Bd and other environmentally relevant pathogens is warranted.
Collapse
Affiliation(s)
- Evelyn M Barragan
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyler D Hoskins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, United States
| | - Elizabeth B Allmon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica L McQuigg
- Department of Biology, Drew University, Madison, New Jersey 07940, United States
| | - Matthew T Hamilton
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, United States
| | - Erin N Christian
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, United States
| | - Grace S M Coogan
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, United States
| | - Catherine L Searle
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youn Jeong Choi
- Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, United States
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, United States
- Sustainability Research Center and PhD in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Santiago 7550196, Chile
| |
Collapse
|
5
|
Douglas AJ, Katzenback BA. The wood frog (Rana sylvatica): An emerging comparative model for anuran immunity and host-ranavirus interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104733. [PMID: 37550009 DOI: 10.1016/j.dci.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The wood frog (Rana sylvatica) is widely distributed across North America and is the only amphibian found north of the Arctic Circle due to its remarkable ability to tolerate whole-body freezing. Recent mass mortalities attributable to Ranavirus spp. (family Iridoviridae) in wild juvenile wood frogs, coupled with the apparent high susceptibility of wood frogs to experimental infection with frog virus 3 (FV3), the type species of the Ranavirus genus, or FV3-like isolates underscore the serious threat ranaviruses poses to wood frog populations. Despite the ecological relevance and unique life history of wood frogs, our understanding of the wood frog immune system and antiviral response to ranaviral infections is in its infancy. Here we aim to (1) synthesize the limited knowledge of wood frog immune defences, (2) review recent progress in establishing the wood frog as a study system for ranavirus infection, and (3) highlight the future use of wood frogs as a model anuran to provide insight into the evolution of anuran immune systems and antiviral responses.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
6
|
Laggan NA, Parise KL, White JP, Kaarakka HM, Redell JA, DePue JE, Scullon WH, Kath J, Foster JT, Kilpatrick AM, Langwig KE, Hoyt JR. Host infection and disease-induced mortality modify species contributions to the environmental reservoir. Ecology 2023; 104:e4147. [PMID: 37522873 DOI: 10.1002/ecy.4147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Environmental pathogen reservoirs exist for many globally important diseases and can fuel epidemics, influence pathogen evolution, and increase the threat of host extinction. Species composition can be an important factor that shapes reservoir dynamics and ultimately determines the outcome of a disease outbreak. However, disease-induced mortality can change species communities, indicating that species responsible for environmental reservoir maintenance may change over time. Here we examine the reservoir dynamics of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome in bats. We quantified changes in pathogen shedding, infection prevalence and intensity, host abundance, and the subsequent propagule pressure imposed by each species over time. We find that highly shedding species are important during pathogen invasion, but contribute less over time to environmental contamination as they also suffer the greatest declines. Less infected species remain more abundant, resulting in equivalent or higher propagule pressure. More broadly, we demonstrate that high infection intensity and subsequent mortality during disease progression can reduce the contributions of high-shedding species to long-term pathogen maintenance.
Collapse
Affiliation(s)
- Nichole A Laggan
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Katy L Parise
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - J Paul White
- Wisconsin Department of Natural Resources, Madison, Wisconsin, USA
| | | | | | - John E DePue
- Michigan Department of Natural Resources, Baraga, Michigan, USA
| | | | - Joseph Kath
- Illinois Department of Natural Resources, Springfield, Illinois, USA
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Joseph R Hoyt
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Jacinto-Maldonado M, González-Salazar C, Basanta MD, García-Peña GE, Saucedo B, Lesbarrères D, Meza-Figueroa D, Stephens CR. Water Pollution Increases the Risk of Chytridiomycosis in Mexican Amphibians. ECOHEALTH 2023:10.1007/s10393-023-01631-0. [PMID: 37140741 DOI: 10.1007/s10393-023-01631-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/05/2023]
Abstract
Chytridiomycosis is affecting amphibians worldwide, causing the decline and extinction of several amphibian populations. The disease is caused by the fungus Batrachochytrium dendrobatidis (Bd), a multihost pathogen living in freshwater habitats. While several environmental factors have been associated with the prevalence of Bd and its virulence, the effects of water quality on the pathogen are not clear yet. Some evidence suggests that water pollution may reduce amphibians' immune response and increase prevalence of Bd. To explore this hypothesis, we analyzed the relationship between water quality and the presence of Bd by using spatial data mining of 150 geolocations of Bd in amphibians from 9 families where Bd positive specimens have been previously reported, and water quality in 4,202 lentic and lotic water bodies in Mexico from 2010 to 2021. Our model showed that in the 3 main families where Bd was recorded, its presence is high in locations with low water quality, i.e., water polluted likely contaminated with urban and industrial waste. Using this model, we inferred areas suitable for Bd in Mexico; mainly in poorly studied areas along the gulf and on the pacific slope. We further argue that actions to reduce water pollution should become an integral part of public policies to prevent the spread of Bd and protect amphibians from this deadly pathogen.
Collapse
Affiliation(s)
- M Jacinto-Maldonado
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Hermosillo Sonora, México.
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México.
| | - C González-Salazar
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - M D Basanta
- Department of Biology, University of Nevada Reno, Reno, NV, USA
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de Mexico, México
| | - G E García-Peña
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - B Saucedo
- IDEXX Laboratories B.V, Holland, The Netherlands
| | - D Lesbarrères
- Environment and Climate Change Canada, Greater Sudbury, Canada
| | - D Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Hermosillo Sonora, México
| | - C R Stephens
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Mexico City, México
| |
Collapse
|
8
|
McQuigg JL, Kissner K, Boone MD. Exposure to Amphibian Chytrid Fungus Alters Terrestrial Growth and Feeding Rate in Metamorphic Anurans. J HERPETOL 2023. [DOI: 10.1670/21-048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Wu NC. Pathogen load predicts host functional disruption: A meta‐analysis of an amphibian fungal panzootic. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nicholas C. Wu
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| |
Collapse
|
10
|
Starr AM, Zabet-Moghaddam M, San Francisco M. Identification of a novel secreted metabolite cyclo(phenylalanyl-prolyl) from Batrachochytrium dendrobatidis and its effect on Galleria mellonella. BMC Microbiol 2022; 22:293. [PMID: 36482304 PMCID: PMC9730576 DOI: 10.1186/s12866-022-02680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The fungus, Batrachochytrium dendrobatidis, is the causative agent of chytridiomycosis and a leading cause of global decline in amphibian populations. The first stages of chytridiomycosis include: inflammation, hyperkeratosis, lethargy, loss of righting reflex, and disruption of internal electrolyte levels leading to eventual death of the host. Previous work indicates that B. dendrobatidis can produce immunomodulatory compounds and other secreted molecules that regulate the growth of the fungus. In this study, filtrates of the fungus grown in media and water were subjected to ultra-performance liquid chromatography-mass spectrometry and analyzed using Compound Discoverer 3.0. RESULTS Identification of cyclo(phenylalanyl-prolyl), chitobiose, and S-adenosylmethionine were verified by their retention times and fragmentation patterns from B. dendrobatidis supernatants. Previous studies have analyzed the effects of B. dendrobatidis on amphibian models, in vitro, or in cell culture. We studied the effects of live B. dendrobatidis cells, spent culture filtrates containing secreted metabolites, and cyclo(pheylalanyl-prolyl) on wax moth larvae (Galleria mellonella). Concentrated filtrates caused melanization within 24 h, while live B. dendrobatidis caused melanization within 48 h. CONCLUSIONS Here we show B. dendrobatidis produces secreted metabolites previously unreported. The impacts of these chemicals were tested on an alternate non-amphibian model system that has been used for other fungi to study pathogenicity traits in this fungus.
Collapse
Affiliation(s)
- Amanda M. Starr
- grid.462127.4Bryant & Stratton College, 8141 Hull Street Road, Richmond, VA 23235 USA ,grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA
| | | | - Michael San Francisco
- grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA
| |
Collapse
|
11
|
Zipkin EF, DiRenzo GV. Biodiversity is decimated by the cascading effects of the amphibian-killing chytrid fungus. PLoS Pathog 2022; 18:e1010624. [PMID: 35862362 PMCID: PMC9302726 DOI: 10.1371/journal.ppat.1010624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Elise F. Zipkin
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Graziella V. DiRenzo
- U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
12
|
Harjoe CC, Buck JC, Rohr JR, Roberts CE, Olson DH, Blaustein AR. Pathogenic fungus causes density‐ and trait‐mediated trophic cascades in an aquatic community. Ecosphere 2022. [DOI: 10.1002/ecs2.4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Carmen C. Harjoe
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| | - Julia C. Buck
- Department of Biology and Marine Biology University of North Carolina Wilmington Wilmington North Carolina USA
| | - Jason R. Rohr
- Department of Biological Sciences University of Notre Dame, Eck Institute for Global Health, and Environmental Change Initiative Notre Dame Indiana USA
| | - Claire E. Roberts
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| | - Deanna H. Olson
- Pacific Northwest Research Station USDA Forest Service Corvallis Oregon USA
| | - Andrew R. Blaustein
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| |
Collapse
|
13
|
Smith D, O'Brien D, Hall J, Sergeant C, Brookes LM, Harrison XA, Garner TWJ, Jehle R. Challenging a host-pathogen paradigm: Susceptibility to chytridiomycosis is decoupled from genetic erosion. J Evol Biol 2022; 35:589-598. [PMID: 35167143 PMCID: PMC9306973 DOI: 10.1111/jeb.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The putatively positive association between host genetic diversity and the ability to defend against pathogens has long attracted the attention of evolutionary biologists. Chytridiomycosis, a disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has emerged in recent decades as a cause of dramatic declines and extinctions across the amphibian clade. Bd susceptibility can vary widely across populations of the same species, but the relationship between standing genetic diversity and susceptibility has remained notably underexplored so far. Here, we focus on a putatively Bd-naive system of two mainland and two island populations of the common toad (Bufo bufo) at the edge of the species' range and use controlled infection experiments and dd-RAD sequencing of >10 000 SNPs across 95 individuals to characterize the role of host population identity, genetic variation and individual body mass in mediating host response to the pathogen. We found strong genetic differentiation between populations and marked variation in their susceptibility to Bd. This variation was not, however, governed by isolation-mediated genetic erosion, and individual heterozygosity was even found to be negatively correlated with survival. Individual survival during infection experiments was strongly positively related to body mass, which itself was unrelated to population of origin or heterozygosity. Our findings underscore the general importance of context-dependency when assessing the role of host genetic variation for the ability of defence against pathogens.
Collapse
Affiliation(s)
- Donal Smith
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | | | | | - Chris Sergeant
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Lola M. Brookes
- Institute of ZoologyZoological Society of LondonLondonUK
- Highland Amphibian and Reptile ProjectDingwallUK
- MRC Centre for Global Infectious Disease AnalysisImperial College School of Public HealthLondonUK
- Royal Veterinary CollegeHatfieldUK
| | - Xavier A. Harrison
- Institute of ZoologyZoological Society of LondonLondonUK
- Centre for Ecology and ConservationUniversity of ExeterExeterUK
| | | | - Robert Jehle
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| |
Collapse
|
14
|
Chen MY, Kueneman JG, González A, Humphrey G, Knight R, McKenzie VJ. Predicting fungal infection rate and severity with skin-associated microbial communities on amphibians. Mol Ecol 2022; 31:2140-2156. [PMID: 35076975 DOI: 10.1111/mec.16372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Pathogen success (risk and severity) is influenced by host-associated microbiota, but the degree to which variation in microbial community traits predict future infection presence/absence (risk) and load (severity) for the host is unknown. We conducted a time-series experiment by sampling the skin-associated bacterial communities of five amphibian species before and after exposure to the fungal pathogen, Batrachochytrium dendrobaditis (Bd). We ask whether microbial community traits are predictors of, or are affected by, Bd infection risk and intensity. Our results show that richness of putative Bd-inhibitory bacteria strongly predicts infection risk, while the proportion of putative Bd-inhibitory bacteria predicts future infection intensity. Variation in microbial community composition is high across time and individual, and bacterial prevalence is low. Our findings demonstrate how ecological community traits of host-associated microbiota may be used to predict infection risk by pathogenic microbes.
Collapse
Affiliation(s)
- Melissa Y Chen
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N-122, UCB 334, Boulder, CO, 80309, USA
| | - Jordan G Kueneman
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancon, Panama, Republic of Panama
| | - Antonio González
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Greg Humphrey
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Valerie J McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N-122, UCB 334, Boulder, CO, 80309, USA
| |
Collapse
|
15
|
Adams AJ, Peralta-García A, Flores-López CA, Valdez-Villavicencio JH, Briggs CJ. High fungal pathogen loads and prevalence in Baja California amphibian communities: The importance of species, elevation, and historical context. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Urbina J, Bredeweg EM, Blaustein AR, Garcia TS. Direct and Latent Effects of Pathogen Exposure Across Native and Invasive Amphibian Life Stages. Front Vet Sci 2021; 8:732993. [PMID: 34778428 PMCID: PMC8585985 DOI: 10.3389/fvets.2021.732993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases are one of the multiple factors contributing to the current "biodiversity crisis". As part of the worldwide biodiversity crisis, amphibian populations are declining globally. Chytridiomycosis, an emerging infectious disease, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is a major cause of amphibian population declines. This fungus primarily affects keratinized structures in larval, juvenile, and adult amphibians as well as heart function. However, we know little about how Bd can impact embryos as well as potential latent effects of Bd exposure over ontogeny. Using two different Bd strains and multiple exposure times, we examined the effects of Bd exposure in Pacific chorus frog (Pseudacris regilla), Western toad (Anaxyrus boreas) and American bullfrog (Lithobates catesbeianus) life stages. Using a factorial experimental design, embryos of these three species were exposed to Bd at early and late embryonic stages, with some individuals re-exposed after hatching. Embryonic Bd exposure resulted in differential survival as a function of host species, Bd strain and timing of exposure. P. regilla experienced embryonic mortality when exposed during later developmental stages to one Bd strain. There were no differences across the treatments in embryonic mortality of A. boreas and embryonic mortality of L. catesbeianus occurred in all Bd exposure treatments. We detected latent effects in A. boreas and L. catesbeianus larvae, as mortality increased when individuals had been exposed to any of the Bd strains during the embryonic stage. We also detected direct effects on larval mortality in all three anuran species as a function of Bd strain, and when individuals were double exposed (late in the embryonic stage and again as larvae). Our results suggest that exposure to Bd can directly affect embryo survival and has direct and latent effects on larvae survival of both native and invasive species. However, these impacts were highly context dependent, with timing of exposure and Bd strain influencing the severity of the effects.
Collapse
Affiliation(s)
- Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Evan M Bredeweg
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| | - Andrew R Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Tiffany S Garcia
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
17
|
Koo MS, Vredenburg VT, Deck JB, Olson DH, Ronnenberg KL, Wake DB. Tracking, Synthesizing, and Sharing Global Batrachochytrium Data at AmphibianDisease.org. Front Vet Sci 2021; 8:728232. [PMID: 34692807 PMCID: PMC8527349 DOI: 10.3389/fvets.2021.728232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases have been especially devastating to amphibians, the most endangered class of vertebrates. For amphibians, the greatest disease threat is chytridiomycosis, caused by one of two chytridiomycete fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Research over the last two decades has shown that susceptibility to this disease varies greatly with respect to a suite of host and pathogen factors such as phylogeny, geography (including abiotic factors), host community composition, and historical exposure to pathogens; yet, despite a growing body of research, a comprehensive understanding of global chytridiomycosis incidence remains elusive. In a large collaborative effort, Bd-Maps was launched in 2007 to increase multidisciplinary investigations and understanding using compiled global Bd occurrence data (Bsal was not discovered until 2013). As its database functions aged and became unsustainable, we sought to address critical needs utilizing new technologies to meet the challenges of aggregating data to facilitate research on both Bd and Bsal. Here, we introduce an advanced central online repository to archive, aggregate, and share Bd and Bsal data collected from around the world. The Amphibian Disease Portal (https://amphibiandisease.org) addresses several critical community needs while also helping to build basic biological knowledge of chytridiomycosis. This portal could be useful for other amphibian diseases and could also be replicated for uses with other wildlife diseases. We show how the Amphibian Disease Portal provides: (1) a new repository for the legacy Bd-Maps data; (2) a repository for sample-level data to archive datasets and host published data with permanent DOIs; (3) a flexible framework to adapt to advances in field, laboratory, and informatics technologies; and (4) a global aggregation of Bd and Bsal infection data to enable and accelerate research and conservation. The new framework for this project is built using biodiversity informatics best practices and metadata standards to ensure scientific reproducibility and linkages across other biological and biodiversity repositories.
Collapse
Affiliation(s)
- Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Vance T Vredenburg
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States.,Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - John B Deck
- Berkeley Natural History Museums, University of California, Berkeley, Berkeley, CA, United States
| | - Deanna H Olson
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - Kathryn L Ronnenberg
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - David B Wake
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
18
|
Social group size influences pathogen transmission in salamanders. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Alvarado-Rybak M, Lepe-Lopez M, Peñafiel-Ricaurte A, Valenzuela-Sánchez A, Valdivia C, Mardones FO, Bacigalupe LD, Puschendorf R, Cunningham AA, Azat C. Bioclimatic and anthropogenic variables shape the occurrence of Batrachochytrium dendrobatidis over a large latitudinal gradient. Sci Rep 2021; 11:17383. [PMID: 34462470 PMCID: PMC8405646 DOI: 10.1038/s41598-021-96535-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused the greatest known loss of biodiversity due to an infectious disease. We used Bd infection data from quantitative real-time PCR (qPCR) assays of amphibian skin swabs collected across Chile during 2008-2018 to model Bd occurrence with the aim to determine bioclimatic and anthropogenic variables associated with Bd infection. Also, we used Bd presence/absence records to identify geographical Bd high-risk areas and compare Bd prevalence and infection loads between amphibian families, ecoregions, and host ecology. Data comprised 4155 Bd-specific qPCR assays from 162 locations across a latitudinal gradient of 3700 km (18º to 51ºS). Results showed a significant clustering of Bd associated with urban centres and anthropogenically highly disturbed ecosystems in central-south Chile. Both Bd prevalence and Bd infection loads were higher in aquatic than terrestrial amphibian species. Our model indicated positive associations of Bd prevalence with altitude, temperature, precipitation and human-modified landscapes. Also, we found that macroscale drivers, such as land use change and climate, shape the occurrence of Bd at the landscape level. Our study provides with new evidence that can improve the effectiveness of strategies to mitigate biodiversity loss due to amphibian chytridiomycosis.
Collapse
Affiliation(s)
- Mario Alvarado-Rybak
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Núcleo de Ciencias Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Echaurren 140, Santiago, Chile
| | - Manuel Lepe-Lopez
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
| | - Alexandra Peñafiel-Ricaurte
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Andrés Valenzuela-Sánchez
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
- ONG Ranita de Darwin, Nataniel Cox 152, Santiago, Chile
- Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, 5110566, Valdivia, Chile
| | - Catalina Valdivia
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
| | - Fernando O Mardones
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Robert Puschendorf
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Claudio Azat
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile.
| |
Collapse
|
20
|
Siddons SR, Searle CL. Exposure to a fungal pathogen increases the critical thermal minimum of two frog species. Ecol Evol 2021; 11:9589-9598. [PMID: 34306645 PMCID: PMC8293773 DOI: 10.1002/ece3.7779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
The ability of an organism to tolerate seasonal temperature changes, such as extremely cold temperatures during the winter, can be influenced by their pathogens. We tested how exposure to a virulent fungal pathogen, Batrachochytrium dendrobatidis (Bd), affected the critical thermal minimum (CTmin) of two frog species, Hyla versicolor (gray treefrog) and Lithobates palustris (pickerel frog). The CTmin is the minimum thermal performance point of an organism, which we estimated via righting response trials. For both frog species, we compared the righting response of Bd-exposed and Bd-unexposed individuals in either a constant (15ºC) environment or with decreasing temperatures (-1°C/2.5 min) starting from 15°C. The CTmin for both species was higher for Bd-exposed frogs than unexposed frogs, and the CTmin of H. versicolor was higher than L. palustris. We also found that Bd-exposed frogs of both species righted themselves significantly fewer times in both decreasing and constant temperature trials. Our findings show that pathogen exposure can reduce cold tolerance and limit the thermal performance range of hosts, which may lead to increased overwintering mortality.
Collapse
|
21
|
Plethodontid salamanders show variable disease dynamics in response to Batrachochytrium salamandrivorans chytridiomycosis. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02536-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zornosa-Torres C, Lambertini C, Toledo LF. Amphibian chytrid infections along the highest elevational gradient of the Brazilian Atlantic Forest. DISEASES OF AQUATIC ORGANISMS 2021; 144:99-106. [PMID: 33830073 DOI: 10.3354/dao03581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environmental variation along elevational gradients shapes conditions for pathogen development, which influences disease outcomes. Chytridiomycosis is a non-vectored disease caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd) and is responsible for massive declines of amphibian populations all over the world. Several biotic and abiotic factors are known to influence Bd infection dynamics in amphibians, including temperature and host species richness. Here, we quantified Bd prevalence and load along an elevational gradient in the Caparaó National Park (CNP), Brazil, and tested for associations of Bd infections with elevation, temperature, and species richness. We hypothesized that Bd infections would increase as local species richness decreased with elevation. We detected Bd along the entire elevational gradient and found a negative association between infection load and elevation. We did not detect significant associations between infection prevalence and elevation. Our findings are consistent with other wide elevational gradient studies, but are contrary to 2 other studies performed in the Atlantic Forest. We did not find the minimum elevational range that should be sampled to detect the influence of elevation on Bd variation. Our study represents the widest elevational gradient that has been sampled in Brazil and contributes to a better understanding of Bd distribution and dynamics in natural systems.
Collapse
Affiliation(s)
- Camila Zornosa-Torres
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil
| | | | | |
Collapse
|
23
|
Cardillo M. Clarifying the relationship between body size and extinction risk in amphibians by complete mapping of model space. Proc Biol Sci 2021; 288:20203011. [PMID: 33529561 DOI: 10.1098/rspb.2020.3011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In vertebrates, large body size is often a key diagnostic feature of species threatened with extinction. However, in amphibians the link between body size and extinction risk is highly uncertain, with previous studies suggesting positive, negative, u-shaped, or no relationship. Part of the reason for this uncertainty is 'researcher degrees of freedom': the subjectivity and selectivity in choices associated with specifying and fitting models. Here, I clarify the size-threat association in amphibians using Specification Curve Analysis, an analytical approach from the social sciences that attempts to minimize this problem by complete mapping of model space. I find strong support for prevailing negative associations between body size and threat status, the opposite of patterns typical in other vertebrates. This pattern is largely explained by smaller species having smaller geographic ranges, but smaller amphibian species also appear to lack some of the life-history advantages (e.g. higher reproductive output) that are often assumed to 'protect' small species in other taxa. These results highlight the need for a renewed conservation focus on the smallest species of the world's most threatened class of vertebrates, as aquatic habitats become increasingly degraded by human activity.
Collapse
Affiliation(s)
- Marcel Cardillo
- Macroevolution & Macroecology Group, Research School of Biology, Australian National University, Canberra 0200, Australia
| |
Collapse
|
24
|
Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe mechanisms by which invasive species negatively affect native species include competition, predation, and the introduction of novel pathogens. Moreover, if an invasive species is a competent disease reservoir, it may facilitate the long-term maintenance and spread of pathogens in ecological assemblages and drive the extinction of less tolerant or less resistant species. Disease-driven loss of biodiversity is exemplified by the amphibian–chytrid fungus system. The disease chytridiomycosis is caused by the aquatic chytrid fungus Batrachochytrium dendrobatidis (Bd) in anurans and is associated with worldwide amphibian population declines and extinctions. For amphibian species that metamorphose and leave infected aquatic habitats, the mechanisms by which Bd persists over winter in these habitats remains a critical open question. A leading hypothesis is that American bullfrogs (Rana catesbeiana), a worldwide invasive species, are tolerant to Bd and serve as a reservoir host for Bd during winter months and subsequently infect native species that return to breed in spring. Using outdoor mesocosms, we experimentally examined if two strains of Bd could overwinter in aquatic systems, in the presence or absence of bullfrog tadpoles, and if overwintered Bd could be transmitted to tadpoles of two spring-breeding species: Pacific treefrogs (Pseudacris regilla) and Cascades frogs (Rana cascadae). We found that only 4 of 448 total animals (one bullfrog and three spring breeders) tested positive for Bd after overwintering. Moreover, two of the three infected spring breeders emerged from tanks that contained overwintered Bd but in the absence of infected bullfrogs. This suggests that Bd can persist over winter without bullfrogs as a reservoir host. We found no effect of Bd strain on bullfrog survival after overwintering. For Pacific treefrogs, Bd exposure did not significantly affect mass at or time to metamorphosis while exposure to bullfrogs reduced survival. For Cascades frogs, we found an interactive effect of Bd strain and bullfrog presence on time to metamorphosis, but no main or interactive effects on their survival or mass at metamorphosis. In short, bullfrog tadpoles rarely retained and transmitted Bd infection in our experiment and we found limited evidence that Bd successfully overwinters in the absence of bullfrog tadpoles and infects spring-breeding amphibians.
Collapse
|
25
|
Jacinto-Maldonado M, García-Peña G, Paredes-León R, Saucedo B, Sarmiento-Silva R, García A, Martínez-Gómez D, Ojeda M, Del Callejo E, Suzán G. Chiggers (Acariformes: Trombiculoidea) do not increase rates of infection by Batrachochytrium dendrobatidis fungus in the endemic Dwarf Mexican Treefrog Tlalocohyla smithii (Anura: Hylidae). Int J Parasitol Parasites Wildl 2020; 11:163-173. [PMID: 32099787 PMCID: PMC7031141 DOI: 10.1016/j.ijppaw.2019.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022]
Abstract
Amphibian populations are globally declining at an alarming rate, and infectious diseases are among the main causes of their decline. Two micro-parasites, the fungus Batrachochytrium dendrobatidis (Bd) and the virus Ranavirus (RV) have caused mass mortality of amphibians and population declines. Other, less understood epizootics are caused by macro-parasites, such as Trombiculoidea chiggers. Infection with chiggers can affect frog behavior and survival. Furthermore, synergistic effects of co-infection with both macro and micro-parasites may lead to higher morbidity. To better understand these potential synergies, we investigated the presence and co-infection by chiggers, Bd and RV in the endemic frog Tlalocohyla smithii (T. smithii). Co-infection of Bd, RV, and/or chiggers is expected in habitats that are suitable for their co-occurrence; and if infection with one parasite facilitates infection with the others. On the other hand, co-infection could decrease if these parasites were to differ in their micro-environmental requirements (i.e. niche apportionment). A total of 116 frogs of T. smithii were studied during 2014 and 2016 in three streams within the Chamela-Cuixmala Biosphere Reserve in Jalisco, Mexico. Our results show that 31% of the frogs were infected with Trombiculoidea chiggers (Hannemania sp. and Eutrombicula alfreddugesi); Hannemania prevalence increased with air temperature and decreased in sites with high canopies and with water pH values above 8.5 and below 6.7. Bd prevalence was 2.6%, RV prevalence was 0%, and none of the frogs infected with chiggers were co-infected with Bd. Together, this study suggests that chiggers do not facilitate infection with Bd, as these are apportioned in different micro-habitats. Nevertheless, the statistical power to assure this is low. We recommend further epidemiological monitoring of multiple parasites in different geographical locations in order to provide insight on the true hazards, risks and conservation options for amphibian populations.
Collapse
Affiliation(s)
- M. Jacinto-Maldonado
- The Complexity Sciences Center C3 Universidad Nacional Autónoma de México, Av. Universidad, 3000, Mexico City, Mexico
- Faculty of Veterinary Medicine, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 3000, Mexico City, Mexico
| | - G.E. García-Peña
- The Complexity Sciences Center C3 Universidad Nacional Autónoma de México, Av. Universidad, 3000, Mexico City, Mexico
- Faculty of Veterinary Medicine, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 3000, Mexico City, Mexico
| | - R. Paredes-León
- National Mite Collection, Biology Institute, Universidad Nacional Autónoma de México, Mexico
| | - B. Saucedo
- Animal Health Trust, Lanwades Park, CB87UU, Newmarket, United Kingdom
| | - R.E. Sarmiento-Silva
- Faculty of Veterinary Medicine, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 3000, Mexico City, Mexico
| | - A. García
- Chamela Biological Station, Biology Institute, San Patricio Melaque, 48980, La Huerta, Jalisco, Mexico
| | - D. Martínez-Gómez
- Department of Agriculture and Animal Production, Universidad Autónoma Metropolitana. Unit of Xochimilco. Prol, Canal de Miramontes, 3855, Mexico City, Mexico
| | - M. Ojeda
- National Mite Collection, Biology Institute, Universidad Nacional Autónoma de México, Mexico
| | - E. Del Callejo
- The Complexity Sciences Center C3 Universidad Nacional Autónoma de México, Av. Universidad, 3000, Mexico City, Mexico
| | - G. Suzán
- Faculty of Veterinary Medicine, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 3000, Mexico City, Mexico
| |
Collapse
|
26
|
Hammond TT, Blackwood PE, Shablin SA, Richards-Zawacki CL. Relationships between glucocorticoids and infection with Batrachochytrium dendrobatidis in three amphibian species. Gen Comp Endocrinol 2020; 285:113269. [PMID: 31493395 DOI: 10.1016/j.ygcen.2019.113269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
It is often hypothesized that organisms exposed to environmental change may experience physiological stress, which could reduce individual quality and make them more susceptible to disease. Amphibians are amongst the most threatened taxa, particularly in the context of disease, but relatively few studies explore links between stress and disease in amphibian species. Here, we use the fungal pathogen Batrachochytrium dendrobatidis (Bd) and amphibians as an example to explore relationships between disease and glucocorticoids (GCs), metabolic hormones that comprise one important component of the stress response. While previous work is limited, it has largely identified positive relationships between GCs and Bd-infection. However, the causality remains unclear and few studies have integrated both baseline (GC release that is related to standard, physiological functioning) and stress-induced (GC release in response to an acute stressor) measures of GCs. Here, we examine salivary corticosterone before and after exposure to a stressor, in both field and captive settings. We present results for Bd-infected and uninfected individuals of three amphibian species with differential susceptibilities to this pathogen (Rana catesbeiana, R. clamitans, and R. sylvatica). We hypothesized that prior to stress, baseline GCs would be higher in Bd-infected animals, particularly in more Bd-susceptible species. We also expected that after exposure to a stressor, stress-induced GCs would be lower in Bd-infected animals. These species exhibited significant interspecific differences in baseline and stress induced corticosterone, though other variables like sex, body size, and day of year were usually not predictive of corticosterone. In contrast to most previous work, we found no relationships between Bd and corticosterone for two species (R. catesbeiana and R. clamitans), and in the least Bd-tolerant species (R. sylvatica) animals exhibited context-dependent differences in relationships between Bd infection and corticosterone: Bd-positive R. sylvatica had significantly lower baseline and stress-induced corticosterone, with this pattern being stronger in the field than in captivity. These results were surprising, as past work in other species has more often found elevated GCs in Bd-positive animals, a pattern that aligns with well-documented relationships between chronically high GCs, reduced individual quality, and immunosuppression. This work highlights the potential relevance of GCs to disease susceptibility in the context of amphibian declines, while underscoring the importance of characterizing these relationships in diverse contexts.
Collapse
Affiliation(s)
- Talisin T Hammond
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA; San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Rd., Escondido, CA 92027, USA.
| | - Paradyse E Blackwood
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Samantha A Shablin
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Corinne L Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| |
Collapse
|
27
|
Rosa GM, Bosch J, Martel A, Pasmans F, Rebelo R, Griffiths RA, Garner TWJ. Sex‐biased disease dynamics increase extinction risk by impairing population recovery. Anim Conserv 2019. [DOI: 10.1111/acv.12502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. M. Rosa
- Durrell Institute of Conservation and Ecology School of Anthropology and Conservation University of Kent CanterburyKent UK
- Institute of Zoology Zoological Society of London Regent's ParkLondon UK
- Centre for Ecology, Evolution and Environmental Changes (CE3C)Faculdade de Ciências da Universidade de LisboaLisboa Portugal
| | - J. Bosch
- Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
| | - A. Martel
- Department of Pathology, Bacteriology and Avian Diseases Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - F. Pasmans
- Department of Pathology, Bacteriology and Avian Diseases Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - R. Rebelo
- Centre for Ecology, Evolution and Environmental Changes (CE3C)Faculdade de Ciências da Universidade de LisboaLisboa Portugal
| | - R. A. Griffiths
- Durrell Institute of Conservation and Ecology School of Anthropology and Conservation University of Kent CanterburyKent UK
| | - T. W. J. Garner
- Institute of Zoology Zoological Society of London Regent's ParkLondon UK
| |
Collapse
|
28
|
Amorim FO, Pimentel LA, Machado LF, Cavalcanti ADC, Napoli MF, Juncá FA. New records of Batrachochytrium dendrobatidis in the state of Bahia, Brazil: histological analysis in anuran amphibian collections. DISEASES OF AQUATIC ORGANISMS 2019; 136:147-155. [PMID: 31621647 DOI: 10.3354/dao03402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Infection caused by the fungus Batrachochytrium dendrobatidis (Bd) produces chytridiomycosis, a disease considered one of the main causes of amphibian population declines in the world. In Brazil, Bd has been recorded in several regions, but mainly in the Atlantic Forest biome. This study aimed to investigate the occurrence of Bd in amphibian species in Bahia State to test the hypothesis that Bd is widespread in other Brazilian biomes. Using histological analysis, we evaluated the skin of 190 anurans of 85 species preserved in herpetological collections. Based on these analyses, the distribution of Bd was extended approximately 400 km to the west, 150 km to the north and 105 km to the east in the state of Bahia. Of the 190 specimens analyzed, Bd infection was diagnosed in 16 individuals, from 14 species, with the earliest record from a specimen collected in 1996 in the Caatinga biome. We identified Bd in 13 adult specimens, including 2 individuals showing suggestive signs of the disease (loss of skin pigmentation). In tadpoles, we recorded fungal structures in the oral region and on the epidermis adjacent to the rows of teeth. The results of this study corroborate the prediction that Bd is widespread in the Atlantic Forest biome, and suggest that it is widespread in the other biomes of the state (Cerrado and Caatinga, at least since 1996). Conservation efforts should involve long-term studies aimed at providing information on the dynamics of the infection, its relationship with its host and its effect on amphibian populations.
Collapse
Affiliation(s)
- F O Amorim
- Institute of Biology, Federal University of Bahia - UFBA, Rua Barão de Jeremoabo, s/n, Ondina Campus, CEP 40170-115, Salvador, Bahia, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Bradley PW, Brawner MD, Raffel TR, Rohr JR, Olson DH, Blaustein AR. Shifts in temperature influence how Batrachochytrium dendrobatidis infects amphibian larvae. PLoS One 2019; 14:e0222237. [PMID: 31536533 PMCID: PMC6752834 DOI: 10.1371/journal.pone.0222237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
Many climate change models predict increases in frequency and magnitude of temperature fluctuations that might impact how ectotherms are affected by disease. Shifts in temperature might especially affect amphibians, a group with populations that have been challenged by several pathogens. Because amphibian hosts invest more in immunity at warmer than cooler temperatures and parasites might acclimate to temperature shifts faster than hosts (creating lags in optimal host immunity), researchers have hypothesized that a temperature shift from cold-to-warm might result in increased amphibian sensitivity to pathogens, whereas a shift from warm-to-cold might result in decreased sensitivity. Support for components of this climate-variability based hypothesis have been provided by prior studies of the fungus Batrachochytrium dendrobatidis (Bd) that causes the disease chytridiomycosis in amphibians. We experimentally tested whether temperature shifts before exposure to Batrachochytrium dendrobatidis (Bd) alters susceptibility to the disease chytridiomycosis in the larval stage of two amphibian species–western toads (Anaxyrus boreas) and northern red legged frogs (Rana aurora). Both host species harbored elevated Bd infection intensities under constant cold (15° C) temperature in comparison to constant warm (20° C) temperature. Additionally, both species experienced an increase in Bd infection abundance after shifted from 15° C to 20° C, compared to a constant 20° C but they experienced a decrease in Bd after shifted from 20° C to 15° C, compared to a constant 15° C. These results are in contrast to prior studies of adult amphibians highlighting the potential for species and stage differences in the temperature-dependence of chytridiomycosis.
Collapse
Affiliation(s)
- Paul W. Bradley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Michael D. Brawner
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| | - Thomas R. Raffel
- Department of Biology, Oakland University, Rochester, MI, United States of America
| | - Jason R. Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States of America
| | - Deanna H. Olson
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States of America
| | - Andrew R. Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
30
|
Bradley PW, Snyder PW, Blaustein AR. Host age alters amphibian susceptibility to Batrachochytrium dendrobatidis, an emerging infectious fungal pathogen. PLoS One 2019; 14:e0222181. [PMID: 31491016 PMCID: PMC6730893 DOI: 10.1371/journal.pone.0222181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
Parasites and pathogens are often aggregated in a minority of susceptible hosts within a population, with a majority of individuals harboring low infection intensities. However, determining the relative importance of host traits to explain this heterogeneity is a challenge. One ecologically important pathogen is Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis and has been associated with many amphibian population declines worldwide. For many hosts, post-metamorphic stages are generally more susceptible than the larval stage. Yet, examination of the effects of Bd infection at different ages within a life stage, has received little attention. This study investigated the hypothesis that recently-post-metamorphic frogs were more sensitive to chytridiomycosis than older frogs, and that sensitivity to Bd infection decreased as frogs aged. We examined this relationship with Pacific treefrogs (Pseudacris regilla) and red legged frogs (Rana aurora). Age had a strong effect on susceptibility to infection, infection intensity, and survival-but not in the directions we had predicted. In both host species, an increase in age was associated with frogs becoming more susceptible to Bd infection, harboring larger infection intensities, and greater risk of mortality. This suggests that the timing of Bd exposure may influence amphibian population dynamics.
Collapse
Affiliation(s)
- Paul W. Bradley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Paul W. Snyder
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Andrew R. Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
31
|
Endemic Infection of Batrachochytrium dendrobatidis in Costa Rica: Implications for Amphibian Conservation at Regional and Species Level. DIVERSITY 2019. [DOI: 10.3390/d11080129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Batrachochytrium dendrobatidis (Bd) has been associated with the severe declines and extinctions of amphibians in Costa Rica that primarily occurred during the 1980s and 1990s. However, the current impact of Bd infection on amphibian species in Costa Rica is unknown. We aimed to update the list of amphibian species in Costa Rica and evaluate the prevalence and infection intensity of Bd infection across the country to aid in the development of effective conservation strategies for amphibians. We reviewed taxonomic lists and included new species descriptions and records for a total of 215 amphibian species in Costa Rica. We also sampled for Bd at nine localities from 2015–2018 and combined these data with additional Bd occurrence data from multiple studies conducted in amphibian communities across Costa Rica from 2005–2018. With this combined dataset, we found that Bd was common (overall infection rate of 23%) across regions and elevations, but infection intensity was below theoretical thresholds associated with mortality. Bd was also more prevalent in Caribbean lowlands and in terrestrial amphibians with an aquatic larval stage; meanwhile, infection load was the highest in direct-developing species (forest and stream-dwellers). Our findings can be used to prioritize regions and taxonomic groups for conservation strategies.
Collapse
|
32
|
Rivera B, Cook K, Andrews K, Atkinson MS, Savage AE. Pathogen Dynamics in an Invasive Frog Compared to Native Species. ECOHEALTH 2019; 16:222-234. [PMID: 31332577 DOI: 10.1007/s10393-019-01432-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/10/2019] [Accepted: 05/09/2019] [Indexed: 06/10/2023]
Abstract
Emerging infectious diseases threaten the survival of wildlife populations and species around the world. In particular, amphibians are experiencing population declines and species extinctions primarily in response to two pathogens, the fungus Batrachochytrium dendrobatidis (Bd) and the iridovirus Ranavirus (Rv). Here, we use field surveys and quantitative (q)PCR to compare infection intensity and prevalence of Bd and Rv across species and seasons on Jekyll Island, a barrier island off the coast of Georgia, USA. We collected oral and skin swabs for 1 year from four anuran species and three families, including two native hylids (Hyla cinerea and Hyla squirella), a native ranid (Rana sphenocephala), and the invasive rain frog Eleutherodactylus planirostris. Bd infection dynamics did not vary significantly over sampling months, but Rv prevalence and intensity were significantly higher in fall 2014 compared to spring 2015. Additionally, Rv prevalence and intensity were significantly higher in E. planirostris than in the other three species. Our study highlights the potential role of invasive amphibians as drivers of disease dynamics and demonstrates the importance of pathogen surveillance across multiple time periods and species to accurately capture the infectious disease landscape.
Collapse
Affiliation(s)
- Brenda Rivera
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA
| | - Katrina Cook
- Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA
| | - Kimberly Andrews
- Odum School of Ecology, University of Georgia, UGA Marine Extension, Brunswick, GA, 31520, USA
| | - Matthew S Atkinson
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA
| | - Anna E Savage
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA.
| |
Collapse
|
33
|
Zumbado‐Ulate H, García‐Rodríguez A, Vredenburg VT, Searle C. Infection with Batrachochytrium dendrobatidis is common in tropical lowland habitats: Implications for amphibian conservation. Ecol Evol 2019; 9:4917-4930. [PMID: 31031954 PMCID: PMC6476760 DOI: 10.1002/ece3.5098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/24/2022] Open
Abstract
Numerous species of amphibians declined in Central America during the 1980s and 1990s. These declines mostly affected highland stream amphibians and have been primarily linked to chytridiomycosis, a deadly disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). Since then, the majority of field studies on Bd in the Tropics have been conducted in midland and highland environments (>800 m) mainly because the environmental conditions of mountain ranges match the range of ideal abiotic conditions for Bd in the laboratory. This unbalanced sampling has led researchers to largely overlook host-pathogen dynamics in lowlands, where other amphibian species declined during the same period. We conducted a survey testing for Bd in 47 species (n = 348) in four lowland sites in Costa Rica to identify local host-pathogen dynamics and to describe the abiotic environment of these sites. We detected Bd in three sampling sites and 70% of the surveyed species. We found evidence that lowland study sites exhibit enzootic dynamics with low infection intensity and moderate to high prevalence (55% overall prevalence). Additionally, we found evidence that every study site represents an independent climatic zone, where local climatic differences may explain variations in Bd disease dynamics. We recommend more detection surveys across lowlands and other sites that have been historically considered unsuitable for Bd occurrence. These data can be used to identify sites for potential disease outbreaks and amphibian rediscoveries.
Collapse
Affiliation(s)
| | - Adrián García‐Rodríguez
- Departamento de Zoología, Instituto de BiologíaUniversidad Nacional Autónoma de México (UNAM)Ciudad de MéxicoMéxico
- Escuela de BiologíaUniversidad de Costa RicaSan JoséCosta Rica
- Departamento de EcologiaUniversidade Federal do Rio Grande do NorteNatalBrazil
| | | | - Catherine Searle
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana
| |
Collapse
|
34
|
Barrow LN, McNew SM, Mitchell N, Galen SC, Lutz HL, Skeen H, Valqui T, Weckstein JD, Witt CC. Deeply conserved susceptibility in a multi-host, multi-parasite system. Ecol Lett 2019; 22:987-998. [PMID: 30912262 DOI: 10.1111/ele.13263] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/24/2019] [Accepted: 02/20/2019] [Indexed: 01/06/2023]
Abstract
Variation in susceptibility is ubiquitous in multi-host, multi-parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti-parasite defence. This demonstrates the importance of deep phylogeny for understanding present-day ecological interactions.
Collapse
Affiliation(s)
- Lisa N Barrow
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sabrina M McNew
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - Nora Mitchell
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Spencer C Galen
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Sackler Institute for Comparative Genomics & Richard Gilder Graduate School, American Museum of Natural History, New York, NY, 10024, USA.,Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA.,Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, 19103, USA
| | - Holly L Lutz
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA.,Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA.,Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Heather Skeen
- Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA.,Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Thomas Valqui
- Centro de Ornitología y Biodiversidad (CORBIDI), Lima, Perú
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA.,Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, 19103, USA.,Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA
| | - Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
35
|
Wersebe M, Blackwood P, Guo YT, Jaeger J, May D, Meindl G, Ryan SN, Wong V, Hua J. The effects of different cold-temperature regimes on development, growth, and susceptibility to an abiotic and biotic stressor. Ecol Evol 2019; 9:3355-3366. [PMID: 30962897 PMCID: PMC6434568 DOI: 10.1002/ece3.4957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 11/05/2022] Open
Abstract
Global climate change is expected to both increase average temperatures as well as temperature variability.Increased average temperatures have led to earlier breeding in many spring-breeding organisms. However, individuals breeding earlier will also face increased temperature fluctuations, including exposure to potentially harmful cold-temperature regimes during early developmental stages.Using a model spring-breeding amphibian, we investigated how embryonic exposure to different cold-temperature regimes (control, cold-pulse, and cold-press) affected (a) compensatory larval development and growth, (b) larval susceptibility to a common contaminant, and (c) larval susceptibility to parasites.We found: (a) no evidence of compensatory development or growth, (b) larvae exposed to the cold-press treatment were more susceptible to NaCl at 4-days post-hatching but recovered by 17-days post-hatching, and (c) larvae exposed to both cold treatments were less susceptible to parasites.These results demonstrate that variation in cold-temperature regimes can lead to unique direct and indirect effects on larval growth, development, and response to stressors. This underscores the importance of considering cold-temperature variability and not just increased average temperatures when examining the impacts of climate disruption.
Collapse
Affiliation(s)
- Matthew Wersebe
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Paradyse Blackwood
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Ying Tong Guo
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Jared Jaeger
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Dyllan May
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - George Meindl
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Sean N. Ryan
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Vivian Wong
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Jessica Hua
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| |
Collapse
|
36
|
Urbina J, Galeano SP, Bacigalupe LD, Flechas SV. Disease Ecology: Past and Present for a Better FutureXI Latin American Congress of Herpetology, Quito, Ecuador, July 24–28 2017. COPEIA 2019. [DOI: 10.1643/ch-18-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jenny Urbina
- Department of Fisheries and Wildlife, Oregon State University, 2820 SW Campus way, Corvallis, Oregon 97331; . Send reprint requests to this address
| | - Sandra P. Galeano
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Calle 28A 15-09, Bogotá, Colombia 111311
| | - Leonardo D. Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Sandra V. Flechas
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Calle 28A 15-09, Bogotá, Colombia 111311
| |
Collapse
|
37
|
DiRenzo GV, Zipkin EF, Grant EHC, Royle JA, Longo AV, Zamudio KR, Lips KR. Eco-evolutionary rescue promotes host-pathogen coexistence. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1948-1962. [PMID: 30368999 DOI: 10.1002/eap.1792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Emerging infectious pathogens are responsible for some of the most severe host mass mortality events in wild populations. Yet, effective pathogen control strategies are notoriously difficult to identify, in part because quantifying and forecasting pathogen spread and disease dynamics is challenging. Following an outbreak, hosts must cope with the presence of the pathogen, leading to host-pathogen coexistence or extirpation. Despite decades of research, little is known about host-pathogen coexistence post-outbreak when low host abundances and cryptic species make these interactions difficult to study. Using a novel disease-structured N-mixture model, we evaluate empirical support for three host-pathogen coexistence hypotheses (source-sink, eco-evolutionary rescue, and spatial variation in pathogen transmission) in a Neotropical amphibian community decimated by Batrachochytrium dendrobatidis (Bd) in 2004. During 2010-2014, we surveyed amphibians in Parque Nacional G. D. Omar Torríjos Herrera, Coclé Province, El Copé, Panama. We found that the primary driver of host-pathogen coexistence was eco-evolutionary rescue, as evidenced by similar amphibian survival and recruitment rates between infected and uninfected hosts. Average apparent monthly survival rates of uninfected and infected hosts were both close to 96%, and the expected number of uninfected and infected hosts recruited (via immigration/reproduction) was less than one host per disease state per 20-m site. The secondary driver of host-pathogen coexistence was spatial variation in pathogen transmission as we found that transmission was highest in areas of low abundance but there was no support for the source-sink hypothesis. Our results indicate that changes in the host community (i.e., through genetic or species composition) can reduce the impacts of emerging infectious disease post-outbreak. Our disease-structured N-mixture model represents a valuable advancement for conservation managers trying to understand underlying host-pathogen interactions and provides new opportunities to study disease dynamics in remnant host populations decimated by virulent pathogens.
Collapse
Affiliation(s)
- Graziella V DiRenzo
- Department of Biology, University of Maryland, College Park, Maryland, 20744, USA
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Elise F Zipkin
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Evan H Campbell Grant
- U.S. Geological Survey, Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Lab, Turners Falls, Massachusetts, 01376, USA
| | - J Andrew Royle
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, 20708-4017, USA
| | - Ana V Longo
- Department of Biology, University of Maryland, College Park, Maryland, 20744, USA
| | - Kelly R Zamudio
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, 14583, USA
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, Maryland, 20744, USA
| |
Collapse
|
38
|
Rumschlag SL, Boone MD. High juvenile mortality in amphibians during overwintering related to fungal pathogen exposure. DISEASES OF AQUATIC ORGANISMS 2018; 131:13-28. [PMID: 30324911 DOI: 10.3354/dao03277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The result of pathogen exposures may depend upon trade-offs in energetic demands for immune responses against host growth and survival. Environmental conditions may influence these trade-offs by affecting host size, or trade-offs may change across seasons, altering impacts of pathogens. We exposed northern leopard frog Lithobates pipiens tadpoles to different larval environments (low leaf litter, high density of conspecifics, atrazine, caged fish, or controls) that influenced size at metamorphosis. Subsequently, we exposed metamorphs to Batrachochytrium dendrobatidis (Bd), a fungal pathogen, just after metamorphosis and/or prior to overwintering 12 wk later. Bd exposure dramatically reduced survival during overwintering, with the strongest effects when hosts were exposed at both time points. Larval environments resulted in differences in host size. Those exposed to caged fish were 2.5 times larger than the smallest (those exposed to high density of conspecifics), but larval environment did not influence Bd effects on growth and survival. The largest frogs exposed to caged fish had greater survival through overwintering, but in the absence of Bd. We built stage-structured models to evaluate if overwinter mortality from Bd is capable of having effects on host populations. Our models suggest that Bd exposure after metamorphosis or before overwintering can reduce population growth rates. Our study demonstrates that hosts suffer little effects of Bd exposures following metamorphosis and that small body size did not hamper growth and survival. Instead, we provide evidence that winter mortality from Bd exposure is capable of reducing population sizes, providing a plausible mechanism for amphibian declines in temperate regions.
Collapse
|
39
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
40
|
Smith HK, Pasmans F, Dhaenens M, Deforce D, Bonte D, Verheyen K, Lens L, Martel A. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS One 2018; 13:e0199295. [PMID: 30020936 PMCID: PMC6051575 DOI: 10.1371/journal.pone.0199295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/05/2018] [Indexed: 11/18/2022] Open
Abstract
Recently emerged fungal diseases, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are an increasing threat to amphibians worldwide. In Europe, the threat of Bsal to salamander populations is demonstrated by the rapid decline of fire salamander populations in Germany, the Netherlands and Belgium. Although most European urodelans are susceptible to infection in infection trials, recent evidence suggests marked interspecific differences in the course of infection, with potentially far reaching implications for salamander conservation. As a salamander's skin is the first line of defense against such pathogens, interspecific differences in innate immune function of the skin may explain differential susceptibility. Here we investigate if compounds present on a salamander's skin can kill Bsal spores and if there is variation among species. We used a non-invasive assay to compare killing ability of salamander mucosomes of four different species (captive and wild Salamandra salamandra and captive Ichtyosaura alpestris, Cynops pyrrhogaster and Lissotriton helveticus) by exposing Bsal zoospores to salamander mucosomes and determining spore survival. In all samples, zoospores were killed when exposed to mucosomes. Moreover, we saw a significant variation in this Bsal killing ability of mucosomes between different salamander host species. Our results indicate that mucosomes of salamanders might provide crucial skin protection against Bsal, and could explain why some species are more susceptible than others. This study represents a step towards better understanding host species variation in innate immune function and disease susceptibility in amphibians.
Collapse
Affiliation(s)
- Hannah Keely Smith
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Maarten Dhaenens
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Faculty of Pharmaceutical Science, Ottergemsesteenweg, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Faculty of Pharmaceutical Science, Ottergemsesteenweg, Ghent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat, Ghent, Belgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsberge Steenweg, Gontrode, Belgium
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat, Ghent, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
41
|
Christie MR, Searle CL. Evolutionary rescue in a host-pathogen system results in coexistence not clearance. Evol Appl 2018; 11:681-693. [PMID: 29875810 PMCID: PMC5979755 DOI: 10.1111/eva.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/17/2017] [Indexed: 01/14/2023] Open
Abstract
The evolutionary rescue of host populations may prevent extinction from novel pathogens. However, the conditions that facilitate rapid evolution of hosts, in particular the population variation in host susceptibility, and the effects of host evolution in response to pathogens on population outcomes remain largely unknown. We constructed an individual-based model to determine the relationships between genetic variation in host susceptibility and population persistence in an amphibian-fungal pathogen (Batrachochytrium dendrobatidis) system. We found that host populations can rapidly evolve reduced susceptibility to a novel pathogen and that this rapid evolution led to a 71-fold increase in the likelihood of host-pathogen coexistence. However, the increased rates of coexistence came at a cost to host populations; fewer populations cleared infection, population sizes were depressed, and neutral genetic diversity was lost. Larger adult host population sizes and greater adaptive genetic variation prior to the onset of pathogen introduction led to substantially reduced rates of extinction, suggesting that populations with these characteristics should be prioritized for conservation when species are threatened by novel infectious diseases.
Collapse
Affiliation(s)
- Mark Redpath Christie
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
| | | |
Collapse
|
42
|
Opening the file drawer: Unexpected insights from a chytrid infection experiment. PLoS One 2018; 13:e0196851. [PMID: 29742111 PMCID: PMC5942794 DOI: 10.1371/journal.pone.0196851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/20/2018] [Indexed: 12/02/2022] Open
Abstract
Infection experiments are critical for understanding wildlife disease dynamics. Although infection experiments are typically designed to reduce complexity, disease outcomes still result from complex interactions between host, pathogen, and environmental factors. Cryptic variation across factors can lead to decreased repeatability of infection experiments within and between research groups and hinder research progress. Furthermore, studies with unexpected results are often relegated to the “file drawer” and potential insights gained from these experimental outcomes are lost. Here, we report unexpected results from an infection experiment studying the response of two differentially-susceptible but related frogs (American Bullfrog Rana catesbeiana and the Mountain yellow-legged frog Rana muscosa) to the amphibian-killing chytrid fungus (Batrachochytrium dendrobatidis, Bd). Despite well-documented differences in susceptibility between species, we found no evidence for antibody-mediated immune response and no Bd-related mortality in either species. Additionally, during the study, the sham-inoculated R. catesbeiana control group became unexpectedly Bd-positive. We used a custom genotyping assay to demonstrate that the aberrantly-infected R. catesbeiana carried a Bd genotype distinct from the inoculation genotype. Thus R. catesbeiana individuals were acquired with low-intensity infections that could not be detected with qPCR. In the Bd-inoculated R. catesbeiana treatment group, the inoculated genotype appeared to out-compete the cryptic infection. Thus, our results provide insight into Bd coinfection dynamics, a phenomenon that is increasingly relevant as different pathogen strains are moved around the globe. Our experiment highlights how unexpected experimental outcomes can serve as both cautionary tales and opportunities to explore unanswered research questions. We use our results as a case study to highlight common sources of anomalous results for infection experiments. We argue that understanding these factors will aid researchers in the design, execution, and interpretation of experiments to understand wildlife disease processes.
Collapse
|
43
|
Talbott K, Wolf TM, Sebastian P, Abraham M, Bueno I, McLaughlin M, Harris T, Thompson R, Pessier AP, Travis D. Factors influencing detection and co-detection of Ranavirus and Batrachochytrium dendrobatidis in Midwestern North American anuran populations. DISEASES OF AQUATIC ORGANISMS 2018; 128:93-103. [PMID: 29733024 DOI: 10.3354/dao03217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphibian populations are in decline worldwide as they face a barrage of challenges, including infectious diseases caused by ranaviruses and the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). Here we describe seasonal dynamics of Bd and ranavirus detection in free-ranging post-metamorphic wood frogs Lithobates sylvaticus, boreal chorus frogs Pseudacris maculata/triseriata, and gray treefrogs Hyla versicolor/chrysoscelis, sampled over a 3 season gradient in Minnesota (USA) wetlands. We detected Bd in 36% (n = 259) of individuals sampled in 3 wetlands in 2014, and 33% (n = 255) of individuals sampled in 8 wetlands in 2015. We also detected ranavirus in 60% and 18% of individuals sampled in 2014 and 2015, respectively. Ranavirus and Bd were detected concurrently in 26% and 2% of animals sampled in 2014 and 2015, respectively. We report clinical signs and associated infection status of sampled frogs; of the clinical signs observed, skin discoloration was significantly associated with ranavirus infection. Using generalized estimating equations, we found that species, season, wetland, and a species × season interaction term were significant predictors of Bd detection, whereas test year approached significance as a predictor of ranavirus detection. The odds of detecting both pathogens concurrently was significantly influenced by species, season, a species × season interaction term, year, and environmental ammonia. We propose an amphibian health monitoring scheme that couples population size surveys with seasonal molecular surveys of pathogen presence. This information is crucial to monitoring the health of remaining strongholds of healthy amphibian populations, as they face an uncertain future of further anthropogenic change.
Collapse
|
44
|
Hernández-Gómez O, Briggler JT, Williams RN. Influence of immunogenetics, sex and body condition on the cutaneous microbial communities of two giant salamanders. Mol Ecol 2018; 27:1915-1929. [PMID: 29411437 DOI: 10.1111/mec.14500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
The complex association between hosts and microbial symbionts requires the implementation of multiple approaches to evaluate variation in host physiology. Within amphibians, heterogeneity in immunogenetic traits and cutaneous microbiota is associated with variation in disease resistance. Ozark (Cryptobranchus alleganiensis bishopi) and eastern hellbenders (C. a. alleganiensis) provide a model system to assess variation in host traits and microbial communities. Ozark hellbenders have experienced declines throughout their range, are federally endangered and experience wound retardation that is absent in the eastern subspecies. Previous microbial investigations indicate differentiation in the composition of the skin microbiota of both hellbender subspecies, but it is not clear whether these patterns are concurrent with diversity in the major histocompatibility complex (MHC) genes. We characterized the MHC IIB and the skin microbiota of hellbenders in Missouri, where both subspecies co-occur though not sympatric. We compared the microbiota composition and MHC diversity between both subspecies and investigated whether individual-level MHC diversity, sex and body condition were associated with microbiota composition. Overall, MHC IIB diversity was lower in Ozark hellbenders compared to the eastern subspecies. Multivariate statistical comparisons identified microbiota differentiation between Ozark and eastern hellbenders. MHC IIB allele presence/absence, allele divergence, body composition and sex defined grouping of hellbender microbiotas within populations. Differentiation of the cutaneous microbiotas and MHC IIB genes between eastern and Ozark hellbenders suggests that differences exist in immunity between the two subspecies. This study demonstrates how simultaneous assessments of host genetic traits and microbiotas can inform patterns of microbial community structure in natural systems.
Collapse
Affiliation(s)
- Obed Hernández-Gómez
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | | | - Rod N Williams
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
45
|
Santymire RM, Manjerovic MB, Sacerdote-Velat A. A novel method for the measurement of glucocorticoids in dermal secretions of amphibians. CONSERVATION PHYSIOLOGY 2018; 6:coy008. [PMID: 29479435 PMCID: PMC5814794 DOI: 10.1093/conphys/coy008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 05/23/2023]
Abstract
Amphibians have been declining in both diversity and abundance due in large part to habitat degradation and the prevalence of emerging diseases. Although stressors can suppress the immune system, affecting an individual's health and susceptibility to pathogens, established methods for directly collecting stress hormones are not suitable for rapid field use or for use on threatened and endangered species. To overcome these challenges, we are developing an innovative method to collect and measure amphibian glucocorticoid secretions using non-invasive dermal swabs. We tested this methodology using multiple terrestrial, semi-aquatic and fully aquatic species. We swabbed the dorsal side of each animal six times and then induced a stressor of either hand-restraint, ACTH injection, or saline as a control. We then repeated swab collection immediately after the stressor and at 15, 30, 45, 60, 90 and 120 min intervals. Cortisol enzyme immunoassay detected changes in cortisol post-stressor. We also tested this methodology in the field and were successfully able to detect glucocorticoids from multiple species at varying life stages. When using in the field, capture technique should be considered since it may impact stress levels in certain species. Upon further testing, this novel method may be used to greatly increase our understanding of amphibian health especially as disease and environmental changes continue to impact fragile populations.
Collapse
Affiliation(s)
- R M Santymire
- Lincoln Park Zoo, Conservation & Science Department, 2001 N. Clark St., Chicago, IL 60614, USA
| | - M B Manjerovic
- Lincoln Park Zoo, Conservation & Science Department, 2001 N. Clark St., Chicago, IL 60614, USA
- Department of Biology, Virginia Military Institute, 301C Maury-Brooke Hall, Lexington, VA 24450, USA
| | - A Sacerdote-Velat
- The Chicago Academy of Sciences, Peggy Notebaert Nature Museum, 2430 North Cannon Drive, Chicago, IL 60614, USA
| |
Collapse
|
46
|
Grogan LF, Cashins SD, Skerratt LF, Berger L, McFadden MS, Harlow P, Hunter DA, Scheele BC, Mulvenna J. Evolution of resistance to chytridiomycosis is associated with a robust early immune response. Mol Ecol 2018; 27:919-934. [DOI: 10.1111/mec.14493] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/30/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Laura F. Grogan
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
- Griffith Wildlife Disease Ecology Group Environmental Futures Research Institute School of Environment Griffith University Nathan QLD Australia
- Genetics and Computational Biology QIMR Berghofer Medical Research Institute Brisbane QLD Australia
| | - Scott D. Cashins
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
| | - Lee F. Skerratt
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
| | - Lee Berger
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
| | | | - Peter Harlow
- Taronga Conservation Society Australia Mosman NSW Australia
| | - David A. Hunter
- Ecosystems and Threatened Species South West Region Office of Environment and Heritage NSW Department of Premier and Cabinet Queanbeyan NSW Australia
| | - Ben C. Scheele
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
- Fenner School of Environment and Society Australian National University Canberra ACT Australia
| | - Jason Mulvenna
- Genetics and Computational Biology QIMR Berghofer Medical Research Institute Brisbane QLD Australia
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| |
Collapse
|
47
|
Greenberg DA, Palen WJ, Mooers AØ. Amphibian species traits, evolutionary history and environment predict Batrachochytrium dendrobatidis infection patterns, but not extinction risk. Evol Appl 2017; 10:1130-1145. [PMID: 29151866 PMCID: PMC5680631 DOI: 10.1111/eva.12520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (B. dendrobatidis) has emerged as a major agent of amphibian extinction, requiring conservation intervention for many susceptible species. Identifying susceptible species is challenging, but many aspects of species biology are predicted to influence the evolution of host resistance, tolerance, or avoidance strategies towards disease. In turn, we may expect species exhibiting these distinct strategies to differ in their ability to survive epizootic disease outbreaks. Here, we test for phylogenetic and trait-based patterns of B. dendrobatidis infection risk and infection intensity among 302 amphibian species by compiling a global data set of B. dendrobatidis infection surveys across 95 sites. We then use best-fit models that associate traits, taxonomy and environment with B. dendrobatidis infection risk and intensity to predict host disease mitigation strategies (tolerance, resistance, avoidance) for 122 Neotropical amphibian species that experienced epizootic B. dendrobatidis outbreaks, and noted species persistence or extinction from these events. Aspects of amphibian species life history, habitat use and climatic niche were consistently linked to variation in B. dendrobatidis infection patterns across sites around the world. However, predicted B. dendrobatidis infection risk and intensity based on site environment and species traits did not reveal a consistent pattern between the predicted host disease mitigation strategy and extinction outcome. This suggests that either tolerant or resistant species may have no advantage in ameliorating disease during epizootic events, or that other factors drive the persistence of amphibian populations during chytridiomycosis outbreaks. These results suggest that using a trait-based approach may allow us to identify species with resistance or tolerance to endemic B. dendrobatidis infections, but that this approach may be insufficient to ultimately identify species at risk of extinction from epizootics.
Collapse
Affiliation(s)
- Dan A. Greenberg
- Department of Biological Sciences and Crawford Laboratory of Evolutionary StudiesSimon Fraser UniversityBurnabyBCCanada
- Department of Biological Sciences and Earth to Ocean Research GroupSimon Fraser UniversityBurnabyBCCanada
| | - Wendy J. Palen
- Department of Biological Sciences and Earth to Ocean Research GroupSimon Fraser UniversityBurnabyBCCanada
| | - Arne Ø. Mooers
- Department of Biological Sciences and Crawford Laboratory of Evolutionary StudiesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
48
|
Barnhart K, Forman ME, Umile TP, Kueneman J, McKenzie V, Salinas I, Minbiole KPC, Woodhams DC. Identification of Bufadienolides from the Boreal Toad, Anaxyrus boreas, Active Against a Fungal Pathogen. MICROBIAL ECOLOGY 2017; 74:990-1000. [PMID: 28631214 DOI: 10.1007/s00248-017-0997-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/12/2017] [Indexed: 05/25/2023]
Abstract
Amphibian granular glands provide a wide range of compounds on the skin that defend against pathogens and predators. We identified three bufadienolides-the steroid-like compounds arenobufagin, gamabufotalin, and telocinobufagin-from the boreal toad, Anaxyrus boreas, through liquid chromatography mass spectrometry (LC/MS). Compounds were detected both after inducing skin gland secretions and in constitutive mucosal rinses from toads. We described the antimicrobial properties of each bufadienolide against Batrachochytrium dendrobatidis (Bd), an amphibian fungal pathogen linked with boreal toad population declines. All three bufadienolides were found to inhibit Bd growth at similar levels. The maximum Bd inhibition produced by arenobufagin, gamabufotalin, and telocinobufagin were approximately 50%, in contrast to the complete Bd inhibition shown by antimicrobial skin peptides produced by some amphibian species. In addition, skin mucus samples significantly reduced Bd viability, and bufadienolides were detected in 15 of 62 samples. Bufadienolides also appeared to enhance growth of the anti-Bd bacterium Janthinobacterium lividum, and thus may be involved in regulation of the skin microbiome. Here, we localized skin bacteria within the mucus layer and granular glands of toads with fluorescent in situ hybridization. Overall, our results suggest that bufadienolides can function in antifungal defense on amphibian skin and their production is a potentially convergent trait similar to antimicrobial peptide defenses found on the skin of other species. Further studies investigating bufadienolide expression across toad populations, their regulation, and interactions with other components of the skin mucosome will contribute to understanding the complexities of amphibian immune defense.
Collapse
Affiliation(s)
- Kelly Barnhart
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Megan E Forman
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Thomas P Umile
- Division of Natural and Computational Science, Gwynedd Mercy University, Gwynedd Valley, PA, 19437, USA
| | - Jordan Kueneman
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122, UCB 334, Boulder, CO, 80309, USA
| | - Valerie McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122, UCB 334, Boulder, CO, 80309, USA
| | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| |
Collapse
|
49
|
Mulder KP, Cortazar-Chinarro M, Harris DJ, Crottini A, Campbell Grant EH, Fleischer RC, Savage AE. Evolutionary dynamics of an expressed MHC class IIβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:177-188. [PMID: 28587861 DOI: 10.1016/j.dci.2017.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.
Collapse
Affiliation(s)
- Kevin P Mulder
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA; CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Rua Padre Armando Quintas 7, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Maria Cortazar-Chinarro
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - D James Harris
- CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Rua Padre Armando Quintas 7, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Angelica Crottini
- CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Rua Padre Armando Quintas 7, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Evan H Campbell Grant
- United States Geological Survey, Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Lab, 1 Migratory Way, Turner Falls, MA 01376, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Anna E Savage
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA; Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA.
| |
Collapse
|
50
|
Adams AJ, Pessier AP, Briggs CJ. Rapid extirpation of a North American frog coincides with an increase in fungal pathogen prevalence: Historical analysis and implications for reintroduction. Ecol Evol 2017; 7:10216-10232. [PMID: 29238549 PMCID: PMC5723621 DOI: 10.1002/ece3.3468] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/06/2017] [Accepted: 08/19/2017] [Indexed: 01/14/2023] Open
Abstract
As extinctions continue across the globe, conservation biologists are turning to species reintroduction programs as one optimistic tool for addressing the biodiversity crisis. For repatriation to become a viable strategy, fundamental prerequisites include determining the causes of declines and assessing whether the causes persist in the environment. Invasive species-especially pathogens-are an increasingly significant factor contributing to biodiversity loss. We hypothesized that Batrachochytrium dendrobatidis (Bd), the causative agent of the deadly amphibian disease chytridiomycosis, was important in the rapid (<10 years) localized extirpation of a North American frog (Rana boylii) and that Bd remains widespread among extant amphibians in the region of extirpation. We used an interdisciplinary approach, combining interviews with herpetological experts, analysis of archived field notes and museum specimen collections, and field sampling of the extant amphibian assemblage to examine (1) historical relative abundance of R. boylii; (2) potential causes of R. boylii declines; and (3) historical and contemporary prevalence of Bd. We found that R. boylii were relatively abundant prior to their rapid extirpation, and an increase in Bd prevalence coincided with R. boylii declines during a time of rapid change in the region, wherein backcountry recreation, urban development, and the amphibian pet trade were all on the rise. In addition, extreme flooding during the winter of 1969 coincided with localized extirpations in R. boylii populations observed by interview respondents. We conclude that Bd likely played an important role in the rapid extirpation of R. boylii from southern California and that multiple natural and anthropogenic factors may have worked in concert to make this possible in a relatively short period of time. This study emphasizes the importance of recognizing historical ecological contexts in making future management and reintroduction decisions.
Collapse
Affiliation(s)
- Andrea J Adams
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| | - Allan P Pessier
- Department of Veterinary Microbiology and Pathology College of Veterinary Medicine Washington State University Pullman WA USA
| | - Cheryl J Briggs
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| |
Collapse
|