1
|
Rossetto A, Adani GL, Baccarani U, Tulissi P, Bresadola V. Pathological Consequences in Anti-HCV Antibody-Positive Organ Donation to an Anti-HCV Antibody-Negative Recipient. Transplant Proc 2024; 56:1213-1215. [PMID: 39034192 DOI: 10.1016/j.transproceed.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 02/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The need to expand the pool of available organs for transplantation has meant that the use of marginal organs is increasingly widespread. The advent of antiviral therapy for hepatitis C virus (HCV) has made it possible to consider the donation of organs from HCV-positive donors and even from viremic donors. METHODS In HCV-positive to HCV-negative antibody donor transplantation, the development of antibodies to HCV is uneven, depending on the organ transplanted and with differences in the time of appearance. Whether the subsequent disappearance is attributed to the development of antibodies or the transmission of immunity between donor and recipient remains unclear. In transplantation from an HCV-infected donor to a HCV-seronegative recipient, the administration of antiviral therapy to the recipient before transplantation or a few days after transplantation achieves sustained response in almost all cases. We wanted to deepen the argument by studying the data in the literature, focusing on kidney transplantation, considering that this could be of interest, particularly for possible long-term renal damage. RESULTS HCV infection both ongoing and previous, as well as the presence of HCV antibodies alone, can be responsible for kidney damage. CONCLUSIONS Direct-acting anti-HCV therapy has revolutionized the treatment of HCV disease and the therapeutic possibilities of transplantation. However, we believe it is useful to keep in mind the pathophysiology of HCV-related damage especially in patients with a long life expectancy, using all emerging strategies to minimize the risk of transmission of infection or development of viremia.
Collapse
Affiliation(s)
- Anna Rossetto
- General Surgery Unit, Area Medical Department, University of Udine, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy.
| | - Gian Luigi Adani
- General Surgery and Kidney Transplantation, Siena University Hospital, Siena, Italy
| | - Umberto Baccarani
- General Surgery and Transplantation, Area Medica Department, University of Udine, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Patrizia Tulissi
- Department of Nephrology, Dialysis, and Kidney Transplantation, Azienda Sanitaria Universitaria Friuli Centrale Udine, Italy
| | - Vittorio Bresadola
- General Surgery Unit, Area Medical Department, University of Udine, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| |
Collapse
|
2
|
Mikhnovets IE, Holoubek J, Panina IS, Kotouček J, Gvozdev DA, Chumakov SP, Krasilnikov MS, Zhitlov MY, Gulyak EL, Chistov AA, Nikitin TD, Korshun VA, Efremov RG, Alferova VA, Růžek D, Eyer L, Ustinov AV. Alkyl Derivatives of Perylene Photosensitizing Antivirals: Towards Understanding the Influence of Lipophilicity. Int J Mol Sci 2023; 24:16483. [PMID: 38003673 PMCID: PMC10671050 DOI: 10.3390/ijms242216483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.
Collapse
Affiliation(s)
- Igor E. Mikhnovets
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Jiří Holoubek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic (D.R.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Irina S. Panina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Jan Kotouček
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic;
| | - Daniil A. Gvozdev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Stepan P. Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Timofei D. Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Daniel Růžek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic (D.R.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Luděk Eyer
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic (D.R.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| |
Collapse
|
3
|
Huang S, Wu Z, Zhou B, Jiang X, Lavillette D, Fan G. Heat-Denatured Lysozyme is a Novel Potential Non-alcoholic Disinfectant Against Respiratory Virus. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:212-223. [PMID: 37155116 PMCID: PMC10166042 DOI: 10.1007/s12560-023-09556-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Respiratory diseases are significant recurrent threats to global public health. Since the 1918 Spanish flu pandemic, seasonal influenza viruses continue to cause epidemics around the world each year. More recently, the COVID-19 global pandemic conducted a public health crisis with more than 6 million deaths and it also severely affected the global economy. Due to the phenomenon that people get infection from objects carrying viruses, it has aroused people's attention to home disinfection. As there is no ideal existing common domestic disinfectant, new and safer antiviral disinfectants are urgently needed. Lysozyme is a natural antibacterial agent widespread in nature and widely used in healthcare and food industry because of is recognized safety. Recently, it has been shown that thermally denatured lysozyme has the ability to kill murine norovirus and hepatitis A virus. In our study, we also demonstrated that heat-denatured lysozyme (HDLz) had an antiviral effect against H1N1 influenza A virus, and we optimized its antiviral activities by testing different heating denaturation conditions, to generalize this property, using pseudotype virus neutralization assay, we found that HDLz can also inhibit the entry of H5N1, H5N6, and H7N1 avian influenza viruses as well as SARS-CoV and SARS-CoV-2 particles in cell with IC50 at the ng/mL range. Finally, using western blot analysis, we provide evidence that HDLz polymerization correlates with antiviral effect, which may be a precious possible quality control test. Altogether, our data support HDLz as a powerful anti-respiratory virus disinfectant as a sole or additive of current disinfectants to reduce concentration of toxic component.
Collapse
Affiliation(s)
- Suqiong Huang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016 People’s Republic of China
- Department of Pharmacy, Sichuan Provincial People’s Hospital Qionglai Hospital, Medical Center Hospital of Qionglai City, No. 172 Xinglin Road, Qionglai City, Chengdu, Sichuan Province 611530 People’s Republic of China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 People’s Republic of China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Bingjie Zhou
- University of CAS, Beijing, 101408 China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai, 200031 China
| | - Xinhui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016 People’s Republic of China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai, 200031 China
- Pasteurien College, Soochow University, Jiangsu, 215006 China
| | - Guorong Fan
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016 People’s Republic of China
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 People’s Republic of China
| |
Collapse
|
4
|
Mariewskaya KA, Gvozdev DA, Chistov AA, Straková P, Huvarová I, Svoboda P, Kotouček J, Ivanov NM, Krasilnikov MS, Zhitlov MY, Pak AM, Mikhnovets IE, Nikitin TD, Korshun VA, Alferova VA, Mašek J, Růžek D, Eyer L, Ustinov AV. Membrane-Targeting Perylenylethynylphenols Inactivate Medically Important Coronaviruses via the Singlet Oxygen Photogeneration Mechanism. Molecules 2023; 28:6278. [PMID: 37687107 PMCID: PMC10488391 DOI: 10.3390/molecules28176278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Perylenylethynyl derivatives have been recognized as broad-spectrum antivirals that target the lipid envelope of enveloped viruses. In this study, we present novel perylenylethynylphenols that exhibit nanomolar or submicromolar antiviral activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and feline infectious peritonitis virus (FIPV) in vitro. Perylenylethynylphenols incorporate into viral and cellular membranes and block the entry of the virus into the host cell. Furthermore, these compounds demonstrate an ability to generate singlet oxygen when exposed to visible light. The rate of singlet oxygen production is positively correlated with antiviral activity, confirming that the inhibition of fusion is primarily due to singlet-oxygen-induced damage to the viral envelope. The unique combination of a shape that affords affinity to the lipid bilayer and the capacity to generate singlet oxygen makes perylenylethynylphenols highly effective scaffolds against enveloped viruses. The anticoronaviral activity of perylenylethynylphenols is strictly light-dependent and disappears in the absence of daylight (under red light). Moreover, these compounds exhibit negligible cytotoxicity, highlighting their significant potential for further exploration of the precise antiviral mechanism and the broader scope and limitations of this compound class.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Daniil A. Gvozdev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Petra Straková
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Ivana Huvarová
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
| | - Pavel Svoboda
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, CZ-612 42 Brno, Czech Republic
| | - Jan Kotouček
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (J.K.); (J.M.)
| | - Nikita M. Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexandra M. Pak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Igor E. Mikhnovets
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Timofei D. Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Josef Mašek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (J.K.); (J.M.)
| | - Daniel Růžek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Luděk Eyer
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| |
Collapse
|
5
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
6
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
7
|
Mfouo-Tynga IS, Mouinga-Ondeme AG. Photodynamic Therapy: A Prospective Therapeutic Approach for Viral Infections and Induced Neoplasia. Pharmaceuticals (Basel) 2022; 15:ph15101273. [PMID: 36297385 PMCID: PMC9608479 DOI: 10.3390/ph15101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The recent COVID-19 pandemic outbreak and arising complications during treatments have highlighted and demonstrated again the evolving ability of microorganisms, especially viral resistance to treatment as they develop into new and strong strains. The search for novel and effective treatments to counter the effects of ever-changing viruses is undergoing. Although it is an approved procedure for treating cancer, photodynamic therapy (PDT) was first used against bacteria and has now shown potential against viruses and certain induced diseases. PDT is a multi-stage process and uses photosensitizing molecules (PSs) that accumulate in diseased tissues and eradicates them after being light-activated in the presence of oxygen. In this review, studies describing viruses and their roles in disrupting cell regulation mechanisms and signaling pathways and facilitating tumorigenesis were described. With the development of innovative “or smart” PSs through the use of nanoparticles and two-photon excitation, among other strategies, PDT can boost immune responses, inactivate viral infections, and eradicate neoplastic cells. Visualization and monitoring of biological processes can be achieved in real-time with nanomedicines and better tissue penetration strategies. After photodynamic inactivation of viruses, signaling pathways seem to be restored but the underlying mechanisms are still to be elucidated. Light-mediated treatments are suitable to manage both oncogenic viral infections and induced neoplasia.
Collapse
|
8
|
Gravemann U, Engelmann M, Kinast V, Burkard T, Behrendt P, Schulze TJ, Todt D, Steinmann E. Hepatitis E virus is effectively inactivated by methylene blue plus light treatment. Transfusion 2022; 62:2200-2204. [PMID: 36125237 DOI: 10.1111/trf.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Photodynamic treatment with methylene blue (MB) and visible light is a well-established pathogen inactivation system for human plasma. This technique is routinely used in different countries. MB/light treatment was shown to inactivate several transfusion-transmittable viruses, but its efficiency for the inactivation of the quasi-enveloped hepatitis E virus (HEV) has not yet been investigated. MATERIALS AND METHODS Plasma units were spiked with cell culture-derived HEV and treated with the THERAFLEX MB-Plasma system using various light doses (30, 60, 90, and 120 J/cm2 ). HEV titers in pre- and post-treatment samples were determined by virus titration and a large-volume plating assay to improve the detection limit of the virus assay. RESULTS THERAFLEX MB-Plasma efficiently inactivated HEV in human plasma. Even the lowest light dose of 30 J/cm2 inactivated HEV down to the limit of detection, with a mean log reduction factor of greater than 2.4 for the total process. CONCLUSION Our study demonstrates that the THERAFLEX MB-Plasma system effectively inactivates HEV in human plasma.
Collapse
Affiliation(s)
- Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Michael Engelmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Volker Kinast
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.,Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas Burkard
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Patrick Behrendt
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover, Germany
| | | | - Daniel Todt
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.,German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany
| |
Collapse
|
9
|
Wu T, Wang X, Ren K, Huang X, Liu J. The Alterations in Methylene Blue/Light-Treated Frozen Plasma Proteins Revealed by Proteomics. Transfus Med Hemother 2021; 48:298-305. [PMID: 34803573 DOI: 10.1159/000515119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction The aim of this study was to investigate the modified proteins in methylene blue/light-treated frozen plasma (MB-FP) compared with fresh frozen plasma (FFP) in order to gain a better application of MB/light-treated plasma in clinic transfusion. Methods MB-FP and FFP were collected from Changchun central blood station, and a trichloroacetic acid/acetone precipitation method was used to remove albumin for the enrichment of lower abundance proteins. The plasma protein in MB-FP and FFP were separated using two-dimensional gel electrophoresis (2-DE) and the differentially expressed protein spots were analyzed using mass spectrometry. Finally, the differentially expressed proteins were tested using Western blot and enzyme-linked immunosorbent assay (ELISA). Results Approximately 14 differentially expressed protein spots were detected in the MB-FP, and FFP was chosen as the control. After 2-DE comparison analysis and mass spectrometry, 8 significantly differentially expressed protein spots were identified, corresponding to 6 different proteins, including complement C1r subcomponent (C1R), inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4), keratin, type II cytoskeletal 1 (KRT1), hemopexin (HPX), fibrinogen gamma chain (FGG), and transthyretin (TTR). Western blot showed no significant difference in the expression level of KRT1 between MB-FP and FFP (p > 0.05). Both Western blot and ELISA indicated that the level of HPX was significantly higher in FFP than in MB-FP (p < 0.05). Conclusion This comparative proteomics study revealed that some significantly modified proteins occur in MB-FP, such as C1R, ITI-H4, KRT1, HPX, FGG, and TTR. Our findings provide more theoretical data for using MB-FP in transfusion medicine. However, the relevance of the data for the transfusion of methylene blue/light-treated plasma remains unclear. The exact modification of these proteins and the effects of these modified proteins on their functions and their effects in clinical plasma infusion need to be further studied.
Collapse
Affiliation(s)
- Tiange Wu
- Blood Transfusion Department, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoning Wang
- Blood Transfusion Department, The First Hospital of Jilin University, Changchun, China
| | - Kai Ren
- Blood Transfusion Department, The Second Hospital of Jilin University, Changchun, China
| | - Xiaochen Huang
- Anesthesiology, Changchun University of Chinese Medicine, Changchun, China
| | - Jiankai Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
10
|
Tong Y, Shi G, Hu G, Hu X, Han L, Xie X, Xu Y, Zhang R, Sun J, Zhong J. Photo-catalyzed TiO 2 inactivates pathogenic viruses by attacking viral genome. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 414:128788. [PMID: 33558800 PMCID: PMC7857067 DOI: 10.1016/j.cej.2021.128788] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/31/2020] [Indexed: 05/03/2023]
Abstract
Previous observations have been reported that viruses were inactivated using strong irradiation. Here, new evidence was disclosed by studying the effects of nanosized TiO2 on viral pathogens under a low irradiation condition (0.4 mW/cm2 at UVA band) that mimics the field setting. We showed that photo-activated TiO2 efficiently inhibits hepatitis C virus infection, and weak indoor light with intensity of 0.6 mW/cm2 at broad-spectrum wavelength and around 0.15 mW/cm2 of UVA band also lead to partial inhibition. Mechanistic studies demonstrated that hydroxyl radicals produced by photo-activated TiO2 do not destroy virion structure and contents, but attack viral RNA genome, thus inactivating the virus. Furthermore, we showed that photo-activated TiO2 inactivates a broad range of human viral pathogens, including SARS-CoV-2, a novel coronavirus responsible for the ongoing COVID-19 pandemic. In conclusion, we showed that photo-catalyzed nanosized TiO2 inactivates pathogenic viruses, paving a way to its field application in control of viral infectious diseases.
Collapse
Affiliation(s)
- Yimin Tong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gansheng Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Gaowei Hu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoyou Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Han
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- ShanghaiTech University, Shanghai 201210, China
| | - Xiaofeng Xie
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Sun
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Brixner V, Bug G, Pohler P, Krämer D, Metzner B, Voss A, Casper J, Ritter U, Klein S, Alakel N, Peceny R, Derigs HG, Stegelmann F, Wolf M, Schrezenmeier H, Thiele T, Seifried E, Kapels HH, Döscher A, Petershofen EK, Müller TH, Seltsam A. Efficacy of UVC-treated, pathogen-reduced platelets versus untreated platelets: a randomized controlled non-inferiority trial. Haematologica 2021; 106:1086-1096. [PMID: 33538149 PMCID: PMC8018132 DOI: 10.3324/haematol.2020.260430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Pathogen reduction (PR) technologies for blood components have been established to reduce the residual risk of known and emerging infectious agents. THERAFLEX UV-Platelets, a novel ultraviolet C (UVC) light-based PR technology for platelet concentrates, works without photoactive substances. This randomized, controlled, double-blind, multicenter, non-inferiority trial was designed to compare the efficacy and safety of UVC-treated platelets to that of untreated platelets in thrombocytopenic patients with hematologic-oncologic diseases. The primary objective was to determine non-inferiority of UVC-treated platelets, assessed by the 1-hour corrected count increment (CCI) in up to eight per-protocol platelet transfusion episodes. Analysis of the 171 eligible patients showed that the defined non-inferiority margin of 30% of UVC-treated platelets was narrowly missed as the mean differences in 1-hour CCI between standard platelets versus UVC-treated platelets for intention-to-treat and per-protocol analyses were 18.2% (95% Confidence Interval [CI]: 6.4-30.1) and 18.7% (95% CI: 6.3-31.1), respectively. In comparison to the control, the UVC group had a 19.2% lower mean 24-hour CCI and was treated with an about 25% higher number of platelet units, but the average number of days to the next platelet transfusion did not differ significantly between both treatment groups. The frequency of low-grade adverse events was slightly higher in the UVC group and the frequencies of refractoriness to platelet transfusion, platelet alloimmunization, severe bleeding events, and red blood cell transfusions were comparable between groups. Our study suggests that transfusion of pathogen-reduced platelets produced with the UVC technology is safe but non-inferiority was not demonstrated. (clinicaltrials gov. Identifier: DRKS00011156).
Collapse
Affiliation(s)
- Veronika Brixner
- German Red Cross Blood Transfusion Service and Goethe University Clinics, Frankfurt/Main
| | - Gesine Bug
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt/Main
| | | | - Doris Krämer
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Bernd Metzner
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Andreas Voss
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Jochen Casper
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Ulrich Ritter
- Department of Hematology and Oncology, Municipal Hospital Bremen, Bremen
| | - Stefan Klein
- Department of Hematology and Oncology, University Hospital, Mannheim
| | - Nael Alakel
- Medical Clinic I, Department of Hematology and Oncology, University Hospital, Carl Gustav Carus Faculty of Medicine, Dresden
| | - Rudolf Peceny
- Department of Hematology and Oncology, Municipal Hospital, Osnabrück
| | - Hans G Derigs
- Department of Hematology and Oncology, Municipal Hospital Frankfurt-Hoechst, Frankfurt/Main
| | | | - Martin Wolf
- Department of Hematology and Oncology, Municipal Hospital, Kassel
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany; and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessia, Ulm
| | - Thomas Thiele
- Institute for Immunology and Transfusion Medicine, University Medicine, Greifswald
| | - Erhard Seifried
- German Red Cross Blood Transfusion Service and Goethe University Clinics, Frankfurt/Main
| | | | | | | | | | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany; Bavarian Red Cross Blood Service, Nuremberg.
| |
Collapse
|
12
|
Sabino CP, Ball AR, Baptista MS, Dai T, Hamblin MR, Ribeiro MS, Santos AL, Sellera FP, Tegos GP, Wainwright M. Light-based technologies for management of COVID-19 pandemic crisis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 212:111999. [PMID: 32855026 PMCID: PMC7435279 DOI: 10.1016/j.jphotobiol.2020.111999] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
The global dissemination of the novel coronavirus disease (COVID-19) has accelerated the need for the implementation of effective antimicrobial strategies to target the causative agent SARS-CoV-2. Light-based technologies have a demonstrable broad range of activity over standard chemotherapeutic antimicrobials and conventional disinfectants, negligible emergence of resistance, and the capability to modulate the host immune response. This perspective article identifies the benefits, challenges, and pitfalls of repurposing light-based strategies to combat the emergence of COVID-19 pandemic.
Collapse
Affiliation(s)
- Caetano P Sabino
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, SP, Brazil; BioLambda, Scientific and Commercial LTD, São Paulo, SP, Brazil.
| | - Anthony R Ball
- GAMA Therapeutics LLC, Massachusetts Biomedical Initiatives, Worcester, USA
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil..
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Martha S Ribeiro
- Center for Lasers and Applications, Nuclear, and Energy Research Institute, National Commission for Nuclear Energy, São Paulo, SP, Brazil
| | - Ana L Santos
- GAMA Therapeutics LLC, Massachusetts Biomedical Initiatives, Worcester, USA; Department of Chemistry Rice University, Houston, TX, USA; IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - George P Tegos
- GAMA Therapeutics LLC, Massachusetts Biomedical Initiatives, Worcester, USA; Micromoria LLC, Marlborough, USA
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
13
|
Ribeiro RVP, Ali A, Cypel M. Ex vivo perfusion in lung transplantation and removal of HCV: the next level. Transpl Int 2020; 33:1589-1596. [PMID: 32888320 DOI: 10.1111/tri.13730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/14/2020] [Accepted: 08/26/2020] [Indexed: 01/14/2023]
Abstract
The large gap between high demand and low availability of lungs is still a limiting factor for lung transplantation which leads to important mortality rates on the waiting list. In the last years, with the advent of potent direct-acting antivirals (DAAs), donors carrying active hepatitis C (HCV) infection became an important source in expanding the donor pool. Recent clinical trials exploring different treatment regimens post-transplantation when using HCV-positive abdominal and thoracic organs into HCV-negative recipients have shown encouraging results. Although early data shows no toxicity and similar survival rates when compared to non-HCV organ transplantation, long-term outcomes evaluating the effect of either the transmission of HCV into the recipients or the deliberate use of DAAs to treat the virus remains absent. An important and innovative strategy to overcome this limitation is the possibility of mitigating viral transmission with the use of ex vivo donor organ treatment prior to transplantation. Recent pre-clinical and clinical studies explore the use of ex vivo perfusion and the removal of HCV prior to transplantation with the addition of other innovative therapies, which will be reviewed in this article.
Collapse
Affiliation(s)
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto, ON, Canada.,Division of Thoracic Surgery, University Health Network, Toronto, ON, Canada
| |
Collapse
|
14
|
Hadi J, Dunowska M, Wu S, Brightwell G. Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses. Pathogens 2020; 9:E737. [PMID: 32911671 PMCID: PMC7558314 DOI: 10.3390/pathogens9090737] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 is a single-stranded RNA virus classified in the family Coronaviridae. In this review, we summarize the literature on light-based (UV, blue, and red lights) sanitization methods for the inactivation of ssRNA viruses in different matrixes (air, liquid, and solid). The rate of inactivation of ssRNA viruses in liquid was higher than in air, whereas inactivation on solid surfaces varied with the type of surface. The efficacy of light-based inactivation was reduced by the presence of absorptive materials. Several technologies can be used to deliver light, including mercury lamp (conventional UV), excimer lamp (UV), pulsed-light, and light-emitting diode (LED). Pulsed-light technologies could inactivate viruses more quickly than conventional UV-C lamps. Large-scale use of germicidal LED is dependent on future improvements in their energy efficiency. Blue light possesses virucidal potential in the presence of exogenous photosensitizers, although femtosecond laser (ultrashort pulses) can be used to circumvent the need for photosensitizers. Red light can be combined with methylene blue for application in medical settings, especially for sanitization of blood products. Future modelling studies are required to establish clearer parameters for assessing susceptibility of viruses to light-based inactivation. There is considerable scope for improvement in the current germicidal light-based technologies and practices.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand;
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
15
|
Voglau U, Müller TH, Seltsam A, Gravemann U, Handke W, Doescher A. Digital droplet polymerase chain reaction to monitor ultraviolet C treatment of single-donor and buffy coat platelet units. Transfusion 2020; 60:1821-1827. [PMID: 32537745 DOI: 10.1111/trf.15904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND UVC illumination of agitated platelet concentrates (PCs) inactivates pathogens and white blood cells by modifications of their nucleic acids. Related effects on mitochondrial DNA (mtDNA) in platelets serve as a basis for an efficient monitoring suited for routine quality control (QC) of this purely physical pathogen reduction technology. STUDY DESIGN AND METHODS Samples from PCs (n = 530) were tested with an established LightCycler PCR (LC PCR) for QC of the UVC procedure. RNR2 and TRNK/ATP8 genes were sequenced in the PCs (n = 21) with out-of-specification results in the LC PCR. A digital droplet PCR (ddPCR) was developed to minimize the outliers and cross-validated by testing the 530 PCs. The ddPCR was further evaluated in a subgroup of 300 PCs without mtDNA extraction and in samples from systematic variations of UVC dose and agitation speed. RESULTS Apheresis PCs (n = 380) resulted in 5.3% outliers in LC PCR versus only 0.7% in buffy coat pool PCs (n = 150). Sequencing of these outliers revealed single-nucleotide polymorphisms in the primer- and probe-binding sites of LC PCR. The development of a ddPCR assay with modified probe sequences reduced the outliers to 0.4%. The ddPCR analysis of PCs both with and without mtDNA extraction demonstrated low intra- and interassay variabilities and congruent results also compared to LC PCR. Experiments varying the UVC dose and the agitation speed demonstrated that the ddPCR results closely reflect functional effects of the UVC treatment. CONCLUSION The ddPCR assay offers a valid and reliable tool for QC of routine production of the UVC-treated PCs as well as for monitoring treatment conditions during optimization of the UVC procedure.
Collapse
Affiliation(s)
- Uta Voglau
- DRK-Blutspendedienst NSTOB, Institut Bremen-Oldenburg, Oldenburg, Germany
| | - Thomas H Müller
- DRK-Blutspendedienst NSTOB, Institut Springe, Springe, Germany
| | - Axel Seltsam
- DRK-Blutspendedienst NSTOB, Institut Springe, Springe, Germany
| | - Ute Gravemann
- DRK-Blutspendedienst NSTOB, Institut Springe, Springe, Germany
| | - Wiebke Handke
- DRK-Blutspendedienst NSTOB, Institut Springe, Springe, Germany
| | - Andrea Doescher
- DRK-Blutspendedienst NSTOB, Institut Bremen-Oldenburg, Oldenburg, Germany
| |
Collapse
|
16
|
New strategies for the control of infectious and parasitic diseases in blood donors: the impact of pathogen inactivation methods. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Around 70 infectious agents are possible threats for blood safety.
The risk for blood recipients is increasing because of new emergent agents like West Nile, Zika and Chikungunya viruses, or parasites such as Plasmodium and Trypanosoma cruzi in non-endemic regions, for instance.
Screening programmes of the donors are more and more implemented in several Countries, but these cannot prevent completely infections, especially when they are caused by new agents.
Pathogen inactivation (PI) methods might overcome the limits of the screening and different technologies have been set up in the last years.
This review aims to describe the most widely used methods focusing on their efficacy as well as on the preservation integrity of blood components.
Collapse
|
17
|
Gugerell A, Sorgenfrey D, Laggner M, Raimann J, Peterbauer A, Bormann D, Suessner S, Gabriel C, Moser B, Ostler T, Mildner M, Ankersmit HJ. Viral safety of APOSECTM: a novel peripheral blood mononuclear cell derived-biological for regenerative medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 18:30-39. [PMID: 30865581 PMCID: PMC7053523 DOI: 10.2450/2019.0249-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Viral reduction and inactivation of cell-derived biologicals is paramount for patients' safety and so viral reduction needs to be demonstrated to regulatory bodies in order to obtain marketing authorisation. Allogeneic human blood-derived biological medicinal products require special attention. APOSECTM, the secretome harvested from selected human blood cells, is a new biological with promising regenerative capabilities. We evaluated the effectiveness of inactivation of model viruses by methylene blue/light treatment, lyophilisation, and gamma irradiation during the manufacturing process of APOSECTM. MATERIALS AND METHODS Samples of intermediates of APOSECTM were acquired during the manufacturing process and spiked with bovine viral diarrhoea virus (BVDV), human immunodeficiency virus type 1 (HIV-1), pseudorabies virus (PRV), hepatitis A virus (HAV), and porcine parvovirus (PPV). Viral titres were assessed with suitable cell lines. RESULTS Methylene blue-assisted viral reduction is mainly effective against enveloped viruses: the minimum log10 reduction factors for BVDV, HIV-1, and PRV were ≥6.42, ≥6.88, and ≥6.18, respectively, with no observed residual infectivity. Viral titres of both HAV and PPV were not significantly reduced, indicating minor inactivation of non-enveloped viruses. Lyophilisation had minor effects on the viability of several enveloped model viruses. Gamma irradiation contributes to the viral safety by reduction of enveloped viruses (BVDV: ≥2.42; HIV-1: 4.53; PRV: ≥4.61) and to some degree of non-enveloped viruses as seen for HAV with a minimum log10 reduction factor of 2.92. No significant reduction could be measured for the non-enveloped virus PPV (2.60). DISCUSSION Three manufacturing steps of APOSECTM were evaluated under Good Laboratory Practice conditions for their efficacy at reducing and inactivating potentially present viruses. It could be demonstrated that all three steps contribute to the viral safety of APOSECTM.
Collapse
Affiliation(s)
- Alfred Gugerell
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Maria Laggner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Jürgen Raimann
- Charles River Laboratories Germany GmbH (CRL), Cologne, Germany
| | - Anja Peterbauer
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Daniel Bormann
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Susanne Suessner
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Christian Gabriel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Bernhard Moser
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Tobias Ostler
- SYNLAB Analytics and Services Switzerland AG, Birsfelden, Switzerland
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Hendrik J Ankersmit
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Wiener Wirtschaftsagentur Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
- Austrian Research Promotion Agency FFG Projects 852748 and 862068 "APOSEC", Medical University Vienna, Vienna, Austria
| |
Collapse
|
18
|
Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:433-448. [PMID: 31846608 DOI: 10.2450/2019.0288-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Pathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease.
Collapse
|
19
|
Helfritz FA, Bojkova D, Wanders V, Kuklinski N, Westhaus S, von Horn C, Rauen U, Gallinat A, Baba HA, Skyschally A, Swoboda S, Kinast V, Steinmann E, Heusch G, Minor T, Meuleman P, Paul A, Ciesek S. Methylene Blue Treatment of Grafts During Cold Ischemia Time Reduces the Risk of Hepatitis C Virus Transmission. J Infect Dis 2019; 218:1711-1721. [PMID: 29939277 DOI: 10.1093/infdis/jiy386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background Although organ shortage is a rising problem, organs from hepatitis C virus (HCV) ribonucleic acid (RNA)-positive donors are not routinely transplanted in HCV-negative individuals. Because HCV only infects hepatocytes, other organs such as kidneys are merely contaminated with HCV via the blood. In this study, we established a protocol to reduce HCV virions during the cold ischemic time. Methods Standard virological assays were used to investigate the effect of antivirals, including methylene blue (MB), in different preservation solutions. Kidneys from mini pigs were contaminated with Jc1 or HCV RNA-positive human serum. Afterwards, organs were flushed with MB. Hypothermic machine perfusion was used to optimize reduction of HCV. Results Three different antivirals were investigated for their ability to inactivate HCV in vitro. Only MB completely inactivated HCV in the presence of all perfusion solutions. Hepatitis C virus-contaminated kidneys from mini pigs were treated with MB and hypothermic machine perfusion without any negative effect on the graft. Human liver-uPA-SCID mice did not establish HCV infection after inoculation with flow through from these kidneys. Conclusions This proof-of-concept study is a first step to reduce transmission of infectious HCV particles in the transplant setting and might serve as a model for other relevant pathogens.
Collapse
Affiliation(s)
- Fabian A Helfritz
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Denisa Bojkova
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Verena Wanders
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Nina Kuklinski
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sandra Westhaus
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Charlotte von Horn
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital Essen, University Duisburg-Essen, Germany
| | - Anja Gallinat
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Andreas Skyschally
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sandra Swoboda
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Volker Kinast
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Gerd Heusch
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University Duisburg-Essen, Germany
| | - Thomas Minor
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Andreas Paul
- General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sandra Ciesek
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany.,German Center for Infection Research (DZIF), External Partner Site Essen, Germany
| |
Collapse
|
20
|
Kelishadi M, Hashemi P, Ashrafi G, Behnampour N, Tabarraei A. Presence of GB Virus C in Whole-Blood Derivatives: A Pilot Study. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.5.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
21
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
22
|
Faddy HM, Fryk JJ, Hall RA, Young PR, Reichenberg S, Tolksdorf F, Sumian C, Gravemann U, Seltsam A, Marks DC. Inactivation of yellow fever virus in plasma after treatment with methylene blue and visible light and in platelet concentrates following treatment with ultraviolet C light. Transfusion 2019; 59:2223-2227. [PMID: 31050821 DOI: 10.1111/trf.15332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Yellow fever virus (YFV) is endemic to tropical and subtropical areas in South America and Africa, and is currently a major public health threat in Brazil. Transfusion transmission of the yellow fever vaccine virus has been demonstrated, which is indicative of the potential for viral transfusion transmission. An approach to manage the potential YFV transfusion transmission risk is the use of pathogen inactivation (PI) technology systems, such as THERAFLEX MB-Plasma and THERAFLEX UV-Platelets (Macopharma). We aimed to investigate the efficacy of these PI technology systems to inactivate YFV in plasma or platelet concentrates (PCs). STUDY DESIGN AND METHODS YFV spiked plasma units were treated using THERAFLEX MB-Plasma system (visible light doses: 20, 40, 60, and 120 [standard] J/cm2 ) in the presence of methylene blue (approx. 0.8 μmol/L) and spiked PCs were treated using THERAFLEX UV-Platelets system (ultraviolet C doses: 0.05, 0.10, 0.15, and 0.20 [standard] J/cm2 ). Samples were taken before the first and after each illumination dose and tested for residual virus using a modified plaque assay. RESULTS YFV infectivity was reduced by an average of 4.77 log or greater in plasma treated with the THERAFLEX MB-Plasma system and by 4.8 log or greater in PCs treated with THERAFLEX UV-Platelets system. CONCLUSIONS Our study suggests the THERAFLEX MB-Plasma and the THERAFLEX UV-Platelets systems can efficiently inactivate YFV in plasma or PCs to a similar degree as that for other arboviruses. Given the reduction levels observed in this study, these PI technology systems could be an effective option for managing YFV transfusion-transmission risk in plasma and PCs.
Collapse
Affiliation(s)
- Helen M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jesse J Fryk
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Galasso M, Feld JJ, Watanabe Y, Pipkin M, Summers C, Ali A, Qaqish R, Chen M, Ribeiro RVP, Ramadan K, Pires L, Bagnato VS, Kurachi C, Cherepanov V, Moonen G, Gazzalle A, Waddell TK, Liu M, Keshavjee S, Wilson BC, Humar A, Cypel M. Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion. Nat Commun 2019; 10:481. [PMID: 30696822 PMCID: PMC6351537 DOI: 10.1038/s41467-018-08261-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
Availability of organs is a limiting factor for lung transplantation, leading to substantial mortality rates on the wait list. Use of organs from donors with transmissible viral infections, such as hepatitis C virus (HCV), would increase organ donation, but these organs are generally not offered for transplantation due to a high risk of transmission. Here, we develop a method for treatment of HCV-infected human donor lungs that prevents HCV transmission. Physical viral clearance in combination with germicidal light-based therapies during normothermic ex-vivo Lung Perfusion (EVLP), a method for assessment and treatment of injured donor lungs, inactivates HCV virus in a short period of time. Such treatment is shown to be safe using a large animal EVLP-to-lung transplantation model. This strategy of treating viral infection in a donor organ during preservation could significantly increase the availability of organs for transplantation and encourages further clinical development. Organs from donors with transmissible viral infections, such as hepatitis C virus (HCV), are not offered for transplantation due to a high risk of transmission. Here, Galasso et al. develop a method for treatment of HCV-infected human donor lungs that is safe and prevents HCV transmission in the pig model.
Collapse
Affiliation(s)
- Marcos Galasso
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, Toronto General Hospital, Toronto, M5G 2C4, ON, Canada.
| | - Yui Watanabe
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Mauricio Pipkin
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Cara Summers
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Robert Qaqish
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Rafaela V P Ribeiro
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Khaled Ramadan
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Layla Pires
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo Brazil, São Paulo, 13566-590, Brazil
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo Brazil, São Paulo, 13566-590, Brazil
| | - Vera Cherepanov
- Toronto Centre for Liver Disease, University Health Network, Toronto General Hospital, Toronto, M5G 2C4, ON, Canada
| | - Gray Moonen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Anajara Gazzalle
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre/Department of Medical Biophysics, University of Toronto, Toronto, M5G 2C4, Canada
| | - Atul Humar
- Multi-Organ Transplant Program, University Health Network, Toronto, M5G 2C4, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, M5G 2C4, ON, Canada. .,Multi-Organ Transplant Program, University Health Network, Toronto, M5G 2C4, ON, Canada.
| |
Collapse
|
24
|
Gravemann U, Handke W, Müller TH, Seltsam A. Bacterial inactivation of platelet concentrates with the THERAFLEX UV-Platelets pathogen inactivation system. Transfusion 2018; 59:1324-1332. [PMID: 30588633 DOI: 10.1111/trf.15119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The THERAFLEX UV-Platelets system (Maco Pharma) uses ultraviolet C (UVC) light for pathogen inactivation (PI) of platelet concentrates (PCs) without any additional photoactive compound. The aim of the study was to systematically investigate bacterial inactivation with this system under conditions of intended use. STUDY DESIGN AND METHODS The robustness of the system was evaluated by assessing its capacity to inactivate high concentrations of different bacterial species in accordance with World Health Organization guidelines. The optimal use of the PI system was explored in time-to-treatment experiments by testing its ability to sterilize PCs contaminated with low levels of bacteria on the day of manufacture (target concentration, 100 colony-forming units/unit). The bacteria panel used for spiking experiments in this study included the World Health Organization International Repository Platelet Transfusion Relevant Reference Strains (n = 14), commercially available strains (n = 13), and in-house clinical isolates (n = 2). RESULTS Mean log reduction factors after UVC treatment ranged from 3.1 to 7.5 and varied between different strains of the same species. All PCs (n = 12/species) spiked with up to 200 colony-forming units/bag remained sterile until the end of storage when UVC treated 6 hours after spiking. UVC treatment 8 hours after spiking resulted in single breakthrough contaminations with the fast-growing species Escherichia coli and Streptococcus pyogenes. CONCLUSION The UVC-based THERAFLEX UV-Platelets system efficiently inactivates transfusion-relevant bacterial species in PCs. The comprehensive data from this study may provide a valuable basis for the optimal use of this UVC-based PI system.
Collapse
Affiliation(s)
- Ute Gravemann
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Wiebke Handke
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Thomas H Müller
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| |
Collapse
|
25
|
Pathogen-Inaktivierungssysteme für Thrombozytenkonzentrate. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:874-893. [PMID: 29931520 PMCID: PMC7079973 DOI: 10.1007/s00103-018-2766-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Eickmann M, Gravemann U, Handke W, Tolksdorf F, Reichenberg S, Müller TH, Seltsam A. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion 2018; 58:2202-2207. [PMID: 29732571 PMCID: PMC7169708 DOI: 10.1111/trf.14652] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ebola virus (EBOV) and Middle East respiratory syndrome coronavirus (MERS‐CoV) have been identified as potential threats to blood safety. This study investigated the efficacy of the THERAFLEX UV‐Platelets and THERAFLEX MB‐Plasma pathogen inactivation systems to inactivate EBOV and MERS‐CoV in platelet concentrates (PCs) and plasma, respectively. STUDY DESIGN AND METHODS PCs and plasma were spiked with high titers of cell culture–derived EBOV and MERS‐CoV, treated with various light doses of ultraviolet C (UVC; THERAFLEX UV‐Platelets) or methylene blue (MB) plus visible light (MB/light; THERAFLEX MB‐Plasma), and assessed for residual viral infectivity. RESULTS UVC reduced EBOV (≥4.5 log) and MERS‐CoV (≥3.7 log) infectivity in PCs to the limit of detection, and MB/light decreased EBOV (≥4.6 log) and MERS‐CoV (≥3.3 log) titers in plasma to nondetectable levels. CONCLUSIONS Both THERAFLEX UV‐Platelets (UVC) and THERAFLEX MB‐Plasma (MB/light) effectively reduce EBOV and MERS‐CoV infectivity in platelets and plasma, respectively.
Collapse
Affiliation(s)
- Markus Eickmann
- Institute for Virology, Philipps University Marburg, Marburg, Germany
| | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Wiebke Handke
- German Red Cross Blood Service NSTOB, Springe, Germany
| | | | | | | | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| |
Collapse
|
27
|
Gravemann U, Handke W, Sumian C, Alvarez I, Reichenberg S, Müller TH, Seltsam A. Plasma temperature during methylene blue/light treatment influences virus inactivation capacity and product quality. Vox Sang 2018; 113:368-377. [DOI: 10.1111/vox.12643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 02/03/2018] [Indexed: 01/01/2023]
Affiliation(s)
- U. Gravemann
- German Red Cross Blood Service NSTOB; Springe Germany
| | - W. Handke
- German Red Cross Blood Service NSTOB; Springe Germany
| | | | | | | | - T. H. Müller
- German Red Cross Blood Service NSTOB; Springe Germany
| | - A. Seltsam
- German Red Cross Blood Service NSTOB; Springe Germany
| |
Collapse
|
28
|
Abstract
Cardiovascular atherosclerotic disease is the leading cause of death in China and in Western nations. People with plaque or stenosis in the coronary artery or the carotid artery are the most susceptible population to suffer from acute events. Current investigations showed that plaque with the characteristics of intra-plaque hemorrhage or a thin cap with a large lipid core was causally associated with vulnerable plaque and plaque rupture. Of the many plaque ruptures occurring in patients with atherosclerotic disease, very few will trigger symptomatic events, rendering it exceedingly difficult to predict adverse outcomes. The assumption that identifying lesions prone to rupture will prevent acute coronary events was unrealistic. Factors in blood, especially those risk factors associated with thrombosis, play an important role as a bridge between plaque rupture and subsequent clinical events. Since there is little management to efficiently decrease the frequency of plaque rupture or erosion, blood healthy therapy, as a therapeutic apheresis to decrease the blood hypercoagulability to modulate the blood to be thrombosis resisting, should be considered as a potential therapeutic approach to reducing the incidence of acute coronary syndrome and stroke.
Collapse
Affiliation(s)
- Sun Yuhua
- 1 Department of Coronary Artery Disease, Cardiovascular Institute & Fu Wai Heart Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Center for Cardiovascular Disease, Beijing, China
| | - Wang Baoping
- 2 Hemodilution Institute of Jining Medical College, Jining Cardiovascular & Cerebral Disease Hospital, Jining City, Shandong Province, China
| |
Collapse
|
29
|
Fryk JJ, Marks DC, Hobson-Peters J, Watterson D, Hall RA, Young PR, Reichenberg S, Tolksdorf F, Sumian C, Gravemann U, Seltsam A, Faddy HM. Reduction of Zika virus infectivity in platelet concentrates after treatment with ultraviolet C light and in plasma after treatment with methylene blue and visible light. Transfusion 2017; 57:2677-2682. [PMID: 28718518 DOI: 10.1111/trf.14256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Zika virus (ZIKV) has emerged as a potential threat to transfusion safety worldwide. Pathogen inactivation is one approach to manage this risk. In this study, the efficacy of the THERAFLEX UV-Platelets system and THERAFLEX MB-Plasma system to inactivate ZIKV in platelet concentrates (PCs) and plasma was investigated. STUDY DESIGN AND METHODS PCs spiked with ZIKV were treated with the THERAFLEX UV-Platelets system at 0.05, 0.10, 0.15, and 0.20 J/cm2 UVC. Plasma spiked with ZIKV was treated with the THERAFLEX MB-Plasma system at 20, 40, 60, and 120 J/cm2 light at 630 nm with at least 0.8 µmol/L methylene blue (MB). Samples were taken before the first and after each illumination dose and tested for residual virus. For each system the level of viral reduction was determined. RESULTS Treatment of PCs with THERAFLEX UV-Platelets system resulted in a mean of 5 log reduction in ZIKV infectivity at the standard UVC dose (0.20 J/cm2 ), with dose dependency observed with increasing UVC dose. For plasma treated with MB and visible light, ZIKV infectivity was reduced by a mean of at least 5.68 log, with residual viral infectivity reaching the detection limit of the assay at 40 J/cm2 (one-third the standard dose). CONCLUSIONS Our study demonstrates that the THERAFLEX UV-Platelets system and THERAFLEX MB-Plasma system can reduce ZIKV infectivity in PCs and pooled plasma to the detection limit of the assays used. These findings suggest both systems have the capacity to be an effective option to manage potential ZIKV transfusion transmission risk.
Collapse
Affiliation(s)
- Jesse J Fryk
- Research and Development, Australian Red Cross Blood Service
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Helen M Faddy
- Research and Development, Australian Red Cross Blood Service.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
30
|
Meunier SM, Sasges MR, Aucoin MG. Evaluating ultraviolet sensitivity of adventitious agents in biopharmaceutical manufacturing. J Ind Microbiol Biotechnol 2017; 44:893-909. [PMID: 28283956 PMCID: PMC7087614 DOI: 10.1007/s10295-017-1917-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
Abstract
Incidents of contamination in biopharmaceutical production have highlighted the need to apply alternative or supplementary disinfection techniques. Ultraviolet (UV) irradiation is a well-established method for inactivating a broad range of microorganisms, and is therefore a good candidate as an orthogonal technique for disinfection. To apply UV as a safeguard against adventitious agents, the UV sensitivity of these target agents must be known so that the appropriate dose of UV may be applied to achieve the desired level of inactivation. This document compiles and reviews experimentally derived 254 nm sensitivities of organisms relevant to biopharmaceutical production. In general, different researchers have found similar sensitivity values despite a lack of uniformity in experimental design or standardized quantification techniques. Still, the lack of consistent methodologies has led to suspicious UV susceptibilities in certain instances, justifying the need to create a robust collection of sensitivity values that can be used in the design and sizing of UV systems for the inactivation of adventitious agents.
Collapse
Affiliation(s)
- Sarah M Meunier
- Trojan Technologies, 3020 Gore Rd., London, ON, N5V 4T7, Canada.,Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michael R Sasges
- Trojan Technologies, 3020 Gore Rd., London, ON, N5V 4T7, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
31
|
Virus Reduction of Human Plasma-Derived Biological Medicines. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Siddharta A, Pfaender S, Malassa A, Doerrbecker J, Anggakusuma, Engelmann M, Nugraha B, Steinmann J, Todt D, Vondran FWR, Mateu-Gelabert P, Goffinet C, Steinmann E. Inactivation of HCV and HIV by microwave: a novel approach for prevention of virus transmission among people who inject drugs. Sci Rep 2016; 6:36619. [PMID: 27857152 PMCID: PMC5114683 DOI: 10.1038/srep36619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/17/2016] [Indexed: 01/06/2023] Open
Abstract
Hepatitis C virus (HCV) and human immunodeficiency virus (HIV-1) transmissions among people who inject drugs (PWID) continue to pose a challenging global health problem. Here, we aimed to analyse a universally applicable inactivation procedure, namely microwave irradiation, as a safe and effective method to reduce the risk of viral transmission. The exposure of HCV from different genotypes to microwave irradiation resulted in a significant reduction of viral infectivity. Furthermore, microwave irradiation reduced viral infectivity of HIV-1 and of HCV/HIV-1 suspensions indicating that this inactivation may be effective at preventing co-infections. To translate microwave irradiation as prevention method to used drug preparation equipment, we could further show that HCV as well as HIV-1 infectivity could be abrogated in syringes and filters. This study demonstrates the power of microwave irradiation for the reduction of viral transmission and establishment of this safety strategy could help reduce the transmission of blood-borne viruses.
Collapse
Affiliation(s)
- Anindya Siddharta
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Stephanie Pfaender
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Angelina Malassa
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Juliane Doerrbecker
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Anggakusuma
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Michael Engelmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Boya Nugraha
- Department of Rehabilitation Medicine, Hannover Medical School, Hannover, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, Essen, Germany
| | - Daniel Todt
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, and German Centre for Infection Research, Hannover-Braunschweig, Germany
| | | | - Christine Goffinet
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| |
Collapse
|
33
|
Schmidt AE, Refaai MA, Blumberg N. Past, present and forecast of transfusion medicine: What has changed and what is expected to change? Presse Med 2016; 45:e253-72. [PMID: 27474234 DOI: 10.1016/j.lpm.2016.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Blood transfusion is the second most used medical procedures in health care systems worldwide. Over the last few decades, significant changes have been evolved in transfusion medicine practices. These changes were mainly needed to increase safety, efficacy, and availability of blood products as well as reduce recipients' unnecessary exposure to allogeneic blood. Blood products collection, processing, and storage as well as transfusion practices throughout all patient populations were the main stream of these changes. Health care systems across the world have adopted some or most of these changes to reduce transfusion risks, to improve overall patients' outcome, and to reduce health care costs. In this article, we are going to present and discuss some of these recent modifications and their impact on patients' safety.
Collapse
Affiliation(s)
- Amy E Schmidt
- University of Rochester medical center, department of pathology and laboratory medicine, 14642 Rochester, NY, USA
| | - Majed A Refaai
- University of Rochester medical center, department of pathology and laboratory medicine, 14642 Rochester, NY, USA
| | - Neil Blumberg
- University of Rochester medical center, department of pathology and laboratory medicine, 14642 Rochester, NY, USA.
| |
Collapse
|
34
|
Fryk JJ, Marks DC, Hobson-Peters J, Prow NA, Watterson D, Hall RA, Young PR, Reichenberg S, Sumian C, Faddy HM. Dengue and chikungunya viruses in plasma are effectively inactivated after treatment with methylene blue and visible light. Transfusion 2016; 56:2278-85. [PMID: 27456861 DOI: 10.1111/trf.13729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Arboviruses, such as dengue viruses (DENV) and chikungunya virus (CHIKV), pose a risk to the safe transfusion of blood components, including plasma. Pathogen inactivation is an approach to manage this transfusion transmission risk, with a number of techniques being used worldwide for the treatment of plasma. In this study, the efficacy of the THERAFLEX MB-Plasma system to inactivate all DENV serotypes (DENV-1, DENV-2, DENV-3, DENV-4) or CHIKV in plasma, using methylene blue and light illumination at 630 nm, was investigated. STUDY DESIGN AND METHODS Pooled plasma units were spiked with DENV-1, DENV-2, DENV-3 DENV-4, or CHIKV and treated with the THERAFLEX MB-Plasma system at four light illumination doses: 20, 40, 60, and 120 (standard dose) J/cm(2) . Pre- and posttreatment samples were collected and viral infectivity was determined. The reduction in viral infectivity was calculated for each dose. RESULTS Treatment of plasma with the THERAFLEX MB-Plasma system resulted in at least a 4.46-log reduction in all DENV serotypes and CHIKV infectious virus. The residual infectivity for each was at the detection limit of the assay used at 60 J/cm(2) , with dose dependency also observed. CONCLUSIONS Our study demonstrated the THERAFLEX MB-Plasma system can reduce the infectivity of all DENV serotypes and CHIKV spiked into plasma to the detection limit of the assay used at half of the standard illumination dose. This suggests this system has the capacity to be an effective option for managing the risk of DENV or CHIKV transfusion transmission in plasma.
Collapse
Affiliation(s)
- Jesse J Fryk
- Research and Development, Australian Red Cross Blood Service, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Australia
| | - Jody Hobson-Peters
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, and the
| | - Natalie A Prow
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, and the.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, and the
| | - Roy A Hall
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, and the
| | - Paul R Young
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, and the
| | | | | | - Helen M Faddy
- Research and Development, Australian Red Cross Blood Service, Australia. .,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
35
|
Cicchetti A, Berrino A, Casini M, Codella P, Facco G, Fiore A, Marano G, Marchetti M, Midolo E, Minacori R, Refolo P, Romano F, Ruggeri M, Sacchini D, Spagnolo AG, Urbina I, Vaglio S, Grazzini G, Liumbruno GM. Health Technology Assessment of pathogen reduction technologies applied to plasma for clinical use. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:287-386. [PMID: 27403740 PMCID: PMC4942318 DOI: 10.2450/2016.0065-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although existing clinical evidence shows that the transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens, new pathogens or re-emerging pathogens still persists. Pathogen reduction technologies may offer a new approach to increase blood safety. The study is the output of collaboration between the Italian National Blood Centre and the Post-Graduate School of Health Economics and Management, Catholic University of the Sacred Heart, Rome, Italy. A large, multidisciplinary team was created and divided into six groups, each of which addressed one or more HTA domains.Plasma treated with amotosalen + UV light, riboflavin + UV light, methylene blue or a solvent/detergent process was compared to fresh-frozen plasma with regards to current use, technical features, effectiveness, safety, economic and organisational impact, and ethical, social and legal implications. The available evidence is not sufficient to state which of the techniques compared is superior in terms of efficacy, safety and cost-effectiveness. Evidence on efficacy is only available for the solvent/detergent method, which proved to be non-inferior to untreated fresh-frozen plasma in the treatment of a wide range of congenital and acquired bleeding disorders. With regards to safety, the solvent/detergent technique apparently has the most favourable risk-benefit profile. Further research is needed to provide a comprehensive overview of the cost-effectiveness profile of the different pathogen-reduction techniques. The wide heterogeneity of results and the lack of comparative evidence are reasons why more comparative studies need to be performed.
Collapse
Affiliation(s)
- Americo Cicchetti
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Alexandra Berrino
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Marina Casini
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Paola Codella
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppina Facco
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Alessandra Fiore
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Marco Marchetti
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Emanuela Midolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberta Minacori
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Pietro Refolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Federica Romano
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Ruggeri
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Dario Sacchini
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio G. Spagnolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Irene Urbina
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Giuliano Grazzini
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | | |
Collapse
|
36
|
Faddy HM, Fryk JJ, Prow NA, Watterson D, Young PR, Hall RA, Tolksdorf F, Sumian C, Gravemann U, Seltsam A, Marks DC. Inactivation of dengue, chikungunya, and Ross River viruses in platelet concentrates after treatment with ultraviolet C light. Transfusion 2016; 56:1548-55. [PMID: 26926832 DOI: 10.1111/trf.13519] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Arboviruses, including dengue (DENV 1-4), chikungunya (CHIKV), and Ross River (RRV), are emerging viruses that are a risk for transfusion safety globally. An approach for managing this risk is pathogen inactivation, such as the THERAFLEX UV-Platelets system. We investigated the ability of this system to inactivate the above mentioned arboviruses. STUDY DESIGN AND METHODS DENV 1-4, CHIKV, or RRV were spiked into buffy coat (BC)-derived platelet (PLT) concentrates in additive solution and treated with the THERAFLEX UV-Platelets system at the following doses: 0.05, 0.1, 0.15, and 0.2 J/cm(2) (standard dose). Pre- and posttreatment samples were taken for each dose, and the level of viral infectivity was determined. RESULTS At the standard ultraviolet C (UVC) dose (0.2 J/cm(2) ), viral inactivation of at least 4.43, 6.34, and 5.13 log or more, was observed for DENV 1-4, CHIKV, and RRV, respectively. A dose dependency in viral inactivation was observed with increasing UVC doses. CONCLUSIONS Our study has shown that DENV, CHIKV, and RRV, spiked into BC-derived PLT concentrates, were inactivated by the THERAFLEX UV-Platelets system to the limit of detection of our assay, suggesting that this system could contribute to the safety of PLT concentrates with respect to these emerging arboviruses.
Collapse
Affiliation(s)
- Helen M Faddy
- Research and Development, Australian Red Cross Blood Service.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jesse J Fryk
- Research and Development, Australian Red Cross Blood Service
| | - Natalie A Prow
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland
| | - Paul R Young
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland
| | - Roy A Hall
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland
| | | | | | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service
| |
Collapse
|
37
|
Johnson L, Hyland R, Tan S, Tolksdorf F, Sumian C, Seltsam A, Marks D. In vitro Quality of Platelets with Low Plasma Carryover Treated with Ultraviolet C Light for Pathogen Inactivation. Transfus Med Hemother 2015; 43:190-7. [PMID: 27403091 DOI: 10.1159/000441830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/15/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The THERAFLEX UV-Platelets system uses shortwave ultraviolet C light (UVC, 254 nm) to inactivate pathogens in platelet components. Plasma carryover influences pathogen inactivation and platelet quality following treatment. The plasma carryover in the standard platelets produced by our institution are below the intended specification (<30%). METHODS A pool and split study was carried out comparing untreated and UVC-treated platelets with <30% plasma carryover (n = 10 pairs). This data was compared to components that met specifications (>30% plasma). The platelets were tested over storage for in vitro quality. RESULTS Platelet metabolism was accelerated following UVC treatment, as demonstrated by increased glucose consumption and lactate production. UVC treatment caused increased externalization of phosphatidylserine on platelets and microparticles, activation of the GPIIb/IIIa receptor (PAC-1 binding), and reduced hypotonic shock response. Platelet function, as measured with thrombelastogram, was not affected by UVC treatment. Components with <30% plasma were similar to those meeting specification with the exception of enhanced glycolytic metabolism. CONCLUSION This in vitro analysis demonstrates that treatment of platelets with <30% plasma carryover with the THERAFLEX UV-Platelets system affects some aspects of platelet metabolism and activation, although in vitro platelet function was not negatively impacted. This study also provides evidence that the treatment specifications of plasma carryover could be extended to below 30%.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Ryan Hyland
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Shereen Tan
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | | | | | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Denese Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| |
Collapse
|
38
|
Reichenberg S, Gravemann U, Sumian C, Seltsam A. Challenge study of the pathogen reduction capacity of the THERAFLEX MB-Plasma technology. Vox Sang 2015; 109:129-37. [PMID: 25899343 DOI: 10.1111/vox.12257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Although most pathogen reduction systems for plasma primarily target viruses, bacterial contamination may also occur. This study aimed to investigate the bacterial reduction capacity of a methylene blue (MB) treatment process and its virus inactivation capacity in lipaemic plasma. MATERIALS AND METHODS Bacterial concentrations in plasma units spiked with different bacterial strains were measured before and after the following steps of the THERAFLEX MB-Plasma procedure: leucocyte filtration, MB/light treatment and MB filtration. Virus inactivation was investigated for three virus types in non-lipaemic, borderline lipaemic and highly lipaemic plasma. RESULTS Leucocyte filtration alone efficiently eliminated most of the tested bacteria by more than 4 logs (Staphylococcus epidermidis and Staphylococcus aureus) or to the limit of detection (LOD) (≥ 4.8 logs; Escherichia coli, Bacillus cereus and Klebsiella pneumoniae). MB/light and MB filtration further reduced Staphylococcus epidermidis and Staphylococcus aureus to below the LOD. The small bacterium Brevundimonas diminuta was reduced by 1.7 logs by leucocyte filtration alone, and to below the LOD by additional MB/light treatment and MB filtration (≥ 3.7 logs). Suid herpesvirus 1, bovine viral diarrhoea virus and human immunodeficiency virus 1 were efficiently inactivated by THERAFLEX MB-Plasma, independent of the degree of lipaemia. CONCLUSION THERAFLEX MB-Plasma efficiently reduces bacteria, mainly via the integrated filtration system. Its virus inactivation capacity is sufficient to compensate for reduced light transparency due to lipaemia.
Collapse
Affiliation(s)
| | - U Gravemann
- Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - C Sumian
- Macopharma S.A., Tourcoing, France
| | - A Seltsam
- Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| |
Collapse
|
39
|
Thiele T, Pohler P, Kohlmann T, Sümnig A, Aurich K, Selleng K, Westphal A, Bakchoul T, Petersmann A, Müller TH, Greinacher A, Seltsam A. Tolerance of platelet concentrates treated with UVC-light only for pathogen reduction--a phase I clinical trial. Vox Sang 2015; 109:44-51. [PMID: 25754418 DOI: 10.1111/vox.12247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND The THERAFLEX UV-Platelets pathogen reduction system for platelet concentrates (PCs) operates with ultraviolet C light (UVC; 254 nm) only without addition of photosensitizers. This phase I study evaluated safety and tolerability of autologous UVC-irradiated PCs in healthy volunteers. METHODS Eleven volunteers underwent two single (series 1 and 2) and one double apheresis (series 3). PCs were treated with UVC, stored for 48 h and retransfused in a dose-escalation scheme: 12·5, 25% and 50% of a PC (series 1); one complete PC (series 2); two PCs (series 3). Platelet counts, fibrinogen, activated partial thromboplastin time, prothrombin time, D-dimer, standard haematology, temperature, heart rate, blood pressure and clinical chemistry parameters were measured. One- and 24-h corrected count increments were determined in series 2 and 3. Platelet-specific antibodies were assessed before and at the end of the study. RESULTS Neither adverse reactions related to transfusions nor antibodies against UVC-treated platelets were observed. Corrected count increments did not differ between series 2 and 3. CONCLUSIONS Repeated transfusions of autologous UVC-treated PCs were well tolerated and did not induce antibody responses in all volunteers studied. EudraCT No. 2010-023404-26.
Collapse
Affiliation(s)
- T Thiele
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - P Pohler
- DRK Blutspendedienst NSTOB, Institut Springe, Springe, Germany
| | - T Kohlmann
- Institut für Community Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - A Sümnig
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - K Aurich
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - K Selleng
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - A Westphal
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - T Bakchoul
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - A Petersmann
- Institut für Klinische Chemie und Labormedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - T H Müller
- DRK Blutspendedienst NSTOB, Institut Springe, Springe, Germany
| | - A Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - A Seltsam
- DRK Blutspendedienst NSTOB, Institut Springe, Springe, Germany
| |
Collapse
|
40
|
Chou ML, Burnouf T, Chang SP, Hung TC, Lin CC, Richardson CD, Lin LT. TnBP⁄Triton X-45 treatment of plasma for transfusion efficiently inactivates hepatitis C virus. PLoS One 2015; 10:e0117800. [PMID: 25658612 PMCID: PMC4320006 DOI: 10.1371/journal.pone.0117800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/01/2015] [Indexed: 12/17/2022] Open
Abstract
Risk of transmission of hepatitis C virus (HCV) by clinical plasma remains high in countries with a high prevalence of hepatitis C, justifying the implementation of viral inactivation treatments. In this study, we assessed the extent of inactivation of HCV during minipool solvent/detergent (SD; 1% TnBP / 1% Triton X-45) treatment of human plasma. Luciferase-tagged infectious cell culture-derived HCV (HCVcc) particles were used to spike human plasma prior to treatment by SD at 31 ± 0.5°C for 30 min. Samples were taken before and after SD treatment and filtered on a Sep-Pak Plus C18 cartridge to remove the SD agents. Risk of cytotoxicity was assessed by XTT cell viability assay. Viral infectivity was analyzed based on the luciferase signals, 50% tissue culture infectious dose viral titer, and immunofluorescence staining for HCV NS5A protein. Total protein, cholesterol, and triglyceride contents were determined before and after SD treatment and C18 cartridge filtration. Binding analysis, using patient-derived HCV clinical isolates, was also examined to validate the efficacy of the inactivation by SD. SD treatment effectively inactivated HCVcc within 30 min, as demonstrated by the baseline level of reporter signals, total loss of viral infectivity, and absence of viral protein NS5A. SD specifically targeted HCV particles to render them inactive, with essentially no effect on plasma protein content and hemostatic function. More importantly, the efficacy of the SD inactivation method was confirmed against various genotypes of patient-derived HCV clinical isolates and against HCVcc infection of primary human hepatocytes. Therefore, treatment by 1% TnBP / 1% Triton X-45 at 31°C is highly efficient to inactivate HCV in plasma for transfusion, showing its capacity to enhance the safety of therapeutic plasma products. We propose that the methodology used here to study HCV infectivity can be valuable in the validation of viral inactivation and removal processes of human plasma-derived products.
Collapse
Affiliation(s)
- Ming-Li Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shun-Pang Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Chun Hung
- Department of Clinical Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Christopher D. Richardson
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Abstract
Virus inactivation by chemical disinfectants is an important instrument for infection control in medical settings, but the mechanisms involved are poorly understood. In this study, we systematically investigated the effects of several antiviral treatments on hepatitis C virus (HCV) particles as model for enveloped viruses. Studies were performed with authentic cell culture-derived viruses, and the influence of chemical disinfectants, heat, and UV treatment on HCV was analyzed by the determination of infectious particles in a limiting-dilution assay, by quantitative reverse transcription-PCR, by core enzyme-linked immunosorbent assay, and by proteolytic protection assay. All different inactivation methods resulted in a loss of HCV infectivity by targeting different parts of the virus particle. Alcohols such as ethanol and 2-propanol did not affect the viral RNA genome integrity but disrupted the viral envelope membrane in a capsid protection assay. Heat and UV treatment of HCV particles resulted in direct damage of the viral genome since transfection of viral particle-associated RNA into permissive cells did not initiate RNA replication. In addition, heat incubation at 80°C disrupted the HCV envelope, rendering the viral capsid susceptible to proteolytic digest. This study demonstrated the molecular processes of viral inactivation of an enveloped virus and should facilitate the development of effective disinfection strategies in infection control not only against HCV but also against other enveloped viruses.
Collapse
|
42
|
Zhu L, Pan J, Wei C, Wang H, Xiang R, Zhang J, Wang D. The effectiveness of riboflavin photochemical-mediated virus inactivation and changes in protein retention in fresh-frozen plasma treated using a flow-based treatment device. Transfusion 2014; 55:100-7. [PMID: 25070346 DOI: 10.1111/trf.12775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/02/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND A flow-based treatment device using riboflavin and ultraviolet (UV) light was developed to inactivate viruses in fresh-frozen plasma (FFP). The objective of this study was to evaluate the in vitro effectiveness of virus inactivation and changes in protein quality in FFP treated with this device. STUDY DESIGN AND METHODS FFP-contaminating viruses were treated with riboflavin and UV light using a one-pass linear flow device. The infectivity of viruses was measured using established biologic assays. Real-time polymerase chain reaction (PCR) was performed to detect damage to viral nucleotides after treatment. Treated plasma was analyzed using standard coagulation assays. RESULTS FFP treated at the UV dose of 3.6 J/cm(2) (J) exhibited a mean reduction of virus titer of more than 4 logs. The effectiveness increased significantly at higher doses. Real-time PCR showed that the cycle threshold values for both complete inactivation and virus recultivation were higher than that of the untreated sample. At doses of 3.6, 5.4, and 7.2 J, the protein recovery rates were 60.2 ± 8.6, 46.6 ± 9.4, and 28.0 ± 1.0% for fibrinogen; 67.0 ± 3.1, 57.3 ± 8.0, and 49.2 ± 3.8% for Factor VIII; 93.6 ± 2.8, 89.6 ± 6.1, and 86.5 ± 5.3% for antithrombin-III; and 72.1 ± 5.6, 59.8 ± 14.2, and 49.2 ± 8.4% for Protein C, respectively. CONCLUSION The effectiveness of virus inactivation was enhanced, but total activity of plasma factors was reduced, in a UV dose-dependent manner.
Collapse
Affiliation(s)
- Liguo Zhu
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Schlenke P. Pathogen inactivation technologies for cellular blood components: an update. Transfus Med Hemother 2014; 41:309-25. [PMID: 25254027 PMCID: PMC4164100 DOI: 10.1159/000365646] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/27/2014] [Indexed: 01/19/2023] Open
Abstract
Nowadays patients receiving blood components are exposed to much less transfusion-transmitted infectious diseases than three decades before when among others HIV was identified as causative agent for the acquired immunodeficiency syndrome and the transmission by blood or coagulation factors became evident. Since that time the implementation of measures for risk prevention and safety precaution was socially and politically accepted. Currently emerging pathogens like arboviruses and the well-known bacterial contamination of platelet concentrates still remain major concerns of blood safety with important clinical consequences, but very rarely with fatal outcome for the blood recipient. In contrast to the well-established pathogen inactivation strategies for fresh frozen plasma using the solvent-detergent procedure or methylene blue and visible light, the bench-to-bedside translation of novel pathogen inactivation technologies for cell-containing blood components such as platelets and red blood cells are still underway. This review summarizes the pharmacological/toxicological assessment and the inactivation efficacy against viruses, bacteria, and protozoa of each of the currently available pathogen inactivation technologies and highlights the impact of the results obtained from several randomized clinical trials and hemovigilance data. Until now in some European countries pathogen inactivation technologies are in in routine use for single-donor plasma and platelets. The invention and adaption of pathogen inactivation technologies for red blood cell units and whole blood donations suggest the universal applicability of these technologies and foster a paradigm shift in the manufacturing of safe blood.
Collapse
Affiliation(s)
- Peter Schlenke
- Department for Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
44
|
Kwon SY, Kim IS, Bae JE, Kang JW, Cho YJ, Cho NS, Lee SW. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma. Vox Sang 2014; 107:254-60. [PMID: 24806328 DOI: 10.1111/vox.12158] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/14/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES This study was conducted to evaluate the efficacy of pathogen inactivation (PI) in non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma using the Mirasol PRT System and the Intercept Blood System. METHODS Platelets were pooled using the Acrodose PL system and separated into two aliquots for Mirasol and Intercept treatment. Four replicates of each viral strain were used for the evaluation. For bacteria, both low-titre (45-152 CFU/unit) inoculation and high-titre (7·34-10·18 log CFU/unit) inoculation with two replicates for each bacterial strain were used. Platelets with non-detectable bacterial growth and platelets inoculated with a low titre were stored for 5 days, and culture was performed with the BacT/ALERT system. RESULTS The inactivation efficacy expressed as log reduction for Mirasol and Intercept systems for viruses was as follows: human immunodeficiency virus 1, ≥4·19 vs. ≥4·23; bovine viral diarrhoea virus, 1·83 vs. ≥6·03; pseudorabies virus, 2·73 vs. ≥5·20; hepatitis A virus, 0·62 vs. 0·76; and porcine parvovirus, 0·28 vs. 0·38. The inactivation efficacy for bacteria was as follows: Escherichia coli, 5·45 vs. ≥9·22; Staphylococcus aureus, 4·26 vs. ≥10·11; and Bacillus subtilis, 5·09 vs. ≥7·74. Postinactivation bacterial growth in platelets inoculated with a low titre of S. aureus or B. subtilis was detected only with Mirasol. CONCLUSION Pathogen inactivation efficacy of Intercept for enveloped viruses was found to be satisfactory. Mirasol showed satisfactory inactivation efficacy for HIV-1 only. The two selected non-enveloped viruses were not inactivated by both systems. Inactivation efficacy of Intercept was more robust for all bacteria tested at high or low titres.
Collapse
Affiliation(s)
- S Y Kwon
- Blood Transfusion Research Institute, Korean Red Cross, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Lozano M, Cid J, Müller TH. Plasma Treated with Methylene Blue and Light: Clinical Efficacy and Safety Profile. Transfus Med Rev 2013; 27:235-40. [DOI: 10.1016/j.tmrv.2013.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/29/2022]
|
46
|
Current methods for the reduction of blood-borne pathogens: a comprehensive literature review. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 11:343-8. [PMID: 23522896 DOI: 10.2450/2013.0218-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/06/2012] [Indexed: 11/21/2022]
|
47
|
Menon M, Graves L, McCombs K, Hise K, Silk B, Kuehnert M, Lynch M. Listeria monocytogenes in donated platelets: a potential transfusion-transmitted pathogen intercepted through screening. Transfusion 2013; 53:1974-8. [PMID: 23362824 DOI: 10.1111/trf.12097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bacterial contamination of blood components is a potentially life-threatening complication of transfusions. In October 2005, the Centers for Disease Control and Prevention (CDC) noted four Listeria monocytogenes (Lm) isolates cultured from four different units of donated apheresis platelets (PLTs) among Lm isolates sent to the CDC National Listeria Reference Laboratory for subtyping as part of routine surveillance activities. STUDY DESIGN AND METHODS We describe an investigation to determine possible common sources of infection among donors or factors associated with PLT collection or storage and to determine whether human transfusion-associated listeriosis cases had been reported. We also reviewed all isolates with PLTs as a source sent to the CDC National Listeria Reference Laboratory between November 1, 2005, and December 31, 2011. RESULTS Each PLT donor-associated isolate had a distinct pulsed-field gel electrophoresis pattern combination. Other than these four cases, no other cases of Lm-contaminated PLTs were identified by the American Red Cross or by CDC during 2005. However, two additional cases of Lm isolated from donated PLTs were detected, one in 2008 and one in 2011. CONCLUSION Although the source of contamination for these PLT units is unclear, and a source common to all units was not identified, this investigation underscores the value of screening for bacterial contaminants of PLTs.
Collapse
Affiliation(s)
- Manoj Menon
- Centers for Disease Control and Prevention, Atlanta, Georgia; Florida Department of Health, Jacksonville, Florida
| | | | | | | | | | | | | |
Collapse
|
48
|
Pidcoke HF, McFaul SJ, Ramasubramanian AK, Parida BK, Mora AG, Fedyk CG, Valdez-Delgado KK, Montgomery RK, Reddoch KM, Rodriguez AC, Aden JK, Jones JA, Bryant RS, Scherer MR, Reddy HL, Goodrich RP, Cap AP. Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time. Transfusion 2013; 53 Suppl 1:137S-149S. [PMID: 23301966 PMCID: PMC4321786 DOI: 10.1111/trf.12048] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Whole blood (WB) has been used in combat since World War I as it is readily available and replaces every element of shed blood. Component therapy has become standard; however, recent military successes with WB resuscitation have revived the debate regarding wider WB use. Characterization of optimal WB storage is needed. We hypothesized that refrigeration preserves WB function and that a pathogen reduction technology (PRT) based on riboflavin and ultraviolet light has no deleterious effect over 21 days of storage. STUDY DESIGN AND METHODS WB units were stored for 21 days either at 4°C or 22°C. Half of each temperature group underwent PRT, yielding four final treatment groups (n = 8 each): CON 4 (WB at 4°C); CON 22 (WB at 22°C); PRT 4 (PRT WB at 4°C); and PRT 22 (PRT WB at 22°C). Testing was at baseline, Days 1-7, 10, 14, and 21. Assays included coagulation factors; platelet activation, aggregation, and adhesion; and thromboelastography (TEG). RESULTS Prothrombin time (PT) and partial thromboplastin time increased over time; refrigeration attenuated the effects on PT (p ≤ 0.009). Aggregation decreased over time (p ≤ 0.001); losses were attenuated by refrigeration (p ≤ 0.001). Refrigeration preserved TEG parameters (p ≤ 0.001) and PRT 4 samples remained within normal limits throughout the study. Refrigeration in combination with PRT inhibited fibrinolysis (p ≤ 0.001) and microparticle formation (p ≤ 0.031). Cold storage increased shear-induced platelet aggregation and ristocetin-induced platelet agglutination (p ≥ 0.032), as well as GPIb-expressing platelets (p ≤ 0.009). CONCLUSION The in vitro hemostatic function of WB is largely unaffected by PRT treatment and better preserved by cold storage over 21 days. Refrigerated PRT WB may be suitable for trauma resuscitation. Clinical studies are warranted.
Collapse
Affiliation(s)
- Heather F Pidcoke
- US Army Institute of Surgical Research, Fort Sam Houston, Texas 78234-6315, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|