1
|
Poschkamp B, Bekeschus S. Convolutional neuronal network for identifying single-cell-platelet-platelet-aggregates in human whole blood using imaging flow cytometry. Cytometry A 2024; 105:356-367. [PMID: 38357742 DOI: 10.1002/cyto.a.24829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Imaging flow cytometry is an attractive method to investigate individual cells by optical properties. However, imaging flow cytometry applications with clinical relevance are scarce so far. Platelet aggregation naturally occurs during blood coagulation to form a clot. However, aberrant platelet aggregation is associated with cardiovascular disease under steady-state conditions in the blood. Several types of so-called antiplatelet drugs are frequently described to reduce the risk of stroke or cardiovascular diseases. However, an efficient monitoring method is missing to identify the presence and frequency of platelet-platelet aggregates in whole blood on a single cell level. In this work, we employed imaging flow cytometry to identify fluorescently labeled platelets in whole blood with a conditional gating strategy. Images were post-processed and aligned. A convolutional neural network was designed to identify platelet-platelet aggregates of two, three, and more than three platelets, and results were validated against various data set properties. In addition, the neural network excluded erythrocyte-platelet aggregates from the results. Based on the results, a parameter for detecting platelet-platelet aggregates, the weighted platelet aggregation, was developed. If employed on a broad scale with proband and patient samples, our method could aid in building a future diagnostic marker for cardiovascular disease and monitoring parameters to optimize drug prescriptions in such patient groups.
Collapse
Affiliation(s)
- Broder Poschkamp
- Department of Ophthalmology, Greifswald University Medical Center, Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
2
|
Montone RA, Camilli M, Calvieri C, Magnani G, Bonanni A, Bhatt DL, Rajagopalan S, Crea F, Niccoli G. Exposome in ischaemic heart disease: beyond traditional risk factors. Eur Heart J 2024; 45:419-438. [PMID: 38238478 PMCID: PMC10849374 DOI: 10.1093/eurheartj/ehae001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Ischaemic heart disease represents the leading cause of morbidity and mortality, typically induced by the detrimental effects of risk factors on the cardiovascular system. Although preventive interventions tackling conventional risk factors have helped to reduce the incidence of ischaemic heart disease, it remains a major cause of death worldwide. Thus, attention is now shifting to non-traditional risk factors in the built, natural, and social environments that collectively contribute substantially to the disease burden and perpetuate residual risk. Of importance, these complex factors interact non-linearly and in unpredictable ways to often enhance the detrimental effects attributable to a single or collection of these factors. For this reason, a new paradigm called the 'exposome' has recently been introduced by epidemiologists in order to define the totality of exposure to these new risk factors. The purpose of this review is to outline how these emerging risk factors may interact and contribute to the occurrence of ischaemic heart disease, with a particular attention on the impact of long-term exposure to different environmental pollutants, socioeconomic and psychological factors, along with infectious diseases such as influenza and COVID-19. Moreover, potential mitigation strategies for both individuals and communities will be discussed.
Collapse
Affiliation(s)
- Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Giulia Magnani
- Department of Medicine, University of Parma, Parma, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | |
Collapse
|
3
|
Wang K, Wang W, Lei L, Lan Y, Liu Q, Ren L, Wu S. Association between short-term exposure to ambient air pollution and biomarkers of coagulation: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 215:114210. [PMID: 36030918 DOI: 10.1016/j.envres.2022.114210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Ambient air pollution is one of the major global risk factors for cardiovascular health, and coagulation changes have been proposed to mediate this risk. Plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (vWF), soluble P-selectin (sP-selectin) and tissue plasminogen activator (t-PA) are major coagulation biomarkers. However, there has been no systematic meta-analysis to summarize associations of ambient air pollution with these coagulation biomarkers. To assess the overall associations between ambient particulate matter (PM2.5, PM10), ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO) and major coagulation biomarkers including PAI-1, vWF, sP-selectin and t-PA based on the existing epidemiological research. We performed a systematic literature search of publications reporting the associations of ambient air pollutants (PM2.5, PM10, O3, NO2, and CO) with coagulation biomarkers (PAI-1, vWF, sP-selectin and t-PA) in PubMed, Web of Science, EMBASE, and Scopus databases as of April 5, 2022. Then, we performed a random-effect meta-analysis, which included 27 articles, and then identified the potential sources of heterogeneity. The pooled percent changes of coagulation biomarkers per 10 μg/m3 increase in short-term exposure to ambient PM2.5 were 2.43% (95% CI: 0.59%, 4.29%) in PAI-1, 1.08% (95% CI: 0.21%, 1.96%) in vWF and 1.14% (95% CI: 0.59%, 1.68%) in sP-selectin, respectively. We also found significant associations of short-term exposure to ambient O3 with PAI-1 (1.62%, 95% CI: 0.01%, 3.25%), sP-selectin (9.59%, 95% CI:2.78%, 16.86%) and t-PA (0.45%, 95% CI: 0.02%, 0.88%), respectively. Short-term exposures to ambient PM10, NO2 and CO were not significantly associated with changes in coagulation biomarkers. In conclusion, short-term exposures to PM2.5 and O3 are associated with significant increases in coagulation biomarkers, suggesting an activated coagulation state upon air pollution exposure.
Collapse
Affiliation(s)
- Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Noël A, Ashbrook DG, Xu F, Cormier SA, Lu L, O’Callaghan JP, Menon SK, Zhao W, Penn AL, Jones BC. Genomic Basis for Individual Differences in Susceptibility to the Neurotoxic Effects of Diesel Exhaust. Int J Mol Sci 2022; 23:12461. [PMID: 36293318 PMCID: PMC9603950 DOI: 10.3390/ijms232012461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Air pollution is a known environmental health hazard. A major source of air pollution includes diesel exhaust (DE). Initially, research on DE focused on respiratory morbidities; however, more recently, exposures to DE have been associated with neurological developmental disorders and neurodegeneration. In this study, we investigated the effects of sub-chronic inhalation exposure to DE on neuroinflammatory markers in two inbred mouse strains and both sexes, including whole transcriptome examination of the medial prefrontal cortex. We exposed aged male and female C57BL/6J (B6) and DBA/2J (D2) mice to DE, which was cooled and diluted with HEPA-filtered compressed air for 2 h per day, 5 days a week, for 4 weeks. Control animals were exposed to HEPA-filtered air on the same schedule as DE-exposed animals. The prefrontal cortex was harvested and analyzed for proinflammatory cytokine gene expression (Il1β, Il6, Tnfα) and transcriptome-wide response by RNA-seq. We observed differential cytokine gene expression between strains and sexes in the DE-exposed vs. control-exposed groups for Il1β, Tnfα, and Il6. For RNA-seq, we identified 150 differentially expressed genes between air and DE treatment related to natural killer cell-mediated cytotoxicity per Kyoto Encyclopedia of Genes and Genomes pathways. Overall, our data show differential strain-related effects of DE on neuroinflammation and neurotoxicity and demonstrate that B6 are more susceptible than D2 to gene expression changes due to DE exposures than D2. These results are important because B6 mice are often used as the default mouse model for DE studies and strain-related effects of DE neurotoxicity warrant expanded studies.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David G. Ashbrook
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fuyi Xu
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Stephania A. Cormier
- Department of Biological Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James P. O’Callaghan
- Molecular Neurotoxicology Laboratory, Toxicology, and Molecular Biology Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, NIOSH, Morgantown, WV 26508, USA
| | - Shyam K. Menon
- Department of Mechanical and Industrial Engineering, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wenyuan Zhao
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arthur L. Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Byron C. Jones
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Tan AWK, Li RHL, Ueda Y, Stern JA, Hussain M, Haginoya S, Sharpe AN, Gunther-Harrington CT, Epstein SE, Nguyen N. Platelet Priming and Activation in Naturally Occurring Thermal Burn Injuries and Wildfire Smoke Exposure Is Associated With Intracardiac Thrombosis and Spontaneous Echocardiographic Contrast in Feline Survivors. Front Vet Sci 2022; 9:892377. [PMID: 35909698 PMCID: PMC9329816 DOI: 10.3389/fvets.2022.892377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Wildfires pose a major health risk for humans, wildlife, and domestic animals. We previously discovered pathophysiologic parallels between domestic cats with naturally occurring smoke inhalation and thermal burn injuries and human beings with similar injuries; these were characterized by transient myocardial thickening, cardiac troponin I elevation and formation of intracardiac thrombosis. While the underlying mechanisms remain unclear, results from murine models suggest that platelet priming and activation may contribute to a global hypercoagulable state and thrombosis. Herein, we evaluated and compared the degree of platelet activation, platelet response to physiologic agonists and levels of platelet-derived microvesicles (PDMV) in 29 cats with naturally occurring wildfire thermal injuries (WF), 21 clinically healthy cats with subclinical hypertrophic cardiomyopathy (HCM) and 11 healthy cats without HCM (CC). We also quantified and compared circulating PDMVs in WF cats to CC cats. In addition, we examined the association between thrombotic events, severity of burn injuries, myocardial changes, and the degree of platelet activation in cats exposed to wildfires. Flow cytometric detection of platelet surface P-selectin expression showed that WF cats had increased platelet response to adenosine diphosphate (ADP) and thrombin compared to the two control groups indicating the presence of primed platelets in circulation. In addition, cats in the WF group had increased circulating levels of PDMV, characterized by increased phosphatidylserine on the external leaflet. Cats in the WF group with documented intracardiac thrombosis had elevated platelet activation and platelet priming in the presence of ADP. While high dose arachidonic acid (AA) mostly resulted in platelet inhibition, persistent response to AA was noted among cats in the WF group with intracardiac thrombosis. Univariate and multiple logistic regression analyses demonstrated that increased platelet response to AA was independently associated with thrombotic events. This is the first study reporting the significant association between platelet priming and intracardiac thrombosis in domestic cats with naturally occurring wildfire-related injuries and smoke inhalation. Further studies are required to delineate additional mechanisms between inflammation and thrombosis, especially regarding platelet primers and the cyclooxygenase pathway.
Collapse
Affiliation(s)
- Avalene W. K. Tan
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ronald H. L. Li
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- *Correspondence: Ronald H. L. Li
| | - Yu Ueda
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Joshua A. Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Mehrab Hussain
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Satoshi Haginoya
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ashely N. Sharpe
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Catherine T. Gunther-Harrington
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Steven E. Epstein
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Nghi Nguyen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
7
|
Neutrophil Cathepsin G Enhances Thrombogenicity of Mildly Injured Arteries via ADP-Mediated Platelet Sensitization. Int J Mol Sci 2022; 23:ijms23020744. [PMID: 35054930 PMCID: PMC8775596 DOI: 10.3390/ijms23020744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
Inhalation of particulate matter in polluted air causes direct, size-restricted passage in the circulation and pronounced lung inflammation, provoking platelet activation and (non)-fatal cardiovascular complications. To determine potency and mechanism of platelet sensitization via neutrophil enzymes, we performed in vitro aggregation studies in washed human platelets and in murine and human blood, in the presence of elastase, cathepsin G and regular platelet agonists, present in damaged arteries. The impact of both enzymes on in vivo thrombogenicity was studied in the same thrombosis mouse model, previously having demonstrated that neutrophil activation enhances peripheral thrombogenicity. At 0.05 U/mL, cathepsin G activated washed human platelets via PAR1, whereas at 0.35 U/mL, aggregation occurred via PAR4. In Swiss mouse platelet-rich plasma no aggregation occurred by cathepsin G at 0.4 U/mL. In human and murine blood, aggregations by 0.05–0.1 U/mL cathepsin G were similar and not PAR-mediated, but platelet aggregation was inhibited by ADP antagonists, advocating cathepsin G-released ADP in blood as the true agonist of sustained platelet activation. In the mouse thrombosis model, cathepsin G and elastase amplified mild thrombogenicity at blood concentrations that activated platelets in vitro. This study shows that cathepsin G and elastase secreted in the circulation during mild air pollution-induced lung inflammation lyse red blood cell membrane proteins, leading to ADP-leakage into plasma, sensitizing platelets and amplifying their contribution to cardiovascular complications of ambient particle inhalation.
Collapse
|
8
|
Mostovenko E, Dahm MM, Schubauer-Berigan MK, Eye T, Erdely A, Young TL, Campen MJ, Ottens AK. Serum peptidome: diagnostic window into pathogenic processes following occupational exposure to carbon nanomaterials. Part Fibre Toxicol 2021; 18:39. [PMID: 34711247 PMCID: PMC8555107 DOI: 10.1186/s12989-021-00431-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Growing industrial use of carbon nanotubes and nanofibers (CNT/F) warrants consideration of human health outcomes. CNT/F produces pulmonary, cardiovascular, and other toxic effects in animals along with a significant release of bioactive peptides into the circulation, the augmented serum peptidome. While epidemiology among CNT/F workers reports on few acute symptoms, there remains concern over sub-clinical CNT/F effects that may prime for chronic disease, necessitating sensitive health outcome diagnostic markers for longitudinal follow-up. METHODS Here, the serum peptidome was assessed for its biomarker potential in detecting sub-symptomatic pathobiology among CNT/F workers using label-free data-independent mass spectrometry. Studies employed a stratified design between High (> 0.5 µg/m3) and Low (< 0.1 µg/m3) inhalable CNT/F exposures in the industrial setting. Peptide biomarker model building and refinement employed linear regression and partial least squared discriminant analyses. Top-ranked peptides were then sequence identified and evaluated for pathological-relevance. RESULTS In total, 41 peptides were found to be highly discriminatory after model building with a strong linear correlation to personal CNT/F exposure. The top-five peptide model offered ideal prediction with high accuracy (Q2 = 0.99916). Unsupervised validation affirmed 43.5% of the serum peptidomic variance was attributable to CNT/F exposure. Peptide sequence identification reveals a predominant association with vascular pathology. ARHGAP21, ADAM15 and PLPP3 peptides suggest heightened cardiovasculature permeability and F13A1, FBN1 and VWDE peptides infer a pro-thrombotic state among High CNT/F workers. CONCLUSIONS The serum peptidome affords a diagnostic window into sub-symptomatic pathology among CNT/F exposed workers for longitudinal monitoring of systemic health risks.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298, USA
| | - Matthew M Dahm
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, MS-R12, Cincinnati, OH, 45226, USA
| | - Mary K Schubauer-Berigan
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, MS-R12, Cincinnati, OH, 45226, USA
- Evidence Synthesis and Classification Section, International Agency for Research On Cancer, 150 Cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Tracy Eye
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, MS-2015, Morgantown, WV, 26505, USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, MS-2015, Morgantown, WV, 26505, USA
| | - Tamara L Young
- Department of Pharmaceutical Sciences, University of New Mexico, MSC09 53601, Albuquerque, NM, 87131, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, MSC09 53601, Albuquerque, NM, 87131, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
9
|
Fard MB, Fard SB, Ramazi S, Atashi A, Eslamifar Z. Thrombosis in COVID-19 infection: Role of platelet activation-mediated immunity. Thromb J 2021; 19:59. [PMID: 34425822 PMCID: PMC8380864 DOI: 10.1186/s12959-021-00311-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Background Thrombosis plays an important role in the Coronavrus Disease 2019 (COVID-19) infection-related complications such as acute respiratory distress syndrome and myocardial infarction. Multiple factors such as oxygen demand injuries, endothelial cells injury related to infection, and plaque formation. Main body Platelets obtained from the patients may have severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, showing that the increased activation potential recommends platelet can be hyper-activated in severely ill SARS-CoV-2 cases. Platelets contain multiple receptors that interact with specific ligands. Pathogen’s receptors such as Toll-like receptors (TLRs), NOD-like receptor, C-type lectin receptor family, glycoprotein (GP) such as GPαIIbβ3 and GPIbα which allow pathogens to interact with platelets. Platelet TLRs and NOD2 are involved in platelet activation and thrombosis. Accordingly, TLRs are critical receptors that could recognize various endogenous damage-associated molecular patterns and exogenous pathogen-associated molecular patterns (PAMPs). TLRs are considered as important components in the activation of innate immunity response against pathogenic and non-pathogenic components like damaged tissues. TLRs-1,-2,-4,-6,-7 expression on or within platelets has been reported previously. Various PAMPs were indicated to be capable of binding to platelet-TLRs and inducing both the activation and promotion of downstream proinflammatory signaling cascade. Conclusion It is possible that the increased TLRs expression and TLR-mediated platelets activation during COVID-19 may enhance vascular and coronary thrombosis. It may be hypothesized using TLRs antagonist and monoclonal antibody against P-selectin, as the marker of leukocyte recruitment and platelet activation, besides viral therapy provide therapeutic advances in fighting against the thrombosis related complications in COVID-19.
Collapse
Affiliation(s)
| | | | - Shahin Ramazi
- Department of biophysics, faculty of biological sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem cell and tissue engineering research center, Shahroud university of medical sciences, Shahroud, Iran
| | | |
Collapse
|
10
|
Wu J, Tian Y, Wu Y, Wang Z, Wu Y, Wu T, Qin X, Wang M, Wang X, Wang J, Hu Y. Seasonal association between ambient fine particulate matter and venous thromboembolism in Beijing, China: a time-series study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13035-0. [PMID: 33634399 DOI: 10.1007/s11356-021-13035-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the influence of ambient fine particulate matter (PM2.5) on the incidence of venous thromboembolism in areas with heavy air pollution. We examined seasonal associations between airborne concentrations of fine particulate matter and outpatient visits for venous thromboembolism in Beijing using a city-wide time-series design that covered a period of 30 months (January 1, 2010 to June 30, 2012). Generalized additive models were used to investigate the associations with adjustment of temperature for various time lags (lag 0 for the warm season and lag 0-10 for the cold season). Overall, 92,435 outpatient visits were recorded by the Beijing Medical Claim Data for Employees database during the study period. We found a significant association between PM2.5 levels and outpatient visits for venous thromboembolism. A 10-μg/m3 increase in PM2.5 concentrations on lag days 0-2 corresponded to a 0.64% (95% confidence interval: 0.55-0.73%; P < 0.001) increase in outpatient visits for venous thromboembolism during the cold season, and a 10-μg/m3 increase in PM2.5 concentrations on lag days 0-3 corresponded to a 0.82% (95% confidence interval: 0.67-0.96%; P < 0.001) increase in outpatient visits for venous thromboembolism during the warm season. Our findings suggest that PM2.5 exposure is associated with outpatient visits for venous thromboembolism in Beijing, and a more pronounced association was observed during the warm season. We propose that various temperature-adjustment strategies should be used when investigating seasonal associations.
Collapse
Affiliation(s)
- Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Yaohua Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Zijing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Xiaowen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Jiating Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
- Medical Informatics Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
11
|
Wool GD, Miller JL. The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology 2020; 88:15-27. [PMID: 33049751 PMCID: PMC7649697 DOI: 10.1159/000512007] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) causes a spectrum of disease; some patients develop a severe proinflammatory state which can be associated with a unique coagulopathy and procoagulant endothelial phenotype. Initially, COVID-19 infection produces a prominent elevation of fibrinogen and D-dimer/fibrin(ogen) degradation products. This is associated with systemic hypercoagulability and frequent venous thromboembolic events. The degree of D-dimer elevation positively correlates with mortality in COVID-19 patients. COVID-19 also leads to arterial thrombotic events (including strokes and ischemic limbs) as well as microvascular thrombotic disorders (as frequently documented at autopsy in the pulmonary vascular beds). COVID-19 patients often have mild thrombocytopenia and appear to have increased platelet consumption, together with a corresponding increase in platelet production. Disseminated intravascular coagulopathy (DIC) and severe bleeding events are uncommon in COVID-19 patients. Here, we review the current state of knowledge of COVID-19 and hemostasis.
Collapse
Affiliation(s)
- Geoffrey D Wool
- Department of Pathology, University of Chicago, Chicago, Illinois, USA,
| | - Jonathan L Miller
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Abstract
Carbon nanostructures (CNs), such as carbon nanotubes, fullerenes, carbon dots, nanodiamonds as well as graphene and its derivatives present a tremendous potential for various biomedical applications, ranging from sensing to drug delivery and gene therapy, biomedical imaging and tissue engineering. Since most of these applications encompass blood contact or intravenous injection, hemocompatibility is a critical aspect that must be carefully considered to take advantage of CN exceptional characteristics while allowing their safe use. This review discusses the hemocompatibility of different classes of CNs with the purpose of providing biomaterial scientists with a comprehensive vision of the interactions between CNs and blood components. The various complex mechanisms involved in blood compatibility, including coagulation, hemolysis, as well as the activation of complement, platelets, and leukocytes will be considered. Special attention will be paid to the role of CN size, structure, and surface properties in the formation of the protein corona and in the processes that drive blood response. The aim of this review is to emphasize the importance of hemocompatibility for CNs intended for biomedical applications and to provide some valuable insights for the development of new generation particles with improved performance and safety in the physiological environment.
Collapse
|
13
|
Short-Term Effects of Ambient Air Pollution on ST-Elevation Myocardial Infarction Events: Are There Potentially Susceptible Groups? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193760. [PMID: 31591299 PMCID: PMC6801768 DOI: 10.3390/ijerph16193760] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022]
Abstract
Background: Air pollution exposure is associated with greater risk for cardiovascular events. This study aims to examine the effects of increased exposure to short-term air pollutants on ST-segment elevation myocardial infarction (STEMI) and determine the susceptible groups. Methods: Data on particulate matter PM2.5 and PM10 and other air pollutants, measured at each of the 11 air-quality monitoring stations in Kaohsiung City, were collected between 2011 and 2016. The medical records of non-trauma adult (>17 years) patients who had visited the emergency department (ED) with a typical electrocardiogram change of STEMI were extracted. A time-stratified and case-crossover study design was used to examine the relationship between air pollutants and daily ED visits for STEMI. Results: An interquartile range increment in PM2.5 on lag 0 was associated with an increment of 25.5% (95% confidence interval, 2.6%–53.4%) in the risk of STEMI ED visits. Men and persons with ≥3 risk factors (male sex, age, hypertension, diabetes, current smoker, dyslipidemia, history of myocardial infarction, and high body mass index) for myocardial infarction (MI) were more sensitive to the hazardous effects of PM2.5 (interaction: p = 0.039 and p = 0.018, respectively). The associations between PM10, NO2, and O3 and STEMI did not achieve statistical significance. Conclusion: PM2.5 may play an important role in STEMI events on the day of exposure in Kaohsiung. Men and persons with ≥3 risk factors of MI are more susceptible to the adverse effects of PM2.5 on STEMI.
Collapse
|
14
|
A study of atherothrombotic biomarkers in welders. Int Arch Occup Environ Health 2019; 92:1023-1031. [DOI: 10.1007/s00420-019-01441-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 12/25/2022]
|
15
|
Matus MF, Vilos C, Cisterna BA, Fuentes E, Palomo I. Nanotechnology and primary hemostasis: Differential effects of nanoparticles on platelet responses. Vascul Pharmacol 2018; 101:1-8. [DOI: 10.1016/j.vph.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/12/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
|
16
|
Emmerechts J, De Vooght V, Haenen S, Loyen S, Van kerckhoven S, Hemmeryckx B, Vanoirbeek JAJ, Hoet PH, Nemery B, Hoylaerts MF. Thrombogenic changes in young and old mice upon subchronic exposure to air pollution in an urban roadside tunnel. Thromb Haemost 2017; 108:756-68. [DOI: 10.1160/th12-03-0161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/31/2012] [Indexed: 11/05/2022]
Abstract
SummaryEpidemiological studies indicate that elderly persons are particularly susceptible to the cardiovascular health complications of air pollution, but pathophysiological mechanisms behind the increased susceptibility remain unclear. Therefore, we investigated how continuous traffic-related air pollution exposure affects haemostasis parameters in young and old mice. Young (10 weeks) and old (20 months) mice were placed in an urban roadside tunnel or in a clean environment for 25 or 26 days and markers of inflammation and endothelial cells or blood platelet activation were measured, respectively. Plasma microvesicles and pro/ anticoagulant factors were analysed, and thrombin generation analysis was performed. Despite elevated macrophage carbon load, tunnel mice showed no overt pulmonary or systemic inflammation, yet manifested reduced pulmonary thrombomudulin expression and elevated endothelial von Willebrand factor (VWF) expression in lung capillaries. In young mice, soluble P-selectin (sP-sel) increased with exposure and correlated with soluble E-selectin and VWF. Baseline plasma factor VIII (FVIII), sP-sel and VWF were higher in old mice, but did not pronouncedly increase further with exposure. Traffic-related air pollution markedly raised red blood cell and blood platelet numbers in young and old mice and procoagulant blood platelet-derived microvesicle numbers in old animals. Changes in coagulation factors and thrombin generation were mild or absent. Hence, continuous traffic-related air pollution did not trigger overt lung inflammation, yet modified pulmonary endothelial cell function and enhanced platelet activity. In old mice, subchronic exposure to polluted air raised platelet numbers, VWF, sP-sel and microvesicles to the highest values presently recorded, collectively substantiating a further elevation of thrombogenicity, already high at old age.
Collapse
|
17
|
Mandler WK, Nurkiewicz TR, Porter DW, Olfert IM. Thrombospondin-1 mediates multi-walled carbon nanotube induced impairment of arteriolar dilation. Nanotoxicology 2017; 11:112-122. [PMID: 28024456 DOI: 10.1080/17435390.2016.1277275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) has been shown to disrupt endothelium-dependent arteriolar dilation in the peripheral microcirculation. The molecular mechanisms behind these arteriolar disruptions have yet to be fully elucidated. The secreted matricellular matrix protein thrombospondin-1 (TSP-1) is capable of moderating arteriolar vasodilation by inhibiting soluble guanylate cyclase activity. We hypothesized that TSP-1 may be a link between nanomaterial exposure and observed peripheral microvascular dysfunction. To test this hypothesis, wild-type C57B6J (WT) and TSP-1 knockout (KO) mice were exposed via lung aspiration to 50 μg MWCNT or a Sham dispersion medium control. Following exposure (24 h), arteriolar characteristics and reactivity were measured in the gluteus maximus muscle using intravital microscopy (IVM) coupled with microiontophoretic delivery of acetylcholine (ACh) or sodium nitroprusside (SNP). In WT mice exposed to MWCNT, skeletal muscle TSP-1 protein increased > fivefold compared to Sham exposed, and exhibited a 39% and 47% decrease in endothelium-dependent and -independent vasodilation, respectively. In contrast, TSP-1 protein was not increased following MWCNT exposure in KO mice and exhibited no loss in dilatory capacity. Microvascular leukocyte-endothelium interactions were measured by assessing leukocyte adhesion and rolling activity in third order venules. The WT + MWCNT group demonstrated 223% higher leukocyte rolling compared to the WT + Sham controls. TSP-1 KO animals exposed to MWCNT showed no differences from the WT + Sham control. These data provide evidence that TSP-1 is likely a central mediator of the systemic microvascular dysfunction that follows pulmonary MWCNT exposure.
Collapse
Affiliation(s)
- W Kyle Mandler
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- b Department of Physiology and Pharmacology , West Virginia University School of Medicine , Morgantown , WV , USA.,c Center for Cardiovascular & Respiratory Sciences , West Virginia University, Robert C. Byrd Health Sciences Center , Morgantown , WV , USA
| | - Dale W Porter
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - I Mark Olfert
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,c Center for Cardiovascular & Respiratory Sciences , West Virginia University, Robert C. Byrd Health Sciences Center , Morgantown , WV , USA
| |
Collapse
|
18
|
Lee RH, Bergmeier W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) and hemITAM signaling and vascular integrity in inflammation and development. J Thromb Haemost 2016; 14:645-54. [PMID: 26749528 DOI: 10.1111/jth.13250] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/24/2015] [Indexed: 01/13/2023]
Abstract
Platelets are essential for maintaining hemostasis following mechanical injury to the vasculature. Besides this established function, novel roles of platelets are becoming increasingly recognized, which are critical in non-injury settings to maintain vascular barrier integrity. For example, during embryogenesis platelets act to support the proper separation of blood and lymphatic vessels. This role continues beyond birth, where platelets prevent leakage of blood into the lymphatic vessel network. During the course of inflammation, platelets are necessary to prevent local hemorrhage due to neutrophil diapedesis and disruption of endothelial cell-cell junctions. Surprisingly, platelets also work to secure tumor-associated blood vessels, inhibiting excessive vessel permeability and intra-tumor hemorrhaging. Interestingly, many of these novel platelet functions depend on immunoreceptor tyrosine-based activation motif (ITAM) signaling but not on signaling via G protein-coupled receptors, which plays a crucial role in platelet plug formation at sites of mechanical injury. Murine platelets express two ITAM-containing receptors: the Fc receptor γ-chain (FcRγ), which functionally associates with the collagen receptor GPVI, and the C-type lectin-like 2 (CLEC-2) receptor, a hemITAM receptor for the mucin-type glycoprotein podoplanin. Human platelets express an additional ITAM receptor, FcγRIIA. These receptors share common downstream effectors, including Syk, SLP-76 and PLCγ2. Here we will review the recent literature that highlights a critical role for platelet GPVI/FcRγ and CLEC-2 in vascular integrity during development and inflammation in mice and discuss the relevance to human disease.
Collapse
Affiliation(s)
- R H Lee
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - W Bergmeier
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Tabor CM, Shaw CA, Robertson S, Miller MR, Duffin R, Donaldson K, Newby DE, Hadoke PWF. Platelet activation independent of pulmonary inflammation contributes to diesel exhaust particulate-induced promotion of arterial thrombosis. Part Fibre Toxicol 2016; 13:6. [PMID: 26857113 PMCID: PMC4746929 DOI: 10.1186/s12989-016-0116-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/18/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Accelerated thrombus formation induced by exposure to combustion-derived air pollution has been linked to alterations in endogenous fibrinolysis and platelet activation in response to pulmonary and systemic inflammation. We hypothesised that mechanisms independent of inflammation contribute to accelerated thrombus formation following exposure to diesel exhaust particles (DEP). METHODS Thrombosis in rats was assessed 2, 6 and 24 h after administration of DEP, carbon black (CB; control carbon nanoparticle), DQ12 quartz microparticles (to induce pulmonary inflammation) or saline (vehicle) by either intra-tracheal instillation (0.5 mg, except Quartz; 0.125 mg) or intravenous injection (0.5 mg/kg). Thrombogenicity was assessed by carotid artery occlusion, fibrinolytic variables and platelet-monocyte aggregates. Measures of inflammation were determined in plasma and bronchoalveolar lavage fluid. Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI)-1 were measured following direct in vitro exposure of human umbilical vein endothelial cells (HUVECs) to DEP (10-150 μg/mL). RESULTS Instillation of DEP reduced the time to thrombotic occlusion in vivo, coinciding with the peak of DEP-induced pulmonary inflammation (6 h). CB and DQ12 produced greater inflammation than DEP but did not alter time to thrombotic occlusion. Intravenous DEP produced an earlier (2 h) acceleration of thrombosis (as did CB) without pulmonary or systemic inflammation. DEP inhibited t-PA and PAI-1 release from HUVECs, and reduced the t-PA/PAI-1 ratio in vivo; similar effects in vivo were seen with CB and DQ12. DEP, but not CB or DQ12, increased platelet-monocyte aggregates. CONCLUSION DEP accelerates arterial thrombus formation through increased platelet activation. This effect is dissociated from pulmonary and systemic inflammation and from impaired fibrinolytic function.
Collapse
Affiliation(s)
- Caroline M Tabor
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Catherine A Shaw
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Sarah Robertson
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Mark R Miller
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Rodger Duffin
- Centre for Inflammation Research, The Queen's Medical Research Institute, Universiyt of Edinburgh, Edinburgh, EH16 4TJ, UK.
| | - Ken Donaldson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Universiyt of Edinburgh, Edinburgh, EH16 4TJ, UK.
| | - David E Newby
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Patrick W F Hadoke
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
20
|
de Stoppelaar SF, Van't Veer C, Roelofs JJTH, Claushuis TAM, de Boer OJ, Tanck MWT, Hoogendijk AJ, van der Poll T. Platelet and endothelial cell P-selectin are required for host defense against Klebsiella pneumoniae-induced pneumosepsis. J Thromb Haemost 2015; 13:1128-38. [PMID: 25773400 DOI: 10.1111/jth.12893] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/01/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Sepsis is associated with activation of platelets and endothelial cells accompanied by enhanced P-selectin surface expression. Both platelet- and endothelial P-selectin have been associated with leukocyte recruitment and induction of inflammatory alterations. Klebsiella (K.) pneumoniae is a common human sepsis pathogen, particularly in the context of pneumonia. METHODS Wild-type (WT) and P-selectin-deficient (Selp(-/-) ) mice or bone marrow chimeric mice were infected with K. pneumoniae via the airways to induce pneumosepsis. Mice were sacrificed during early (12 h after infection) or late-stage (44 h) sepsis for analyses, or followed in a survival study. RESULTS Selp(-/-) mice displayed 10-1000-fold higher bacterial burdens in the lungs, blood and distant organs during late-stage sepsis. P-selectin deficiency did not influence leukocyte recruitment to the lungs, but was associated with decreased platelet-monocyte complexes and increased cytokine release. Bone marrow transfer studies revealed a role for both platelet and endothelial cell P-selectin as mice deficient in platelet or endothelial cell P-selectin displayed an intermediate phenotype in bacterial loads and survival compared with full wild-type or full knockout control mice. CONCLUSION Both platelet and endothelial cell P-selectin contribute to host defense during Klebsiella pneumosepsis.
Collapse
Affiliation(s)
- S F de Stoppelaar
- Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Academic Medical Center, Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| | - C Van't Veer
- Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Academic Medical Center, Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| | - J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T A M Claushuis
- Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Academic Medical Center, Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| | - O J de Boer
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - M W T Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - A J Hoogendijk
- Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Academic Medical Center, Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| | - T van der Poll
- Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Academic Medical Center, Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Shen CH, Lin TY, Huang WY, Chen HJ, Kao CH. Pneumoconiosis increases the risk of peripheral arterial disease: a nationwide population-based study. Medicine (Baltimore) 2015; 94:e911. [PMID: 26020403 PMCID: PMC4616412 DOI: 10.1097/md.0000000000000911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This nationwide population-based retrospective cohort study was used to evaluate the association between pneumoconiosis and peripheral arterial disease (PAD). We identified 3374 patients with pneumoconiosis from the catastrophic illness registry who were newly diagnosed from 2000 to 2005; 13,496 patients without pneumoconiosis from Longitudinal Health Insurance Database 2000 (LHID2000) were randomly frequency matched according to sex, age, and index year and used as a nonpneumoconiosis group. Multivariate Cox proportional hazards regression was used to calculate adjusted hazard ratios (HRs) of PAD in the pneumoconiosis group compared with the nonpneumoconiosis group. The mean follow-up years were 7.44 years in the pneumoconiosis group and 8.17 years in the nonpneumoconiosis group. The incidence density rate of PAD was 1.25 times greater in the pneumoconiosis group than in the nonpneumoconiosis group (8.37 vs 6.70 per 1000 person-years). After adjusting for sex, age, and comorbidities, the adjusted HRs of PAD for the pneumoconiosis group were 1.30 (95% CI = 1.08-1.57), compared with the nonpneumoconiosis group. The combined impacts of patients with pneumoconiosis and diabetes, hyperlipidemia, hypertension, ischemic heart disease, chronic obstructive pulmonary disease, and asthma showed a significant by joint association with PAD risk compared with patients with no pneumoconiosis and no counterpart comorbidity. Patients with pneumoconiosis have an independently higher risk of developing PAD. Physicians should include pneumoconiosis in evaluating PAD risk.
Collapse
Affiliation(s)
- Chih-Hao Shen
- From the Division of Pulmonary and Critical Care Medicine (C-HS), Department of Internal Medicine; Division of Infectious Diseases and Tropical Medicine (T-YL), Department of Internal Medicine; Department of Radiation Oncology (W-YH), Tri-Service General Hospital, National Defense Medical Center, Taipei; Management Office for Health Data (H-JC), China Medical University Hospital; College of Medicine (H-JC), China Medical University, Taichung; Graduate Institute of Clinical Medical Science (C-HK), College of Medicine, China Medical University; and Department of Nuclear Medicine and PET Center (C-HK), China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Møller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, Klingberg H, Hersoug LG, Loft S. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol 2014; 88:1939-64. [DOI: 10.1007/s00204-014-1356-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/28/2014] [Indexed: 01/19/2023]
|
23
|
Holzer M, Bihari P, Praetner M, Uhl B, Reichel C, Fent J, Vippola M, Lakatos S, Krombach F. Carbon-based nanomaterials accelerate arteriolar thrombus formation in the murine microcirculation independently of their shape. J Appl Toxicol 2014; 34:1167-76. [PMID: 24531921 DOI: 10.1002/jat.2996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/06/2014] [Accepted: 01/16/2014] [Indexed: 01/13/2023]
Abstract
Although carbon-based nanomaterials (CBNs) have been shown to exert prothrombotic effects in microvessels, it is poorly understood whether CBNs also have the potential to interfere with the process of leukocyte-endothelial cell interactions and whether the shape of CBNs plays a role in these processes. Thus, the aim of this study was to compare the acute effects of two differently shaped CBNs, fiber-shaped single-walled carbon nanotubes (SWCNT) and spherical ultrafine carbon black (CB), on thrombus formation as well as on leukocyte-endothelial cell interactions and leukocyte transmigration in the murine microcirculation upon systemic administration in vivo. Systemic administration of both SWCNT and CB accelerated arteriolar thrombus formation at a dose of 1 mg kg(-1) body weight, whereas SWCNT exerted a prothrombotic effect also at a lower dose (0.1 mg kg(-1) body weight). In vitro, both CBNs induced P-selectin expression on human platelets and formation of platelet-granulocyte complexes. In contrast, injection of fiber-shaped SWCNT or of spherical CB did not induce leukocyte-endothelial cell interactions or leukocyte transmigration. In vitro, both CBNs slightly increased the expression of activation markers on human monocytes and granulocytes. These findings suggest that systemic administration of CBNs accelerates arteriolar thrombus formation independently of the CBNs' shape, but does not induce leukocyte-endothelial cell interactions or leukocyte transmigration.
Collapse
Affiliation(s)
- Martin Holzer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hirose A, Hirano S. [Health effects of nanoparticles and nanomaterials (III). Toxicity and health effects of nanoparticles]. Nihon Eiseigaku Zasshi 2013; 63:739-45. [PMID: 18840949 DOI: 10.1265/jjh.63.739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As described before in the first Frontier Report of this series, there are two types of nanoparticles to be considered in hygiene science; One is the environmental nanoparticle emitted from automobiles and the other is the manufactured nanoparticle. In general nanoparticles (less than 100 nm) are reported to be permeable through cell membrane and tissues and their large surface area is responsible for the greater toxicity compared to larger particles. However, there are contradictory reports on the health effects of nanoparticles. Recent reports suggest that carbon nanotubes, fiber-shaped biopersistent nanoparticles, resemble asbestos in the pathogenesis of granuloma and mesothelioma. As such we summarize health effects of environmental and manufactured nanoparticles in the literature so far including our studies, in this report.
Collapse
Affiliation(s)
- Akihiko Hirose
- Division of Risk Assessment, BSRC, National Institute of Health Sciences, Japan
| | | |
Collapse
|
25
|
Mohamud R, Xiang SD, Selomulya C, Rolland JM, O’Hehir RE, Hardy CL, Plebanski M. The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev 2013; 46:176-90. [DOI: 10.3109/03602532.2013.859688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Characterization of an assortment of commercially available multiwalled carbon nanotubes. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1088-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Vakhrusheva TV, Gusev AA, Gusev SA, Vlasova II. Albumin reduces thrombogenic potential of single-walled carbon nanotubes. Toxicol Lett 2013; 221:137-45. [DOI: 10.1016/j.toxlet.2013.05.642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/30/2013] [Accepted: 05/28/2013] [Indexed: 01/20/2023]
|
28
|
Laloy J, Mullier F, Alpan L, Mejia J, Lucas S, Chatelain B, Toussaint O, Masereel B, Rolin S, Dogné JM. A comparison of six major platelet functional tests to assess the impact of carbon nanomaterials on platelet function: A practical guide. Nanotoxicology 2013; 8:220-32. [DOI: 10.3109/17435390.2013.788750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Abstract
Carbon nanotubes (CNTs) consist of a family of carbon built nanoparticles, whose biological effects depend on their physical characteristics and other constitutive chemicals (impurities and functions attached). CNTs are considered the twenty first century material due to their unique physicochemical characteristics and applicability to industrial product. The use of these materials steadily increases worldwide and toxic outcomes need to be studied for each nanomaterial in depth to prevent adverse effects to humans and the environment. Entrance into the body is physical, and usually few nanoparticles enter the body; however, once there, they are persistent due to their limited metabolisms, so their removal is slow, and chronic cumulative health effects are studied. Oxidative stress is the main mechanism of toxicity but size, agglomeration, chirality as well as impurities and functionalization are some of the structural and chemical characteristic contributing to the CNTs toxicity outcomes. Among the many toxicity pathways, interference with cytoskeleton and fibrous mechanisms, cell signaling, membrane perturbations and the production of cytokines, chemokines and inflammation are some of the effects resulting from exposure to CNTs. The aim of this review is to offer an up-to-date scope of the effects of CNTs on biological systems with attention to mechanisms of toxicity.
Collapse
Affiliation(s)
- Yury Rodriguez-Yañez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | | | | |
Collapse
|
30
|
Tablin F, den Hartigh LJ, Aung HH, Lame MW, Kleeman MJ, Ham W, Norris JW, Pombo M, Wilson DW. Seasonal influences on CAPs exposures: differential responses in platelet activation, serum cytokines and xenobiotic gene expression. Inhal Toxicol 2012; 24:506-17. [PMID: 22746400 DOI: 10.3109/08958378.2012.695815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing evidence suggests a role for a systemic pro-coagulant state in the pathogenesis of cardiac dysfunction subsequent to inhalation of airborne particulate matter (PM). We evaluated platelet activation, systemic cytokines and pulmonary gene expression in mice exposed to concentrated ambient particulate matter (CAPs) in the summer of 2008 (S08) and winter of 2009 (W09) from the San Joaquin Valley of California, a region with severe PM pollution episodes. Additionally, we characterized the PM from both exposures including organic compounds, metals, and polycyclic aromatic hydrocarbons. Mice were exposed to an average of 39.01 μg/m(3) of CAPs in the winter and 21.7 μg/m3 CAPs in the summer, in a size range less than 2.5 μm for 6 h/day for 5 days per week for 2 weeks. Platelets were analyzed by flow cytometry for relative size, shape, CD41, P-selectin and lysosomal associated membrane protein-1 (LAMP-1) expression. Platelets from W09 CAPs-exposed animals had a greater response to thrombin stimulation than platelets from S08 CAPs-exposed animals. Serum cytokines were analyzed by bead based immunologic assays. W09 CAPs-exposed mice had elevations in IL-2, MIP-1α, and TNFα. Laser capture microdissection (LCM) of pulmonary vasculature, parenchyma and airways all showed increases in CYP1a1 gene expression. Pulmonary vasculature showed increased expression of ICAM-1 and Nox-2. Our findings demonstrate that W09 CAPs exposure generated a greater systemic pro-inflammatory and pro-coagulant response to inhalation of environmentally derived fine and ultrafine PM. Changes in platelet responsiveness to agonists, seen in both exposures, strongly suggests a role for platelet activation in the cardiovascular and respiratory effects of particulate air pollution.
Collapse
Affiliation(s)
- Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Franchini M, Guida A, Tufano A, Coppola A. Air pollution, vascular disease and thrombosis: linking clinical data and pathogenic mechanisms. J Thromb Haemost 2012; 10:2438-51. [PMID: 23006215 DOI: 10.1111/jth.12006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The public health burden of air pollution has been increasingly recognized over the last decades. Following the first assessed adverse effects on respiratory diseases and lung cancer, a large body of epidemiologic and clinical studies definitely documented an even stronger association of air pollution exposure with cardiovascular mortality and morbidity, particularly related to atherothrombotic (coronary and cerebrovascular) disease. Particulate matter (PM), mainly that with lower aerodynamic diameter (fine and ultrafine PM), is responsible for the most severe effects, due to its capacity to transport toxic substances deep into the lower airways. These effects have been shown to occur not only after short-term exposure to elevated concentrations of pollutants, but even after long-term relatively low levels of exposure. Vulnerable subjects (elderly persons and those with preexisting cardiopulmonary diseases) show the highest impact. Fewer and conflicting data also suggest an association with venous thromboembolism. Although not completely elucidated, a series of mechanisms have been hypothesized and tested in experimental settings. These phenomena, including vasomotor and cardiac autonomic dysfunction, hemostatic unbalance, oxidative stress and inflammatory response, have been shown to change over time and differently contribute to the short-term and long-term adverse effects of pollution exposure. Beyond environmental health policies, crucial for improving air quality and reducing the impact of such an elusive threat to public health, the recognition and assessment of the individual risk, together with specific advice, should be routinely implemented in the strategies of primary and secondary cardiovascular prevention.
Collapse
Affiliation(s)
- M Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | | | | | | |
Collapse
|
32
|
Shannahan JH, Kodavanti UP, Brown JM. Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 2012; 24:320-39. [PMID: 22486349 DOI: 10.3109/08958378.2012.668229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human inhalation exposures to manufactured nanoparticles (NP) and airborne ultrafine particles (UFP) continues to increase in both occupational and environmental settings. UFP exposures have been associated with increased cardiovascular mortality and morbidity, while ongoing research supports adverse systemic and cardiovascular health effects after NP exposures. Adverse cardiovascular health effects include alterations in heart rate variability, hypertension, thrombosis, arrhythmias, increased myocardial infarction, and atherosclerosis. Exactly how UFP and NP cause these negative cardiovascular effects is poorly understood, however a variety of mediators and mechanisms have been proposed. UFP and NP, as well as their soluble components, are known to systemically translocate from the lung. Translocated particles could mediate cardiovascular toxicity through direct interactions with the vasculature, blood, and heart. Recent study suggests that sensory nerve stimulation within the lung may also contribute to UFP- and NP-induced acute cardiovascular alterations. Activation of sensory nerves, such as C-fibers, within the lung may result in altered cardiac rhythm and function. Lastly, release of pulmonary-derived mediators into systemic circulation has been proposed to facilitate cardiovascular effects. In general, these proposed pulmonary-derived mediators include proinflammatory cytokines, oxidatively modified macromolecules, vasoactive proteins, and prothrombotic factors. These pulmonary-derived mediators have been postulated to contribute to the subsequent prothrombotic, atherogenic, and inflammatory effects after exposure. This review will evaluate the potential contribution of individual mediators and mechanisms in facilitating cardiopulmonary toxicity following inhalation of UFP and NP. Lastly, we will appraise the literature and propose a hypothesis regarding the possible role of mast cells in contributing to these systemic effects.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | |
Collapse
|
33
|
Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood 2012; 120:2133-43. [PMID: 22837532 DOI: 10.1182/blood-2012-06-437772] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For a long time, blood coagulation and innate immunity have been viewed as interrelated responses. Recently, the presence of leukocytes at the sites of vessel injury has been described. Here we analyzed interaction of neutrophils, monocytes, and platelets in thrombus formation after a laser-induced injury in vivo. Neutrophils immediately adhered to injured vessels, preceding platelets, by binding to the activated endothelium via leukocyte function antigen-1-ICAM-1 interactions. Monocytes rolled on a thrombus 3 to 5 minutes postinjury. The kinetics of thrombus formation and fibrin generation were drastically reduced in low tissue factor (TF) mice whereas the absence of factor XII had no effect. In vitro, TF was detected in neutrophils. In vivo, the inhibition of neutrophil binding to the vessel wall reduced the presence of TF and diminished the generation of fibrin and platelet accumulation. Injection of wild-type neutrophils into low TF mice partially restored the activation of the blood coagulation cascade and accumulation of platelets. Our results show that the interaction of neutrophils with endothelial cells is a critical step preceding platelet accumulation for initiating arterial thrombosis in injured vessels. Targeting neutrophils interacting with endothelial cells may constitute an efficient strategy to reduce thrombosis.
Collapse
|
34
|
Tang ACL, Chang MY, Tang ZCW, Li HJ, Hwang GL, Hsieh PCH. Treatment of acute thromboembolism in mice using heparin-conjugated carbon nanocapsules. ACS NANO 2012; 6:6099-6107. [PMID: 22713482 DOI: 10.1021/nn301198r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The unsurpassed properties in electrical conductivity, thermal conductivity, strength, and surface area-to-volume ratio allow for many potential applications of carbon nanomaterials in various fields. Recently, studies have characterized the potential of using carbon nanotubes (CNTs) as a biomaterial for biomedical applications and as a drug carrier via intravenous injection. However, most studies show that unmodified CNTs possess a high degree of toxicity and cause inflammation, mechanical obstruction from high organ retention, and other biocompatibility issues following in vivo delivery. In contrast, carbon nanocapsules (CNCs) have a lower aspect ratio compared with CNTs and have a higher dispersion rate. To investigate the possibility of using CNCs as an alternative to CNTs for drug delivery, heparin-conjugated CNCs (CNC-H) were studied in a mouse model of acute hindlimb thromboembolism. Our results showed that CNC-H not only displayed superior antithrombotic activity in vitro and in vivo but they also had the ability to extend the thrombus formation time far longer than an injection of heparin or CNCs alone. Therefore, the present study showed for the first time that functionalized CNCs can act as nanocarriers to deliver thrombolytic therapeutics.
Collapse
Affiliation(s)
- Alan C L Tang
- Institute of Clinical Medicine, National Cheng Kung University & Hospital, Tainan 70428, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Meng J, Cheng X, Liu J, Zhang W, Li X, Kong H, Xu H. Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation. PLoS One 2012; 7:e38995. [PMID: 22808023 PMCID: PMC3393720 DOI: 10.1371/journal.pone.0038995] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/17/2012] [Indexed: 11/19/2022] Open
Abstract
In this work the effects of four different multiwalled carbon nanotubes (MWCNTs), including long carboxylated (L-COOH), short carboxylated (S-COOH), long aminated (L-NH2) and short aminated (S-NH2) ones, on the integrity of red blood cells, coagulation kinetics and activation of platelets were investigated with human whole blood. We found that the four MWCNTs induced different degrees of red blood cell damage as well as a mild level of platelet activation (10–25%). L-COOH and L-NH2 induced a higher level of platelet activation than S-COOH and S-NH2 respectively; meanwhile L-NH2 caused marked reductions in platelet viability. The presence of the four MWCNTs led to earlier fibrin formation, L-NH2 increased the clots hardness significantly, while L-COOH and S-NH2 made the clots become softer. It was concluded that the four MWCNTs affected blood coagulation process and the clots mechanical properties; they also altered the integrity of the red blood cells and the viability of the platelets, as well as induced platelets activation. The effects of MWCNTs depended on the size and chemistry of the nanotubes and the type of cells they contacted.
Collapse
Affiliation(s)
- Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xuelian Cheng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Weiqi Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaojin Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Hua Kong
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
36
|
Nemmar A, Al-Salam S, Zia S, Marzouqi F, Al-Dhaheri A, Subramaniyan D, Dhanasekaran S, Yasin J, Ali BH, Kazzam EE. Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone. Br J Pharmacol 2012; 164:1871-82. [PMID: 21501145 DOI: 10.1111/j.1476-5381.2011.01442.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute exposure to particulate air pollution has been linked to acute cardiopulmonary events, but the underlying mechanisms are uncertain. EXPERIMENTAL APPROACH We investigated the acute (at 4 and 18 h) effects of diesel exhaust particles (DEP) on cardiopulmonary parameters in mice and the protective effect of thymoquinone, a constituent of Nigella sativa. Mice were given, intratracheally, either saline (control) or DEP (30 µg·per mouse). KEY RESULTS At 18 h (but not 4 h) after giving DEP, there was lung inflammation and loss of lung function. At both 4 and 18 h, DEP caused systemic inflammation characterized by leucocytosis, increased IL-6 concentrations and reduced systolic blood pressure (SBP). Superoxide dismutase (SOD) activity was decreased only at 18 h. DEP reduced platelet numbers and aggravated in vivo thrombosis in pial arterioles. In vitro, addition of DEP (0.1-1 µg·mL(-1)) to untreated blood-induced platelet aggregation. Pretreatment of mice with thymoquinone prevented DEP-induced decrease of SBP and leucocytosis, increased IL-6 concentration and decreased plasma SOD activity. Thymoquinone also prevented the decrease in platelet numbers and the prothrombotic events but not platelet aggregation in vitro. CONCLUSIONS AND IMPLICATIONS At 4 h after DEP exposure, the cardiovascular changes did not appear to result from pulmonary inflammation but possibly from the entry of DEP and/or their associated components into blood. However, at 18 h, DEP induced significant changes in pulmonary and cardiovascular functions along with lung inflammation. Pretreatment with thymoquinone prevented DEP-induced cardiovascular changes.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
With the development of nanotechnology, a growing number of people are expected to be exposed to its products, the engineered nanomaterials (ENMs). Some physico-chemical properties of ENMs, linked to their size in the nanoscale (1-100 nm), make them potentially more reactive, and therefore raise concern about possible adverse effects in humans. In this article, I discuss human diseases which may be predicted after exposure to ENMs, and how their pathogenetic mechanisms may be linked to exposure; in this regard, special emphasis has been given to the triad of oxidative stress/inflammation/genotoxicity and to the interaction of ENMs/proteins in different biological compartments. The analysis of possible adverse effects has been made on an organ-by-organ basis, starting from the skin, respiratory system and gastrointestinal tract. These sites are in fact not only those exposed to the highest amounts of ENMs, but are also the portals of entry to internal organs for possible systemic effects. Although the list and the relevance of possible human disorders linked to ENM exposure are at least as impressive as that of their direct or indirect beneficial effects for human health, we must be clear that ENM-linked diseases belong to the realm of possible risk (i.e. cannot be excluded, but are unlikely), whereas ENMs with proven beneficial effects are on the market. Therefore, the mandatory awareness about possible adverse effects of ENMs should in no way be interpreted as a motivation to disregard the great opportunity represented by nanotechnology.
Collapse
|
38
|
Emmerechts J, Jacobs L, Van Kerckhoven S, Loyen S, Mathieu C, Fierens F, Nemery B, Nawrot TS, Hoylaerts MF. Air pollution-associated procoagulant changes: the role of circulating microvesicles. J Thromb Haemost 2012; 10:96-106. [PMID: 22066779 DOI: 10.1111/j.1538-7836.2011.04557.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Epidemiological studies suggest an association between exposure to particulate matter (PM) in air pollution and the risk of venous thromboembolism (VTE). OBJECTIVES To investigate the underlying pathophysiological pathways linking PM exposure and VTE. PATIENTS AND METHODS We assessed potential associations between PM exposure and coagulation and inflammation parameters, including circulating microvesicles, in a group of 233 patients with diabetes. RESULTS The numbers of circulating blood platelet-derived and annexin V-binding microvesicles were inversely associated with the current levels of PM(2.5) or PM(10), measured on the day of sampling. Recent past exposure to PM(10), up to 1 week prior to blood sampling, estimated at the patients' residential addresses, was associated with elevated high-sensitivity C-reactive protein (CRP), leukocytes and fibrinogen, as well as with tissue factor (TF)-dependent procoagulant changes in thrombin generation assays. When longer windows of past exposure were considered, up to 1 year preceding blood sampling, procoagulant changes were evident from the strongly increased numbers of red blood cell-derived circulating microvesicles and annexin V-binding microvesicles, but they no longer associated with TF. Past PM exposure was never associated with activated partial thromboplastin time (aPTT), prothrombin time (PT), or factor (F) VII, FVIII, FXII or D-dimers. Residential distance to a major road was only marginally correlated with procoagulant changes in FVIII and thrombin generation. CONCLUSIONS Increases in the number of microvesicles and in their procoagulant properties, rather than increases in coagulation factors per se, seem to contribute to the risk of VTE, developing during prolonged exposure to air pollutants.
Collapse
Affiliation(s)
- J Emmerechts
- Center for Molecular and Vascular Biology, Unit of Lung Toxicology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cerletti C, Tamburrelli C, Izzi B, Gianfagna F, de Gaetano G. Platelet-leukocyte interactions in thrombosis. Thromb Res 2011; 129:263-6. [PMID: 22075180 DOI: 10.1016/j.thromres.2011.10.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/17/2022]
Abstract
Activated platelets may adhere to leukocytes and form circulating mixed aggregates. The latter are considered a reliable marker of a prothrombotic state and are associated with several cardiovascular conditions. The molecular mechanisms responsible of this cellular interaction include a central role of platelet P-selectin and of P-selectin glycoprotein ligand-1 (PSGL-1), its counter receptor on leukocytes in a signaling cascade, resulting in the activation of the beta-2 integrin Mac-1 and in the firm adhesion between the two cell types. The interaction of P-selectin with PSGL-1 also induces upregulation of leukocyte tissue factor, biosynthesis of several cytokines and other inflammatory reactions, thereby contributing to the thrombotic progression. In this review the main determinants of mixed aggregate formation, the heritability component, the major pathological conditions associated with higher levels of mixed aggregates in the circulation will be discussed. Besides current anti-platelet or antithrombotic drugs, natural compounds, such as the polyphenols present in vegetable foods and red wine, have been tested for their inhibitory effect on mixed aggregate formation. The promising results shown by studies in vitro and in experimental animal models, remain to be carefully investigated in humans. Platelet-leukocyte aggregates provide a novel link between inflammation and thrombosis, two central processes in atherogenesis. A better understanding of the role of platelet-leukocyte interactions in athero-thrombosis will be instrumental for the progress of prevention and treatment of ischaemic cardiovascular disease.
Collapse
Affiliation(s)
- Chiara Cerletti
- Research Laboratories, Fondazione di Ricerca e Cura Giovanni Paolo II, Università Cattolica, 86100 Campobasso, Italy.
| | | | | | | | | |
Collapse
|
40
|
Emmerechts J, Hoylaerts MF. The effect of air pollution on haemostasis. Hamostaseologie 2011; 32:5-13. [PMID: 22009166 DOI: 10.5482/ha-1179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 11/05/2022] Open
Abstract
Ambient environmental air pollutants include gaseous and particulate components. In polluted air, especially particulate matter seems responsible for cardiovascular complications: It consists of a heterogeneous mixture of solid and liquid particles with different diameters ranging from large thoracic to ultrafine particles, with a diameter <100 nm. Ultrafines can penetrate deeply into the lung to deposit in the alveoli. Cardiovascular manifestations result both from short-term and long-term exposure and have been linked to interference with the autonomic nervous system, direct translocation into the systemic circulation, pulmonary inflammation and oxidative stress. Thrombotic complications associated with air pollution comprise arterial and probably venous thrombogenicity. This review describes the existing epidemiological and experimental evidence to explain the rapid induction of myocardial infarction within 1-2 hours after exposure to polluted air and advances several explanations as to why more chronic exposure will lead to enhanced venous thrombogenicity. Mechanisms such as platelet activation, endothelial dysfunction, coagulation factor changes and microvesicle production are discussed.
Collapse
Affiliation(s)
- J Emmerechts
- Marc Hoylaerts, Center for Molecular and Vascular Biology, Leuven, Belgium
| | | |
Collapse
|
41
|
Kim K, Lim KM, Kim CW, Shin HJ, Seo DB, Lee SJ, Noh JY, Bae ON, Shin S, Chung JH. Black soybean extract can attenuate thrombosis through inhibition of collagen-induced platelet activation. J Nutr Biochem 2011; 22:964-70. [PMID: 21190825 DOI: 10.1016/j.jnutbio.2010.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 06/02/2010] [Accepted: 08/05/2010] [Indexed: 11/23/2022]
Abstract
Many clinical trials have demonstrated the beneficial effects of soybean (Glycine max) on general cardiovascular health. Among a variety of soybeans, black soybean is known to display diverse biological activities superior to those of yellow and green soybeans, such as in antioxidant, anti-inflammatory and anticancer activities. However, few studies have been directed on the effect of black soybean on cardiovascular function. In this study, we aimed to investigate the effect of black soybean extract (BB) on platelet activation, a key contributor to thrombotic diseases. In freshly isolated human platelets, BB has shown potent inhibitory activity on collagen-induced platelet aggregation, while yellow soybean extract had marginal activity only. BB also attenuated serotonin secretion and P-selectin expression, which are important factors for the platelet-tissue interaction along with thromboxane A(2) formation. These in vitro results were further confirmed in an ex vivo platelet aggregation measurement and in vivo venous thrombosis model where oral administration of BB reduced collagen-induced platelet aggregation and FeCl(3)-induced thrombus formation significantly. A potential active ingredient for antiplatelet effects of BB was isolated and identified to be adenosine through bioassay-directed fractionation and NMR and ESI-MS analyses. These results indicate that black soybean can be a novel dietary supplement for the prevention of cardiovascular risks and the improvement of blood circulation.
Collapse
Affiliation(s)
- Keunyoung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Abstract
Exposure to air pollution is associated with adverse effects on health. In particular, a strong epidemiologic association is observed between acute and chronic exposures to particulate matter and the occurrence of cardiovascular events, coronary artery disease, cerebrovascular disease and venous thromboembolism, especially among older people and people with diabetes and previous cardiovascular conditions. Multiple mechanisms have been postulated to cause the increase in atherothrombotic and thromboembolic events, including the activation by particulate matter of inflammatory pathways and hemostasis factors, production of reactive oxygen species through the oxidative stress pathway, alterations in vascular tone, and decreased heart rate variability (a marker of cardiac autonomic dysfunction and a predictor of sudden cardiac death and arrhythmias). Current knowledge on the biologic mechanisms and the clinical effect of short- and long-term exposure to particulate air pollutants is discussed, emphasizing that life expectancy improved significantly in sites where air pollutants were controlled.
Collapse
|
43
|
Nemmar A, Zia S, Subramaniyan D, Fahim MA, Ali BH. Exacerbation of thrombotic events by diesel exhaust particle in mouse model of hypertension. Toxicology 2011; 285:39-45. [DOI: 10.1016/j.tox.2011.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/27/2011] [Accepted: 03/31/2011] [Indexed: 01/19/2023]
|
44
|
Kilinç E, Van Oerle R, Borissoff JI, Oschatz C, Gerlofs-Nijland ME, Janssen NA, Cassee FR, Sandström T, Renné T, Ten Cate H, Spronk HMH. Factor XII activation is essential to sustain the procoagulant effects of particulate matter. J Thromb Haemost 2011; 9:1359-67. [PMID: 21481175 DOI: 10.1111/j.1538-7836.2011.04280.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Particulate matter (PM) is a key component of ambient air pollution and has been associated with an increased risk of thrombotic events and mortality. The underlying mechanisms remain unclear. OBJECTIVES To study the mechanisms of PM-driven procoagulant activity in human plasma and to investigate mainly, the coagulation driven by ultrafine particles (UFPs; < 0.1 μm) in genetically modified mice. METHODS Thrombin generation in response to PM of different sizes was assessed in normal human platelet-poor plasma, as well as in plasmas deficient in the intrinsic pathway proteases factors XII (FXII) or XI (FXI). In addition, UFPs were intratracheally instilled in wild-type (WT) and FXII-deficient (FXII(-/-) ) mice and plasma thrombin generation was analyzed in plasma from treated mice at 4 and 20 h post-exposure. RESULTS In normal human plasma, thrombin generation was enhanced in the presence of PM, whereas PM-driven thrombin formation was completely abolished in FXII- and FXI-deficient plasma. UFPs induced a transient increase in tissue factor (TF)-driven thrombin formation at 4 h post-instillation in WT mice compared with saline instillation. Intratracheal instillation of UFPs resulted in a procoagulant response in WT mice plasma at 20 h, whereas it was entirely suppressed in FXII(-/-) mice. CONCLUSIONS Overall, the data suggest that PM promotes its early procoagulant actions mostly through the TF-driven extrinsic pathway of coagulation, whereas PM-driven long lasting thrombogenic effects are predominantly mediated via formation of activated FXII. Hence, FXII-driven thrombin formation may be relevant to an enhanced thrombotic susceptibility upon chronic exposure to PM in humans.
Collapse
Affiliation(s)
- E Kilinç
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
Background—
In controlled human exposure studies, diesel engine exhaust inhalation impairs vascular function and enhances thrombus formation. The aim of the present study was to establish whether an exhaust particle trap could prevent these adverse cardiovascular effects in men.
Methods and Results—
Nineteen healthy volunteers (mean age, 25±3 years) were exposed to filtered air and diesel exhaust in the presence or absence of a particle trap for 1 hour in a randomized, double-blind, 3-way crossover trial. Bilateral forearm blood flow and plasma fibrinolytic factors were assessed with venous occlusion plethysmography and blood sampling during intra-arterial infusion of acetylcholine, bradykinin, sodium nitroprusside, and verapamil. Ex vivo thrombus formation was determined with the use of the Badimon chamber. Compared with filtered air, diesel exhaust inhalation was associated with reduced vasodilatation and increased ex vivo thrombus formation under both low- and high-shear conditions. The particle trap markedly reduced diesel exhaust particulate number (from 150 000 to 300 000/cm
3
to 30 to 300/cm
3
;
P
<0.001) and mass (320±10 to 7.2±2.0 μg/m
3
;
P
<0.001), and was associated with increased vasodilatation, reduced thrombus formation, and an increase in tissue-type plasminogen activator release.
Conclusions—
Exhaust particle traps are a highly efficient method of reducing particle emissions from diesel engines. With a range of surrogate measures, the use of a particle trap prevents several adverse cardiovascular effects of exhaust inhalation in men. Given these beneficial effects on biomarkers of cardiovascular health, the widespread use of particle traps on diesel-powered vehicles may have substantial public health benefits and reduce the burden of cardiovascular disease.
Clinical Trial Registration—
http://www.clinicaltrials.gov
. Unique identifier: NCT00745446.
Collapse
|
47
|
Hirose A, Takagi A, Nishimura T, Tsuda H, Sakamoto Y, Ogata A, Nakae D, Hino O, Kanno J. [Importance of researches on chronic effects by manufactured nanomaterials]. YAKUGAKU ZASSHI 2011; 131:195-201. [PMID: 21297361 DOI: 10.1248/yakushi.131.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Manufactured nanomaterials are the most important substances for the nanotechnology. The nanomaterials possess different physico-chemical properties from bulk materials. The new properties may lead to biologically beneficial effects and/or adverse effects. However, there are no standardized evaluation methods at present. Some domestic research projects and international OECD programs are ongoing, in order to share the health impact information of nanomaterials or to standardize the evaluation methods. From 2005, our institutes have been conducting the research on the establishment of health risk assessment methodology of manufactured nanomaterials. In the course of the research project, we revealed that the nanomaterials were competent to cause chronic effects, by analyzing the intraperitoneal administration studies and carcinogenic promotion studies. These studies suggested that even aggregated nanomaterials were crumbled into nanosized particles inside the body during the long-term, and the particles were transferred to other organs. Also investigations of the toxicokinetic properties of nanomaterials after exposure are important to predict the chronically targeted tissues. The long lasting particles/fibers in the particular tissues may cause chronic adverse effects. Therefore, focusing on the toxicological characterization of chronic effects was considered to be most appropriate approach for establishing the risk assessment methods of nanomaterials.
Collapse
Affiliation(s)
- Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Tokyo.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ellingsen DG, Ulvestad B, Andersson L, Barregard L. Pneumoproteins and inflammatory biomarkers in asphalt pavers. Biomarkers 2010; 15:498-507. [PMID: 20528258 DOI: 10.3109/1354750x.2010.490305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pneumoproteins, biomarkers of systemic inflammation and endothelial activation were studied across a season in 72 asphalt pavers, 32 asphalt plant operators and 19 asphalt engineers. Smokers had lower concentrations of Clara cell protein (CC-16) and surfactant protein A, but higher concentrations of surfactant protein D, interleukin 6, C-reactive protein, fibrinogen and intercellular adhesion molecule (ICAM)-1 than non-smokers. Smokers reporting wheezing had lower mean CC-16 concentration than smokers not reporting wheezing (5.7 vs 8.6 microg l(-1); p = 0.05). Cholesterol, P-selectin and ICAM-1 were lower in pavers and operators at the end compared with the start of the season. This may be related to increased physical activity during the season.
Collapse
|
49
|
Emmerechts J, Alfaro-Moreno E, Vanaudenaerde BM, Nemery B, Hoylaerts MF. Short-term exposure to particulate matter induces arterial but not venous thrombosis in healthy mice. J Thromb Haemost 2010; 8:2651-61. [PMID: 21029357 DOI: 10.1111/j.1538-7836.2010.04081.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Epidemiological findings suggest an association between exposure to particulate matter (PM) and venous thrombo-embolism. OBJECTIVES To investigate arterial vs. venous thrombosis, inflammation and coagulation in mice, (sub)acutely exposed to two types of PM. METHODS Various doses (25, 100 and 200 μg per animal) of urban particulate matter (UPM) or diesel exhaust particles (DEP) were intratracheally (i.t.) instilled in C57Bl6/n mice and several endpoints measured at 4, 10 and 24 h. Mice were also repeatedly exposed to 100 μg per animal on three consecutive days with endpoints measured 24 h after the last instillation. RESULTS Exposure to 200 μg per mouse UPM enhanced arterial thrombosis, but neither UPM nor DEP significantly enhanced venous thrombosis. Both types of PM induced dose-dependent increases in broncho-alveolar lavage fluid (BALF) total cell numbers (mainly neutrophils) and cytokines (IL-6, KC, MCP-1, RANTES, MIP-1α), with peaks at 4 h and overall higher values for UPM than for DEP. Systemic inflammation was limited to increased serum IL-6 levels, 4 h after UPM. Both types of PM induced similar and dose-dependent but modest increases in factor (F)VII, FVIII and fibrinogen. Three repeated instillations did not or only modestly enhance the proinflammatory and procoagulant status. CONCLUSIONS Compared with DEP, UPM induced more pronounced pulmonary inflammation, but both particle types triggered similar and mild short-term systemic effects. Hence, acute exposure to PM triggers activation of primary hemostasis in the mouse, but no substantial secondary hemostasis activation, resulting in arterial but not venous thrombogenicity.
Collapse
Affiliation(s)
- J Emmerechts
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
50
|
Nemmar A, Melghit K, Al-Salam S, Zia S, Dhanasekaran S, Attoub S, Al-Amri I, Ali BH. Acute respiratory and systemic toxicity of pulmonary exposure to rutile Fe-doped TiO(2) nanorods. Toxicology 2010; 279:167-75. [PMID: 21073913 DOI: 10.1016/j.tox.2010.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 10/10/2010] [Accepted: 10/19/2010] [Indexed: 02/03/2023]
Abstract
Nanomaterials are extensively used in medicines, industry and daily life, but little is known about their possible health effects. Titanium dioxide (TiO₂) nonmaterial-based photocatalysis is useful in the complete mineralization of organic pollutants in waste water and air. While the Fe-doping of TiO₂ enhances their photocatalytic activity, their potential pathophysiologic effects are unknown. Here, rutile Fe-doped (9%) pure titanium dioxide (TiO₂) nanorods were prepared and characterized. Subsequently, we assessed the acute (24 h) pulmonary and extrapulmonary effects of intratracheal (i.t.) instillation of these nanorods (1 and 5 mg/kg) in Wistar rats. In the bronchoalveolar lavage, the treatment induced a significant and dose-dependent increase of neutrophils, an increase of interleukin-6 (IL-6, at 5 mg/kg), and caused a dose-dependent-decrease of superoxide dismutase (SOD) activity. The lung sections of rats exposed to rutile Fe-TiO₂ nanorods showed infiltration of inflammatory cells in dose-dependent manner. Similarly, the heart rate, systolic blood pressure, plasma IL-6, and leukocyte and platelet numbers were increased at 5 mg/kg. The plasma SOD and reduced glutathaione activities were dose-dependently decreased after exposure to the nanorods. Histopathologically, the liver showed mild inflammatory cells infiltration of few portal tracts, but the kidneys and heart were unaffected. In plasma, the levels of lactate dehydrogenase and hepatic enzymes, i.e., alanine aminotranferease and aspartate aminotransferase were increased significantly. The in vitro exposure of human lung cancer cells NCI-H460-Luc2 and human hepatoma cells HepG2 to FeTiO₂ (6.25-100 μg/ml) dose-dependently reduced cellular viability. Also, the In vitro direct addition of these nanorods (0.1-1 μg/ml) to untreated rat blood, significantly and dose-dependently induced platelet aggregation. In conclusion, exposure to rutile Fe-TiO₂ promotes pulmonary and systemic inflammation and oxidative stress. It affects the liver, enhances thrombotic potential, heart rate and systolic blood pressure. Moreover, the rutile Fe-TiO₂ elicited direct toxicity on NCI-H460-Luc2 and HepG2 cells.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | | | | | | | | | | | | | | |
Collapse
|