1
|
Shen K, Duan Q, Duan W, Xu S, An N, Ke Y, Wang L, Liu S, Yang H, Zhang C. Vascular endothelial growth factor-C modulates cortical NMDA receptor activity in cortical lesions of young patients and rat model with focal cortical dysplasia. Brain Pathol 2022; 32:e13065. [PMID: 35259773 PMCID: PMC9425019 DOI: 10.1111/bpa.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/01/2022] Open
Abstract
Emergence of dysmorphic neurons is the primary pathology in focal cortical dysplasia (FCD) associated pediatric intractable epilepsy; however, the etiologies related to the development and function of dysmorphic neurons are not fully understood. Our previous studies revealed that the expression of vascular endothelial growth factor-C (VEGF-C) and corresponding receptors VEGFR-2, VEGFR-3 was increased in the epileptic lesions of patients with tuberous sclerosis complex or mesial temporal lobe epilepsy. Here, we showed that the expression of VEGF-C, VEGFR-2, and VEGFR-3 was increased at both mRNA and protein levels in patients with cortical lesions of type I, IIa, and IIb FCD. The immunoreactivity of VEGF-C, VEGFR-2 and VEGFR-3 was located in the micro-columnar neurons in FCD type I lesions, dysplastic neurons (DNs) in FCD type IIa lesions, balloon cells (BCs) and astrocytes in FCD type IIb lesions. Additionally, the amplitude of evoked-EPSCs (eEPSC) mediated by NMDA receptor, the ratio of NMDA receptor- and AMPA receptor-mediated eEPSC were increased in the dysmorphic neurons of FCD rats established by prenatal X-ray radiation. Furthermore, NMDA receptor mediated current in dysmorphic neurons was further potentiated by exogenous administration of VEGF-C, however, could be antagonized by ki8751, the blocker of VEGFR-2. These results suggest that VEGF-C system participate in the pathogenesis of cortical lesions in patients with FCD in association with modulating NMDA receptor-mediated currents.
Collapse
Affiliation(s)
- Kai‐Feng Shen
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Qing‐Tian Duan
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Wei Duan
- Department of NeurologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Sen‐Lin Xu
- Institute of PathologySouthwest HospitalArmy Medical UniversityChongqingChina
| | - Ning An
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Yan‐Yan Ke
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Li‐Ting Wang
- Biomedical Analysis CenterArmy Medical UniversityChongqingChina
| | - Shi‐Yong Liu
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Hui Yang
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
| | - Chun‐Qing Zhang
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
| |
Collapse
|
2
|
Ghosh C, Myers R, O'Connor C, Williams S, Liu X, Hossain M, Nemeth M, Najm IM. Cortical Dysplasia in Rats Provokes Neurovascular Alterations, GLUT1 Dysfunction, and Metabolic Disturbances That Are Sustained Post-Seizure Induction. Mol Neurobiol 2022; 59:2389-2406. [PMID: 35084654 PMCID: PMC9018620 DOI: 10.1007/s12035-021-02624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Focal cortical dysplasia (FCD) is associated with blood-brain barrier (BBB) dysfunction in patients with difficult-to-treat epilepsy. However, the underlying cellular and molecular factors in cortical dysplasia (CD) associated with progressive neurovascular challenges during the pro-epileptic phase, post-seizure, and during epileptogenesis remain unclear. We studied the BBB function in a rat model of congenital (in utero radiation-induced, first hit) CD and longitudinally examined the cortical brain tissues at baseline and the progressive neurovascular alterations, glucose transporter-1 (GLUT1) expression, and glucose metabolic activity at 2, 15, and 30 days following a second hit using pentylenetetrazole-induced seizure. Our study revealed through immunoblotting, immunohistochemistry, and biochemical analysis that (1) altered vascular density and prolongation of BBB albumin leakages in CD rats continued through 30 days post-seizure; (2) CD brain tissues showed elevated matrix metalloproteinase-9 levels at 2 days post-seizure and microglial overactivation through 30 days post-seizure; (3) BBB tight junction protein and GLUT1 levels were decreased and neuronal monocarboxylate transporter-2 (MCT2) and mammalian target of rapamycin (mTOR) levels were increased in the CD rat brain: (4) ATPase activity is elevated and a low glucose/high lactate imbalance exists in CD rats; and (5) the mTOR pathway is activated and MCT2 levels are elevated in the presence of high lactate during glucose starvation in vitro. Together, this study suggests that BBB dysfunction, including decreased GLUT1 expression and metabolic disturbance, may contribute to epileptogenesis in this CD rat model through multiple mechanisms that could be translated to FCD therapy in medically refractory epilepsy.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA. .,Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Rosemary Myers
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Christina O'Connor
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sherice Williams
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Xuefeng Liu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mohammed Hossain
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Michael Nemeth
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Imad M Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
You J, Huang H, Chan CTY, Li L. Pathological Targets for Treating Temporal Lobe Epilepsy: Discoveries From Microscale to Macroscale. Front Neurol 2022; 12:779558. [PMID: 35069411 PMCID: PMC8777077 DOI: 10.3389/fneur.2021.779558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and severe types of epilepsy, characterized by intractable, recurrent, and pharmacoresistant seizures. Histopathology of TLE is mostly investigated through observing hippocampal sclerosis (HS) in adults, which provides a robust means to analyze the related histopathological lesions. However, most pathological processes underlying the formation of these lesions remain elusive, as they are difficult to detect and observe. In recent years, significant efforts have been put in elucidating the pathophysiological pathways contributing to TLE epileptogenesis. In this review, we aimed to address the new and unrecognized neuropathological discoveries within the last 5 years, focusing on gene expression (miRNA and DNA methylation), neuronal peptides (neuropeptide Y), cellular metabolism (mitochondria and ion transport), cellular structure (microtubule and extracellular matrix), and tissue-level abnormalities (enlarged amygdala). Herein, we describe a range of biochemical mechanisms and their implication for epileptogenesis. Furthermore, we discuss their potential role as a target for TLE prevention and treatment. This review article summarizes the latest neuropathological discoveries at the molecular, cellular, and tissue levels involving both animal and patient studies, aiming to explore epileptogenesis and highlight new potential targets in the diagnosis and treatment of TLE.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Haiyan Huang
- Department of Nutrition and Food Science, Texas Women University, Denton, TX, United States
| | - Clement T Y Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Tripathi MK, Kartawy M, Amal H. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol 2020; 34:101567. [PMID: 32464501 PMCID: PMC7256645 DOI: 10.1016/j.redox.2020.101567] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule and a neurotransmitter that plays an important role in physiological and pathophysiological processes. In physiological conditions, NO regulates cell survival, differentiation and proliferation of neurons. It also regulates synaptic activity, plasticity and vesicle trafficking. NO affects cellular signalling through protein S-nitrosylation, the NO-mediated posttranslational modification of cysteine thiols (SNO). SNO can affect protein activity, protein-protein interaction and protein localization. Numerous studies have shown that excessive NO and SNO can lead to nitrosative stress in the nervous system, contributing to neuropathology. In this review, we summarize the role of NO and SNO in the progression of neurodevelopmental, psychiatric and neurodegenerative disorders, with special attention to autism spectrum disorder (ASD). We provide mechanistic insights into the contribution of NO in diverse brain disorders. Finally, we suggest that pharmacological agents that can inhibit or augment the production of NO as well as new approaches to modulate the formation of SNO-proteins can serve as a promising approach for the treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Chauvel P, Gonzalez-Martinez J, Bulacio J. Presurgical intracranial investigations in epilepsy surgery. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:45-71. [PMID: 31307620 DOI: 10.1016/b978-0-444-64142-7.00040-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Identification and localization of the "epileptogenic process" in the brain of patients with drug-resistant epilepsy for surgical cure is the goal of presurgical investigations. Intracranial recordings are required when conflicting data between seizure clinical semiology and EEG prevent precise localization within one hemisphere or lateralization, when a visible lesion on MRI seems unrelated to the electroclinical data, or in MRI-negative cases. Two methods are currently used. The objective of the subdural grid electrocorticography with or without depth electrodes (SDG/DE) is the best possible identification of the area of onset of spontaneous seizures and localization of the eloquent cortex. The objective of stereoelectroencephalography (SEEG) is to define the epileptogenic zone (configured as a network) and its relation to an unmasked lesion. Two-dimensional (SDG) and three-dimensional (SEEG) brain sampling dictate different strategies for noninvasive presurgical phase I goals as well as for data analysis. SEEG must resolve several potential localization hypotheses in a manner that cannot be achieved with SDG. SDG operates through brain surface coverage, unlike SEEG, which samples networks. SDG estimates the extent of cortical resection through a lobar or sublobar localization of ictal onset and constraints from functional mapping. SEEG defines a tailored resection according to the results of anatomo-electro-clinical correlations in stereotaxic space that will guide the ablation of the epileptogenic zone. SEEG is currently expanding faster than SDG. The prerequisites (especially in the preimplantation hypothetical strategy) and technical tools (especially stimulation and functional mapping) in the two methods are very different. This chapter presents a comparative review of the rationale, indications, electrode implantation strategies, interpretation, and surgical decision making of these two approaches of presurgical evaluation for epilepsy surgery.
Collapse
Affiliation(s)
- Patrick Chauvel
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.
| | | | - Juan Bulacio
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
6
|
Growth Associated Protein 43 (GAP-43) as a Novel Target for the Diagnosis, Treatment and Prevention of Epileptogenesis. Sci Rep 2017; 7:17702. [PMID: 29255203 PMCID: PMC5735087 DOI: 10.1038/s41598-017-17377-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 11/21/2017] [Indexed: 12/19/2022] Open
Abstract
We previously showed increased growth associated protein 43 (GAP-43) expression in brain samples resected from patients with cortical dysplasia (CD), which was correlated with duration of epilepsy. Here, we used a rat model of CD to examine the regulation of GAP-43 in the brain and serum over the course of epileptogenesis. Baseline GAP-43 expression was higher in CD animals compared to control non-CD rats. An acute seizure increased GAP-43 expression in both CD and control rats. However, GAP-43 expression decreased by day 15 post-seizure in control rats, which did not develop spontaneous seizures. In contrast, GAP-43 remained up-regulated in CD rats, and over 50% developed chronic epilepsy with increased GAP-43 levels in their serum. GAP-43 protein was primarily located in excitatory neurons, suggesting its functional significance in epileptogenesis. Inhibition of GAP-43 expression by shRNA significantly reduced seizure duration and severity in CD rats after acute seizures with subsequent reduction in interictal spiking. Serum GAP-43 levels were significantly higher in CD rats that developed spontaneous seizures. Together, these results suggest GAP-43 as a key factor promoting epileptogenesis, a possible therapeutic target for treatment of progressive epilepsy and a potential biomarker for epilepsy progression in CD.
Collapse
|
7
|
Wang X, He X, Li T, Shu Y, Qi S, Luan G. Anti-epileptic effect of ifenprodil on neocortical pyramidal neurons in patients with malformations of cortical development. Exp Ther Med 2017; 14:5757-5766. [PMID: 29285118 PMCID: PMC5740521 DOI: 10.3892/etm.2017.5311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Ifenprodil has been demonstrated to reduce spontaneous action potentials observed by local field potential in animal models. To investigate whether ifenprodil exerts an anti-epileptic effect on neuronal levels in humans, whole-cell patch clamp recordings were used to study the electrophysiological membrane properties of neocortical pyramidal neurons in human brain tissues. Electrophysiological membrane properties and spontaneous spikes of neocortical pyramidal neurons were investigated by using whole-cell patch clamp recordings, prior to and following the application of ifenprodil. In the present study, ifenprodil significantly decreased the membrane input resistance (P<0.01), membrane time constant (P<0.01), action potential amplitude (P<0.01), action potential rising rate (P<0.05) and falling rate (P<0.05) on neocortical pyramidal neurons in patients with epilepsy caused by malformations of cortical development (MCD). These results suggested that ifenprodil decreased neuronal excitability of neocortical pyramidal neurons in patients with epilepsy and MCD and demonstrated that ifenprodil may be a potentially specific treatment for refractory epilepsy caused by MCD.
Collapse
Affiliation(s)
- Xiongfei Wang
- Beijing Key Laboratory of Epilepsy, Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China.,Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xun He
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy, Brain Research Institute, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, The Collaborative Innovation Center for Brain Science, Beijing Normal University, Beijing 100875, P.R. China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy, Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| |
Collapse
|
8
|
Abstract
Focal cortical dysplasia is a common cause of medication resistant epilepsy. A better understanding of its presentation, pathophysiology and consequences have helped us improved its treatment and outcome. This paper reviews the most recent classification, pathophysiology and imaging findings in clinical research as well as the knowledge gained from studying genetic and lesional animal models of focal cortical dysplasia. This review of this recently gained knowledge will most likely help develop new research models and new therapeutic targets for patients with epilepsy associated with focal cortical dysplasia.
Collapse
|
9
|
Oluigbo CO, Wang J, Whitehead MT, Magge S, Myseros JS, Yaun A, Depositario-Cabacar D, Gaillard WD, Keating R. The influence of lesion volume, perilesion resection volume, and completeness of resection on seizure outcome after resective epilepsy surgery for cortical dysplasia in children. J Neurosurg Pediatr 2015; 15:644-50. [PMID: 26030332 DOI: 10.3171/2014.10.peds14282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Focal cortical dysplasia (FCD) is one of the most common causes of intractable epilepsy leading to surgery in children. The predictors of seizure freedom after surgical management for FCD are still unclear. The objective of this study was to perform a volumetric analysis of factors shown on the preresection and postresection brain MRI scans of patients who had undergone resective epilepsy surgery for cortical dysplasia and to determine the influence of these factors on seizure outcome. METHODS The authors reviewed the medical records and brain images of 43 consecutive patients with focal MRI-documented abnormalities and a pathological diagnosis of FCD who had undergone surgical treatment for refractory epilepsy. Preoperative lesion volume and postoperative resection volume were calculated by manual segmentation using OsiriX PRO software. RESULTS Forty-three patients underwent first-time surgery for resection of an FCD. The age range of these patients at the time of surgery ranged from 2 months to 21.8 years (mean age 7.3 years). The median duration of follow-up was 20 months. The mean age at onset was 31.6 months (range 1 day to 168 months). Complete resection of the area of an FCD, as adjudged from the postoperative brain MR images, was significantly associated with seizure control (p = 0.0005). The odds of having good seizure control among those who underwent complete resection were about 6 times higher than those among the patients who did not undergo complete resection. Seizure control was not significantly associated with lesion volume (p = 0.46) or perilesion resection volume (p = 0.86). CONCLUSIONS The completeness of FCD resection in children is a significant predictor of seizure freedom. Neither lesion volume nor the further resection of perilesional tissue is predictive of seizure freedom.
Collapse
|
10
|
Repeated application of 4-aminopyridine provoke an increase in entorhinal cortex excitability and rearrange AMPA and kainate receptors. Neurotox Res 2015; 27:441-52. [PMID: 25576253 DOI: 10.1007/s12640-014-9515-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 02/03/2023]
Abstract
Entorhinal cortex is a highly epilepsy-prone brain region. Effects of repetitive seizures on ionotropic glutamate receptors (iGluRs) were investigated in rat entorhinal cortex slices. Seizures were induced by daily administration of 4-aminopyridine (4-AP). Electrophysiological, pharmacological and histological investigations were carried out to determine changes in synaptic efficacy and in sensitivity of iGluRs due to recurring seizures. Repeated 4-AP-induced seizures increased the amplitude of evoked synaptic field responses in rat entorhinal cortical slices. While vulnerability to inhibition of AMPA receptors by the specific antagonist GYKI 52466 was slightly reduced, responsiveness to NMDA receptor antagonist APV remained unaffected. Testing of bivalent cation permeability of iGluRs revealed reduced Ca(2+)-influx through non-NMDA receptors. According to the semi-quantitative histoblot analysis GluA1-4, GluA1, GluA2, GluK5, GluN1 and GluN2A subunit protein expression differently altered. While there was a marked decrease in the level of GluA1-4, GluA2 and GluK5 receptor subunits, GluA1 and GluN2A protein levels moderately increased. The results indicate that brief convulsions, repeated daily for 10 days can increase overall entorhinal cortex excitability despite a reduction in AMPA/kainate receptor activity, probably through the alteration of local network susceptibility.
Collapse
|
11
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
12
|
Lozovaya N, Gataullina S, Tsintsadze T, Tsintsadze V, Pallesi-Pocachard E, Minlebaev M, Goriounova NA, Buhler E, Watrin F, Shityakov S, Becker AJ, Bordey A, Milh M, Scavarda D, Bulteau C, Dorfmuller G, Delalande O, Represa A, Cardoso C, Dulac O, Ben-Ari Y, Burnashev N. Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat Commun 2014; 5:4563. [PMID: 25081057 PMCID: PMC4143949 DOI: 10.1038/ncomms5563] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC), caused by dominant mutations in either
TSC1 or
TSC2 tumour
suppressor genes is characterized by the presence of brain malformations, the
cortical tubers that are thought to contribute to the generation of
pharmacoresistant epilepsy. Here we report that tuberless heterozygote
Tsc1+/− mice show
functional upregulation of cortical GluN2C-containing N-methyl-D-aspartate receptors (NMDARs) in an
mTOR-dependent manner and exhibit recurrent, unprovoked seizures during early
postnatal life (<P19). Seizures are generated intracortically in the granular
layer of the neocortex. Slow kinetics of aberrant GluN2C-mediated currents in spiny stellate cells promotes
excessive temporal integration of persistent NMDAR-mediated recurrent excitation and
seizure generation. Accordingly, specific GluN2C/D antagonists block seizures in Tsc1+/− mice in vivo
and in vitro. Likewise, GluN2C expression is upregulated in TSC human surgical
resections, and a GluN2C/D
antagonist reduces paroxysmal hyperexcitability. Thus, GluN2C receptor constitutes a promising
molecular target to treat epilepsy in TSC patients. Tuberous sclerosis complex (TSC) is a rare genetic condition
characterized by epileptic seizures that start in infancy. Here, the authors show that
these seizures are modulated by GluN2C-containing NMDA receptors in the cortex of a
mouse model of TSC, and that suppressing their activity attenuates seizures.
Collapse
Affiliation(s)
- N Lozovaya
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - S Gataullina
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - T Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3]
| | - V Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Pallesi-Pocachard
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - M Minlebaev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] Laboratory of Neurobiology, Kazan Federal University, Kremlevskaya street 18, 420000 Kazan, Russia
| | - N A Goriounova
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Buhler
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - F Watrin
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - S Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Josef-Schneider-Street 2, 97080 Würzburg, Germany
| | - A J Becker
- Department of Neuropathology, University of Bonn Medical Center, Sigmund Freud Street 25, D-53105 Bonn, Germany
| | - A Bordey
- Neurosurgery, and Cellular and Molecular Physiology Departments, Yale University School of Medicine, PO Box 208082, New Haven, Connecticut 06520-8082, USA
| | - M Milh
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - D Scavarda
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - C Bulteau
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - G Dorfmuller
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - O Delalande
- Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - A Represa
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - C Cardoso
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - O Dulac
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France [3] APHP, Necker Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Y Ben-Ari
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - N Burnashev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| |
Collapse
|
13
|
Gonzalez J, Jurado-Coronel JC, Ávila MF, Sabogal A, Capani F, Barreto GE. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci 2014; 125:315-27. [PMID: 25051426 DOI: 10.3109/00207454.2014.940941] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-methyl-D-aspartate ionotropic glutamate receptor (NMDARs) is a ligand-gated ion channel that plays a critical role in excitatory neurotransmission, brain development, synaptic plasticity associated with memory formation, central sensitization during persistent pain, excitotoxicity and neurodegenerative diseases in the central nervous system (CNS). Within iGluRs, NMDA receptors have been the most actively investigated for their role in neurological diseases, especially neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. It has been demonstrated that excessive activation of NMDA receptors (NMDARs) plays a key role in mediating some aspects of synaptic dysfunction in several CNS disorders, so extensive research has been directed on the discovery of compounds that are able to reduce NMDARs activity. This review discusses the role of NMDARs on neurological pathologies and the possible therapeutic use of agents that target this receptor. Additionally, we delve into the role of NMDARs in Alzheimer's and Parkinson's diseases and the receptor antagonists that have been tested on in vivo models of these pathologies. Finally, we put into consideration the importance of antioxidants to counteract oxidative capacity of the signaling cascade in which NMDARs are involved.
Collapse
Affiliation(s)
- Janneth Gonzalez
- 1Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | | | | | | | | |
Collapse
|
14
|
Najm IM, Tassi L, Sarnat HB, Holthausen H, Russo GL. Epilepsies associated with focal cortical dysplasias (FCDs). Acta Neuropathol 2014; 128:5-19. [PMID: 24916270 DOI: 10.1007/s00401-014-1304-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 11/24/2022]
Abstract
Focal cortical dysplasias (FCDs) are increasingly recognized as one of the most common causes of pharmaco-resistant epilepsies. FCDs were recently divided into various clinico-pathological subtypes due to distinct imaging, electrophysiological, and outcome characteristics. In this review, we will overview the international consensus classification of FCDs in light of more recently reported clinical, electrical, imaging and functional observations, and will also address areas of ongoing debate. In addition, we will summarize our current knowledge on pathobiology and epileptogenicity of FCDs as well as its underlying molecular and cellular mechanisms. The clinical (electroencephalographic, imaging, and functional) characteristics of major FCD subtypes and their implications on the presurgical evaluation and surgical management will be discussed in light of studies describing these characteristics and postoperative seizure outcomes in patients with medically intractable focal epilepsy due to histopathologically confirmed FCDs.
Collapse
Affiliation(s)
- Imad M Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | |
Collapse
|
15
|
Marin-Valencia I, Guerrini R, Gleeson JG. Pathogenetic mechanisms of focal cortical dysplasia. Epilepsia 2014; 55:970-8. [PMID: 24861491 PMCID: PMC4107035 DOI: 10.1111/epi.12650] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 02/01/2023]
Abstract
Focal cortical dysplasias (FCDs) constitute a prevalent cause of intractable epilepsy in children, and is one of the leading conditions requiring epilepsy surgery. Despite recent advances in the cellular and molecular biology of these conditions, the pathogenetic mechanisms of FCDs remain largely unknown. The purpose if this work is to review the molecular underpinnings of FCDs and to highlight potential therapeutic targets. A systematic review of the literature regarding the histologic, molecular, and electrophysiologic aspects of FCDs was conducted. Disruption of the mammalian target of rapamycin (mTOR) signaling comprises a common pathway underlying the structural and electrical disturbances of some FCDs. Other mechanisms such as viral infections, prematurity, head trauma, and brain tumors are also posited. mTOR inhibitors (i.e., rapamycin) have shown positive results on seizure management in animal models and in a small cohort of patients with FCD. Encouraging progress has been achieved on the molecular and electrophysiologic basis of constitutive cells in the dysplastic tissue. Despite the promising results of mTOR inhibitors, large-scale randomized trials are in need to evaluate their efficacy and side effects, along with additional mechanistic studies for the development of novel, molecular-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- Department of Neurology and Neurotherapeutics, and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | | | | |
Collapse
|
16
|
Ying Z, Najm I, Nemes A, Pinheiro-Martins AP, Alexopoulos A, Gonzalez-Martinez J, Bingaman W. Growth-associated protein 43 and progressive epilepsy in cortical dysplasia. Ann Clin Transl Neurol 2014; 1:453-61. [PMID: 25356416 PMCID: PMC4184774 DOI: 10.1002/acn3.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/11/2022] Open
Abstract
Objective To investigate growth-associated protein 43 (GAP-43), a marker for axonal growth and synaptic plasticity, as potential substrate for progressive epilepsy and potential predictor of postsurgical seizure outcome in patients with focal cortical dysplasia (FCD). Methods GAP-43 immunohistochemistry was performed on cortical specimens from 21 patients with FCD: 12 with FCD type II (IIA or IIB) and nine with FCD type IA. Twenty normal anterior temporal lobe specimens from patients with mesial temporal lobe epilepsy due to hippocampal sclerosis (mTLE/HS) were used as controls. Semiquantitative analysis of GAP-43 staining patterns was performed. Additionally, GAP-43 immunoblotting was performed on resected tissue from three patients with FCD type IIA/B; GAP-43 protein levels in electroencephalography-verified epileptic, and distal nonepileptic, areas were compared within each patient. Two outcome categories were used: completely seizure free (Engel IA) versus not seizure free. We examined the relationship of GAP-43 scores with epilepsy duration and seizure-free outcome for each of the three pathologies. Results Within-patient GAP-43 expression is selectively increased in the epileptic as compared to nonepileptic cortex. GAP-43 immunoreactivity (IRs) patterns were seen on the cell surface and tubular punctate structures intercellularly only in FCD cortex. Higher GAP-43 scores were correlated (P < 0.0001) with longer epilepsy duration only in FCD IIA/B. Lower GAP-43 scores were associated with better surgical outcome in the same group. No such relationship was observed in FCD IA. Interpretation GAP-43 proteins are not only associated with intrinsic epileptogenicity but may be markers of progressive epilepsy and predictors of postoperative seizure outcome in patients with pharmacoresistant epilepsy due to FCD IIA/B.
Collapse
Affiliation(s)
- Zhong Ying
- Department of Neurology, Cleveland Epilepsy Center, Cleveland Clinic Cleveland, Ohio
| | - Imad Najm
- Department of Neurology, Cleveland Epilepsy Center, Cleveland Clinic Cleveland, Ohio
| | - Ashley Nemes
- Department of Neurology, Cleveland Epilepsy Center, Cleveland Clinic Cleveland, Ohio
| | | | - Andreas Alexopoulos
- Department of Neurology, Cleveland Epilepsy Center, Cleveland Clinic Cleveland, Ohio
| | | | - William Bingaman
- Department of Neurosurgery, Cleveland Epilepsy Center, Cleveland Clinic Cleveland, Ohio
| |
Collapse
|
17
|
Wang ZI, Alexopoulos AV, Jones SE, Najm IM, Ristic A, Wong C, Prayson R, Schneider F, Kakisaka Y, Wang S, Bingaman W, Gonzalez-Martinez JA, Burgess RC. Linking MRI postprocessing with magnetic source imaging in MRI-negative epilepsy. Ann Neurol 2014; 75:759-70. [PMID: 24777960 DOI: 10.1002/ana.24169] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 11/08/2022]
Abstract
OBJECTIVE MRI-negative (MRI-) pharmacoresistant focal epilepsy (PFE) patients are most challenging for epilepsy surgical management. This study utilizes a voxel-based MRI postprocessing technique, implemented using a morphometric analysis program (MAP), aiming to facilitate detection of subtle focal cortical dysplasia (FCD) in MRI- patients. Furthermore, the study examines the concordance between MAP-identified regions and localization from magnetic source imaging (MSI). METHODS Included in this retrospective study were 25 MRI- surgical patients. MAP was performed on T1-weighted MRI, with comparison to a normal database. The pertinence of MAP+ areas was confirmed by MSI, surgical outcome and pathology. Analyses of MAP and MSI were performed blindly from patients' clinical information and independently from each other. RESULTS The detection rate of subtle changes by MAP was 48% (12/25). Once MAP+ areas were resected, patients were more likely to be seizure-free (p=0.02). There were no false positives in the 25 age-matched normal controls. Seven patients had a concordant MSI correlate. Patients in whom a concordant area was identified by both MAP and MSI had a significantly higher chance of achieving a seizure-free outcome following complete resection of this area (p=0.008). In the 9 resected MAP+ areas, pathology revealed FCD type IA in 7 and type IIB in 2. INTERPRETATION MAP shows promise in identifying subtle FCD abnormalities and increasing the diagnostic yield of conventional MRI visual analysis in presurgical evaluation of PFE. Concordant MRI postprocessing and MSI analyses may lead to the noninvasive identification of a structurally and electrically abnormal subtle lesion that can be surgically targeted.
Collapse
Affiliation(s)
- Zhong I Wang
- Epilepsy Center, Cleveland Clinic, Cleveland, OH
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Colciaghi F, Finardi A, Nobili P, Locatelli D, Spigolon G, Battaglia GS. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia. PLoS One 2014; 9:e89898. [PMID: 24587109 PMCID: PMC3937400 DOI: 10.1371/journal.pone.0089898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/28/2014] [Indexed: 01/17/2023] Open
Abstract
Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Paola Nobili
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Giada Spigolon
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
19
|
Avanzini G, Franceschetti S, Avoni P, Liguori R. Molecular biology of channelopathies: impact on diagnosis and treatment. Expert Rev Neurother 2014; 4:519-39. [PMID: 15853547 DOI: 10.1586/14737175.4.3.519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Channelopathies are genetically determined ion channel alterations that lead to acute and transient symptoms in subjects who otherwise appear to be normal. This article reviews the recent progression of biomolecular studies that have clarified the mechanisms by which gene mutations may result in alterations of excitable tissues responsible for episodic neurological, neuromuscular and cardiac disorders, defined as channelopathies. The development of technologies capable of testing pharmacological agents in vitro on mutated channels expressed in cell lines makes it possible to define a more rational use of the available drugs acting on ion channels, and to design new molecules specifically targeted to known channel dysfunctions and new ones that could be identified by future genetic studies.
Collapse
Affiliation(s)
- Giuliano Avanzini
- Istituto Nazionale Neurologico C. Besta, Via Celoria 11, 20133 Milan, Italy.
| | | | | | | |
Collapse
|
20
|
Karimzadeh F, Soleimani M, Mehdizadeh M, Jafarian M, Mohamadpour M, Kazemi H, Joghataei MT, Gorji A. Diminution of the NMDA receptor NR2B subunit in cortical and subcortical areas of WAG/Rij rats. Synapse 2013; 67:839-46. [PMID: 23754322 DOI: 10.1002/syn.21687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/21/2013] [Indexed: 12/27/2022]
Abstract
Modulation of glutamatergic NMDA receptors affects the synchronization of spike discharges in in WAG/Rij rats, a valid genetic animal model of absence epilepsy. In this study, we describe the alteration of NR2B subunit of NMDA receptors expression in WAG/Rij rats in different somatosensory cortical layers and in hippocampal CA1 area. Experimental groups were divided into four groups of six rats of both WAG/Rij and Wistar strains with 2 and 6 months of age. The distribution of NR2B receptors was assessed by immunohistochemical staining in WAG/Rij and compared with age-matched Wistar rats. The expression of NR2B subunit was significantly decreased in different somatosensory cortical layers in 2- and 6-month-old WAG/Rij rats. In addition, the distribution of NR2B in hippocampal CA1 area was lower in 6-month-old WAG/Rij compared with age-matched Wistar rats. The reduction of NR2B receptors in different brain areas points to disturbance of glutamate receptors expression in cortical and subcortical areas in WAG/Rij rats. An altered subunit assembly of NMDA receptors may underlie cortical hyperexcitability in absence epilepsy.
Collapse
Affiliation(s)
- Fariba Karimzadeh
- Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Centre, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang ZI, Alexopoulos AV, Jones SE, Jaisani Z, Najm IM, Prayson RA. The pathology of magnetic-resonance-imaging-negative epilepsy. Mod Pathol 2013; 26:1051-8. [PMID: 23558575 DOI: 10.1038/modpathol.2013.52] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/09/2022]
Abstract
Patients with magnetic-resonance-imaging (MRI)-negative (or 'nonlesional') pharmacoresistant focal epilepsy are the most challenging group undergoing presurgical evaluation. Few large-scale studies have systematically reviewed the pathological substrates underlying MRI-negative epilepsies. In the current study, histopathological specimens were retrospectively reviewed from MRI-negative epilepsy patients (n=95, mean age=30 years, 50% female subjects). Focal cortical dysplasia cases were classified according to the International League Against Epilepsy (ILAE) and Palmini et al classifications. The most common pathologies found in this MRI-negative cohort included: focal cortical dysplasia (n=43, 45%), gliosis (n=21, 22%), hamartia+gliosis (n=12, 13%), and hippocampal sclerosis (n=9, 9%). The majority of focal cortical dysplasia were ILAE type I (n=37) or Palmini type I (n=39). Seven patients had no identifiable pathological abnormalities. The existence of positive pathology was not significantly associated with age or temporal/extratemporal resection. Follow-up data post surgery was available in 90 patients; 63 (70%) and 57 (63%) attained seizure freedom at 6 and 12 months, respectively. The finding of positive pathology was significantly associated with seizure-free outcome at 6 months (P=0.035), but not at 12 months. In subgroup analysis, the focal cortical dysplasia group was not significantly correlated with seizure-free outcome, as compared with the negative-pathology groups at either 6 or 12 months. Of note, the finding of hippocampal sclerosis had a significant positive correlation with seizure-free outcome when compared with the negative-pathology group (P=0.009 and 0.004 for 6- and 12-month outcome, respectively). Absence of a significant histopathology in the resected surgical specimen did not preclude seizure freedom. In conclusion, our study highlights the heterogeneity of epileptic pathologies in MRI-negative epilepsies, with focal cortical dysplasia being the most common finding. The existence of positive pathology in surgical specimen may be a good indication for short-term good seizure outcome. There is a small subset of cases in which no pathological abnormalities are identified.
Collapse
Affiliation(s)
- Z Irene Wang
- Cleveland Clinic Epilepsy Center, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
22
|
Spontaneous seizures in a rat model of multiple prenatal freeze lesioning. Epilepsy Res 2013; 105:280-91. [DOI: 10.1016/j.eplepsyres.2013.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 02/08/2013] [Accepted: 03/15/2013] [Indexed: 11/22/2022]
|
23
|
Finardi A, Colciaghi F, Castana L, Locatelli D, Marras CE, Nobili P, Fratelli M, Bramerio MA, Lorusso G, Battaglia GS. Long-duration epilepsy affects cell morphology and glutamatergic synapses in type IIB focal cortical dysplasia. Acta Neuropathol 2013; 126:219-35. [PMID: 23793416 DOI: 10.1007/s00401-013-1143-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/30/2013] [Accepted: 06/11/2013] [Indexed: 11/24/2022]
Abstract
To investigate hypothesized effects of severe epilepsy on malformed cortex, we analyzed surgical samples from eight patients with type IIB focal cortical dysplasia (FCD) in comparison with samples from nine non-dysplastic controls. We investigated, using stereological quantification methods, where appropriate, dysplastic neurons, neuronal density, balloon cells, glia, glutamatergic synaptic input, and the expression of N-methyl-D-aspartate (NMDA) receptor subunits and associated membrane-associated guanylate kinase (MAGUK). In all FCD patients, the dysplastic areas giving rise to epileptic discharges were characterized by larger dysmorphic neurons, reduced neuronal density, and increased glutamatergic inputs, compared to adjacent areas with normal cytology. The duration of epilepsy was found to correlate directly (a) with dysmorphic neuron size, (b) reduced neuronal cell density, and (c) extent of reactive gliosis in epileptogenic/dysplastic areas. Consistent with increased glutamatergic input, western blot revealed that NMDA regulatory subunits and related MAGUK proteins were up-regulated in epileptogenic/dysplastic areas of all FCD patients examined. Taken together, these results support the hypothesis that epilepsy itself alters morphology-and probably also function-in the malformed epileptic brain. They also suggest that glutamate/NMDA/MAGUK dysregulation might be the intracellular trigger that modifies brain morphology and induces cell death.
Collapse
Affiliation(s)
- Adele Finardi
- Experimental Neurophysiology and Epileptology Department, Molecular Neuroanatomy and Pathogenesis Unit, Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Najm I, Jehi L, Palmini A, Gonzalez-Martinez J, Paglioli E, Bingaman W. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia 2013; 54:772-82. [DOI: 10.1111/epi.12152] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Imad Najm
- Epilepsy Center; Neurological Institute; Cleveland Clinic; Cleveland; Ohio; U.S.A
| | - Lara Jehi
- Epilepsy Center; Neurological Institute; Cleveland Clinic; Cleveland; Ohio; U.S.A
| | - Andre Palmini
- Porto Alegre Epilepsy Surgery Program; Neurology and Neurosurgery Services; Hospital São Lucas; Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS); Porto Alegre; Brazil
| | | | - Eliseu Paglioli
- Porto Alegre Epilepsy Surgery Program; Neurology and Neurosurgery Services; Hospital São Lucas; Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS); Porto Alegre; Brazil
| | - William Bingaman
- Epilepsy Center; Neurological Institute; Cleveland Clinic; Cleveland; Ohio; U.S.A
| |
Collapse
|
25
|
Abstract
Focal cortical dysplasia (FCD) is a developmental brain disorder characterized by localized abnormalities of cortical layering and neuronal morphology. It is associated with pharmacologically intractable forms of epilepsy in both children and adults. The mechanisms that underlie FCD-associated seizures and lead to the progression of the disease are unclear. Matrix metalloproteinases (MMPs) are enzymes that are able to influence neuronal function through extracellular proteolysis in various normal and pathological conditions. The results of experiments that have used rodent models showed that extracellular MMP-9 can play an important role in epileptogenesis. However, no studies have shown that MMP-9 is involved in the pathogenesis of human epilepsy. The aim of the present study was to determine whether MMP-9 plays a role in intractable epilepsy. Using an unbiased antibody microarray approach, we found that up regulation of MMP-9 is prominent and consistent in FCD tissue derived from epilepsy surgery, regardless of the patient's age. Additionally, an up regulation of MMP-1, -2, -8, -10, and -13 was found but was either less pronounced or limited only to adult cases. In the dysplastic cortex, immunohistochemistry revealed that the highest MMP-9 immuno reactivity occurred in the cytoplasm of abnormal neurons and balloon cells. The neuronal over expression of MMP-9 also occurred in sclerotic hippocampi that were excised together with the dysplastic cortex, but sclerotic hippocampi were free of dysplastic features. In both locations, MMP-9 was also found in reactive astrocytes, albeit to a lesser extent. At the subcellular level, increased MMP-9 immunoreactivity was prominently upregulated at synapses. Thus, although upregulation of the enzyme in FCD is not causally linked to the developmental malformation, it may be a result of ongoing abnormal synaptic plasticity. The present findings support the hypothesis of the pathogenic role of MMP-9 in human epilepsy and may stimulate discussions about whether MMPs could be novel therapeutic targets for intractable epilepsy.
Collapse
|
26
|
Hauptman JS, Mathern GW. Surgical treatment of epilepsy associated with cortical dysplasia: 2012 update. Epilepsia 2012; 53 Suppl 4:98-104. [PMID: 22946727 DOI: 10.1111/j.1528-1167.2012.03619.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cortical dysplasia is the most common etiology in children and the third most frequent finding in adults undergoing epilepsy neurosurgery. The new International League Against Epilepsy (ILAE) classification grades isolated cortical dysplasia into mild type I (cortical dyslamination), severe type II (dyslamination plus dysmorphic neurons and balloon cells), and dysplasia associated with other epileptogenic lesions (type III). Multilobar type II lesions present at an earlier age and with more severe epilepsy compared with focal type I abnormalities, often in the temporal lobe, and these findings are reflected in types and age of operations for cortical dysplasia. Presurgical evaluation of patients with epilepsy from cortical dysplasia can be challenging. Interictal and ictal scalp electroencephalography (EEG) accurately localizes cortical dysplasia with 50-66% accuracy. Structural magnetic resonance imaging (MRI) is negative in roughly 30% of cases, most often linked with mild type I cases. FDG-PET can be 80-90% accurate, but is not 100% sensitive. Chronic intracranial electrodes are used in about 50% of cases with cortical dysplasia, but often do not capture restricted ictal-onset zones. About 60% of patients with cortical dysplasia are seizure free after epilepsy neurosurgery, with much higher rates of becoming seizure free with complete (80%) compared with incomplete (20%) resections. The most common reason for incomplete resection is the risk of an unacceptable neurologic deficit. Future challenges include better tools in identifying subtle forms of type I cortical dysplasia, and development of adjunctive treatments from basic research for those undergoing incomplete resections.
Collapse
Affiliation(s)
- Jason S Hauptman
- Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | |
Collapse
|
27
|
Colciaghi F, Finardi A, Frasca A, Balosso S, Nobili P, Carriero G, Locatelli D, Vezzani A, Battaglia G. Status epilepticus-induced pathologic plasticity in a rat model of focal cortical dysplasia. ACTA ACUST UNITED AC 2011; 134:2828-43. [PMID: 21482549 DOI: 10.1093/brain/awr045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have generated an experimental 'double-hit' model of chronic epilepsy to recapitulate the co-existence of abnormal cortical structure and frequently recurrent seizures as observed in human focal cortical dysplasia. We induced cortical malformations by exposing rats prenatally to methylazoxymethanol acetate and triggered status epilepticus and recurrent seizures in adult methylazoxymethanol acetate rats with pilocarpine. We studied the course of epilepsy and the long-term morphologic and molecular changes induced by the occurrence of status epilepticus and subsequent chronic epilepsy in the malformed methylazoxymethanol acetate exposed brain. Behavioural and electroencephalographic analyses showed that methylazoxymethanol acetate pilocarpine rats develop more severe epilepsy than naïve rats. Morphologic and molecular analyses demonstrated that status epilepticus and subsequent seizures, but not pilocarpine treatment per se, was capable of affecting both cortical architectural and N-methyl-D-aspartate receptor abnormalities induced by methylazoxymethanol acetate. In particular, cortical thickness was further decreased and N-methyl-D-aspartate regulatory subunits were recruited at the postsynaptic membrane. In addition, methylazoxymethanol acetate pilocarpine rats showed abnormally large cortical pyramidal neurons with neurofilament over-expression. These neurons bear similarities to the hypertrophic/dysmorphic pyramidal neurons observed in acquired human focal cortical dysplasia. These data show that status epilepticus sets in motion a pathological process capable of significantly changing the cellular and molecular features of pre-existing experimental cortical malformations. They suggest that seizure recurrence in human focal cortical dysplasia might be an additional factor in establishing a pathological circuitry that favours chronic neuronal hyperexcitability.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurological Institute C. Besta, via Temolo 4, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
González-Martínez JA, Ying Z, Prayson R, Bingaman W, Najm I. Glutamate clearance mechanisms in resected cortical dysplasia. J Neurosurg 2011; 114:1195-202. [DOI: 10.3171/2010.10.jns10715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Changes in the expression of glutamate transporters (GLTs) may play a role in the expression of epileptogenicity. Previous studies have shown an increased number of neuronal GLTs in human dysplastic neurons. The expression of glial and neuronal GLTs and glutamine synthetase (GS) in balloon cells (BCs) and BC-containing cortical dysplasia has not been studied.
Methods
The authors analyzed neocortical samples that were resected in 5 patients who had cortical dysplasia–induced medically intractable focal epilepsy and who underwent extraoperative prolonged electrocorticographic (ECoG) recordings. The expressions of glial (GLT1/EAAT2) and neuronal (EAAT3, EAAC1) GLTs and GS proteins were immunohistochemically studied in all 5 resected samples. The authors also assessed in situ colocalization of GLTs and GS with neuronal and glial markers.
Results
Balloon cell–containing cortical dysplasia lesions did not exhibit ictal patterns on prolonged extraoperative ECoG recordings. There was a differential expression of glial and neuronal GLTs in BCs and dysplastic neurons: the majority of BCs highly expressed glial but not neuronal GLTs. Dysplastic neurons showed increased immunohistochemical staining with neuronal EAAT3 but not with EAAT2/GLT1. Moreover, only glial fibrillary acidic protein–positive BCs also expressed GS.
Conclusions
There is a differential GLT expression in dysplastic and balloon cells. The presence of glial GLTs and GS in balloon cell cortical dysplasia suggests a possible antiepileptic role for BCs and is consistent with the reported increased epileptogenicity in GLT1-deficient animals.
Collapse
Affiliation(s)
| | | | - Richard Prayson
- 2Department of Surgical Pathology, Cleveland Clinic, Cleveland, Ohio
| | | | | |
Collapse
|
29
|
Zurolo E, Iyer A, Maroso M, Carbonell C, Anink JJ, Ravizza T, Fluiter K, Spliet WGM, van Rijen PC, Vezzani A, Aronica E. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain 2011; 134:1015-32. [PMID: 21414994 DOI: 10.1093/brain/awr032] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent evidence in experimental models of seizures and in temporal lobe epilepsy support an important role of high-mobility group box 1 and toll-like receptor 4 signalling in the mechanisms of hyperexcitability leading to the development and perpetuation of seizures. In this study, we investigated the expression and cellular distribution of toll-like receptors 2 and 4, and of the receptor for advanced glycation end products, and their endogenous ligand high-mobility group box 1, in epilepsy associated with focal malformations of cortical development. Immunohistochemistry showed increased expression of toll-like receptors 2 and 4 and receptor for advanced glycation end products in reactive glial cells in focal cortical dysplasia, cortical tubers from patients with the tuberous sclerosis complex and in gangliogliomas. Toll-like receptor 2 was predominantly detected in cells of the microglia/macrophage lineage and in balloon cells in focal cortical dysplasia, and giant cells in tuberous sclerosis complex. The toll-like receptor 4 and receptor for advanced glycation end products were expressed in astrocytes, as well as in dysplastic neurons. Real-time quantitative polymerase chain reaction confirmed the increased receptors messenger RNA level in all pathological series. These receptors were not detected in control cortex specimens. In control cortex, high-mobility group box 1 was ubiquitously detected in nuclei of glial and neuronal cells. In pathological specimens, protein staining was instead detected in the cytoplasm of reactive astrocytes or in tumour astrocytes, as well as in activated microglia, predictive of its release from glial cells. In vitro experiments in human astrocyte cultures showed that nuclear to cytoplasmic translocation of high-mobility group box 1 was induced by interleukin-1β. Our findings provide novel evidence of intrinsic activation of these pro-inflammatory signalling pathways in focal malformations of cortical development, which could contribute to the high epileptogenicity of these developmental lesions.
Collapse
Affiliation(s)
- Emanuele Zurolo
- Department of (Neuro) Pathology, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Park KI, Chu K, Jung KH, Kim JH, Kang KM, Lee ST, Park HK, Kim M, Lee SK, Roh JK. Role of cortical dysplasia in epileptogenesis following prolonged febrile seizure. Epilepsia 2010; 51:1809-19. [DOI: 10.1111/j.1528-1167.2010.02676.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Hawasli AH, Koovakkattu D, Hayashi K, Anderson AE, Powell CM, Sinton CM, Bibb JA, Cooper DC. Regulation of hippocampal and behavioral excitability by cyclin-dependent kinase 5. PLoS One 2009; 4:e5808. [PMID: 19529798 PMCID: PMC2695674 DOI: 10.1371/journal.pone.0005808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/07/2009] [Indexed: 01/19/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that has been implicated in learning, synaptic plasticity, neurotransmission, and numerous neurological disorders. We previously showed that conditional loss of Cdk5 in adult mice enhanced hippocampal learning and plasticity via modulation of calpain-mediated N-methyl-D-aspartic acid receptor (NMDAR) degradation. In the present study, we characterize the enhanced synaptic plasticity and examine the effects of long-term Cdk5 loss on hippocampal excitability in adult mice. Field excitatory post-synaptic potentials (fEPSPs) from the Schaffer collateral CA1 subregion of the hippocampus (SC/CA1) reveal that loss of Cdk5 altered theta burst topography and enhanced post-tetanic potentiation. Since Cdk5 governs NMDAR NR2B subunit levels, we investigated the effects of long-term Cdk5 knockout on hippocampal neuronal excitability by measuring NMDAR-mediated fEPSP magnitudes and population-spike thresholds. Long-term loss of Cdk5 led to increased Mg2+-sensitive potentials and a lower threshold for epileptiform activity and seizures. Biochemical analyses were performed to better understand the role of Cdk5 in seizures. Induced-seizures in wild-type animals led to elevated amounts of p25, the Cdk5-activating cofactor. Long-term, but not acute, loss of Cdk5 led to decreased p25 levels, suggesting that Cdk5/p25 may be activated as a homeostatic mechanism to attenuate epileptiform activity. These findings indicate that Cdk5 regulates synaptic plasticity, controls neuronal and behavioral stimulus-induced excitability and may be a novel pharmacological target for cognitive and anticonvulsant therapies.
Collapse
Affiliation(s)
- Ammar H. Hawasli
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Della Koovakkattu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kanehiro Hayashi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Anne E. Anderson
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Craig M. Powell
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christopher M. Sinton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - James A. Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| | - Donald C. Cooper
- Department of Psychology and Neuroscience, Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
32
|
González-Martínez JA, Möddel G, Ying Z, Prayson RA, Bingaman WE, Najm IM. Neuronal nitric oxide synthase expression in resected epileptic dysplastic neocortex. J Neurosurg 2009; 110:343-9. [PMID: 19245288 DOI: 10.3171/2008.6.17608] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Nitric oxide has been associated with epileptogenesis. Previous studies have shown increased expression of N-methyl-d-aspartate (NMDA) subunit NR2B receptors in epileptic dysplastic human neocortex. The expression of neuronal nitric oxide synthase (nNOS), and its relation to this subunit NR2B in epileptic dysplastic tissue has never been addressed. METHODS Ten patients with medically intractable epilepsy caused by focal cortical dysplasia (CD), and 2 patients with mesial temporal sclerosis (control group) underwent pre- and/or intraoperative invasive monitoring evaluations. Cortical samples from epileptogenic and nonepileptogenic areas were collected from each patient intraoperatively. Samples were processed for cresyl violet staining, immunocytochemical tests with nNOS, NeuN, and NR2B, and immunofluorescence analyses to evaluate colocalized immunoreactivity between nNOS and NR2B. RESULTS All samples obtained in the patients with epilepsy revealed CD in various degrees. In the nonepileptic sample group, cresyl violet staining revealed normal cortical architecture in 9 samples, but a mild degree of CD in 3. The density and intensity of nNOS-stained neurons was remarkably increased in the epileptic tissue compared with nonepileptic samples (p < 0.05). Two types of nNOS-stained neurons were identified: Type I, expressing strong nNOS immunoreactivity in larger neurons; and Type II, expressing weak nNOS immunoreactivity in slightly smaller neurons. Different from Type I neurons, Type II nNOS-stained neurons revealed immunoreactivity colocalized with NR2B antibody. CONCLUSIONS The overexpression of nNOS in the epileptic samples and the immunoreactivity colocalization between nNOS and NR2B may suggest a possible role of nNOS and NO in the pathophysiological mechanisms related to in situ epileptogenicity.
Collapse
|
33
|
Lerner JT, Salamon N, Hauptman JS, Velasco TR, Hemb M, Wu JY, Sankar R, Donald Shields W, Engel J, Fried I, Cepeda C, Andre VM, Levine MS, Miyata H, Yong WH, Vinters HV, Mathern GW. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 2009; 50:1310-35. [PMID: 19175385 DOI: 10.1111/j.1528-1167.2008.01998.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent findings on the clinical, electroencephalography (EEG), neuroimaging, and surgical outcomes are reviewed comparing patients with Palmini type I (mild) and type II (severe) cortical dysplasia. Resources include peer-reviewed studies on surgically treated patients and a subanalysis of the 2004 International League Against Epilepsy (ILAE) Survey of Pediatric Epilepsy Surgery. These sources were supplemented with data from University of California, Los Angeles (UCLA). Cortical dysplasia is the most frequent histopathologic substrate in children, and the second most common etiology in adult epilepsy surgery patients. Cortical dysplasia patients present with seizures at an earlier age than other surgically treated etiologies, and 33-50% have nonlocalized scalp EEG and normal magnetic resonance imaging (MRI) scans. 2-((18)F)Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is positive in 75-90% of cases. After complete resection, 80% of patients are seizure free compared with 20% with incomplete resections. Compared with type I, patients with type II cortical dysplasia present at younger ages, have higher seizure frequencies, and are extratemporal. Type I dysplasia is found more often in adult patients in the temporal lobe and is often MRI negative. These findings identify characteristics of patients with mild and severe cortical dysplasia that define surgically treated epilepsy syndromes. The authors discuss future challenges to identifying and treating medically refractory epilepsy patients with cortical dysplasia.
Collapse
Affiliation(s)
- Jason T Lerner
- Department of Pediatric Neurology, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Campbell SL, Hablitz JJ. Decreased glutamate transport enhances excitability in a rat model of cortical dysplasia. Neurobiol Dis 2008; 32:254-61. [PMID: 18674619 DOI: 10.1016/j.nbd.2008.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/16/2008] [Accepted: 07/03/2008] [Indexed: 11/30/2022] Open
Abstract
Glutamate transporters function to maintain low levels of extracellular glutamate and play an important role in synaptic transmission at many synapses. Disruption of glutamate transporter function or expression can result in increased extracellular glutamate levels. Alterations in glutamate transporter expression have been reported in human epilepsy and animal seizure models. Functional electrophysiological changes that occur when transporter expression is disrupted in chronic epilepsy models have not been examined. Here, we used a freeze-induced model of cortical dysplasia to test the role of glutamate transporters in synaptic hyperexcitability. We report that inhibiting glutamate transporters with the non-selective antagonist, DL-threo-beta-benzylozyaspartic acid (TBOA) preferentially prolongs postsynaptic currents (PSCs) and decreases the threshold for evoking epileptiform activity in lesioned compared to control cortex. The effect of inhibiting uptake is mediated primarily by the glia glutamate transporter (GLT-1) since the selective antagonist dihydrokainate (DHK) mimicked the effects of TBOA. The effect of uptake inhibition is mediated by activation of N-methyl-D-aspartate (NMDA) receptors since D-(-)-2-amino-5-phosphonovaleric acid (APV) prevents TBOA-induced effects. Neurons in lesioned cortex also have a larger tonic NMDA current. These results indicate that chronic changes in glutamate transporters and NMDA receptors contribute to hyperexcitability in cortical dysplasia.
Collapse
Affiliation(s)
- Susan L Campbell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
35
|
Takase KI, Shigeto H, Suzuki SO, Kikuchi H, Ohyagi Y, Kira JI. Prenatal freeze lesioning produces epileptogenic focal cortical dysplasia. Epilepsia 2008; 49:997-1010. [PMID: 18325015 DOI: 10.1111/j.1528-1167.2008.01558.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Focal cortical dysplasia (FCD) is thought to be an important cause of intractable epilepsy. However, its epileptogenicity remains unclear. Therefore, we created a novel rat model by freeze lesioning during the late embryonic stage to verify whether FCD influences seizure activities. METHODS At 18 days postconception, a frozen probe was placed on the left scalp of a Sprague-Dawley rat embryo through the uterus wall. For 40 consecutive days from postnatal day 38 (P38), electrical kindling stimulation was applied to the frontal lobes of male rat pups. Afterdischarges (ADs) were measured in both the cortex and hippocampus. Brain tissues were examined by immunohistochemistry. RESULTS All brains from prenatally freeze-lesioned rats displayed severe disorganization of the cortical layers with randomly oriented dendrites/axons. In addition, heterotopic cortices were observed in 42.1% of cases. ADs in the cortex and hippocampus were significantly prolonged in freeze-lesioned rats compared with those in sham-operated and control rats. FCD rats also revealed early development of hippocampal kindling and spontaneous cortico-hippocampal spikes, even in the chronic EEG recordings. Immunoreactivities for N-methyl-D-aspartate receptor (NMDAR) subunit 2B and glutamate/aspartate transporter in the lesions were significantly enhanced compared with the nonlesioned side, even in the absence of electrical stimulation. After electrical stimulation, NMDAR1 and 2B were markedly upregulated not only in the FCD, but also in the hippocampus. CONCLUSIONS Prenatal freeze lesioning of the brain produces a severe neuronal migration disorder, closely mimicking human FCD. Our model suggests that FCD is associated with vulnerability to epilepsy, and may augment hippocampal epileptogenicity.
Collapse
Affiliation(s)
- Kei-ichiro Takase
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Sen A, Thom M, Nikolić M, Sisodiya SM. The potential role of cyclin-dependent kinase 5 in focal cortical dysplasia. Dev Neurosci 2008; 30:96-104. [PMID: 18075258 DOI: 10.1159/000109855] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 03/12/2007] [Indexed: 11/19/2022] Open
Abstract
Focal cortical dysplasia (FCD) is the most common malformation of cortical development found in epilepsy surgical series. Characterised by cortical mislamination, dysplastic neurons and, in a subgroup of cases, balloon cells, FCD is potently epileptogenic. Despite decades of study, the underlying aetiology of FCD remains uncertain and research has been hampered by the lack of a good animal model in which to simulate the condition. In this article we review some of the potential molecular mechanisms that might underpin human FCD. In particular we examine the potential role of cyclin-dependent kinase 5 and its principal activator p35 in FCD and estimate the contribution that deregulation of cyclin-dependent kinase 5 might make to the pathogenesis of this condition.
Collapse
Affiliation(s)
- Arjune Sen
- Department of Clinical and Experimental Epilepsy, University College London, London, UK.
| | | | | | | |
Collapse
|
37
|
Wong M. Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia 2007; 49:8-21. [PMID: 17727667 PMCID: PMC3934641 DOI: 10.1111/j.1528-1167.2007.01270.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Malformations of cortical development (MCDs) are increasingly recognized as causes of medically intractable epilepsy. In order to develop more effective, rational therapies for refractory epilepsy related to MCDs, it is important to achieve a better understanding of the underlying mechanisms of epileptogenesis, but this is complicated by the wide variety of different radiographic, histopathological, and molecular features of these disorders. A subset of MCDs share a number of characteristic cellular and molecular abnormalities due to early defects in neuronal and glial proliferation and differentiation and have a particularly high incidence of epilepsy, suggesting that this category of MCDs with abnormal glioneuronal proliferation may also share a common set of primary mechanisms of epileptogenesis. This review critically analyzes both clinical and basic science evidence for overlapping mechanisms of epileptogenesis in this group of disorders, focusing on tuberous sclerosis complex, focal cortical dysplasia with balloon cells, and gangliogliomas. Specifically, the role of lesional versus perilesional regions, circuit versus cellular/molecular defects, and nonneuronal factors, such as astrocytes, in contributing to epileptogenesis in these MCDs is examined. An improved understanding of these various factors involved in epileptogenesis has direct clinical implications for optimizing current treatments or developing novel therapeutic approaches for epilepsy in these disorders.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
38
|
Najm IM, Tilelli CQ, Oghlakian R. Pathophysiological mechanisms of focal cortical dysplasia: a critical review of human tissue studies and animal models. Epilepsia 2007; 48 Suppl 2:21-32. [PMID: 17571350 DOI: 10.1111/j.1528-1167.2007.01064.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cortical dysplasia (CD, also known as malformations of cortical development) are the pathological substrates in a large percentage of patients with pharmacoresistant epilepsy who may be amenable to surgical treatment. Therefore, research on the mechanisms of dysplastic lesion formation and epileptogenicity is of paramount importance for the prevention, detection, and treatment of CD-induced epilepsy. The purpose of this review is to discuss and critically evaluate the current state and results of human tissue experimentation (focusing on reported results of studies done on neocortical dysplastic tissue resected from patients with pharmacoresistant epilepsy), and to discuss some of the concerns related to research that uses surgically resected epileptic human tissue. The use of better animal models of CD as a tool toward the better understanding of the mechanisms of pathogenesis, epileptogenesis, and epileptogenicity of dysplastic lesions will be reviewed from the perspective of their usefulness in a model of translational research that should ultimately result in better diagnostic and therapeutic techniques of CD.
Collapse
Affiliation(s)
- Imad M Najm
- Cleveland Clinic Epilepsy Center Head, Section of Adult Epilepsy and Clinical Neurophysiology, 9500 Euclid Avenue, S51, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
39
|
Fenoglio KA, Wu J, Kim DY, Simeone TA, Coons SW, Rekate H, Rho JM, Kerrigan JF. Hypothalamic hamartoma: basic mechanisms of intrinsic epileptogenesis. Semin Pediatr Neurol 2007; 14:51-9. [PMID: 17544947 DOI: 10.1016/j.spen.2007.03.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hypothalamic hamartoma (HH) is a rare developmental malformation commonly associated with gelastic seizures that are notoriously refractory to medical therapy. Recent evidence supports the intrinsic seizure propensity of HH. Despite increasing clinical recognition of this condition, the mechanisms of seizure genesis in HH tissue remain unclear. This review summarizes the histochemical and electrophysiological properties of HH neurons, and relates these findings to those characteristics identified in other types of epileptic tissue. Initial studies have revealed two distinct populations of neurons in surgically resected HH tissue. One group consisted of small gamma-aminobutyric acid (GABA)-expressing neurons that occurred principally in clusters and displayed spontaneous rhythmic firing. The second group was composed of large, quiescent, pyramidal-like neurons with more extensive dendritic and axonal arborization. We propose that the small, spontaneously firing GABAergic neurons send inhibitory projections to and drive the synchrony of large output neurons. These observations constitute the basis for future investigations aimed at elucidating the mechanisms of subcortical epileptogenesis.
Collapse
Affiliation(s)
- Kristina A Fenoglio
- Division of Neurology and Pediatric Neurology, Barrow Neurological Institute and Children's Health Center, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sheng Z, Dai Q, Prorok M, Castellino FJ. Subtype-selective antagonism of N-methyl-D-aspartate receptor ion channels by synthetic conantokin peptides. Neuropharmacology 2007; 53:145-56. [PMID: 17588620 PMCID: PMC3965200 DOI: 10.1016/j.neuropharm.2007.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/28/2007] [Accepted: 04/25/2007] [Indexed: 01/29/2023]
Abstract
Conantokin-G (con-G), conantokin-T (con-T), a truncated conantokin-R (con-R[1-17]), that functions the same as wild-type con-R, and variant sequences of con-T, were chemically synthesized and employed to investigate their selectivities as antagonists of glutamate/glycine-evoked ion currents in human embryonic kidney-293 cells expressing various combinations of NMDA receptor (NMDAR) subunits (NR), viz., NR1a/2A, NR1a/2B, NR1b/2A and NR1b/2B. Con-G did not substantially affect ion flow into NR1a,b/NR2A-transfected cells, but potently inhibited cells expressing NR1a,b/NR2B, showing high NR2B selectivity. Con-T and con-R served as non-selective antagonists of all of four NMDAR subunit combinations. C-terminal truncation variants of the 21-residue con-T were synthesized and examined in this regard. While NMDAR ion channel antagonist activity, and the ability to adopt the Ca(2+)-induced alpha-helical conformation, diminished as a function of shortening the COOH-terminus of con-T, NMDAR subtype selectivity was enhanced in the con-T[1-11], con-T[1-9], and con-T[1-8] variants toward NR2A, NR1b, and NR1b/2A, respectively. Receptor subtype selectivity was also obtained with Met-8 sequence variants of con-T. Con-T[M8A] and con-T[M8Q] displayed selectivity with NR2B-containing subunits, while con-T[M8E] showed enhanced activity toward NR1b-containing NMDAR subtypes. Of those studied, the most highly selective variant was con-T[M8I], which showed maximal NMDAR ion channel antagonism activity toward the NR1a/2A subtype. These studies demonstrate that it is possible to engineer NMDAR subtype antagonist specificity into con-T. Since the subunit composition of the NMDAR varies temporally and spatially in developing brain and in various disease states, conantokins with high subtype selectivities are potentially valuable drugs that may be used at specific stages of disease and in selected regions of the brain.
Collapse
Affiliation(s)
- Zhenyu Sheng
- W.M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
41
|
Gashi E, Avallone J, Webster T, Friedman LK. Altered excitability and distribution of NMDA receptor subunit proteins in cortical layers of rat pups following multiple perinatal seizures. Brain Res 2007; 1145:56-65. [PMID: 17320824 DOI: 10.1016/j.brainres.2007.01.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/18/2007] [Accepted: 01/29/2007] [Indexed: 11/19/2022]
Abstract
During a critical period of postnatal development the epileptogenic focus is thought to be of cortical origin. We used immunohistochemistry and Western blotting to elucidate potential mechanisms underlying an increased state of susceptibility to seizures in immature animals. Distribution patterns of N-methyl-D-aspartic acid (NMDA) (NR1 and NR2A/B) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) (GluR1 and GluR2) subunits were analyzed in retrosplenial, parietal and temporal cortices during the first two postnatal weeks following three episodes of status-epilepticus. Rat pups were injected three times with kainic acid (3x KA) on P6, P9, and P13 and subsequently sacrificed 48 h after the third seizure. Cortical electroencephalography (EEG) showed increased number of spikes and bursts of longer duration after 3x KA. Immunodensity measurements after 3x KA revealed a robust increase in NR2A/B labeling specific to cortical layer V throughout the retrosplenial, parietal, and temporal cortices, with no changes noted in piriform cortex. NR1 layer V immunoreactivity was also simultaneously increased in serial sections but to a lesser degree; heightened immunodensities were specific to retrosplenial and temporal cortices. The NR1:NR2 ratio was decreased in cortical layer V of the temporal and retrosplenial cortices but not in parietal cortex despite elevated immunoreactivity. Steady levels of GluR1 and GluR2 subunits were noted in all cortical areas studied in the same animals. Thus, recurrent perinatal seizures led to selective and layer-specific increases in NMDA receptor proteins. These changes may be responsible for lowering the seizure threshold in deeper cortical areas and eventually contribute to the cortical epileptogenic focus.
Collapse
Affiliation(s)
- Eleonora Gashi
- Neuroscience Department, New York Institute of Technology, NY College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA
| | | | | | | |
Collapse
|
42
|
Ljungberg MC, Bhattacharjee MB, Lu Y, Armstrong DL, Yoshor D, Swann JW, Sheldon M, D'Arcangelo G. Activation of mammalian target of rapamycin in cytomegalic neurons of human cortical dysplasia. Ann Neurol 2006; 60:420-9. [PMID: 16912980 DOI: 10.1002/ana.20949] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The cortex of patients with cortical dysplasia contains several abnormal cell types. Among the dysplastic cells, cytomegalic neurons are known to be electrically hyperactive and may contribute to epileptic activity. In this study, we sought to identify molecular markers of cytomegalic neurons in focal or hemispheric cortical dysplasia and to determine whether the activity of the mammalian target of rapamycin (mTOR) kinase is abnormally high in these cells. METHODS Microarray analysis of gene expression in large dysplastic cells microdissected from cortical dysplasia surgical specimens was used to identify markers of cytomegalic neurons. Immunohistochemistry and immunofluorescence analysis of cortical sections was used to validate the microarray results and to probe the activity of mTOR in cytomegalic neurons using phospho-specific antibodies directed against known mTOR targets. RESULTS We demonstrate that the neurofilament heavy chain is a reliable marker of cytomegalic neurons and that targets of the mTOR kinase, such as the ribosomal protein S6, eIF4G, and Akt, are hyperphosphorylated in these dysplastic neurons. INTERPRETATION We conclude that mTOR kinase hyperactivation is a molecular mechanism underlying the development of cytomegalic neurons. This finding may lead to the development of novel therapeutic approaches for childhood epilepsy associated with cortical dysplasia.
Collapse
|
43
|
Bandyopadhyay S, Hablitz JJ. NR2B antagonists restrict spatiotemporal spread of activity in a rat model of cortical dysplasia. Epilepsy Res 2006; 72:127-39. [PMID: 16962290 DOI: 10.1016/j.eplepsyres.2006.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/29/2006] [Accepted: 07/17/2006] [Indexed: 11/21/2022]
Abstract
Freeze-lesion-induced focal cortical dysplasia in rats closely resembles human microgyria, a neuronal migration disorder associated with drug-resistant epilepsy. Alterations in expression of N-methyl-D-aspartate receptors (NMDARs) containing NR2B subunits have been suggested to play a role in the hyperexcitability seen in this model. We examined the effect of NMDAR antagonists selective for NR2B subunits (Ro 25-6981 and ifenprodil) on activity evoked by intracortical stimulation in brain slices from freeze-lesioned rat neocortex. Whole-cell voltage-clamp recordings showed that Ro 25-6981 (1 microM) significantly reduced the response area of evoked postsynaptic currents in pyramidal cells from the paramicrogyral area whereas responses were unaffected in slices from control (sham operated) animals. Voltage-sensitive dye imaging was used to examine spatiotemporal spread of evoked activity in lesioned and control cortices. The imaging experiments revealed that peak amplitude, duration, and lateral spread of evoked activity in the paramicrogyral area was reduced by bath application of Ro 25-6981 (1 microM) and ifenprodil (10 microM). Ro 25-6981 had no effect on evoked activity in neocortical slices from control animals. The non-selective NMDAR antagonist d-2-amino-5-phosphonvaleric acid (APV, 20 microM) reduced activity evoked in presence of 50 microM 4-aminopyridine (known to increase excitability by enhancing neurotransmitter release) in neocortical slices from control animals whereas Ro 25-6981 (1 microM) did not. These results suggest that NR2B subunit-containing NMDARs contribute significantly to the enhanced spatiotemporal spread of paroxysmal activity observed in vitro in the rat freeze-lesion model of focal cortical dysplasia.
Collapse
Affiliation(s)
- Susanta Bandyopadhyay
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
44
|
Cepeda C, André VM, Levine MS, Salamon N, Miyata H, Vinters HV, Mathern GW. Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy Behav 2006; 9:219-35. [PMID: 16875879 DOI: 10.1016/j.yebeh.2006.05.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/22/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Cortical dysplasia (CD) is the most frequent pathology found in pediatric epilepsy surgery patients with a nearly 80% incidence in children younger than 3 years of age. Younger cases are more likely to have multilobar and severe forms of CD compared with older patients with focal and mild CD. Using clinico-pathologic techniques, we have initiated studies that unravel the timing of CD pathogenesis that in turn suggest mechanisms of epileptogenesis. Morphological comparisons provided the first clue when we observed that cytomegalic neurons have similarities with human subplate cells, and balloon cells have features analogous to radial glia. This suggested that failure of prenatal cell degeneration before birth could explain the presence of postnatal dysmorphic cells in CD tissue. Neuronal density and MRI volumes indicate that there were more neurons than expected in CD tissue, and they were probably produced in later neurogenesis cell cycles. Together these findings imply that there is partial failure in later phases of cortical development that might explain the distinctive histopathology of CD. If correct, epileptogenesis should be the consequence of incomplete cellular maturation in CD tissue. In vitro electrophysiological findings are consistent with this notion. They show that balloon cells have glial features, cytomegalic neurons and recently discovered cytomegalic interneurons reveal atypical hyperexcitable intrinsic membrane properties, there are more GABA than glutamate spontaneous synaptic inputs onto neurons, and in a subset of cells NMDA and GABA(A) receptor-mediated responses and subunit expression are similar to those of immature neurons. Our studies support the hypothesis that there are retained prenatal cells and neurons with immature cellular and synaptic properties in pediatric CD tissue. We propose that local interactions of dysmature cells with normal postnatal neurons produce seizures. This hypothesis will drive future studies aimed at elucidating mechanisms of epileptogenesis in pediatric CD tissue.
Collapse
Affiliation(s)
- Carlos Cepeda
- Division of Neurosurgery, Department of Neurology, The Brain Research Institute and The Mental Retardation Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Finardi A, Gardoni F, Bassanini S, Lasio G, Cossu M, Tassi L, Caccia C, Taroni F, LoRusso G, Di Luca M, Battaglia G. NMDA Receptor Composition Differs Among Anatomically Diverse Malformations of Cortical Development. J Neuropathol Exp Neurol 2006; 65:883-93. [PMID: 16957582 DOI: 10.1097/01.jnen.0000235117.67558.6d] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Altered excitatory synaptic activity is likely a key factor in the neuronal hyperexcitability of developmental cerebral malformations. Using a combined morphologic and molecular approach, we investigated the NMDA receptor and related protein composition in human epileptic patients affected by periventricular nodular heterotopia, subcortical band heterotopia, or focal cortical dysplasia. Our results indicate that expression levels of specific NMDA receptor subunits are altered in both cerebral heterotopia and cortical dysplasia. A selective increase in the NR2B subunit was present in all cortical dysplasia, whereas the expression level of NR2A and NR2B subunits was significantly downregulated in all patients with heterotopia. NR2B upregulation in cortical dysplasia was greater in the total homogenate than the postsynaptic membrane fraction, suggesting that mechanisms other than increased ionic influx through the postsynaptic membrane may sustain hyperexcitability in dysplastic neurons. In cerebral heterotopia, the NR2A and NR2B downregulation was accompanied by less evident reduction of the SAP97 and PSD-95 proteins of the MAGUK family, thus suggesting that NMDA impairment was associated with altered molecular structure of the postsynaptic membrane. Our results demonstrate that diverse human developmental malformations are associated with different alterations of the NMDA receptor, which may contribute to the genesis of epileptic phenomena.
Collapse
Affiliation(s)
- Adele Finardi
- Molecular Neuroanatomy Lab, Experimental Neurophysiology and Epileptology Unit, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hodozuka A, Tsuda H, Hashizume K, Tanaka T. Focal cortical dysplasia: pathophysiological approach. Childs Nerv Syst 2006; 22:827-33. [PMID: 16763854 DOI: 10.1007/s00381-006-0136-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Indexed: 10/24/2022]
Abstract
OVERVIEW Clinical and experimental studies on focal cortical dysplasia (FCD) were carried out. MATERIALS AND METHODS For the experimental study, an experimental FCD model of rats was developed. Twenty Wistar rats at 0-2 days after birth were used for the study. Kainic acid (KA) solution was injected stereotaxically into medial and lateral sites of the sensori-motor cortex. Bipolar electrodes were inserted in five rats. Their behavior and electroencephalogram (EEG) were recorded using a digital-video-EEG monitoring system. After observation periods of 1, 2, and 6 months, rats were perfused for pathological study. FCD was observed adjacent to the site of KA injection in all rats more than 1 month after the injection. RESULTS AND DISCUSSIONS EEG recording demonstrated focal spike discharges in and around the site of injection. However, clinical seizure was not observed. Pathological studies showed decrease in GABA-A receptors and increase in GABA-B receptors not only in the lesion but also in perilesional areas. Fifteen surgical cases of FCD with intractable epilepsy were subjected to the clinical study. Neuro-imaging studies including high-resolution magnetic resonance imaging and single-photon emission computed tomography were performed. Conventional EEG studies demonstrated focal EEG abnormalities with epileptic phenomena. At surgery, intraoperative electrocorticography (ECoG) was performed to localize epileptic foci under neuroleptoanalgesia. Thirteen patients showed epileptiform discharges on preresection ECoG. All foci in non-eloquent areas were resected. Pathological studies including immunohistochemical staining were performed, and the characteristics of the FCD in relation to EEG findings were analyzed. Patients in whom total lesionectomy with complete focus resection was performed had favorable postoperative courses. Nine patients (64.3%) have been seizure-free with reduced medication, and significant improvement was achieved in two patients (14.3%). Electrophysiological examination revealed epileptogenecity not only in the lesions but also in perilesional areas. The immunohistochemical studies showed a decrease in GABA-A receptors and an increase in GABA-B receptors in both the lesions and perilesional areas, but N-methyl-D: -aspartate receptors were almost negative in both areas. Glutamate R1 was decreased in both areas, but glutamate R2 was increased in both areas. These findings support the results of a electrophysiological study. CONCLUSIONS In conclusion, not only the epileptic property of experimental focal cortical dysplasia but also perilesional epileptogenesis was demonstrated. These findings supported the results of surgery for patients with focal cortical dysplasia. In cases of FCD, total removal of the lesion and resection of the perilesional epileptic focus are needed for a good outcome.
Collapse
Affiliation(s)
- Akira Hodozuka
- Department of Neurosurgery, Asahikawa Medical College, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan.
| | | | | | | |
Collapse
|
47
|
Patrylo PR, Browning RA, Cranick S. Reeler homozygous mice exhibit enhanced susceptibility to epileptiform activity. Epilepsia 2006; 47:257-66. [PMID: 16499749 DOI: 10.1111/j.1528-1167.2006.00417.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Seizures are observed frequently in humans with diffuse neuronal migration disorders. The reeler mutant mouse also exhibits a diffuse disruption of migration, yet no pro-epileptic phenotype has been reported for this model. Whether this disparity reflects a phenotypic difference that can be used to delineate the mechanisms associated with increasing seizure susceptibility or reflects a paucity of knowledge is unclear. Consequently, this study examined whether seizure susceptibility is altered in reeler mutant mice. METHODS In vivo (minimal electroshock delivered transcorneally) and in vitro techniques (field-potential recordings in neocortical and hippocampal brain slice preparations exposed to bicuculline methiodide) were used to determine whether the susceptibility to epileptiform activity is enhanced in reeler homozygous mice relative to controls. Adult (3-7 months) male reeler homozygotes (rl/rl) and controls (+/?) were identified based on their behavioral phenotype and were used in all experiments. RESULTS Minimal electroshock revealed that rl/rl mice, compared with controls, exhibited a lower threshold for electroshock-induced seizures (4.5 +/- 0.52 vs. 6.7 +/- 0.35 mA), and a higher incidence of behavioral seizures (median seizure score, class 4 vs. class 0) when animals were subjected to a 5-mA electroshock stimulus. Additionally, neocortical and hippocampal slices from rl/rl mice were more likely to generate spontaneous epileptiform activity after bicuculline application, compared with controls, and the duration of the epileptiform events elicited in 10-30 muM bicuculline was longer in slices from rl/rl mice. CONCLUSIONS These data demonstrate that rl/rl mice have enhanced seizure susceptibility that is in part intrinsic to the malformed neocortex and hippocampus. Thus in contrast to prior belief, most animal models of diffuse neuronal migration disorders do exhibit a pro-epileptic phenotype.
Collapse
Affiliation(s)
- Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, U.S.A.
| | | | | |
Collapse
|
48
|
Meierkord H, Boon P, Engelsen B, Göcke K, Shorvon S, Tinuper P, Holtkamp M. EFNS guideline on the management of status epilepticus. Eur J Neurol 2006; 13:445-50. [PMID: 16722966 DOI: 10.1111/j.1468-1331.2006.01397.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of the current paper was to review the literature and discuss the degree of evidence for various treatment strategies for status epilepticus (SE) in adults. We searched MEDLINE and EMBASE for relevant literature from 1966 to January 2005. Furthermore, the Cochrane Central Register of Controlled Trials (CENTRAL) was sought. Recommendations are based on this literature and on our judgement of the relevance of the references to the subject. Recommendations were reached by informative consensus approach. Where there was a lack of evidence but consensus was clear we have stated our opinion as good practice points. The preferred treatment pathway for generalised convulsive status epilepticus (GCSE) is intravenous (i.v.) administration of 4 mg of lorazepam or 10 mg of diazepam directly followed by 15-18 mg/kg of phenytoin or equivalent fosphenytoin. If seizures continue for more than 10 min after first injection another 4 mg of lorazepam or 10 mg of diazepam is recommended. Refractory GCSE is treated by anaesthetic doses of midazolam, propofol or barbiturates; the anaesthetics are titrated against an electroencephalogram burst suppression pattern for at least 24 h. The initial therapy of non-convulsive SE depends on the type and the cause. In most cases of absence SE, a small i.v. dose of lorazepam or diazepam will terminate the attack. Complex partial SE is initially treated such as GCSE, however, when refractory further non-anaesthetising substances should be given instead of anaesthetics. In subtle SE i.v. anaesthesia is required.
Collapse
Affiliation(s)
- H Meierkord
- Department of Neurology, Charité- Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This review addresses the main neuropathologic advances that have been made over recent years in the study of focal lesions in patients with epilepsy undergoing surgical treatment. There have been revisions and simplifications to the classification of focal cortical dysplasias. Hippocampal sclerosis is a well-characterized lesion but further pathologic studies have explored its possible relationship to temporal lobe developmental lesions, ongoing neurogenesis and mechanisms of its epileptogenicity. The important contribution of astrocytes to epileptogenesis is also unfolding and is briefly discussed, as are the possible cellular mechanisms of drug resistance.
Collapse
Affiliation(s)
- Maria Thom
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
50
|
Crino PB, Miyata H, Vinters HV. Neurodevelopmental disorders as a cause of seizures: neuropathologic, genetic, and mechanistic considerations. Brain Pathol 2006; 12:212-33. [PMID: 11958376 PMCID: PMC8095994 DOI: 10.1111/j.1750-3639.2002.tb00437.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This review will consider patterns of developmental neuropathologic abnormalities-malformations of cortical development (MCD)--encountered in infants (often with infantile spasms), children, and adults with intractable epilepsy. Treatment of epilepsy associated with some MCD, such as focal cortical dysplasia and tubers of tuberous sclerosis, may include cortical resection performed to remove the "dysplastic" region of cortex. In extreme situations (eg, hemimegalencephaly), hemispherectomy may be carried out on selected patients. Neuropathologic (including immunohistochemical) findings within these lesions will be considered. Other conditions that cause intractable epilepsy and often mental retardation, yet are not necessarily amenable to surgical treatment (eg, lissencephaly, periventricular nodular heterotopia, double cortex syndrome) will be discussed. Over the past 10 years there has been an explosion of information on the genetics of MCD. The genes responsible for many MCD (eg, TSC1, TSC2, LIS-1, DCX, FLN1) have been cloned and permit important mechanistic studies to be carried out with the purpose of understanding how mutations within these genes result in abnormal cortical cytoarchitecture and anomalous neuroglial differentiation. Finally, novel techniques allowing for analysis of patterns of gene expression within single cells, including neurons, is likely to provide answers to the most vexing and important question about these lesions: Why are they epileptogenic?
Collapse
Affiliation(s)
- Peter B Crino
- PENN Epilepsy Center, Department of Neurology, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | |
Collapse
|