1
|
Huang Y, Dziegielewska KM, Habgood MD, Qiu F, Leandro ACC, Callaghan PD, Curran JE, VandeBerg JL, Saunders NR. ABC Efflux Transporters and Solute Carriers in the Early Developing Brain of a Marsupial Monodelphis domestica (South American Gray Short-Tailed Opossum). J Comp Neurol 2024; 532:e25655. [PMID: 38980080 PMCID: PMC11257411 DOI: 10.1002/cne.25655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
This study used a marsupial Monodelphis domestica, which is born very immature and most of its development is postnatal without placental protection. RNA-sequencing (RNA-Seq) was used to identify the expression of influx and efflux transporters (ATP-binding cassettes [ABCs] and solute carriers [SLCs]) and metabolizing enzymes in brains of newborn to juvenile Monodelphis. Results were compared to published data in the developing eutherian rat. To test the functionality of these transporters at similar ages, the entry of paracetamol (acetaminophen) into the brain and cerebrospinal fluid (CSF) was measured using liquid scintillation counting following a single administration of the drug along with its radiolabelled tracer [3H]. Drug permeability studies found that in Monodelphis, brain entry of paracetamol was already restricted at P5; it decreased further in the first week of life and then remained stable until the oldest age group tested (P110). Transcriptomic analysis of Monodelphis brain showed that expression of transporters and their metabolizing enzymes in early postnatal (P) pups (P0, P5, and P8) was relatively similar, but by P109, many more transcripts were identified. When transcriptomes of newborn Monodelphis brain and E19 rat brain and placenta were compared, several transporters present in the rat placenta were also found in the newborn Monodelphis brain. These were absent from E19 rat brain but were present in the adult rat brain. These data indicate that despite its extreme immaturity, the newborn Monodelphis brain may compensate for the lack of placental protection during early brain development by upregulating protective mechanisms, which in eutherian animals are instead present in the placenta.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| | | | - Mark D Habgood
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| | - Fiona Qiu
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| | - Ana CC Leandro
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Paul D Callaghan
- ANSTO – Australia’s Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Joanne E Curran
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - John L VandeBerg
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Norman R Saunders
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
2
|
Al Rihani SB, Darakjian LI, Deodhar M, Dow P, Turgeon J, Michaud V. Disease-Induced Modulation of Drug Transporters at the Blood-Brain Barrier Level. Int J Mol Sci 2021; 22:ijms22073742. [PMID: 33916769 PMCID: PMC8038419 DOI: 10.3390/ijms22073742] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier (BBB) is a highly selective and restrictive semipermeable network of cells and blood vessel constituents. All components of the neurovascular unit give to the BBB its crucial and protective function, i.e., to regulate homeostasis in the central nervous system (CNS) by removing substances from the endothelial compartment and supplying the brain with nutrients and other endogenous compounds. Many transporters have been identified that play a role in maintaining BBB integrity and homeostasis. As such, the restrictive nature of the BBB provides an obstacle for drug delivery to the CNS. Nevertheless, according to their physicochemical or pharmacological properties, drugs may reach the CNS by passive diffusion or be subjected to putative influx and/or efflux through BBB membrane transporters, allowing or limiting their distribution to the CNS. Drug transporters functionally expressed on various compartments of the BBB involve numerous proteins from either the ATP-binding cassette (ABC) or the solute carrier (SLC) superfamilies. Pathophysiological stressors, age, and age-associated disorders may alter the expression level and functionality of transporter protein elements that modulate drug distribution and accumulation into the brain, namely, drug efficacy and toxicity. This review focuses and sheds light on the influence of inflammatory conditions and diseases such as Alzheimer’s disease, epilepsy, and stroke on the expression and functionality of the BBB drug transporters, the consequential modulation of drug distribution to the brain, and their impact on drug efficacy and toxicity.
Collapse
Affiliation(s)
- Sweilem B. Al Rihani
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
| | - Lucy I. Darakjian
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
| | - Malavika Deodhar
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
| | - Pamela Dow
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
| | - Jacques Turgeon
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Veronique Michaud
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (S.B.A.R.); (L.I.D.); (M.D.); (P.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-856-938-8697
| |
Collapse
|
3
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs (“precision medicine”) for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
5
|
Sharma AA, Szaflarski JP. In Vivo Imaging of Neuroinflammatory Targets in Treatment-Resistant Epilepsy. Curr Neurol Neurosci Rep 2020; 20:5. [PMID: 32166626 DOI: 10.1007/s11910-020-1025-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Recent evidence indicates that chronic, low-level neuroinflammation underlies epileptogenesis. Targeted imaging of key neuroinflammatory cells, receptors, and tissues may enable localizing epileptogenic onset zone, especially in those patients who are treatment-resistant and considered MRI-negative. Finding a specific, sensitive neuroimaging-based biomarker could aid surgical planning and improve overall prognosis in eligible patients. This article reviews recent research on in vivo imaging of neuroinflammatory targets in patients with treatment-resistant, non-lesional epilepsy. RECENT FINDINGS A number of advanced approaches based on imaging neuroinflammation are being implemented in order to assist localization of epileptogenic onset zone. The most exciting tools are based on radioligand-based nuclear imaging or revisiting of existing technology in novel ways. The greatest limitations stem from gaps in knowledge about the exact function of neuroinflammatory targets (e.g., neurotoxic or neuroprotective). Further, lingering questions about each approach's specificity, reliability, and sensitivity must be addressed, and clinical utility must be validated before any novel method is incorporated into mainstream clinical practice. Current applications of imaging neuroinflammation in humans are limited and underutilized, but offer hope for finding sensitive and specific neuroimaging-based biomarker(s). Future work necessitates appreciation of investigations to date, significant findings, and neuroinflammatory targets worth exploring further.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35249-0021, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35249-0021, USA.,University of Alabama at Birmingham Epilepsy Center, Birmingham, AL, USA
| |
Collapse
|
6
|
Verrotti A, Iapadre G, Di Donato G, Di Francesco L, Zagaroli L, Matricardi S, Belcastro V, Iezzi ML. Pharmacokinetic considerations for anti-epileptic drugs in children. Expert Opin Drug Metab Toxicol 2019; 15:199-211. [PMID: 30689454 DOI: 10.1080/17425255.2019.1575361] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Epilepsy is a chronic and debilitating neurological disease, with a peak of incidence in the first years of life. Today, the vast armamentarium of antiepileptic drugs (AEDs) available make even more challenging to select the most appropriate AED and establish the most effective dosing regimen. In fact, AEDs pharmacokinetics is under the influence of important age-related factors which cannot be ignored. Areas covered: Physiological changes occurring during development age (different body composition, immature metabolic patterns, reduced renal activity) can significantly modify the pharmacokinetic profile of AEDs (adsorption, volume of distribution, half-life, clearance), leading to an altered treatment response. We reviewed the main pharmacokinetic characteristics of AEDs used in children, focusing on age-related factors which are of relevance when treating this patient population. Expert opinion: To deal with this pharmacokinetic variability, physicians have at their disposal two tools: 1) therapeutic drug concentration monitoring, which may help to set the optimal therapeutic regimen for each patient and to monitor eventual fluctuation, and 2) the use of extended-release drug formulations, when available. In the next future, the development of 'ad-hoc' electronic dashboard systems will represent relevant decision-support tools making the AED therapy even more individualized and precise, especially in children.
Collapse
Affiliation(s)
- Alberto Verrotti
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| | - Giulia Iapadre
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| | - Giulia Di Donato
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| | | | - Luca Zagaroli
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| | - Sara Matricardi
- b Child Neurology and Psychiatry Unit , Children's Hospital G. Salesi , Ancona , Italy
| | | | - Maria Laura Iezzi
- a Department of Pediatrics , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
7
|
Banks DB, Chan GN, Evans RA, Miller DS, Cannon RE. Lysophosphatidic acid and amitriptyline signal through LPA1R to reduce P-glycoprotein transport at the blood-brain barrier. J Cereb Blood Flow Metab 2018; 38:857-868. [PMID: 28447863 PMCID: PMC5987938 DOI: 10.1177/0271678x17705786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The blood-brain barrier is a microvascular network that (1) provides neuroprotection from metabolic and environmental toxins and (2) limits the delivery of therapeutics to the central nervous system (CNS). The ATP-binding cassette transporter P-glycoprotein contributes to the latter by actively pumping clinical substrates back into circulation before they can reach the brain parenchyma. Targeting P-glycoprotein has proven effective in increasing the delivery of therapeutics to their cerebral targets. We provide a novel mechanism to achieve this end in functioning, intact rat brain capillaries, whereby the bioactive phospholipid lysophosphatidic acid (LPA) and tricyclic antidepressant (TCA) amitriptyline reduce basal P-glycoprotein transport activity through a distinct lysophosphatidic acid 1 receptor-mediated signaling cascade that requires G-protein coupling, Src kinase, and ERK 1/2. Furthermore, we demonstrate the ability of LPA and TCA amitriptyline to decrease induced P-glycoprotein transport activity in a human SOD1 transgenic rat model of amyotrophic lateral sclerosis. This work may translate to new clinical strategies for increasing the cerebral penetration of therapeutics in patients suffering from CNS diseases marked by exacerbated pharmacoresistance.
Collapse
Affiliation(s)
- David B Banks
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Gary Ny Chan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Rebecca A Evans
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - David S Miller
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Ronald E Cannon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
8
|
Elkhayat HA, Aly RH, Elagouza IA, El-Kabarity RH, Galal YI. Role of P-glycoprotein inhibitors in children with drug-resistant epilepsy. Acta Neurol Scand 2017; 136:639-644. [PMID: 28560774 DOI: 10.1111/ane.12778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The role of P-glycoprotein (Pgp), one of the known multidrug transporters, has been suggested in drug-resistant epilepsy (DRE). The following study aimed to measure the serum level of Pgp as a possible indicator of tissue Pgp overexpression in patients with DRE and to assess the efficacy of verapamil (as a Pgp inhibitor agent) in these patients. MATERIAL AND METHODS A group of 24 patients with DRE were recruited and subdivided into two groups, one receiving verapamil and the other receiving a placebo in a double-blind randomized study. Pgp serum levels were measured at enrollment and 12 months later. Twenty medically controlled epileptic patients served as a control group. RESULTS A significant statistical increase was found in the Pgp level of patients when compared the control group. Patients on both verapamil and the placebo showed improvement in seizure frequency and severity where statistical analysis showed no significant differences. CONCLUSION Pgp serum levels in patients with DRE were significantly elevated compared to patients with medically controlled epilepsy. The effect of verapamil as Pgp inhibitor on DRE requires further evaluation and research.
Collapse
Affiliation(s)
- H. A. Elkhayat
- Department of Pediatrics; Ain Shams University; Cairo Egypt
| | - R. H. Aly
- Department of Pediatrics; Ain Shams University; Cairo Egypt
| | - I. A. Elagouza
- Department of Pediatrics; Ain Shams University; Cairo Egypt
| | | | - Y. I. Galal
- Department of Pediatrics; Ain Shams University; Cairo Egypt
| |
Collapse
|
9
|
Blades Golubovic S, Rossmeisl JH. Status epilepticus in dogs and cats, part 1: etiopathogenesis, epidemiology, and diagnosis. J Vet Emerg Crit Care (San Antonio) 2017; 27:278-287. [PMID: 28445615 DOI: 10.1111/vec.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To review current knowledge of the etiopathogenesis, diagnosis, and consequences of status epilepticus (SE) in veterinary patients. DATA SOURCES Human and veterinary literature, including clinical and laboratory research and reviews. ETIOPATHOGENESIS Status epilepticus is a common emergency in dogs and cats, and may be the first manifestation of a seizure disorder. It results from the failure of termination of an isolated seizure. Multiple factors are involved in SE, including initiation and maintenance of neuronal excitability, neuronal network synchronization, and brain microenvironmental contributions to ictogenesis. Underlying etiologies of epilepsy and SE in dogs and cats are generally classified as genetic (idiopathic), structural-metabolic, or unknown. DIAGNOSIS Diagnosis of convulsive SE is usually made based on historical information and the nature of the seizures. Patient specific variables, such as the history, age of seizure onset, and physical and interictal neurological examination findings can help hone the rule out list, and are used to guide selection and prioritization of diagnostic tests. Electroencephalographic monitoring is routinely used in people to diagnose SE and guide patient care decisions, but is infrequently performed in veterinary medicine. Nonconvulsive status epilepticus has been recognized in veterinary patients; routine electroencephalography would aid in the diagnosis of this phenomenon in dogs and cats. CLINICAL SEQUELAE Status epilepticus is a medical emergency that can result in life-threatening complications involving the brain and systemic organs. Status epilepticus often requires comprehensive diagnostic testing, treatment with multiple anticonvulsant agents, and intensive supportive care.
Collapse
Affiliation(s)
| | - John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, 24060
| |
Collapse
|
10
|
Almeida Silva LF, Engel T, Reschke CR, Conroy RM, Langa E, Henshall DC. Distinct behavioral and epileptic phenotype differences in 129/P mice compared to C57BL/6 mice subject to intraamygdala kainic acid-induced status epilepticus. Epilepsy Behav 2016; 64:186-194. [PMID: 27744244 DOI: 10.1016/j.yebeh.2016.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/12/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022]
Abstract
Animal models of status epilepticus are important tools to understand the pathogenesis of epileptic brain injury and evaluate potential seizure-suppressive, neuroprotective, and antiepileptogenic treatments. Focal elicitation of status epilepticus by intraamygdala kainic acid in mice produces unilateral hippocampal damage and the emergence of spontaneous recurrent seizures after a short latent period. The model has been characterized in C57BL/6, BALB/c, and SJL mice where strain-specific differences were found in the extent of hippocampal damage. 129/P mice are a common background strain for genetic models and may display unique characteristics in this model. We therefore compared responses to intraamygdala kainic acid between 129/P and C57BL/6 mice. Racine scale-scored convulsive behavior during status epilepticus was substantially lower in 129/P mice compared with that in C57BL/6 mice. Analysis of surface-recorded electroencephalogram (EEG) showed differences between strains in several frequency bands; EEG total power was greater during ictal episodes while duration of seizures was slightly shorter in 129/P mice. Histological analysis revealed similar hippocampal injury between strains, with neuronal death mainly confined to the ipsilateral CA3 subfield. Expression of genes associated with gliosis and neuroinflammatory responses was also similar between strains after seizures. Video-EEG telemetry recordings showed that 129/P mice first display spontaneous seizures within a few days of status epilepticus similar to C57BL/6 mice. However, high mortality in 129/P mice prevented a quantitative comparison of the epileptic seizure phenotypes between strains. This study defined behavioral, EEG, and histopathologic features of this mouse strain in a model increasingly useful for the study of the genetic contribution to acquired epilepsy. Intraamygdala kainic acid in 129/P mice could serve as a model of nonconvulsive status epilepticus, but long-term assessments will require model adjustment to mitigate the severity of the emergent epileptic phenotype.
Collapse
Affiliation(s)
- Luiz Fernando Almeida Silva
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Cristina R Reschke
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Ronan M Conroy
- Division of Population Health Sciences, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Elena Langa
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland.
| |
Collapse
|
11
|
da Ros M, Iorio AL, Lucchesi M, Stival A, de Martino M, Sardi I. The Use of Anthracyclines for Therapy of CNS Tumors. Anticancer Agents Med Chem 2016; 15:721-7. [PMID: 25846760 PMCID: PMC4997942 DOI: 10.2174/1871520615666150407155319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/26/2015] [Accepted: 04/05/2015] [Indexed: 02/07/2023]
Abstract
Despite being long lived, anthracyclines remain the “evergreen” drugs in clinical practice of oncology, showing a potent effect in inhibiting cell growth in many types of tumors, including brain neoplasms. Unfortunately, they suffer from a poor penetration into the brain when intravenously administered due to multidrug resistance mechanism, which hampers their delivery across the blood brain barrier. In this paper, we summarize the current literature on the role of anthracyclines in cancer therapy and highlight recent efforts on 1) development of tumor cell resistance to anthracyclines and 2) the new approaches to brain drug delivery across the blood brain barrier.
Collapse
Affiliation(s)
| | | | | | | | | | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Paediatric Medicine, Meyer Children's Hospital. Viale G. Pieraccini 24, 50139 Florence, Italy.
| |
Collapse
|
12
|
Research Progress on the Role of ABC Transporters in the Drug Resistance Mechanism of Intractable Epilepsy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:194541. [PMID: 26491660 PMCID: PMC4600483 DOI: 10.1155/2015/194541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
The pathogenesis of intractable epilepsy is not fully clear. In recent years, both animal and clinical trials have shown that the expression of ATP-binding cassette (ABC) transporters is increased in patients with intractable epilepsy; additionally, epileptic seizures can lead to an increase in the number of sites that express ABC transporters. These findings suggest that ABC transporters play an important role in the drug resistance mechanism of epilepsy. ABC transporters can perform the funcions of a drug efflux pump, which can reduce the effective drug concentration at epilepsy lesions by reducing the permeability of the blood brain barrier to antiepileptic drugs, thus causing resistance to antiepileptic drugs. Given the important role of ABC transporters in refractory epilepsy drug resistance, antiepileptic drugs that are not substrates of ABC transporters were used to obtain ABC transporter inhibitors with strong specificity, high safety, and few side effects, making them suitable for long-term use; therefore, these drugs can be used for future clinical treatment of intractable epilepsy.
Collapse
|
13
|
Sharma AK, Rani E, Waheed A, Rajput SK. Pharmacoresistant Epilepsy: A Current Update on Non-Conventional Pharmacological and Non-Pharmacological Interventions. J Epilepsy Res 2015; 5:1-8. [PMID: 26157666 PMCID: PMC4494988 DOI: 10.14581/jer.15001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/24/2015] [Indexed: 11/12/2022] Open
Abstract
Uncontrolled seizure or epilepsy is intricately related with an increase risk of pharmacoresistant epilepsy. The failure to achieve seizure control with the first or second drug trial of an anticonvulsant medication given at the appropriate daily dosage is termed as pharmacoresistance, despite the fact that these drugs possess different modes of action. It is one of the devastating neurological disorders act as major culprit of mortality in developed as well as developing countries with towering prevalence. Indeed, the presence of several anti-epileptic drug including carbamazepine, phenytoin, valproate, gabapentin etc. But no promising therapeutic remedies available to manage pharmacoresistance in the present clinical scenario. Hence, utility of alternative strategies in management of resistance epilepsy is increased which further possible by continuing developing of promising therapeutic interventions to manage this insidious condition adequately. Strategies include add on therapy with adenosine, verapamil etc or ketogenic diet, vagus nerve stimulation, focal cooling or standard drugs in combinations have shown some promising results. In this review we will shed light on the current pharmacological and non pharmacological mediator with their potential pleiotropic action on pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Arun Kumar Sharma
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| | - Ekta Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| | - Abdul Waheed
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| | - Satyendra K Rajput
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| |
Collapse
|
14
|
Serralheiro A, Alves G, Fortuna A, Falcão A. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. Int J Pharm 2015; 490:39-46. [PMID: 25979854 DOI: 10.1016/j.ijpharm.2015.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/16/2023]
Abstract
Pharmacoresistance is considered one of the major causes underlying the failure of the anticonvulsant therapy, demanding the development of alternative and more effective therapeutic approaches. Due to the particular anatomical features of the nasal cavity, intranasal administration has been explored as a means of preferential drug delivery to the brain. The purpose of the present study was to assess the pharmacokinetics of lamotrigine administered by the intranasal route to mice, and to investigate whether a direct transport of the drug from nose to brain could be involved. The high bioavailability achieved for intranasally administered lamotrigine (116.5%) underscored the fact that a substantial fraction of the drug has been absorbed to the systemic circulation. Nonetheless, the heterogeneous biodistribution of lamotrigine in different brain regions, with higher concentration levels attained in the olfactory bulb comparatively to the frontal cortex and the remaining portion of the brain, strongly suggest that lamotrigine was directly transferred to the brain via the olfactory neuronal pathway, circumventing the blood-brain barrier. Therefore, it seems that intranasal route can be assumed as a suitable and valuable drug delivery strategy for the chronic treatment of epilepsy, also providing a promising alternative approach for a prospective management of pharmacoresistance.
Collapse
Affiliation(s)
- Ana Serralheiro
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Gilberto Alves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
15
|
Abstract
PURPOSE Pharmacotherapy of epilepsies is limited due to low concentrations at epileptogenic foci, side effects of high systemic doses and that some potentially efficient substances do not pass the blood-brain barrier. To overcome these limitations, we tested the efficacy of local valproate (VPA)-containing polymer implants in a model of necocortical injected tetanus toxin (TeT) in the rat. METHODS Tetanus toxin was injected intracortically and cobalt (II) chloride (CoCl2) was applied on the cortical surface. Video-electrocorticography recordings with intracortical electrodes were performed. VPA-containing polymers were implanted above the cortical focus. Antiepileptic effects were evaluated as reductions of epileptiform potentials (EPs) per hour in comparison to saline (NaCl)-containing polymer implants. RESULTS Triple 50ng TeT injections plus CoCl2 application (20/10mg) showed consistent EPs. NaCl-implanted animals (n=6) showed a mean of 10.5EPs/h after the first week, the EP frequency increased to 53.5EPs/h after the second week. VPA-implant animals (n=5) showed a reduction in EP frequency from 71.6 to 4.8EPs/h after the second week. The EP frequency after the second week was higher in the NaCl-implanted animals than in the VPA-implanted (p=0.0303). The mean EPs/h increase in NaCl-implanted rats (+42.9EPs/h) was different (p=0.0087) from the mean EPs/h decrease in VPA-implanted rats (-66.8EPs/h). CONCLUSION Despite former publications no clear seizures could be reproduced but it was possible to establish focal EPs, which proved to be a reliable marker for epileptic activity. Local antiepileptic therapy with VPA has shown efficacy in decreasing EP frequency.
Collapse
|
16
|
Tóth M, Häggkvist J, Varrone A, Finnema SJ, Doorduin J, Tokunaga M, Higuchi M, Gulyás B, Halldin C. ABC transporter-dependent brain uptake of the 5-HT1B receptor radioligand [ (11)C]AZ10419369: a comparative PET study in mouse, rat, and guinea pig. EJNMMI Res 2014; 4:64. [PMID: 26116125 PMCID: PMC4452686 DOI: 10.1186/s13550-014-0064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/06/2014] [Indexed: 01/25/2023] Open
Abstract
Background We have explored the possibility that the serotonin 1B receptor radioligand [11C]AZ10419369 is a substrate for adenosine triphosphate (ATP)-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), Mrp4, and Bcrp, in rodents and whether there is a species difference regarding its blood-brain barrier (BBB) penetration. Methods In a series of preclinical positron emission tomography measurements, we have administered [11C]AZ10419369 to mice, rats, and guinea pigs under baseline conditions and, on separate experimental days, after administration of the ABC transporter inhibitor, cyclosporin A (CsA). Results During baseline conditions, the brain uptake was low in mice and rats, but not in guinea pigs. After CsA pretreatment, the peak whole brain uptake values of [11C]AZ10419369 increased by 207% in mice, 94% in rats, and 157% in guinea pigs. Binding potentials (BPND) could not be estimated during baseline conditions in mice and rats. After CsA pretreatment, the highest BPND values were obtained in the striatum and thalamus (BPND ≈ 0.4) in mice, while in rats, the highest binding areas were the striatum, thalamus, hypothalamus, and periaqueductal gray (BPND ≈ 0.5). In guinea pigs, we did not find any significant changes in BPND between baseline and CsA pretreatment, except in the striatum. Conclusions The results indicate that BBB penetration of [11C]AZ10419369 was hindered by ABC transporter activity in mouse, rat, and guinea pig. This study highlights the importance of ABC transporters in the design of preclinical positron emission tomography (PET) studies. Electronic supplementary material The online version of this article (doi:10.1186/s13550-014-0064-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miklós Tóth
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden,
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van Vliet E, Aronica E, Gorter J. Role of blood–brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience 2014; 277:455-73. [DOI: 10.1016/j.neuroscience.2014.07.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022]
|
18
|
Gibbons M, Smeal R, Takahashi D, Vargas J, Wilcox K. Contributions of astrocytes to epileptogenesis following status epilepticus: opportunities for preventive therapy? Neurochem Int 2013; 63:660-9. [PMID: 23266599 PMCID: PMC4353644 DOI: 10.1016/j.neuint.2012.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/09/2012] [Accepted: 12/13/2012] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) is a life threatening condition that often precedes the development of epilepsy. Traditional treatments for epilepsy have been focused on targeting neuronal mechanisms contributing to hyperexcitability, however, approximately 30% of patients with epilepsy do not respond to existing neurocentric pharmacotherapies. A growing body of evidence has demonstrated that profound changes in the morphology and function of astrocytes accompany SE and persist in epilepsy. Astrocytes are increasingly recognized for their diverse roles in modulating neuronal activity, and understanding the changes in astrocytes following SE could provide important clues about the mechanisms underlying seizure generation and termination. By understanding the contributions of astrocytes to the network changes underlying epileptogenesis and the development of epilepsy, we will gain a greater appreciation of the contributions of astrocytes to dynamic circuit changes, which will enable us to develop more successful therapies to prevent and treat epilepsy. This review summarizes changes in astrocytes following SE in animal models and human temporal lobe epilepsy and addresses the functional consequences of those changes that may provide clues to the process of epileptogenesis.
Collapse
Affiliation(s)
- M.B. Gibbons
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT
| | - R.M. Smeal
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT
| | - D.K. Takahashi
- Department of Neurology, Stanford University, Palo Alto, CA
| | - J.R. Vargas
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - K.S. Wilcox
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT
| |
Collapse
|
19
|
Kobow K, El-Osta A, Blümcke I. The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia 2013; 54 Suppl 2:41-7. [PMID: 23646970 DOI: 10.1111/epi.12183] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seizures cannot be medically controlled in approximately 40% of people with epilepsy. Although we are beginning to understand how to better treat certain seizure types, we still do not know the regulatory events that determine antiepileptic drug resistance. Proposed pathoetiologic mechanisms include altered expression of drug targets (i.e., receptor or ion channel modifications), endothelial drug transporter activation (i.e., increasing drug clearance), or intrinsic severity factors. The latter hypothesis results from an often confirmed clinical observation, that seizure severity is a reliable predictor for the development of pharmacoresistance (PR) in epilepsy. Herein, we propose, that genome modifications that do not involve changes to the DNA sequence per se (i.e., epigenetic changes) could confer PR in patients with epilepsy. Seizures cause excessive neuronal membrane depolarization, which can influence the cellular nucleus; we thus hypothesize that seizures can mediate epigenetic modifications that result in persistent genomic methylation, histone density, and posttranslational modifications, as well as noncoding RNA-based changes. Although experimental evidence is lacking in epilepsy, such mechanisms are well characterized in cancer, either as a result of anticancer drugs themselves or cancer-related intrinsic signals (i.e., noncoding RNAs). We suggest that similar mechanisms also play a role in PR epilepsies. Addressing such epigenetic mechanisms may be a successful strategy to increase the brain's sensitivity to antiepileptic drugs and may even act as disease-modifying treatment.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
20
|
Rudà R, Bello L, Duffau H, Soffietti R. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro Oncol 2013; 14 Suppl 4:iv55-64. [PMID: 23095831 DOI: 10.1093/neuonc/nos199] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Seizures represent a common symptom in low-grade gliomas; when uncontrolled, they significantly contribute to patient morbidity and negatively impact quality of life. Tumor location and histology influence the risk for epilepsy. The pathogenesis of tumor-related epilepsy is multifactorial and may differ among tumor histologies (glioneuronal tumors vs diffuse grade II gliomas). Gross total resection is the strongest predictor of seizure freedom in addition to clinical factors, such as preoperative seizure duration, type, and control with antiepileptic drugs (AEDs). Epilepsy surgery may improve seizure control. Radiotherapy and chemotherapy with alkylating agents (procarbazine + CCNU+ vincristine, temozolomide) are effective in reducing the frequency of seizures in patients with pharmacoresistant epilepsy. Newer AEDs (levetiracetam, topiramate, lacosamide) seem to be better tolerated than the old AEDs (phenobarbital, phenytoin, carbamazepine), but there is lack of evidence regarding their superiority in terms of efficacy.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, University of Turin and San Giovanni Battista Hospital, Turin, Italy.
| | | | | | | |
Collapse
|
21
|
Srivastava AK, Alex AB, Wilcox KS, White HS. Rapid loss of efficacy to the antiseizure drugs lamotrigine and carbamazepine: a novel experimental model of pharmacoresistant epilepsy. Epilepsia 2013; 54:1186-94. [PMID: 23750799 DOI: 10.1111/epi.12234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE Kindling is a well-established model of secondarily generalized partial seizures that is widely employed in the search for novel antiseizure drugs. During the kindling and postkindling acquisition phase, an active process of neuronal remodeling occurs. We tested the hypothesis that exposure to the voltage-gated sodium channel blockers lamotrigine (LTG) and carbamazepine (CBZ) during the period of active remodeling will lead to a diminished therapeutic effect. METHODS Two days after the last kindling stimulation, fully kindled rats were randomized to receive either 0.5% methyl cellulose (MC), LTG (30 mg/kg), or CBZ (40 mg/kg). The effect of LTG and CBZ on behavioral seizure severity and electrographic afterdischarge duration (ADD) was recorded. One week after this treatment, rats in both groups were rechallenged with LTG 30 or CBZ 40 mg/kg and their seizure score and ADD recorded. In vitro efficacy of LTG on neuronal action potentials was also evaluated using whole cell current clamp recording in hippocampal brain slices obtained from kindled control rats, LTG-sensitive kindled rats, and LTG-resistant kindled rats. KEY FINDINGS When acutely administered 48 h after the last kindling stimulation, LTG and CBZ blocked the expression of behavioral seizures and reduced the ADD. In contrast, a second challenge dose of LTG or CBZ administered after a 7-day "no drug, no stimulation" period did not result in reduction of either the seizure score or the ADD. Interestingly, the potassium channel opener, ezogabine, also known as retigabine (EZG; 40 mg/kg), blocked the expression of behavioral seizures at both time points evaluated (i.e., 2 days and 9 days after last stimulation). In vivo resistance to LTG was associated with a similar reduction in the ability of LTG to limit action potential firing in CA1 neurons. LTG (50 μm) significantly decreased the number of action potentials generated by a depolarizing current pulse in neurons recorded from slices obtained from kindled control and LTG-sensitive rats, but not in slices obtained from LTG-resistant rats. SIGNIFICANCE Collectively, results obtained from both in vivo and in vitro studies demonstrate that even a single exposure to the sodium channel blockers LTG, or CBZ, during the postkindling remodeling phase leads to an altered pharmacologic response to these two ASDs, but not to EZG. The LTG- and CBZ-resistant amygdala kindled rats may serve as a useful model of therapy-resistant epilepsy.
Collapse
Affiliation(s)
- Ajay K Srivastava
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | |
Collapse
|
22
|
Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications. J Pharmacokinet Pharmacodyn 2013; 40:343-58. [PMID: 23468415 PMCID: PMC3663257 DOI: 10.1007/s10928-013-9306-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/12/2013] [Indexed: 12/24/2022]
Abstract
The ability to deliver drug molecules effectively across the blood-brain barrier into the brain is important in the development of central nervous system (CNS) therapies. Cerebral microdialysis is the only existing technique for sampling molecules from the brain extracellular fluid (ECF; also termed interstitial fluid), the compartment to which the astrocytes and neurones are directly exposed. Plasma levels of drugs are often poor predictors of CNS activity. While cerebrospinal fluid (CSF) levels of drugs are often used as evidence of delivery of drug to brain, the CSF is a different compartment to the ECF. The continuous nature of microdialysis sampling of the ECF is ideal for pharmacokinetic (PK) studies, and can give valuable PK information of variations with time in drug concentrations of brain ECF versus plasma. The microdialysis technique needs careful calibration for relative recovery (extraction efficiency) of the drug if absolute quantification is required. Besides the drug, other molecules can be analysed in the microdialysates for information on downstream targets and/or energy metabolism in the brain. Cerebral microdialysis is an invasive technique, so is only useable in patients requiring neurocritical care, neurosurgery or brain biopsy. Application of results to wider patient populations, and to those with different pathologies or degrees of pathology, obviously demands caution. Nevertheless, microdialysis data can provide valuable guidelines for designing CNS therapies, and play an important role in small phase II clinical trials. In this review, we focus on the role of cerebral microdialysis in recent clinical studies of antimicrobial agents, drugs for tumour therapy, neuroprotective agents and anticonvulsants.
Collapse
|
23
|
Pastore V, Sabatier L, Enrique A, Marder M, Bruno-Blanch LE. Synthesis and anticonvulsant activity of bioisosteres of trimethadione, N-derivative-1,2,3-oxathiazolidine-4-one-2,2-dioxides from α-hydroxyamides. Bioorg Med Chem 2013; 21:841-6. [PMID: 23321016 DOI: 10.1016/j.bmc.2012.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/13/2012] [Accepted: 12/22/2012] [Indexed: 01/17/2023]
Abstract
The synthesis and anticonvulsant activity of novel heterocycles N-derivative-1,2,3-oxathiazolidine-4-one-2,2-dioxides, bioisosteres of trimethadione (TMD, oxazolidine-2,4-dione) and phenytoin (PHE), are described. TMD is an anticonvulsant drug widely used against absences seizures in the early 80's and PHE is an antiepileptic drug with a wide spectrum activity. The intermediates of synthesis of N-derivative-1,2,3-oxathiazolidine-4-one-2,2-dioxides, α-hydroxyamides, were obtained using microwave assisted synthesis. Anticonvulsant screening was performed in mice after intraperitoneal administration in the maximal electroshock seizure test (MES) and subcutaneous pentylenetetrazole seizures test (scPTZ). These new compounds showed a wide spectrum activity and were no neurotoxic in the RotoRod test. α-Hydroxyamides and N-derivative-1,2,3-oxathiazolidine-4-one-2,2-dioxides were 3-4700 times more potent than valproic acid in the MES test. Quantification of anticonvulsant protection was calculated (ED(50)) for the most active candidates; α-hydroxyamides 3a-c and 3e, and N-derivative-oxathiazolidine-4-one-2,2-dioxides 5a-c with ED(50) values of 9.1, 53.9, 44.6, 25.2, 15.1, 91.1 and 0.06mg/kg, respectively, in the MES test.
Collapse
Affiliation(s)
- Valentina Pastore
- Química Medicinal, Departamento de Ciencias Biológicas, UNLP, calle 47 y 115, B1900BJW La Plata, Argentina.
| | | | | | | | | |
Collapse
|
24
|
Calatozzolo C, Pollo B, Botturi A, Dinapoli L, Carosi M, Salmaggi A, Maschio M. Multidrug resistance proteins expression in glioma patients with epilepsy. J Neurooncol 2012; 110:129-35. [DOI: 10.1007/s11060-012-0946-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 07/16/2012] [Indexed: 01/16/2023]
|
25
|
Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 2012; 64:919-29. [PMID: 22138133 DOI: 10.1016/j.addr.2011.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 10/03/2011] [Accepted: 11/20/2011] [Indexed: 12/26/2022]
Abstract
Over-expression of drug efflux transporters at the level of the blood-brain barrier (BBB) has been proposed as a mechanism responsible for multidrug resistance. Drug transporters in epileptogenic tissue are not only expressed in endothelial cells at the BBB, but also in other brain parenchymal cells, such as astrocytes, microglia and neurons, suggesting a complex cell type-specific regulation under pathological conditions associated with epilepsy. This review focuses on the cerebral expression patterns of several classes of well-known membrane drug transporters such as P-glycoprotein (Pgp), and multidrug resistance-associated proteins (MRPs) in the epileptogenic brain. Both experimental and clinical evidence of epilepsy-associated cerebral drug transporter regulation and the possible mechanisms underlying drug transporter regulation are discussed. Knowledge of the cerebral expression patterns of drug transporters in normal and epileptogenic brain will provide relevant information to guide strategies attempting to overcome drug resistance by targeting specific transporters.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
26
|
Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 2012; 64:930-42. [PMID: 22197850 DOI: 10.1016/j.addr.2011.12.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 01/16/2023]
Abstract
Epilepsy is the most common serious chronic neurological disorder. Current data show that one-third of patients do not respond to anti-epileptic drugs (AEDs). Most non-responsive epilepsy patients are resistant to several, often all, AEDs, even though the drugs differ from each other in pharmacokinetics, mechanisms of action, and interaction potential. The mechanisms underlying drug resistance of epilepsy patients are still not clear. In recent years, one of the potential mechanisms interesting researchers is over-expression of P-glycoprotein (P-gp, also known as ABCB1 or MDR1) in endothelial cells of the blood-brain barrier (BBB) in epilepsy patients. P-gp plays a central role in drug absorption and distribution in many organisms. The expression of P-gp is greater in drug-resistant than in drug-responsive patients. Some studies also indicate that several AEDs are substrates or inhibitors of P-gp, implying that P-gp may play an important role in drug resistance in refractory epilepsy. In this article, we review the clinical and laboratory evidence that P-gp expression is increased in epileptic brain tissues and that AEDs are substrates of P-gp in vitro and in vivo. We discuss criteria for identifying the substrate status of AEDs and use structure-activity relationship (SAR) models to predict which AEDs act as P-gp substrates.
Collapse
|
27
|
Zhou BT, Zhou QH, Yin JY, Li GL, Qu J, Xu XJ, Liu D, Zhou HH, Liu ZQ. Effects of SCN1A and GABA receptor genetic polymorphisms on carbamazepine tolerability and efficacy in Chinese patients with partial seizures: 2-year longitudinal clinical follow-up. CNS Neurosci Ther 2012; 18:566-72. [PMID: 22591328 DOI: 10.1111/j.1755-5949.2012.00321.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS To investigate the tolerability and efficacy of carbamazepine treatment in patients with partial-onset seizures and the association with polymorphisms in the sodium channel α-subunit type 1 (SCN1A), and gamma-aminobutyric acid (GABA) receptor genes among the Chinese Han population. METHODS 448 patients were genotyped for single nucleotide polymorphisms selected of the SCN1A and GABA-receptor genes. Monotherapy with carbamazepine (CBZ) was administered to the patients. The effectiveness of CBZ treatment was evaluated with regard to efficacy by the decrease in seizures and tolerability by retention rates. RESULTS SCN1A rs3812718 A/G with CBZ tolerability (P= 0.038) throughout 24 months of clinical follow-up and the GABRA1 rs2290732 A/G were significantly associated with CBZ tolerability (P= 0.001). The maintenance dose and serum level of CBZ in AA genotype carriers of rs3812718 A/G were significantly higher than those of GG genotype carriers between 3 and 12 months of follow-up. The proportion of AA genotype carriers of rs2298771 A/G with seizure free was significantly higher than that of AG+GG genotype carriers from 3 months to 15 months of follow-up (P < 0.05). CONCLUSION rs3812718 A/G and rs2290732 A/G polymorphisms affected the tolerability of CBZ. rs2298771 A/G was associated with efficacy of CBZ treatment.
Collapse
Affiliation(s)
- Bo-Ting Zhou
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lauritzen F, Perez EL, Melillo ER, Roh JM, Zaveri HP, Lee TSW, Wang Y, Bergersen LH, Eid T. Altered expression of brain monocarboxylate transporter 1 in models of temporal lobe epilepsy. Neurobiol Dis 2011; 45:165-76. [PMID: 21856423 DOI: 10.1016/j.nbd.2011.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/15/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022] Open
Abstract
Monocarboxylate transporter 1 (MCT1) facilitates the transport of monocarboxylate fuels (lactate, pyruvate and ketone bodies) and acidic drugs, such as valproic acid, across cell membranes. We recently reported that MCT1 is deficient on microvessels in the epileptogenic hippocampal formation in patients with medication-refractory temporal lobe epilepsy (TLE). To further define the role of MCT1 in the pathophysiology of TLE, we used immunohistochemistry and stereological analysis to localize and quantify the transporter in the hippocampal formation in three novel and highly relevant rat models of TLE and in nonepileptic control animals. One model utilizes methionine sulfoximine to induce brain glutamine synthetase deficiency and recurrent limbic seizures, while two models employ an episode of perforant pathway stimulation to cause epilepsy. MCT1 was lost on microvessels and upregulated on astrocytes in the hippocampal formation in all models of TLE. Notably, the loss of MCT1 on microvessels was not due to a reduction in microvessel density. The similarities in MCT1 expression among human subjects with TLE and several animal models of the disease strongly suggest a critical role of this molecule in the pathogenesis of TLE. We hypothesize that the downregulation of MCT1 may promote seizures via impaired uptake of ketone bodies and antiepileptic drugs by the epileptogenic brain. We also propose that the overexpression of MCT1 on astrocytes may lead to increased uptake or release of monocarboxylates by these cells, with important implications for brain metabolism and excitability. These hypotheses can now be rigorously tested in several animal models that replicate key features of human TLE.
Collapse
Affiliation(s)
- Fredrik Lauritzen
- Department of Laboratory Medicine, Yale University School of Medicine, P.O. Box 208035, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Status epilepticus is one of the most common emergencies in neurology, and every third patient does not respond to adequate first-line treatment. Refractory status epilepticus may be associated with increased morbidity and mortality, and new treatment options are urgently required. This review critically discusses recently published data regarding the role of 'new' antiepileptic drugs, the efficacy and safety of anesthetic agents, and the overall clinical outcome that is an integral part of treatment decisions. RECENT FINDINGS In complex partial status epilepticus, levetiracetam may be administered after failure of first-line and/or second-line agents. Lacosamide may be an interesting new adjunct, but reliable data are pending. In the treatment of refractory generalized convulsive status epilepticus, propofol seems to be as efficient as barbiturates. The latter are associated with prolonged ventilation times due to redistribution kinetics, whereas the former bears the risk of propofol infusion syndrome if administered continuously. Even after prolonged treatment with anesthetics over weeks, survival with satisfactory functional outcome is possible. SUMMARY Unambiguous recommendations regarding treatment strategies for refractory status epilepticus are limited by a lack of reliable data. Therefore, randomized controlled trials or at least prospective observational studies based on strict protocols incorporating long-term outcome data are urgently required.
Collapse
|
30
|
|
31
|
Boison D, Masino SA, Geiger JD. Homeostatic bioenergetic network regulation - a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 2011; 6:713-724. [PMID: 21731576 DOI: 10.1517/17460441.2011.575777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: Despite epilepsy being one of the most prevalent neurological disorders, one third of all patients with epilepsy cannot adequately be treated with available antiepileptic drugs. One of the significant causes for the failure of conventional pharmacotherapeutic treatment is the development of pharmacoresistance in many forms of epilepsy. The problem of pharmacoresistance has called for the development of new conceptual strategies that improve future drug development efforts. AREAS COVERED: A thorough review of the recent literature on pharmacoresistance in epilepsy was completed and select examples were chosen to highlight the mechanisms of pharmacoresistance in epilepsy and to demonstrate how those mechanistic findings might lead to improved treatment of pharmacoresistant epilepsy. The reader will gain a thorough understanding of pharmacoresistance in epilepsy and an appreciation of the limitations of conventional drug development strategies. EXPERT OPINION: Conventional drug development efforts aim to achieve specificity of symptom control by enhancing the selectivity of drugs acting on specific downstream targets; this conceptual strategy bears the undue risk of development of pharmacoresistance. Modulation of homeostatic bioenergetic network regulation is a novel conceptual strategy to affect whole neuronal networks synergistically by mobilizing multiple endogenous biochemical and receptor-dependent molecular pathways. In our expert opinion we conclude that homeostatic bioenergetic network regulation might thus be used as an innovative strategy for the control of pharmacoresistant seizures. Recent focal adenosine augmentation strategies support the feasibility of this strategy.
Collapse
Affiliation(s)
- Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | | | | |
Collapse
|
32
|
Transporter-Mediated Drug Uptake and Efflux: Important Determinants of Adverse Drug Reactions. Clin Pharmacol Ther 2011; 89:798-805. [DOI: 10.1038/clpt.2010.354] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Abstract
PURPOSE OF REVIEW To present an overview of the recent findings in pathophysiology and management of epileptic seizures in patients with brain tumors. RECENT FINDINGS Low-grade gliomas are the most epileptogenic brain tumors. Regarding pathophysiology, the role of peritumoral changes [hypoxia and acidosis, blood-brain barrier (BBB) disruption, increase or decrease of neurotransmitters and receptors] are of increasing importance. Tumor-associated epilepsy and tumor growth could have some common molecular pathways. Total/subtotal surgical resection (with or without epilepsy surgery) allows a seizure control in a high percentage of patients. Radiotherapy and chemotherapy as well have a role. New antiepileptic drugs are promising, both in terms of efficacy and tolerability. The resistance to antiepileptic drugs is still a major problem: new insights into pathogenesis are needed to develop strategies to manipulate the pharmakoresistance. SUMMARY Epileptic seizures in brain tumors have been definitely recognized as one of the major problems in patients with brain tumors, and need specific and multidisciplinary approaches.
Collapse
|
34
|
Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiol Dis 2010; 41:577-84. [PMID: 21081165 DOI: 10.1016/j.nbd.2010.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 11/01/2010] [Accepted: 11/09/2010] [Indexed: 11/20/2022] Open
Abstract
Monocarboxylate transporter 1 (MCT1) facilitates the transport of important metabolic fuels (lactate, pyruvate and ketone bodies) and possibly also acidic drugs such as valproic acid across the blood-brain barrier. Because an impaired brain energy metabolism and resistance to antiepileptic drugs are common features of temporal lobe epilepsy (TLE), we sought to study the expression of MCT1 in the brain of patients with this disease. Immunohistochemistry and immunogold electron microscopy were used to assess the distribution of MCT1 in brain specimens from patients with TLE and concomitant hippocampal sclerosis (referred to as mesial TLE or MTLE (n=15)), patients with TLE and no hippocampal sclerosis (non-MTLE, n=13) and neurologically normal autopsy subjects (n=8). MCT1 was present on an extensive network of microvessels throughout the hippocampal formation in autopsy controls and to a lesser degree in non-MTLE. Patients with MTLE were markedly deficient in MCT1 on microvessels in several areas of the hippocampal formation, especially CA1, which exhibited a 37% to 48% loss of MCT1 on the plasma membrane of endothelial cells when compared with non-MTLE. These findings suggest that the uptake of blood-derived monocarboxylate fuels and possibly also acidic drugs, such as valproic acid, is perturbed in the epileptogenic hippocampus, particularly in MTLE. We hypothesize that the loss of MCT1 on brain microvessels is mechanistically involved in the pathophysiology of drug-resistant TLE, and propose that re-expression of MCT1 may represent a novel therapeutic approach for this disease.
Collapse
|
35
|
Abstract
Since its discovery a decade ago, RNA interference (RNAi) has been developed not only into powerful experimental tools but also into promising novel therapeutics. In contrast to conventional antiepileptic drugs (AEDs) that target specific proteins such as ion channels or receptors, RNAi-based therapeutics exploit an endogenous regulatory mechanism of gene expression and thereby are poised to prevent or reverse pathogenetic mechanisms involved in seizure development. Therapeutic RNAi has been widely explored for dominant targets involved in neurodegenerative diseases; however, their use for epilepsy therapy has received less attention. This review discusses potential RNAi-based targets that are of interest for epilepsy therapy, including adenosine kinase (ADK), the key negative regulator of the brain's endogenous anticonvulsant adenosine. Overexpression of ADK, and the resulting adenosine deficiency, are pathologic hallmarks of the sclerotic epileptic brain, and have been implicated in seizure generation. Therefore, RNAi-strategies aimed at reducing ADK (and increasing adenosine) are based on a direct neurochemical rationale that has recently been explored experimentally using ex vivo and in vivo gene therapy approaches. Technical issues and challenges remain before those promising tools can be developed into future therapeutics for epilepsy.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA.
| |
Collapse
|
36
|
A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics 2010; 20:249-56. [PMID: 20216337 DOI: 10.1097/fpc.0b013e328338073a] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Multidrug resistance protein 2 (MRP2, ABCC2) is involved in the transport of antiepileptic drugs and is upregulated in the brain tissues of patients with epilepsy. Therefore, genetic variations in the MRP2 gene may affect individual drug responses to the antiepileptic agent carbamazepine. METHODS Associations between MRP2 polymorphisms and the adverse drug reactions (ADRs) of carbamazepine were analyzed using an integrated population genetics and molecular functional approach. In the initial case-control study, five tag single nucleotide polymorphisms in the MRP2 gene were analyzed in 146 patients with epilepsy. Patients were divided into two groups: those who experienced ADRs of the central nervous system and those who did not. An independent replication study was performed using DNA samples from 279 patients. RESULTS A nonsynonymous polymorphism, c.1249G>A (p.V417I, rs2273697), showed a strong association with the neurological ADR caused by carbamazepine (P=0.005). Logistic regression analysis with multiple clinical variables indicated that the presence of A allele at the MRP2 c.1249G>A locus was an independent determinant of central nervous system ADR caused by carbamazepine. Moreover, the positive association of c.1249A was reproduced in the replication study (P=0.042, joint P value of the replication=0.001). The functional study using ATPase assay and FACScan flow cytometer indicated that carbamazepine was a substrate of MRP2 and that the 417I variation selectively reduced carbamazepine transport across the cell membrane. CONCLUSION These results strongly suggest that the A-allele of the MRP2 single nucleotide polymorphism c.1247G>A is associated with adverse neurological drug reactions to carbamazepine.
Collapse
|
37
|
De Bruyne S, Wyffels L, Boos TL, Staelens S, Deleye S, Rice KC, De Vos F. In vivo evaluation of [123I]-4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(4-iodobenzyl)piperidine, an iodinated SPECT tracer for imaging the P-gp transporter. Nucl Med Biol 2010; 37:469-77. [PMID: 20447559 DOI: 10.1016/j.nucmedbio.2009.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/23/2009] [Accepted: 10/31/2009] [Indexed: 01/16/2023]
Abstract
INTRODUCTION P-glycoprotein (P-gp) is an energy-dependent transporter that contributes to the efflux of a wide range of xenobiotics at the blood-brain barrier playing a role in drug-resistance or therapy failure. In this study, we evaluated [(123)I]-4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(4-iodobenzyl)piperidine ([(123)I]-FMIP) as a novel single photon emission computed tomography (SPECT) tracer for imaging P-gp at the brain in vivo. METHODS The tissue distribution and brain uptake as well as the metabolic profile of [(123)I]-FMIP in wild-type and mdr1a (-/-) mice after pretreatment with physiological saline or cyclosporin A (CsA) (50 mg/kg) was investigated. The influence of increasing doses CsA on brain uptake of [(123)I]-FMIP was explored. microSPECT images of mice brain after injection of 11.1 MBq [(123)I]-FMIP were obtained for different treatment strategies thereby using the Milabs U-SPECT-II. RESULTS Modulation of P-gp with CsA (50 mg/kg) as well as mdr1a gene depletion resulted in significant increase in cerebral uptake of [(123)I]-FMIP with only minor effect on blood activity. [(123)I]-FMIP is relative stable in vivo with >80% intact [(123)I]-FMIP in brain at 60 min p.i. in the different treatment regiments. A dose-dependent sigmoidal increase in brain uptake of [(123)I]-FMIP with increasing doses of CsA was observed. In vivo region of interest-based SPECT measurements correlated well with the observations of the biodistribution studies. CONCLUSIONS These findings indicate that [(123)I]-FMIP can be applied to assess the efficacy of newly developed P-gp modulators. It is also suggested that [(123)I]-FMIP is a promising SPECT tracer for imaging P-gp at the blood-brain barrier.
Collapse
Affiliation(s)
- Sylvie De Bruyne
- Laboratory for Radiopharmacy, Ghent University, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Nicolazzo JA, Steuten JA, Charman SA, Taylor N, Davies PJ, Petrou S. Brain uptake of diazepam and phenytoin in a genetic animal model of absence epilepsy. Clin Exp Pharmacol Physiol 2010; 37:647-9. [PMID: 20082623 DOI: 10.1111/j.1440-1681.2010.05362.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Although many studies have assessed changes to brain uptake of anti-epileptic drugs (AEDs) in chemically and electrically induced seizure models, there are limited data available on changes to brain uptake of AEDs in spontaneous seizure animal models, such as genetic absence epilepsy. 2. In the present study, the brain uptake of diazepam and phenytoin was assessed in a genetic mouse model of absence seizures harbouring a human GABA(A) receptor gamma2-subunit gene GABRG2 mutation (R43Q) and results were compared with those obtained during acute seizures induced by subcutaneous administration of pentylenetetrazole (PTZ; 90 mg/kg). Diazepam and phenytoin were administered intraperitoneally at doses of 2 and 30 mg/kg, respectively, and brain and plasma concentrations were determined 60 min after administration using liquid chromatography-mass spectrometry. 3. Although the brain uptake of phenytoin was significantly reduced following PTZ administration, no changes were observed in phenytoin disposition in the genetic absence epilepsy model. Similarly, the brain uptake of diazepam was significantly enhanced following PTZ administration, but it was not affected in absence epilepsy. 4. The cerebrovascular plasma volume (assessed by administration of the non-absorbable marker [(14)C]-inulin) was not significantly different in saline-treated compared with PTZ-treated mice and in wild-type compared with mutant R43Q mice. 5. These results demonstrate that although the brain uptake of AEDs may be altered in acute seizure models, similar changes to brain uptake may not be observed in the non-convulsive genetic absence epileptic model.
Collapse
Affiliation(s)
- Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Staud F, Ceckova M, Micuda S, Pavek P. Expression and function of p-glycoprotein in normal tissues: effect on pharmacokinetics. Methods Mol Biol 2010; 596:199-222. [PMID: 19949926 DOI: 10.1007/978-1-60761-416-6_10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
ATP-binding cassette (ABC) drug efflux transporters limit intracellular concentration of their substrates by pumping them out of cell through an active, energy dependent mechanism. Several of these proteins have been originally associated with the phenomenon of multidrug resistance; however, later on, they have also been shown to control body disposition of their substrates. P-glycoprotein (Pgp) is the first detected and the best characterized of ABC drug efflux transporters. Apart from tumor cells, its constitutive expression has been reported in a variety of other tissues, such as the intestine, brain, liver, placenta, kidney, and others. Being located on the apical site of the plasma membrane, Pgp can remove a variety of structurally unrelated compounds, including clinically relevant drugs, their metabolites, and conjugates from cells. Driven by energy from ATP, it affects many pharmacokinetic events such as intestinal absorption, brain penetration, transplacental passage, and hepatobiliary excretion of drugs and their metabolites. It is widely believed that Pgp, together with other ABC drug efflux transporters, plays a crucial role in the host detoxication and protection against xenobiotic substances. On the other hand, the presence of these transporters in normal tissues may prevent pharmacotherapeutic agents from reaching their site of action, thus limiting their therapeutic potential. This chapter focuses on P-glycoprotein, its expression, localization, and function in nontumor tissues and the pharmacological consequences hereof.
Collapse
Affiliation(s)
- Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
40
|
Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 2009; 86:368-77. [PMID: 19625998 DOI: 10.1038/clpt.2009.138] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
P-glycoprotein (P-gp), an efflux transporter, controls the pharmacokinetics of various compounds under physiological conditions. P-gp-mediated drug efflux has been suggested as playing a role in various disorders, including multidrug-resistant cancer and medication-refractory epilepsy. However, P-gp inhibition has had, to date, little or no clinically significant effect in multidrug-resistant cancer. To enhance our understanding of its in vivo function under pathophysiological conditions, substrates of P-gp have been radiolabeled and imaged using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). To accurately quantify P-gp function, a radiolabeled P-gp substrate should be selective for P-gp, produce a large signal after P-gp blockade, and generate few radiometabolites that enter the target tissue. Furthermore, quantification of P-gp function via imaging requires pharmacological inhibition of P-gp, which requires knowledge of P-gp density at the target site. By meeting these criteria, imaging can elucidate the function of P-gp in various disorders and improve the efficacy of treatments.
Collapse
|
41
|
Non-response to antiepileptic pharmacotherapy is associated with the ABCC2 −24C>T polymorphism in young and adult patients with epilepsy. Pharmacogenet Genomics 2009; 19:353-62. [DOI: 10.1097/fpc.0b013e328329940b] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Gavernet L, Elvira JE, Samaja GA, Pastore V, Cravero MS, Enrique A, Estiu G, Bruno-Blanch LE. Synthesis and anticonvulsant activity of amino acid-derived sulfamides. J Med Chem 2009; 52:1592-601. [PMID: 19249853 DOI: 10.1021/jm800764p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfamides are promising functions for the design of new antiepileptic drugs ( Bioorg. Med. Chem. 2007, 15, 1556-1567; 5604-5614 ). Following previous research in this line, a set of amino acid-derived sulfamides has been designed, synthesized, and tested as new anticonvulsant compounds. The experimental data confirmed the ability of some of the structures to suppress the convulsions originated by the electrical seizure (MES test) at low doses (100 mg/kg).
Collapse
Affiliation(s)
- Luciana Gavernet
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kuteykin-Teplyakov K, Brandt C, Hoffmann K, Löscher W. Complex time-dependent alterations in the brain expression of different drug efflux transporter genes after status epilepticus. Epilepsia 2009; 50:887-97. [DOI: 10.1111/j.1528-1167.2008.01916.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Margineanu DG, Klitgaard H. Mechanisms of drug resistance in epilepsy: relevance for antiepileptic drug discovery. Expert Opin Drug Discov 2008; 4:23-32. [DOI: 10.1517/17460440802611729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Roberts DJ, Goralski KB. A critical overview of the influence of inflammation and infection on P-glycoprotein expression and activity in the brain. Expert Opin Drug Metab Toxicol 2008; 4:1245-64. [DOI: 10.1517/17425255.4.10.1245] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Miller DS, Bauer B, Hartz AMS. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 2008; 60:196-209. [PMID: 18560012 DOI: 10.1124/pr.107.07109] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pharmacotherapy of central nervous system (CNS) disorders (e.g., neurodegenerative diseases, epilepsy, brain cancer, and neuro-AIDS) is limited by the blood-brain barrier. P-glycoprotein, an ATP-driven, drug efflux transporter, is a critical element of that barrier. High level of expression, luminal membrane location, multispecificity, and high transport potency make P-glycoprotein a selective gatekeeper of the blood-brain barrier and thus a primary obstacle to drug delivery into the brain. As such, P-glycoprotein limits entry into the CNS for a large number of prescribed drugs, contributes to the poor success rate of CNS drug candidates, and probably contributes to patient-to-patient variability in response to CNS pharmacotherapy. Modulating P-glycoprotein could therefore improve drug delivery into the brain. Here we review the current understanding of signaling mechanisms responsible for the modulation of P-glycoprotein activity/expression at the blood-brain barrier with an emphasis on recent studies from our laboratories. Using intact brain capillaries from rats and mice, we have identified multiple extracellular and intracellular signals that regulate this transporter; several signaling pathways have been mapped. Three pathways are triggered by elements of the brain's innate immune response, one by glutamate, one by xenobiotic-nuclear receptor (pregnane X receptor) interactions, and one by elevated beta-amyloid levels. Signaling is complex, with several pathways sharing common signaling elements [tumor necrosis factor (TNF) receptor 1, endothelin (ET) B receptor, protein kinase C, and nitric-oxide synthase), suggesting a regulatory network. Several pathways include autocrine/paracrine elements, involving release of the proinflammatory cytokine, TNF-alpha, and the polypeptide hormone, ET-1. Finally, several steps in signaling are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the clinic.
Collapse
Affiliation(s)
- David S Miller
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
47
|
Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenet Genomics 2008; 18:390-402. [DOI: 10.1097/fpc.0b013e3282f85e36] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Hildebrandt M, Amann K, Schröder R, Pieper T, Kolodziejczyk D, Holthausen H, Buchfelder M, Stefan H, Blumcke I. White matter angiopathy is common in pediatric patients with intractable focal epilepsies. Epilepsia 2008; 49:804-15. [DOI: 10.1111/j.1528-1167.2007.01514.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Abstract
BACKGROUND Despite the currently available armamentarium of antiepileptic drugs, seizures are not adequately controlled in about one-third of epileptic patients. The mechanisms of antiepileptic drug resistance are multiple and not fully clarified. METHODS We conducted a literature search in PubMed and the Cochrane Library databases with the terms: "Drug Resistance" [MeSH] and "Epilepsy" [MeSH], LIMITS added to PubMed in the last 5 years, only items with abstracts, English, Spanish, Humans. REVIEW SUMMARY It is currently known that membrane transporter proteins are increased in brain tissue of refractory epileptic patients and in animal models of epilepsy and that overexpression of these transporters and their inhibition are correlated with a reduction and an increase, respectively, of epileptic drugs in epileptic tissue (pharmacokinetic hypothesis). It has also been shown that alterations in voltage-gated sodium channels and GABAA receptors are responsible for resistance to some epileptic drugs. These changes may be constitutional (genetically determined) or acquired (as a consequence of the seizures themselves or disease progression) and may seem alone or combined with each other (pharmacodynamic hypothesis). Associations have been shown between certain genetic polymorphisms and resistance to epileptic drugs, and although they have not been replicated by all authors, they constitute a very attractive line of research. More detailed knowledge of these molecular mechanisms will probably lead to the development of new strategies for pharmacological treatment of epilepsy.
Collapse
|
50
|
The first case of phenytoin intoxication associated with the concomitant use of phenytoin and TS-1, a combination preparation of tegafur, gimeracil, and oteracil potassium. Cancer Chemother Pharmacol 2007; 62:427-32. [DOI: 10.1007/s00280-007-0621-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
|