1
|
Wu JY, Huang LL, Fu JL, Li JY, Lin S, Yang S, Huang ZS, Wang H, Li Q. N-Halosuccinimide enables cascade oxidative trifluorination and halogenative cyclization of tryptamine-derived isocyanides. Nat Commun 2024; 15:8917. [PMID: 39414820 PMCID: PMC11484912 DOI: 10.1038/s41467-024-53271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Both the pyrroloindoline core and N-CF3 moiety hold significant importance in medicinal chemistry. However, to date, no instances of constructing N-CF3-containing pyrroloindolines have been reported. Herein, we present a robust and operationally simple approach to assembling such intriguing skeletons from tryptamine-derived isocyanides through a cascade sequence, which includes an oxidative trifluorination and a subsequent halogenative cyclization. Key to the success lies in the development of a facile conversion of isocyanides to N-CF3 moiety with commercially available reagents N-halosuccinimide and Et3N·HF. The protocol features mild reaction conditions, broad functional group tolerance, good to excellent yields, and high diastereoselectivities. In addition, we demonstrate that the halide substituent within the products serves as a versatile functional handle for accessing diverse C3-quaternary-substituted N-CF3-pyrroloindolines.
Collapse
Affiliation(s)
- Jun-Yunzi Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Long-Ling Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Luo Fu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Yi Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuang Lin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuang Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Honggen Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Qingjiang Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Verma P, Rezaei L, Govindarajan R, Greig NH, Donovan MD. Gastroretentive Delivery Approach to Address pH-Dependent Degradation of (+)- and (-)-Phenserine. AAPS PharmSciTech 2024; 25:198. [PMID: 39192157 DOI: 10.1208/s12249-024-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
(-)-Phenserine ("phenserine") and (+)-phenserine (posiphen; buntanetap) are longer-acting enantiomeric analogs of physostigmine with demonstrated promise in the treatment of Alzheimer's and Parkinson's diseases. Both enantiomers have short plasma half-lives, and their pharmacokinetics might be improved through the use of either once or twice-daily administration of an extended-release dosage form. Phenserine was observed to form a colored degradation product in near-neutral and alkaline pH environments, and at pH 7, the half-life of posiphen was determined to be ~ 9 h (40 °C). To limit luminal degradation which would reduce bioavailability, a gastroretentive tablet composed of a polyethylene oxide-xanthan gum matrix was developed. When placed in simulated gastric fluid (pH 1.2), approximately 70% of the phenserine was released over a 12 h period, and no degradants were detected in the release medium. In comparison, a traditional hydrophilic-matrix, extended-release tablet showed measurable amounts of phenserine degradation in a pH 7.2 medium over an 8 h release interval. These results confirm that a gastroretentive tablet can reduce the luminal degradation of phenserine or posiphen by limiting exposure to neutral pH conditions while providing sustained release of the drug over at least 12 h. Additional advantages of the gastroretentive tablet include reduced gastric and intestinal concentrations of the drug resulting from the slower release from the gastroretentive tablet which may also limit the occurrence of the dose-limiting GI side effects previously observed with immediate-release phenserine capsules.
Collapse
Affiliation(s)
- Pratishtha Verma
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Leyla Rezaei
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Ramprakash Govindarajan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Maureen D Donovan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
3
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
4
|
Cylinder DM, van Zundert AA, Solt K, van Swinderen B. Time to Wake Up! The Ongoing Search for General Anesthetic Reversal Agents. Anesthesiology 2024; 140:610-627. [PMID: 38349760 PMCID: PMC10868874 DOI: 10.1097/aln.0000000000004846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
How general anesthetics work remains a topic of ongoing study. A parallel field of research has sought to identify methods to reverse general anesthesia. Reversal agents could shorten patients' recovery time and potentially reduce the risk of postoperative complications. An incomplete understanding of the mechanisms of general anesthesia has hampered the pursuit for reversal agents. Nevertheless, the search for reversal agents has furthered understanding of the mechanisms underlying general anesthesia. The study of potential reversal agents has highlighted the importance of rigorous criteria to assess recovery from general anesthesia in animal models, and has helped identify key arousal systems (e.g., cholinergic, dopaminergic, and orexinergic systems) relevant to emergence from general anesthesia. Furthermore, the effects of reversal agents have been found to be inconsistent across different general anesthetics, revealing differences in mechanisms among these drugs. The presynapse and glia probably also contribute to general anesthesia recovery alongside postsynaptic receptors. The next stage in the search for reversal agents will have to consider alternate mechanisms encompassing the tripartite synapse.
Collapse
Affiliation(s)
- Drew M. Cylinder
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - André A.J. van Zundert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, U.S.A
- Department of Anaesthesia, Harvard Medical School, Boston, MA, U.S.A
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Chiew AL, Holford AG, Chan BSH, Isoardi KZ. Rivastigmine for the management of anticholinergic delirium. Clin Toxicol (Phila) 2024; 62:82-87. [PMID: 38465631 DOI: 10.1080/15563650.2024.2319854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Anticholinergic agents are commonly taken in overdose, often causing delirium. The spectrum of anticholinergic delirium ranges from mild agitation to severe behavioural disturbance. Physostigmine is an effective treatment for anticholinergic delirium, but its availability is limited. As rivastigmine is readily available, it has been used to manage anticholinergic delirium; however, there is limited research investigating its use. METHOD This was a retrospective review of patients with anticholinergic delirium treated in two toxicology units with rivastigmine (oral capsule or transdermal patch) from January 2019 to June 2023. The primary outcome was the use of further parenteral treatment (sedation or physostigmine) for delirium post rivastigmine administration. RESULTS Fifty patients were administered rivastigmine for the management of anticholinergic delirium. The median age was 36 years (interquartile range: 25-49 years) and 27 (54 per cent) were females. Features consistent with anticholinergic toxicity included tachycardia in 44 (88 per cent) and urinary retention requiring catheterisation in 40 (80 per cent). Forty-three patients (86 per cent) were treated with physostigmine before rivastigmine administration. Twenty-two were managed with transdermal rivastigmine (most commonly 9.5 mg/24 hour patch), and 28 with oral rivastigmine 6 mg. Further parenteral sedation and/or physostigmine treatment were required more often in patients given transdermal than oral rivastigmine [16/22 (73 per cent) versus 9/28 (32 per cent), P = 0.010)]. No patients had bradycardia or gastrointestinal symptoms following rivastigmine administration. One patient with a history of epilepsy had a seizure, 1.5 hours post physostigmine administration and 7 hours post transdermal rivastigmine. DISCUSSION Rivastigmine has been increasingly used for the management of patients with anticholinergic delirium, due to the lack of availability of physostigmine. In this case series, rivastigmine transdermal patch appeared to be less effective than oral rivastigmine capsules, likely due to its slow onset of action and/or insufficient dose. CONCLUSION Rivastigmine can be used to treat anticholinergic delirium. In our case series oral rivastigmine appeared more effective than transdermal rivastigmine.
Collapse
Affiliation(s)
- Angela L Chiew
- Department of Clinical Toxicology, Prince of Wales Hospital, Randwick, Australia
- Faculty of Medicine, Prince of Wales Hospital Clinical School, University of NSW, Randwick, Australia
| | - Amanda G Holford
- Clinical Toxicology Unit, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Betty S H Chan
- Department of Clinical Toxicology, Prince of Wales Hospital, Randwick, Australia
- Faculty of Medicine, Prince of Wales Hospital Clinical School, University of NSW, Randwick, Australia
| | - Katherine Z Isoardi
- Clinical Toxicology Unit, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Vaaland IC, López Ó, Puerta A, Fernandes MX, Padrón JM, Fernández-Bolaños JG, Sydnes MO, Lindbäck E. Investigation of the enantioselectivity of acetylcholinesterase and butyrylcholinesterase upon inhibition by tacrine-iminosugar heterodimers. J Enzyme Inhib Med Chem 2023; 38:349-360. [DOI: 10.1080/14756366.2022.2150762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- I. Caroline Vaaland
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez, La Laguna, Spain
| | - Miguel X. Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez, La Laguna, Spain
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez, La Laguna, Spain
| | | | - Magne O. Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Emil Lindbäck
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
7
|
Kobylarz D, Noga M, Frydrych A, Milan J, Morawiec A, Glaca A, Kucab E, Jastrzębska J, Jabłońska K, Łuc K, Zdeb G, Pasierb J, Toporowska-Kaźmierak J, Półchłopek S, Słoma P, Adamik M, Banasik M, Bartoszek M, Adamczyk A, Rędziniak P, Frączkiewicz P, Orczyk M, Orzechowska M, Tajchman P, Dziuba K, Pelczar R, Zima S, Nyankovska Y, Sowińska M, Pempuś W, Kubacka M, Popielska J, Brzezicki P, Jurowski K. Antidotes in Clinical Toxicology-Critical Review. TOXICS 2023; 11:723. [PMID: 37755734 PMCID: PMC10534475 DOI: 10.3390/toxics11090723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Poisoning and overdose are very important aspects in medicine and toxicology. Chemical weapons pose a threat to civilians, and emergency medicine principles must be followed when dealing with patients who have been poisoned or overdosed. Antidotes have been used for centuries and modern research has led to the development of new antidotes that can accelerate the elimination of toxins from the body. Although some antidotes have become less relevant due to modern intensive care techniques, they can still save lives or reduce the severity of toxicity. The availability of antidotes is crucial, especially in developing countries where intensive care facilities may be limited. This article aims to provide information on specific antidotes, their recommended uses, and potential risks and new uses. In the case of poisoning, supportive therapies are most often used; however, in many cases, the administration of an appropriate antidote saves the patient's life. In this review, we reviewed the literature on selected antidotes used in the treatment of poisonings. We also characterised the antidotes (bio)chemically. We described the cases in which they are used together with the dosage recommendations. We also analysed the mechanisms of action. In addition, we described alternative methods of using a given substance as a drug, an example of which is N-acetylcysteine, which can be used in the treatment of COVID-19. This article was written as part of the implementation of the project of the Polish Ministry of Education and Science, "Toxicovigilance, poisoning prevention, and first aid in poisoning with xenobiotics of current clinical importance in Poland", grant number SKN/SP/570184/2023.
Collapse
Affiliation(s)
- Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Justyna Milan
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Adrian Morawiec
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Agata Glaca
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Emilia Kucab
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Julia Jastrzębska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Karolina Jabłońska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Klaudia Łuc
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Gabriela Zdeb
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Jakub Pasierb
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Joanna Toporowska-Kaźmierak
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Szczepan Półchłopek
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Paweł Słoma
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Magdalena Adamik
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Mateusz Banasik
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Mateusz Bartoszek
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Aleksandra Adamczyk
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Patrycja Rędziniak
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Paulina Frączkiewicz
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Michał Orczyk
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Martyna Orzechowska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Paulina Tajchman
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Klaudia Dziuba
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Rafał Pelczar
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Sabina Zima
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Yana Nyankovska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Marta Sowińska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Wiktoria Pempuś
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Maria Kubacka
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Julia Popielska
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Patryk Brzezicki
- Toxicological Science Club ‘Paracelsus’, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland (E.K.); (G.Z.); (M.B.); (M.O.)
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
8
|
Zill NA, Du Y, Marinkovich S, Gu D, Seidel J, Zhang W. Bioactive Natural Product Discovery via Deuterium Adduct Bioactivity Screening. ACS Chem Biol 2023; 18:1192-1199. [PMID: 37125845 DOI: 10.1021/acschembio.3c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The discovery of bioactive natural products lies at the forefront of human medicine. The continued discovery of these molecules is imperative in the fight against infection and disease. While natural products have historically dominated the drug market, discovery in recent years has slowed significantly, partly due to limitations in current discovery methodologies. This work demonstrates a new workflow, deuterium adduct bioactivity screening (DABS), which pairs untargeted isotope labeling with whole cell binding assays for bioactive natural product discovery. DABS was validated and led to the discovery of a new isoprenyl guanidine alkaloid, zillamycin, which showed anti-cancer and anti-microbial activities. DABS thus represents a new workflow to accelerate discovery of natural products with a wide range of bioactive potentials.
Collapse
Affiliation(s)
- Nicholas A Zill
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Yongle Du
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Samantha Marinkovich
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Di Gu
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Jeremy Seidel
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
9
|
Fontaine JP, Lapointe V, Filliâtre M, Bélanger G. Synthesis of Substituted Indolines through Photocatalyzed Decarboxylative Radical Arylation. J Org Chem 2023; 88:6557-6564. [PMID: 36877887 DOI: 10.1021/acs.joc.2c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We report a new photocatalyzed remote alkyl radical generation and cyclization to prepare substituted indolines in a green, metal-free procedure. This method complements the Fischer indolization, metal-catalyzed couplings, and photocatalyzed radical addition and cyclization. A wide range of functional groups is tolerated, including aryl halides, that would not be compatible with most existing methods. Electronic bias and substitution were studied to demonstrate complete regiocontrol and high chemocontrol in the indoline formation.
Collapse
Affiliation(s)
- Jean-Philippe Fontaine
- Département de Chimie, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Vincent Lapointe
- Département de Chimie, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Marion Filliâtre
- Département de Chimie, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Guillaume Bélanger
- Département de Chimie, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
10
|
Amariei DA, Pozhydaieva N, David B, Schneider P, Classen T, Gohlke H, Weiergräber OH, Pietruszka J. Enzymatic C3-Methylation of Indoles Using Methyltransferase PsmD─Crystal Structure, Catalytic Mechanism, and Preparative Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Diana A. Amariei
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
| | - Nadiia Pozhydaieva
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
| | - Benoit David
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich 52426, Germany
| | - Pascal Schneider
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy Science Center (BioSC) Forschungszentrum Jülich, Jülich 52426, Germany
| | - Holger Gohlke
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich 52426, Germany
- Institute for Pharmaceutical and Medicinal Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Oliver H. Weiergräber
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
- Institute of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy Science Center (BioSC) Forschungszentrum Jülich, Jülich 52426, Germany
| |
Collapse
|
11
|
Wu J, Tongdee S, Cordier M, Darcel C. Selective Iron Catalyzed Synthesis of N-Alkylated Indolines and Indoles. Chemistry 2022; 28:e202201809. [PMID: 35700072 PMCID: PMC9796591 DOI: 10.1002/chem.202201809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/01/2023]
Abstract
Whereas iron catalysts usually promote catalyzed C3-alkylation of indole derivatives via a borrowing-hydrogen methodology using alcohols as the electrophilic partners, this contribution shows how to switch the selectivity towards N-alkylation. Thus, starting from indoline derivatives, N-alkylation was efficiently performed using a tricarbonyl(cyclopentadienone) iron complex as the catalyst in trifluoroethanol in the presence of alcohols leading to the corresponding N-alkylated indoline derivatives in 31-99 % yields (28 examples). The one-pot, two-step strategy for the selective N-alkylation of indolines is completed by an oxidation to give the corresponding N-alkylated indoles in 31-90 % yields (15 examples). This unprecedented oxidation methodology involves an iron salt catalyst associated with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) and a stoichiometric amount of t-BuOOH at room temperature.
Collapse
Affiliation(s)
- Jiajun Wu
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Satawat Tongdee
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Marie Cordier
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Christophe Darcel
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| |
Collapse
|
12
|
Ovariectomy reduces cholinergic modulation of excitatory synaptic transmission in the rat entorhinal cortex. PLoS One 2022; 17:e0271131. [PMID: 35939438 PMCID: PMC9359571 DOI: 10.1371/journal.pone.0271131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Estrogens are thought to contribute to cognitive function in part by promoting the function of basal forebrain cholinergic neurons that project to the hippocampus and cortical regions including the entorhinal cortex. Reductions in estrogens may alter cognition by reducing the function of cholinergic inputs to both the hippocampus and entorhinal cortex. In the present study, we assessed the effects of ovariectomy on proteins associated with cholinergic synapses in the entorhinal cortex. Ovariectomy was conducted at PD63, and tissue was obtained on PD84 to 89 to quantify changes in the degradative enzyme acetylcholinesterase, the vesicular acetylcholine transporter, and muscarinic M1 receptor protein. Although the vesicular acetylcholine transporter was unaffected, ovariectomy reduced both acetylcholinesterase and M1 receptor protein, and these reductions were prevented by chronic replacement of 17β-estradiol following ovariectomy. We also assessed the effects of ovariectomy on the cholinergic modulation of excitatory transmission, by comparing the effects of the acetylcholinesterase inhibitor eserine on evoked excitatory synaptic field potentials in brain slices obtained from intact rats, and from ovariectomized rats with or without 17β-estradiol replacement. Eserine is known to prolong the effects of endogenously released acetylcholine, resulting in an M1-like mediated reduction of glutamate release at excitatory synapses. The reduction in excitatory synaptic potentials in layer II of the entorhinal cortex induced by 15-min application of 10 μM eserine was greatly reduced in slices from ovariectomized rats as compared to intact rats and ovariectomized rats with replacement of 17β-estradiol. The reduced modulatory effect of eserine is consistent with the observed changes in cholinergic proteins, and suggests that reductions in 17β-estradiol following ovariectomy lead to impaired cholinergic function within the entorhinal cortex.
Collapse
|
13
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
14
|
Ma YH, Meng FX, Du JY, Wang RN, Fan YX, Su QQ. Diastereoselective Palladium-Catalyzed [4+1] Cycloadditions of 4-Vinyl-1,4-dihydro-2H-3,1-benzoxazin-2-ones with In Situ Formed Carbenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1561-5557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractHerein, we present a palladium-catalyzed tandem [4+1] cycloaddition of 4-vinyl-1,4-dihydro-2H-3,1-benzoxazin-2-ones with N-tosylhydrazones. The reaction is accomplished by merging the in situ generated aza-ortho-quinone methides (aza-o-QMs) with nucleophilic carbenes. This method enables the construction of diverse indolines with broad functional group compatibility in good yields with high levels of diastereoselectivity under mild conditions.
Collapse
|
15
|
Cheng H, Luo Y, Lam TL, Liu Y, Che CM. Visible-light-induced radical cascade reaction to prepare oxindoles via alkyl radical addition to N-arylacryl amides. Org Chem Front 2022. [DOI: 10.1039/d2qo01140a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photochemical approach towards oxindoles with C3 quaternary centers by the radical cascade reaction of α,β-unsaturated N-arylacryl amides with alkyl bromides or iodides upon visible light irradiation under mild reaction conditions was developed.
Collapse
Affiliation(s)
- Hanchao Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Yunfeng Luo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Tsz-Lung Lam
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories, Hong Kong, China
| |
Collapse
|
16
|
Cheng S, Luo Y, Yu T, Li J, Gan C, Luo S, Zhu Q. Palladium-Catalyzed Four-Component Cascade Imidoyl-Carbamoylation of Unactivated Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Yu Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| |
Collapse
|
17
|
Heravi MM, Amiri Z, Kafshdarzadeh K, Zadsirjan V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Adv 2021; 11:33540-33612. [PMID: 35497516 PMCID: PMC9042329 DOI: 10.1039/d1ra05972f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 02/02/2023] Open
Abstract
Indoles are a significant heterocyclic system in natural products and drugs. They are important types of molecules and natural products and play a main role in cell biology. The application of indole derivatives as biologically active compounds for the treatment of cancer cells, microbes, and different types of disorders in the human body has attracted increasing attention in recent years. Indoles, both natural and synthetic, show various biologically vital properties. Owing to the importance of this significant ring system, the investigation of novel methods of synthesis have attracted the attention of the chemical community. In this review, we aim to highlight the construction of indoles as a moiety in selected alkaloids.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Zahra Amiri
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Kosar Kafshdarzadeh
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
18
|
More SG, Kamble RB, Suryavanshi G. Oxidative Radical-Mediated Addition of Ethers to Quinone Imine Ketals: An Access to Hemiaminals. J Org Chem 2021; 86:2107-2116. [DOI: 10.1021/acs.joc.0c02254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Satish G. More
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rohit B. Kamble
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
19
|
Secci F, Porcu S, Rodriguez CA, Frongia A. A Catalytic One-Pot Synthesis of Indolyl Cyclobutanones. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA general strategy for the synthesis of indolyl cyclobutanones via a tandem Brønsted acid catalyzed 2-hydroxycyclobutanone activation–indole nucleophilic addition has been exploited. The procedure leads to a wide range of 2- and 3-functionalized indole derivatives in good to high yields with broad substrate scope.
Collapse
|
20
|
Agarwal M, Verma K, Kumar Tailor Y, Khandelwal S, Rushell E, Pathak S, Kumari Y, Awasthi K, Kumar M. Efficient and Sustainable Synthesis of Spiroannulated Hybrid Molecules with Privileged Substructures using Nanostructured Heterogeneous Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202003752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monu Agarwal
- Department of Chemistry University of Rajasthan Jaipur India
| | - Kanchan Verma
- Department of Chemistry University of Rajasthan Jaipur India
| | | | | | - Esha Rushell
- Department of Chemistry University of Rajasthan Jaipur India
| | - Sakshi Pathak
- Department of Chemistry University of Rajasthan Jaipur India
| | - Yogita Kumari
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Kamlendra Awasthi
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Mahendra Kumar
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
21
|
Burčul F, Blažević I, Radan M, Politeo O. Terpenes, Phenylpropanoids, Sulfur and Other Essential Oil Constituents as Inhibitors of Cholinesterases. Curr Med Chem 2020; 27:4297-4343. [PMID: 29600750 DOI: 10.2174/0929867325666180330092607] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022]
Abstract
Essential oils constituents are a diverse family of low molecular weight organic compounds with comprehensive biological activity. According to their chemical structure, these active compounds can be divided into four major groups: terpenes, terpenoids, phenylpropenes, and "others". In addition, they may contain diverse functional groups according to which they can be classified as hydrocarbons (monoterpenes, sesquiterpenes, and aliphatic hydrocarbons); oxygenated compounds (monoterpene and sesquiterpene alcohols, aldehydes, ketones, esters, and other oxygenated compounds); and sulfur and/or nitrogen containing compounds (thioesters, sulfides, isothiocyanates, nitriles, and others). Compounds that act as cholinesterase inhibitors still represent the only pharmacological treatment of Alzheimer´s disease. Numerous in vitro studies showed that some compounds, found in essential oils, have a promising cholinesterase inhibitory activity, such as α-pinene, δ-3-carene, 1,8-cineole, carvacrol, thymohydroquinone, α- and β-asarone, anethole, etc. This review summarizes the most relevant research published to date on essential oil constituents and their acetylcholinesterase/butyrylcholinesterase inhibitory potential as well as their structure related activity, synergistic and antagonistic effects.
Collapse
Affiliation(s)
- Franko Burčul
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Mila Radan
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Olivera Politeo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| |
Collapse
|
22
|
Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders. Int J Mol Sci 2020; 21:ijms21144918. [PMID: 32664647 PMCID: PMC7404387 DOI: 10.3390/ijms21144918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a key physiological phenomenon that can be pervasive when dysregulated. Persistent chronic inflammation precedes several pathophysiological conditions forming one of the critical cellular homeostatic checkpoints. With a steady global surge in inflammatory diseases, it is imperative to delineate underlying mechanisms and design suitable drug molecules targeting the cellular partners that mediate and regulate inflammation. Nicotinic acetylcholine receptors have a confirmed role in influencing inflammatory pathways and have been a subject of scientific scrutiny underlying drug development in recent years. Drugs designed to target allosteric sites on the nicotinic acetylcholine receptors present a unique opportunity to unravel the role of the cholinergic system in regulating and restoring inflammatory homeostasis. Such a therapeutic approach holds promise in treating several inflammatory conditions and diseases with inflammation as an underlying pathology. Here, we briefly describe the potential of cholinergic allosterism and some allosteric modulators as a promising therapeutic option for the treatment of neuroinflammation.
Collapse
|
23
|
Tao M, Tu Y, Liu Y, Wu H, Liu L, Zhang J. Pd/Xiang-Phos-catalyzed enantioselective intermolecular carboheterofunctionalization under mild conditions. Chem Sci 2020; 11:6283-6288. [PMID: 32953024 PMCID: PMC7473404 DOI: 10.1039/d0sc01391a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
A mild and practical Pd/Xiang-Phos-catalyzed enantioselective intermolecular carboheterofunctionalization reaction of 2,3-dihydrofurans is developed, leading to various optically active fused furoindolines and tetrahydrofurobenzofurans. The key to this transformation is employing two newly modified N-Me-Xiang-Phos ligands ((S, R S)- N-Me-X4/X5) as chiral ligands under mild conditions. Moreover, this synthetic methodology can be efficiently applied to a variety of complex polysubstituted heterocycles with high chemo-, regio-, and enantio-selectivities via introducing diverse substituents on furan rings, which were hard to access by other routes.
Collapse
Affiliation(s)
- Mengna Tao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , School of Chemistry and Molecular Engineering , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , P. R. China .
| | - Youshao Tu
- College of Chemistry and Life Science , Advanced Institute of Materials Science , Changchun University of Technology , 2055 Yanan Street , Changchun , 130012 , P. R. China
| | - Yu Liu
- College of Chemistry and Life Science , Advanced Institute of Materials Science , Changchun University of Technology , 2055 Yanan Street , Changchun , 130012 , P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , School of Chemistry and Molecular Engineering , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , P. R. China .
| | - Lu Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , School of Chemistry and Molecular Engineering , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , P. R. China .
| | - Junliang Zhang
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , P. R. China .
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , CAS , 345 Lingling Road , Shanghai 200032 , P. R. China
| |
Collapse
|
24
|
Heravi MM, Zadsirjan V, Hamidi H, Daraie M, Momeni T. Recent applications of the Wittig reaction in alkaloid synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 84:201-334. [PMID: 32416953 DOI: 10.1016/bs.alkal.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Wittig reaction is the chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (the Wittig reagent) to afford an alkene and triphenylphosphine oxide. Noteworthy, this reaction results in the synthesis of alkenes in a selective and predictable fashion. Thus, it became as one of the keystone of synthetic organic chemistry, especially in the total synthesis of natural products, where the selectivity of a reaction is paramount of importance. A literature survey disclosed the existence of vast numbers of related reports and comprehensive reviews on the applications of this important name reaction in the total synthesis of natural products. However, the aim of this chapter is to underscore, the applications of the Wittig reaction in the total synthesis of one the most important and prevalent classes of natural products, the alkaloids, especially those showing important and diverse biological activities.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran.
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Hoda Hamidi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Mansoureh Daraie
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| |
Collapse
|
25
|
Zlotin SG, Dalinger IL, Makhova NN, Tartakovsky VA. Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4908] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review addresses some promising areas of chemistry of nitro compounds extensively developed in recent years in Russia (particularly at the N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences) and worldwide. The most important results in the synthesis of novel energetic N-, C- and O-nitro compounds are summarized. New environmentally friendly approaches to the preparation of known compounds of this series, used as components of energetic compositions, are considered. Methods for selective transformations of various nitro compounds to valuable products of organic synthesis, primarily biologically active products and their precursors, are systematically analyzed.
The bibliography includes 446 references.
Collapse
|
26
|
Mei G, Tang X, Tasdan Y, Lu Y. Enantioselective Dearomatization of Indoles by an Azoalkene‐Enabled (3+2) Reaction: Access to Pyrroloindolines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guang‐Jian Mei
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xiwen Tang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yildiz Tasdan
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yixin Lu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou Fujian 359297 P. R. China
- National University of Singapore (Suzhou) Research Institute 377 Lin Quan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
27
|
Mei GJ, Tang X, Tasdan Y, Lu Y. Enantioselective Dearomatization of Indoles by an Azoalkene-Enabled (3+2) Reaction: Access to Pyrroloindolines. Angew Chem Int Ed Engl 2019; 59:648-652. [PMID: 31592562 DOI: 10.1002/anie.201911686] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/01/2019] [Indexed: 01/14/2023]
Abstract
The enantioselective dearomatization of indoles by an organocatalytic (3+2) reaction has been established. The reaction makes use of simple indole derivatives as substrates, and employs azoalkenes reaction partners. A wide range of pyrroloindolines containing an all-carbon quaternary stereogenic center were readily prepared in high yields and with excellent enantioselectivities.
Collapse
Affiliation(s)
- Guang-Jian Mei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Xiwen Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yildiz Tasdan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 359297, P. R. China.,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
28
|
Dai W, Sandoval IT, Cai S, Smith KA, Delacruz RGC, Boyd KA, Mills JJ, Jones DA, Cichewicz RH. Cholinesterase Inhibitory Arisugacins L-Q from a Penicillium sp. Isolate Obtained through a Citizen Science Initiative and Their Activities in a Phenotype-Based Zebrafish Assay. JOURNAL OF NATURAL PRODUCTS 2019; 82:2627-2637. [PMID: 31433188 DOI: 10.1021/acs.jnatprod.9b00563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenotype-based screening of a fungal extract library yielded an active sample from a Penicillium sp. isolate that impaired zebrafish motility. Bioassay-guided purification led to the identification of 14 meroterpenoids including six new metabolites, arisugacins L-Q (4, 5, 8, and 12-14), seven known arisugacins (1-3, 6, 7, 9, and 10), and one known terreulactone (11). Their structures were determined using a combination of NMR and HRESIMS data, evidence secured from theoretical and experimental ECD spectra, and the modified Mosher's method. The purified compounds were tested in zebrafish embryos, as well as in vitro for cholinesterase inhibition activities. Compound 12 produced defects in myotome structure (metameric muscle, which is critical for locomotion) in vivo and showed the most potent and selective acetylcholinesterase inhibitory activity with an IC50 of 191 nM in vitro. The phenotype assay was also used to reveal bioactivities for several previously reported arisugacins, which had failed to show activity in prior cell-based and in vitro testing. This study demonstrates that utilization of the zebrafish phenotype assay is an effective approach for the identification of bioactive extracts, is compatible with the bioassay-guided compound purification strategies, and offers a valuable tool for probing complex natural product sources to detect bioactive small molecules with potential therapeutic or other commercial applications.
Collapse
Affiliation(s)
- Wentao Dai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Imelda T Sandoval
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Shengxin Cai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Kaylee A Smith
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Richard Glenn C Delacruz
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Kevin A Boyd
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Jessica J Mills
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - David A Jones
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| |
Collapse
|
29
|
Turnu F, Luridiana A, Cocco A, Porcu S, Frongia A, Sarais G, Secci F. Catalytic Tandem Friedel–Crafts Alkylation/C4–C3 Ring-Contraction Reaction: An Efficient Route for the Synthesis of Indolyl Cyclopropanecarbaldehydes and Ketones. Org Lett 2019; 21:7329-7332. [DOI: 10.1021/acs.orglett.9b02617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Turnu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| | - Alberto Luridiana
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| | - Andrea Cocco
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| | - Stefania Porcu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| | - Angelo Frongia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| | - Giorgia Sarais
- Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, via Ospedale 82, 09124 Cagliari, Italy
| | - Francesco Secci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy
| |
Collapse
|
30
|
Continuous infusion of physostigmine in patients with perioperative septic shock: A pharmacokinetic/pharmacodynamic study with population pharmacokinetic modeling. Pharmacotherapy 2019; 118:109318. [PMID: 31398669 DOI: 10.1016/j.biopha.2019.109318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND In the context of the cholinergic anti-inflammatory pathway, the clinical trial Anticholium® per Se (EudraCT Number: 2012-001650-26, ClinicalTrials.gov NCT03013322) addressed the possibility of taking adjunctive physostigmine salicylate treatment in septic shock from bench to bedside. Pharmacokinetics (PK) are likely altered in critically ill patients; data on physostigmine PK and target concentrations are sparse, particularly for continuous infusion. Our objective was to build a population PK (popPK) model for physostigmine, and further evaluate pharmacodynamics (PD) and concentration-response relationship in this setting. METHODS In the randomized, double-blind, placebo-controlled trial, 20 patients with perioperative septic shock either received an initial dose of 0.04 mg/kg physostigmine salicylate, followed by continuous infusion of 1 mg/h for up to 120 h, or equivalent volumes of 0.9% sodium chloride (placebo group). Physostigmine plasma concentrations and acetylcholinesterase (AChE) activity were measured; concentration-response associations were evaluated, and popPK and PD modeling was performed with NONMEM. RESULTS Steady state physostigmine plasma concentrations reached 7.60 ± 2.81 ng/mL (mean ± standard deviation [SD]). PK was best described by a two-compartment model with linear clearance. Significant covariate effects were detected for body weight and age on clearance, as well as a high inter-individual variability of the central volume of distribution. AChE activity was significantly reduced to 30.5%-50.6% of baseline activity during physostigmine salicylate infusion. A sigmoidal direct effect PD model best described enzyme inhibition by physostigmine, with an estimated half maximal effective concentration (EC50) of 5.99 ng/mL. CONCLUSIONS PK of physostigmine in patients with septic shock displayed substantial inter-individual variability with body weight and age influencing the clearance. Physostigmine inhibited AChE activity with a sigmoidal concentration-response effect.
Collapse
|
31
|
Myers TM. Human plasma-derived butyrylcholinesterase is behaviorally safe and effective in cynomolgus macaques (Macaca fascicularis) challenged with soman. Chem Biol Interact 2019; 308:170-178. [DOI: 10.1016/j.cbi.2019.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
|
32
|
Pinder N, Bruckner T, Lehmann M, Motsch J, Brenner T, Larmann J, Knebel P, Hoppe-Tichy T, Swoboda S, Weigand MA, Hofer S, Zimmermann JB. Effect of physostigmine on recovery from septic shock following intra-abdominal infection - Results from a randomized, double-blind, placebo-controlled, monocentric pilot trial (Anticholium® per Se). J Crit Care 2019; 52:126-135. [PMID: 31035187 DOI: 10.1016/j.jcrc.2019.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE The cholinergic anti-inflammatory pathway has been shown to be accessible by physostigmine salicylate in animal models. However, the cholinesterase inhibitor is not approved for adjunctive therapy in sepsis, and tolerability and safety of high initial doses followed by continuous infusion have not been investigated. MATERIALS AND METHODS In this trial, 20 patients with perioperative septic shock due to intra-abdominal infection were eligible. The physostigmine group received an initial dose of 0.04 mg/kg physostigmine salicylate, followed by continuous infusion of 1 mg/h for 120 h; the placebo group was treated with 0.9% sodium chloride. Primary outcome was the mean Sequential Organ Failure Assessment (SOFA) score during treatment and up to 14 days. RESULTS Administration of physostigmine salicylate was well tolerated. Mean SOFA scores were 8.9 ± 2.5 and 11.3 ± 3.6 (mean ± SD) for physostigmine and placebo group, respectively. Adjusted for age, difference between means was not statistically significant (-2.37, 95% CI: -5.43 to 0.70, p = 0.121). Norepinephrine doses required only appeared lower in the physostigmine group (p = 0.064), along with a more rapid reduction from an elevated heart rate possibly indicating less hemodynamic instability. CONCLUSIONS Treatment with physostigmine salicylate was feasible and safe. Further studies are justified to assess the effect on recovery from septic shock. TRIAL REGISTRATION EudraCT Number 2012-001650-26, ClinicalTrials.gov identifier NCT03013322.
Collapse
Affiliation(s)
- Nadine Pinder
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; Pharmacy Department, Heidelberg University Hospital, Im Neuenheimer Feld 670, 69120 Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics (IMBI), Heidelberg University Hospital, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Monika Lehmann
- Coordination Centre for Clinical Trials (KKS), Heidelberg University Hospital, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Johann Motsch
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Phillip Knebel
- Department of General, Visceral, and Transplant Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Torsten Hoppe-Tichy
- Pharmacy Department, Heidelberg University Hospital, Im Neuenheimer Feld 670, 69120 Heidelberg, Germany
| | - Stefanie Swoboda
- Pharmacy Department, Heidelberg University Hospital, Im Neuenheimer Feld 670, 69120 Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Stefan Hofer
- Department of Anesthesiology, Kaiserslautern Westpfalz Hospital, Hellmut-Hartert-Straße 1, 67655 Kaiserslautern, Germany
| | - Johannes B Zimmermann
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Arens AM, Kearney T. Adverse Effects of Physostigmine. J Med Toxicol 2019; 15:184-191. [PMID: 30747326 DOI: 10.1007/s13181-019-00697-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Physostigmine is a tertiary amine carbamate acetylcholinesterase inhibitor. Its ability to cross the blood-brain barrier makes it an effective antidote to reverse anticholinergic delirium. Physostigmine is underutilized following the publication of patients with sudden cardiac arrest after physostigmine administration in patients with tricyclic antidepressant (TCA) overdoses. We completed a narrative literature review to identify reported adverse effects associated with physostigmine administration. DISCUSSION One hundred sixty-one articles and a total of 2299 patients were included. Adverse effects occurred in 415 (18.1%) patients. Hypersalivation (206; 9.0%) and nausea and vomiting (96; 4.2%) were the most common adverse effects. Fifteen (0.61%) patients had seizures, all of which were self-limited or treated successfully without complication. Symptomatic bradycardia occurred in 8 (0.35%) patients including 3 patients with bradyasystolic arrests. Ventricular fibrillation occurred in one (0.04%) patient with underlying coronary artery disease. Of the 394 patients with TCA overdose, adverse effects were described in 14 (3.6%). Adverse effects occurred in 7.7% of patients treated with an overdose of an anticholinergic agent compared with 20.6% of patients with non-anticholinergic agents. Five (0.22%) fatalities were identified. CONCLUSIONS In conclusion, significant adverse effects associated with the use of physostigmine were infrequently reported. Seizures were self-limited or resolved with benzodiazepines, and all patients recovered neurologically intact. Physostigmine should be avoided in patients with QRS prolongation on EKG, and caution should be used in patients with a history of coronary artery disease and overdoses with QRS prolonging medications. Based upon our review, physostigmine is a safe antidote to treat anticholinergic overdose.
Collapse
Affiliation(s)
- Ann M Arens
- Minnesota Poison Control System, Minneapolis, MN, USA. .,Hennepin Healthcare, Department of Emergency Medicine, Hennepin County Medical Center, 701 Park Avenue, MC-R2, Minneapolis, MN, 55415, USA.
| | - Tom Kearney
- California Poison Control System, San Francisco Division, San Francisco, CA, USA.,San Francisco School of Pharmacy, University of California, San Francisco, CA, USA
| |
Collapse
|
34
|
Novel Approach for the Search for Chemical Scaffolds with Dual Activity with Acetylcholinesterase and the α7 Nicotinic Acetylcholine Receptor-A Perspective for the Treatment of Neurodegenerative Disorders. Molecules 2019; 24:molecules24030446. [PMID: 30691196 PMCID: PMC6384821 DOI: 10.3390/molecules24030446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/29/2023] Open
Abstract
Neurodegenerative disorders, including Alzheimer’s disease, belong to the group of the most difficult and challenging conditions with very limited treatment options. Attempts to find new drugs in most cases fail at the clinical stage. New tactics to develop better drug candidates to manage these diseases are urgently needed. It is evident that better understanding of the neurodegeneration process is required and targeting multiple receptors may be essential. Herein, we present a novel approach, searching for dual active compounds interacting with acetylcholinesterase (AChE) and the α7 nicotinic acetylcholine receptor (nAChR) using computational chemistry methods including homology modelling and high throughput virtual screening. Activities of identified hits were evaluated at the two targets using the colorimetric method of Ellman and two-electrode voltage-clamp electrophysiology, respectively. Out of 87,250 compounds from a ZINC database of natural products and their derivatives, we identified two compounds, 8 and 9, with dual activity and balanced IC50 values of 10 and 5 µM at AChE, and 34 and 14 µM at α7 nAChR, respectively. This is the first report presenting successful use of virtual screening in finding compounds with dual mode of action inhibiting both the AChE enzyme and the α7 nAChR and shows that computational methods can be a valuable tool in the early lead discovery process.
Collapse
|
35
|
Brewster JT, Dell’Acqua S, Thach DQ, Sessler JL. Classics in Chemical Neuroscience: Donepezil. ACS Chem Neurosci 2019; 10:155-167. [PMID: 30372021 DOI: 10.1021/acschemneuro.8b00517] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The discovery of acetylcholine and acetylcholinesterase provided the first insight into the intricacies of chemical signal transduction and neuronal communication. Further elucidation of the underlying mechanisms led to an attendant leveraging of this knowledge via the synthesis of new therapeutics designed to control aberrant biochemical processes. The central role of the cholinergic system within human memory and learning, as well as its implication in Alzheimer's disease, has made it a point of focus within the neuropharmacology and medicinal chemistry communities. This review is focused on donepezil and covers the background, synthetic routes, structure-activity relationships, binding interactions with acetylcholinesterase, pharmacokinetics and metabolism, efficacy, adverse effects, and historical importance of this leading therapeutic in the treatment of Alzheimer's disease and true Classic in Chemical Neuroscience.
Collapse
Affiliation(s)
- James T. Brewster
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Simone Dell’Acqua
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Danny Q. Thach
- Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
36
|
Wang Z, Li P, Fu H, Dai Q, Hu C. Palladium‐Catalyzed Synthesis of Indolines from Aroyloxycarbamates through a Tandem Decarboxylative Amination/Heck/Annulation Reaction. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheng Wang
- Key Laboratory of Cluster Science of Ministry of EducationBeijing Key Laboratory of Photoelectronic/ElectrophotonicSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| | - Peihe Li
- Key Laboratory of Cluster Science of Ministry of EducationBeijing Key Laboratory of Photoelectronic/ElectrophotonicSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| | - Hui Fu
- Key Laboratory of Cluster Science of Ministry of EducationBeijing Key Laboratory of Photoelectronic/ElectrophotonicSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| | - Qipu Dai
- Key Laboratory of Cluster Science of Ministry of EducationBeijing Key Laboratory of Photoelectronic/ElectrophotonicSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| | - Changwen Hu
- Key Laboratory of Cluster Science of Ministry of EducationBeijing Key Laboratory of Photoelectronic/ElectrophotonicSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| |
Collapse
|
37
|
da Fonseca SF, Mendonça VA, Silva SB, Domingues TE, Melo DS, Martins JB, Pires W, Santos CFF, de Fátima Pereira W, Leite LHR, Coimbra CC, Leite HR, Lacerda ACR. Central cholinergic activation induces greater thermoregulatory and cardiovascular responses in spontaneously hypertensive than in normotensive rats. J Therm Biol 2018; 77:86-95. [PMID: 30196904 DOI: 10.1016/j.jtherbio.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
There is evidence that central cholinergic stimulation increases heat dissipation in normotensive rats besides causing changes on the cardiovascular system via modulation of baroreceptors activity. However, the contribution of the central cholinergic system on thermoregulatory responses and its relationship with cardiovascular adjustments in spontaneously hypertensive rats (SHRs), an animal model of reduced baroreceptor sensitivity and thermoregulatory deficit, has not been completely clarified. Therefore, the aim of this study was to verify the involvement of the central cholinergic system in cardiovascular and thermoregulatory adjustments in SHRs. Male Wistar rats (n = 17) and SHRs (n = 17) were implanted with an intracerebroventricular cannula for injections of 2 µL of physostigmine (phy) or saline solution. Tail temperature (Ttail), internal body temperature (Tint), systolic arterial pressure (SAP), heart rate (HR) and metabolic rate were registered during 60 min while the animals remained at rest after randomly receiving the injections. The variability of the SAP and the HR was estimated by the fast Fourier transform. Phy treatment began a succession of cardiovascular and thermoregulatory responses that resulted in increased SAP, reduced HR and increased Ttail in both Wistar and SHRs groups. The magnitude of these effects seems to be more intense in SHRs, since the improvement of heat dissipation reflected in Tint. Taken together, these results provide evidence that hypertensive rats present greater cardiovascular and thermoregulatory responses than normotensive rats after central cholinergic stimulation.
Collapse
Affiliation(s)
- Sueli Ferreira da Fonseca
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Vanessa Amaral Mendonça
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Sara Barros Silva
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Talita Emanuela Domingues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Dirceu Sousa Melo
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Jeanne Brenda Martins
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Washington Pires
- Departamento de Educação Física, Universidade Federal de Juiz de Fora (UFJF), Campus Governador Valadares, Minas Gerais, Brazil
| | | | - Wagner de Fátima Pereira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Laura Hora Rios Leite
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Hércules Ribeiro Leite
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Ana Cristina Rodrigues Lacerda
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil.
| |
Collapse
|
38
|
Lorke DE, Petroianu GA. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J Appl Toxicol 2018; 39:101-116. [PMID: 30027640 DOI: 10.1002/jat.3662] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023]
Abstract
Organophosphorus compounds (OPCs), inhibitors of acetylcholinesterase (AChE), are useful agents as pesticides, but also represent a serious health hazard. Standard therapy with atropine and established oxime-type enzyme reactivators (pralidoxime, obidoxime) is unsatisfactory. Better therapeutic results are obtained, when reversible AChE inhibitors are administered before OPC exposure. This review summarizes the history of such a pretreatment approach and sums up a set of experiments undertaken in search of compounds that are efficacious when given before a broad range of OPCs. The prophylactic efficacy of 10 known AChE inhibitors, either already used clinically for different indications (physostigmine, pyridostigmine, ranitidine, tiapride, tacrine, amiloride, metoclopramide, methylene blue) or developed for possible therapeutic use in the future (7-methoxytacrine, K-27) was compared, when administered before exposure to six chemically diverse OPCs in the same experimental setting: ethyl-paraoxon, methyl-paraoxon, diisopropylfluorophosphate, terbufos sulfone, azinphos-methyl and dicrotophos. The experimental oxime K-27 was the most efficacious compound, affording best protection, when administered before terbufos sulfone, azinphos-methyl and dicrotophos, second best before ethyl- and methyl-paraoxon exposure and third best before diisopropylfluorophosphate administration. This ranking was similar to that of physostigmine, which was superior to the Food and Drug Administration-approved pretreatment for soman with pyridostigmine. Tiapride, amiloride, metoclopramide, methylene blue and 7-methoxytacrine did not achieve protection. No correlation was observed between the IC50 of the reversible AChE inhibitors and their protective efficacy. These studies indicate that K-27 can be considered a very promising broad-spectrum prophylactic agent in case of imminent organophosphate exposure, which may be related to its AChE reactivating activity rather than its AChE inhibition.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Georg A Petroianu
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
39
|
In Vitro Anti-Cholinesterase and Antioxidant Activity of Extracts of Moringa oleifera Plants from Rivers State, Niger Delta, Nigeria. MEDICINES 2018; 5:medicines5030071. [PMID: 29976887 PMCID: PMC6164601 DOI: 10.3390/medicines5030071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023]
Abstract
This study evaluated Moringa oleifera extracts from two locations in Niger Delta for in vitro anti-cholinesterase and antioxidant activities. Methanolic, aqueous and ethanolic extracts of Moringa oleifera were evaluated for inhibition of acetylcholinesterase (AChE) activity, antioxidant properties, and total phenolic and flavonoid contents using standard procedures. M. oleifera extracts possessed significant and concentration dependent AChE inhibitory activity for methanolic, aqueous, and ethanolic extracts. For the most potent extracts, the percentage AChE inhibition/IC50 (µg/mL) values were Moringa oleifera root methanolic extracts (MORME): ~80%/0.00845; Moringa oleifera root ethanolic extract 1 (MOREE1): ~90%/0.0563; Moringa oleifera root ethanolic extract 2 (MOREE2): ~70%/0.00175; and Moringa oleifera bark ethanolic extract (MOBEE): ~70%/0.0173. The descending order of AChE inhibitory potency of plant parts were: root > bark > leaf > flowers > seed. All M. oleifera methanolic extracts at a concentration of 1000 µg/mL displayed significant (p < 0.05–0.001) DPPH radical scavenging activity, with values of ~20–50% of that of ascorbic acid. The total phenolic content and total flavonoid content (TPC/TFC) of MORME, Moringa Oju bark methanolic extract (MOBME), MOREE1, MOREE2 and Moringa leaf ethanolic leaf extract (MLEE) were (287/254), (212/113), (223/185), (203/343) and (201/102) mg gallic acid equivalents/g and quercetin equivalents/g, respectively. There was an inverse correlation between plant extract AChE inhibition and total phenolic (p < 0.0001) and total flavonoid contents (p < 0.0012). In summary, this study revealed 5 of 19 extracts of M. oleifera that have potent in vitro anti-cholinesterase and antioxidant activities.
Collapse
|
40
|
Moncaleano-Niño AM, Luna-Acosta A, Gómez-Cubillos MC, Villamil L, Ahrens MJ. Cholinesterase activity in the cup oyster Saccostrea sp. exposed to chlorpyrifos, imidacloprid, cadmium and copper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:242-254. [PMID: 29353174 DOI: 10.1016/j.ecoenv.2017.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the sensitivity and concentration dependence of three functionally-defined components of cholinesterase activity (total: T-ChE; eserine-sensitive: Es-ChE; and eserine-resistant: Er-ChE) were quantified in the gill, digestive gland and adductor muscle of the tropical cup oyster Saccostrea sp., following acute (96h) aqueous exposure to commercial formulations of the organophosphate (OP) insecticide chlorpyrifos and the neonicotinoid (NN) imidacloprid (concentration range: 0.1-100mg/L), as well as to dissolved cadmium and copper (concentration range: 1-1000μg/L). Oysters (1.5-5.0cm shell length), field-collected from a boating marina in Santa Marta, Colombia (Caribbean Sea) were exposed in the laboratory to each substance at five concentrations. T-ChE, Es-ChE, and Er-ChE activity were quantified in the three tissues in pools of 5 individuals (3 replicates per concentration), before and after inhibition with the total cholinesterase inhibitor eserine (physostigmine, 100µM). Oysters exposed to chlorpyrifos, imidacloprid and Cd showed reduced T-ChE and Es-ChE activity in gills at highest exposure concentrations, with Es-ChE activity being inhibited proportionally more so than T-ChE, whereas Er-ChE activity showed no significant concentration-response. Digestive gland also showed diminished T-ChE, Es-ChE and Er-ChE activity for highest chlorpyrifos and Cd concentrations relative to controls, but an increase of T-ChE and Er-ChE activity at the highest imidacloprid concentration (100mg/L). For Cu, T-ChE, Es-ChE and Er-ChE activities in gills and digestive gland were elevated relative to controls in oysters exposed to Cu concentrations > 100µg/L. In adductor muscle, T-ChE, Es-ChE and Er-ChE activity showed no apparent pattern for any of the four xenobiotics and concentration levels tested. Although this study confirms acute (96h) concentration-dependent reduction of tissue T-ChE and Es-ChE activity in gills and digestive glands of Saccostrea sp. exposed to high concentrations of chlorpyrifos (100mg/L), significant changes in T-ChE, Es-ChE and Er-ChE were also caused by exposure to Cd and Cu at concentrations > 100µg/L and by exposure to imidacloprid (100mg/L), indicating that cholinesterase activity is not a specific biomarker of organophosphate exposure in this species, but, rather, a biomarker of diverse xenobiotic exposure.
Collapse
Affiliation(s)
- Angela M Moncaleano-Niño
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Andrea Luna-Acosta
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Maria Camila Gómez-Cubillos
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Luisa Villamil
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Michael J Ahrens
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia.
| |
Collapse
|
41
|
Cole JB, Orozco BS, Arens AM. Physostigmine Reversal of Dysarthria and Delirium After Iatrogenic Atropine Overdose From a Dental Procedure. J Emerg Med 2018; 54:e113-e115. [PMID: 29681419 DOI: 10.1016/j.jemermed.2018.02.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Sublingual atropine, dosed at 0.4-0.8 mg, is used by dentists as an antisialogogue to facilitate and increase the speed of procedures. Concentrated ophthalmic atropine drops (10 mg/mL) are commonly used off-label for this purpose. These highly concentrated drops may result in medication errors, atropine toxicity, and the antimuscarinic toxidrome. We report a case of a man who suffered acute delirium and dysarthria (from dry mouth) after an iatrogenic overdose from a dental procedure. His symptoms were initially interpreted as a stroke, but they completely resolved with physostigmine. CASE REPORT A 57-year-old man presented with acute dysarthria and delirium after a dental procedure; 4 hours earlier he was fitted for a temporary replacement of some premolar/molar teeth. He received sublingual atropine to assist in gingival drying for molding of his prosthesis, but a calculation error resulted in the administration of approximately 113 mg. A stroke evaluation was initially planned; however, 2.5 mg of intravenous physostigmine completely reversed his symptoms. His symptoms reoccurred and were successfully treated twice more with physostigmine; the patient was observed overnight with no additional symptoms and safely discharged the next morning. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Ophthalmic atropine drops are highly concentrated and may cause an overdose after ingestion of small amounts. This novel case highlights the importance of considering antimuscarinic poisoning in cases of acute delirium or dysarthria after dental procedures and stands as a reminder to inquire about the use of atropine drops in such cases. Timely recognition of the antimuscarinic toxidrome and appropriate use of physostigmine may prevent unnecessary testing while providing an effective therapy. This case also highlights the need for observation after resolution of delirium treated with physostigmine.
Collapse
Affiliation(s)
- Jon B Cole
- Department of Emergency Medicine, Hennepin County Medical Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Benjamin S Orozco
- Department of Emergency Medicine, Hennepin County Medical Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ann M Arens
- Department of Emergency Medicine, Hennepin County Medical Center, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
42
|
Zhang G, Cang A, Wang Y, Li Y, Xu G, Zhang Q, Xiong T, Zhang Q. Copper-Catalyzed Diastereo- and Enantioselective Borylative Cyclization: Synthesis of Enantioenriched 2,3-Disubstituted Indolines. Org Lett 2018. [DOI: 10.1021/acs.orglett.8b00246] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Aijie Cang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guoxing Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
43
|
Kanyiva KS, Makino S, Shibata T. Silver-Catalyzed Efficient Synthesis of Oxindoles and Pyrroloindolines via α-Aminoalkylation of N
-Arylacrylamides with Amino Acid Derivatives. Chem Asian J 2018; 13:496-499. [DOI: 10.1002/asia.201701739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Kyalo Stephen Kanyiva
- Global Center for Science and Engineering, School of Advanced Science and Engineering; Waseda University; Shinjuku Tokyo 169-8555 Japan
| | - Sohei Makino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering; Waseda University; Shinjuku Tokyo 169-8555 Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering; Waseda University; Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
44
|
Cao B, Wei Y, Shi M. Indium(iii)-catalyzed intramolecular dearomative cycloaddition ofN-sulfonylaziridines to indoles: facile synthesis of tetracyclic pyrroloindoline skeletons. Org Chem Front 2018. [DOI: 10.1039/c7qo00882a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A facile and versatile indium(iii)-catalyzed intramolecular dearomative cycloaddition ofN-sulfonylaziridines to indoles has been developed, selectively giving rigid tetracyclic pyrroloindoline skeletons in moderate to good yields.
Collapse
Affiliation(s)
- Bo Cao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
45
|
Insight into the Mode of Action of Celangulin V on the Transmembrane Potential of Midgut Cells in Lepidopteran Larvae. Toxins (Basel) 2017; 9:toxins9120393. [PMID: 29210984 PMCID: PMC5744113 DOI: 10.3390/toxins9120393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 01/16/2023] Open
Abstract
Celangulin V (CV) is the main insecticidal constituent of Celastrus angulatus. The V-ATPase H subunit of the midgut cells of lepidopteran larvae is the putative target protein of CV. Here, we compared the effects of CV on the midgut membrane potentials of Mythimna separata and Agrotis ipsilon larvae with those of the Cry1Ab toxin from Bacillus thuringiensis and with those of inactive CV-MIA, a synthetic derivative of CV. We investigated the changes in the apical membrane potentials (Vam) and basolateral membrane potentials (Vbm) of the midguts of sixth-instar larvae force-fed with the test toxins. We also measured the Vam and Vbm of larval midguts that were directly incubated with the test toxins. Similar to the effect of Cry1Ab, the Vam of CV-treated midguts rapidly decayed over time in a dose-dependent manner. By contrast, CV-MIA did not influence Vam. Meanwhile, the Vam of A. ipsilon larval midguts directly incubated with CV decayed less than that of M. separata larval midguts, whereas that of larvae force-fed with CV did not significantly change. Similar to Cry1Ab, CV did not affect the Vbm of isolated midguts. CV significantly inhibited V-ATPase activity in a dose-dependent manner. Therefore, CV initially inhibits V-ATPase in the apical membrane and affects intracellular pH, homeostasis, and nutrient transport mechanisms in lepidopteran midgut cells.
Collapse
|
46
|
Nwidu LL, Elmorsy E, Thornton J, Wijamunige B, Wijesekara A, Tarbox R, Warren A, Carter WG. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea. PHARMACEUTICAL BIOLOGY 2017; 55. [PMID: 28629287 PMCID: PMC6130458 DOI: 10.1080/13880209.2017.1339283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). OBJECTIVE The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. MATERIALS AND METHODS Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. RESULTS Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC50 = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC50 = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC50 = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. DISCUSSION AND CONCLUSIONS Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.
Collapse
Affiliation(s)
- Lucky Legbosi Nwidu
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Ekramy Elmorsy
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Jack Thornton
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Buddhika Wijamunige
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Anusha Wijesekara
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Rebecca Tarbox
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Averil Warren
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Wayne Grant Carter
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
- CONTACT Wayne Grant CarterSchool of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
47
|
Zimmermann JB, Pinder N, Bruckner T, Lehmann M, Motsch J, Brenner T, Hoppe-Tichy T, Swoboda S, Weigand MA, Hofer S. Adjunctive use of physostigmine salicylate (Anticholium®) in perioperative sepsis and septic shock: study protocol for a randomized, double-blind, placebo-controlled, monocentric trial (Anticholium® per Se). Trials 2017; 18:530. [PMID: 29126416 PMCID: PMC5681758 DOI: 10.1186/s13063-017-2231-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 10/05/2017] [Indexed: 11/24/2022] Open
Abstract
Background Severe sepsis and septic shock remain a major challenge, even in modern intensive care. In Germany, about 68,000 patients die annually because of septic diseases, characterized by a complex systemic inflammatory response. Causal treatment of the underlying infection is essential for successful management of sepsis, but the course can be positively influenced by supportive and adjuvant measures. The cholinergic anti-inflammatory pathway (CAP) represents a new approach to adjunctive therapy of septic diseases and can be pharmacologically activated by the acetylcholinesterase inhibitor physostigmine (Anticholium®). Promising effects can be found in several in vitro and in vivo models of sepsis, such as a reduction in pro-inflammatory cytokines and improved survival. Methods Anticholium® per Se is a randomized, double-blind, placebo-controlled, monocentric trial to assess whether the CAP can be transferred from bench to bedside. In this pilot study, 20 patients with perioperative sepsis and septic shock as a result of intra-abdominal infection are enrolled. According to randomization, participants are treated with physostigmine salicylate (verum group) or 0.9% sodium chloride (placebo group) for up to 5 days. The mean Sequential Organ Failure Assessment (SOFA) score during treatment and subsequent intensive care of up to 14 days is used as surrogate outcome (primary endpoint). Secondary outcome measures include 30- and 90-day mortality. An embedded pharmacokinetics and pharmacodynamics study investigates plasma concentrations of physostigmine and its metabolite eseroline. Further analyses will contribute to our understanding of the role of various cytokines in the pathophysiology of human sepsis. A computer-generated list is used for block randomization. Discussion This randomized, controlled, monocentric trial investigates for the first time the adjunctive use of physostigmine (Anticholium®) in patients with perioperative sepsis and septic shock and may be a pivotal step toward the clinical use in this indication. Trial registration EudraCT Number: 2012-001650-26 (entered 14 August 2012), ClinicalTrials.gov identifier: NCT03013322 (registered on 1 Jan 2017). Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-2231-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes B Zimmermann
- Department of Anaesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Nadine Pinder
- Department of Anaesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Pharmacy Department, University Hospital Heidelberg, Im Neuenheimer Feld 670, 69120, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Monika Lehmann
- Coordination Centre for Clinical Trials, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Johann Motsch
- Department of Anaesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anaesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Torsten Hoppe-Tichy
- Pharmacy Department, University Hospital Heidelberg, Im Neuenheimer Feld 670, 69120, Heidelberg, Germany
| | - Stefanie Swoboda
- Pharmacy Department, University Hospital Heidelberg, Im Neuenheimer Feld 670, 69120, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anaesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Stefan Hofer
- Department of Anaesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| |
Collapse
|
48
|
Cui Z, Du DM. Decarboxylative Synthesis of Functionalized Oxindoles via An Iron-Initiated Radical Chain Process and Application in Constructing Diverse Fused-Indoline Heterocycles. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhihao Cui
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 People's Republic of China
| | - Da-Ming Du
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 People's Republic of China
| |
Collapse
|
49
|
Jin X, Germann AL, Shin DJ, Akk G, Steinbach JH. Determination of the Residues in the Extracellular Domain of the Nicotinic α Subunit Required for the Actions of Physostigmine on Neuronal Nicotinic Receptors. Mol Pharmacol 2017; 92:318-326. [PMID: 28630263 PMCID: PMC5548365 DOI: 10.1124/mol.117.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/14/2017] [Indexed: 11/22/2022] Open
Abstract
Physostigmine can potentiate and inhibit neuronal nicotinic receptors, in addition to inhibiting the activity of acetylcholinesterase. We found that receptors containing three copies of the α2 subunit are inhibited by low concentrations of physostigmine in contrast to receptors containing three copies of the α4 subunit that are potentiated. We exploited this observation to determine the regions required for the actions of physostigmine. Chimeric constructs of the α2 and α4 subunits located two regions in the extracellular amino-terminal domain of the subunit: the E loop (a loop of the transmitter-binding domain) and a region closer to the amino-terminus that collectively could completely determine the different effects of physostigmine. Point mutations then identified a single residue, α2(I92) versus α4(R92), that, when combined with transfer of the E loop, could convert the inhibition seen with α2 subunits to potentiation and the potentiation seen with α4 subunits to inhibition. In addition, other point mutations could affect the extent of potentiation or inhibition, indicating that a more extensive set of interactions in the amino-terminal domain plays some role in the actions of physostigmine.
Collapse
Affiliation(s)
- Xiaochun Jin
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri (X.J., A.L.G., D.J.S., G.A., J.H.S.); and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri (G.A., J.H.S.)
| | - Allison L Germann
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri (X.J., A.L.G., D.J.S., G.A., J.H.S.); and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri (G.A., J.H.S.)
| | - Daniel J Shin
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri (X.J., A.L.G., D.J.S., G.A., J.H.S.); and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri (G.A., J.H.S.)
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri (X.J., A.L.G., D.J.S., G.A., J.H.S.); and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri (G.A., J.H.S.)
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri (X.J., A.L.G., D.J.S., G.A., J.H.S.); and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri (G.A., J.H.S.)
| |
Collapse
|
50
|
Jia P, Zhang Q, Ou Q, Huang Y. Sequential [1 + 4]- and [2 + 3]-Annulation of Prop-2-ynylsulfonium Salts: Access to Hexahydropyrrolo[3,2-b]indoles. Org Lett 2017; 19:4664-4667. [DOI: 10.1021/acs.orglett.7b02298] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Penghao Jia
- State
Key Laboratory and Institute of Elemento-Organic Chemistry, College
of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinglong Zhang
- State
Key Laboratory and Institute of Elemento-Organic Chemistry, College
of Chemistry, Nankai University, Tianjin 300071, China
| | - Qima Ou
- State
Key Laboratory and Institute of Elemento-Organic Chemistry, College
of Chemistry, Nankai University, Tianjin 300071, China
| | - You Huang
- State
Key Laboratory and Institute of Elemento-Organic Chemistry, College
of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|