1
|
Ge B, Hu C, Qian Y, Tang Y, Zhang Q, Jiang S, Mu Z, Zhang M. Sinensetin interferes with Staphylococcus aureus infections by targeting staphylocoagulase and improves infection survival rates in mouse model of pneumonia. J Appl Microbiol 2024; 135:lxae235. [PMID: 39284774 DOI: 10.1093/jambio/lxae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
AIMS Coagulase (Coa), a crucial virulence factor of Staphylococcus aureus (S. aureus), is considered a vital target for anti-virulence strategies. The research aimed to discover a natural compound capable of inhibiting S. aureus infection by targeting the virulence factor Coa. METHODS AND RESULTS The study showed that sinensetin at a concentration of 128 μg mL-1 effectively inhibited both Coa-induced coagulation and biofilm formation in S. aureus. However, western blot results indicated that sinensetin did not impact the expression of Coa protein, suggesting that sinensetin may directly target Coa to counteract the virulence of S. aureus. Thermal shift assay results demonstrated that sinensetin enhanced the thermal stability of Coa, supporting the theory of direct binding. Molecular docking and point mutation experiments identified two key binding sites for sinensetin to Coa as R73A-Coa and R204A-Coa. In vivo studies on mice revealed that sinensetin not only reduced lung tissue damage caused by S. aureus infection, but also decreased inflammatory factors in the lung lavage fluid. Furthermore, combining sinensetin with oxacillin improved the survival rates of the Galleria mellonella and mice. CONCLUSIONS Sinensetin is a promising natural compound that acts as a direct inhibitor of Coa against S. aureus infections.
Collapse
Affiliation(s)
- Bin Ge
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chunjie Hu
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yimin Qian
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yating Tang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Qiuyue Zhang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Shuang Jiang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zongyi Mu
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Maoyun Zhang
- Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
2
|
Camoin-Jau L, Habib G. Should We Give Antithrombotic Therapy to Patients With Infective Endocarditis?: A Serious Question, But Unresolved. JACC. ADVANCES 2024; 3:100766. [PMID: 38939378 PMCID: PMC11198370 DOI: 10.1016/j.jacadv.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Laurence Camoin-Jau
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Aix-Marseille University, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France
| | - Gilbert Habib
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Aix-Marseille University, Marseille, France
- Cardiology Department, La Timone Hospital, Marseille, France
| |
Collapse
|
3
|
Komorowicz E, Farkas VJ, Szabó L, Cherrington S, Thelwell C, Kolev K. DNA and histones impair the mechanical stability and lytic susceptibility of fibrin formed by staphylocoagulase. Front Immunol 2023; 14:1233128. [PMID: 37662916 PMCID: PMC10470048 DOI: 10.3389/fimmu.2023.1233128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Staphylocoagulase (SCG) is a virulence factor of Staphylococcus aureus, one of the most lethal pathogens of our times. The complex of SCG with prothrombin (SCG/ProT) can clot fibrinogen, and SCG/ProT-induced fibrin and plasma clots have been described to show decreased mechanical and lytic resistance, which may contribute to septic emboli from infected cardiac vegetations. At infection sites, neutrophils can release DNA and histones, as parts of neutrophil extracellular traps (NETs), which in turn favor thrombosis, inhibit fibrinolysis and strengthen clot structure. Objectives To characterize the combined effects of major NET-components (DNA, histone H1 and H3) on SCG/ProT-induced clot structure, mechanical and lytic stability. Methods Recombinant SCG was used to clot purified fibrinogen and plasma. The kinetics of formation and lysis of fibrin and plasma clots containing H1 or core histones+/-DNA were followed by turbidimetry. Fibrin structure and mechanical stability were characterized with scanning electron microscopy, pressure-driven permeation, and oscillation rheometry. Results Histones and DNA favored the formation of thicker fibrin fibers and a more heterogeneous clot structure including high porosity with H1 histone, whereas low porosity with core histones and DNA. As opposed to previous observations with thrombin-induced clots, SCG/ProT-induced fibrin was not mechanically stabilized by histones. Similarly to thrombin-induced clots, the DNA-histone complexes prolonged fibrinolysis with tissue-type plasminogen activator (up to 2-fold). The anti-fibrinolytic effect of the DNA and DNA-H3 complex was observed in plasma clots too. Heparin (low molecular weight) accelerated the lysis of SCG/ProT-clots from plasma, even if DNA and histones were also present. Conclusions In the interplay of NETs and fibrin formed by SCG, DNA and histones promote structural heterogeneity in the clots, and fail to stabilize them against mechanical stress. The DNA-histone complexes render the SCG-fibrin more resistant to lysis and thereby less prone to embolization.
Collapse
Affiliation(s)
- Erzsébet Komorowicz
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Veronika J. Farkas
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - László Szabó
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, Hungary
- Plasma Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sophie Cherrington
- South Mimms Laboratories, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Craig Thelwell
- South Mimms Laboratories, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Krasimir Kolev
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Ariëns RAS, Cassat JE. Surviving a sticky situation: therapeutic administration of fibrinogen variant γ' improves outcomes of Staphylococcus aureus septicemia. J Thromb Haemost 2023; 21:2048-2050. [PMID: 37468174 PMCID: PMC10947783 DOI: 10.1016/j.jtha.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 07/21/2023]
Affiliation(s)
- Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Evans DCS, Khamas AB, Marcussen L, Rasmussen KS, Klitgaard JK, Kallipolitis BH, Nielsen J, Otzen DE, Leake MC, Meyer RL. GFP fusions of Sec-routed extracellular proteins in Staphylococcus aureus reveal surface-associated coagulase in biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:145-156. [PMID: 37395997 PMCID: PMC10311078 DOI: 10.15698/mic2023.07.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Staphylococcus aureus is a major human pathogen that utilises many surface-associated and secreted proteins to form biofilms and cause disease. However, our understanding of these processes is limited by challenges of using fluorescent protein reporters in their native environment, because they must be exported and fold correctly to become fluorescent. Here, we demonstrate the feasibility of using the monomeric superfolder GFP (msfGFP) exported from S. aureus. By fusing msfGFP to signal peptides for the Secretory (Sec) and Twin Arginine Translocation (Tat) pathways, the two major secretion pathways in S. aureus, we quantified msfGFP fluorescence in bacterial cultures and cell-free supernatant from the cultures. When fused to a Tat signal peptide, we detected msfGFP fluorescence inside but not outside bacterial cells, indicating a failure to export msfGFP. However, when fused to a Sec signal peptide, msfGFP fluorescence was present outside cells, indicating successful export of the msfGFP in the unfolded state, followed by extracellular folding and maturation to the photoactive state. We applied this strategy to study coagulase (Coa), a secreted protein and a major contributor to the formation of a fibrin network in S. aureus biofilms that protects bacteria from the host immune system and increases attachment to host surfaces. We confirmed that a genomically integrated C-terminal fusion of Coa to msfGFP does not impair the activity of Coa or its localisation within the biofilm matrix. Our findings demonstrate that msfGFP is a good candidate fluorescent reporter to consider when studying proteins secreted by the Sec pathway in S. aureus.
Collapse
Affiliation(s)
- Dominique C. S. Evans
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Department of Physics, University of York, York, UK
| | - Amanda B. Khamas
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Lisbeth Marcussen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Kristian S. Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Janne K. Klitgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Mark C. Leake
- Department of Physics, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Braï MA, Hannachi N, El Gueddari N, Baudoin JP, Dahmani A, Lepidi H, Habib G, Camoin-Jau L. The Role of Platelets in Infective Endocarditis. Int J Mol Sci 2023; 24:ijms24087540. [PMID: 37108707 PMCID: PMC10143005 DOI: 10.3390/ijms24087540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last decade, the incidence of infective endocarditis (IE) has increased, with a change in the frequency of causative bacteria. Early evidence has substantially demonstrated the crucial role of bacterial interaction with human platelets, with no clear mechanistic characterization in the pathogenesis of IE. The pathogenesis of endocarditis is so complex and atypical that it is still unclear how and why certain bacterial species will induce the formation of vegetation. In this review, we will analyze the key role of platelets in the physiopathology of endocarditis and in the formation of vegetation, depending on the bacterial species. We provide a comprehensive outline of the involvement of platelets in the host immune response, investigate the latest developments in platelet therapy, and discuss prospective research avenues for solving the mechanistic enigma of bacteria-platelet interaction for preventive and curative medicine.
Collapse
Affiliation(s)
- Mustapha Abdeljalil Braï
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Nadji Hannachi
- Laboratoire de Biopharmacie et Pharmacotechnie, Faculté de Médecine, Université Ferhat Abbas Sétif I, Sétif 19000, Algeria
| | - Nabila El Gueddari
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Service de Chirurgie Cardiaque, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| | - Jean-Pierre Baudoin
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Abderrhamane Dahmani
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Hubert Lepidi
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Service d'Anatomo-Pathologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| | - Gilbert Habib
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Service de Cardiologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| | - Laurence Camoin-Jau
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Laboratoire d'Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| |
Collapse
|
7
|
Meyers S, Lox M, Kraisin S, Liesenborghs L, Martens CP, Frederix L, Van Bruggen S, Crescente M, Missiakas D, Baatsen P, Vanassche T, Verhamme P, Martinod K. Neutrophils Protect Against Staphylococcus aureus Endocarditis Progression Independent of Extracellular Trap Release. Arterioscler Thromb Vasc Biol 2023; 43:267-285. [PMID: 36453281 PMCID: PMC9869964 DOI: 10.1161/atvbaha.122.317800] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Infective endocarditis (IE) is characterized by an infected thrombus at the heart valves. How bacteria bypass the immune system and cause these thrombi remains unclear. Neutrophils releasing NETs (neutrophil extracellular traps) lie at this interface between host defense and coagulation. We aimed to determine the role of NETs in IE immunothrombosis. METHODS We used a murine model of Staphylococcus aureus endocarditis in which IE is provoked on inflamed heart valves and characterized IE thrombus content by immunostaining identifying NETs. Antibody-mediated neutrophil depletion and neutrophil-selective PAD4 (peptidylarginine deiminase 4)-knockout mice were used to clarify the role of neutrophils and NETs, respectively. S. aureus mutants deficient in key virulence factors related to immunothrombosis (nucleases or staphylocoagulases) were investigated. RESULTS Neutrophils releasing NETs were present in infected thrombi and within cellular infiltrates in the surrounding vasculature. Neutrophil depletion increased occurrence of IE, whereas neutrophil-selective impairment of NET formation did not alter IE occurrence. Absence of S. aureus nuclease, which degrades NETs, did not affect endocarditis outcome. In contrast, absence of staphylocoagulases (coagulase and von Willebrand factor binding protein) led to improved survival, decreased bacteremia, smaller infiltrates, and decreased tissue destruction. Significantly more NETs were present in these vegetations, which correlated with decreased bacteria and cell death in the adjacent vascular wall. CONCLUSIONS Neutrophils protect against IE independent of NET release. Absence of S. aureus coagulases, but not nucleases, reduced IE severity and increased NET levels. Staphylocoagulase-induced fibrin likely hampers NETs from constraining infection and the resultant tissue damage, a hallmark of valve destruction in IE.
Collapse
Affiliation(s)
- Severien Meyers
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Marleen Lox
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Sirima Kraisin
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Laurens Liesenborghs
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Caroline P. Martens
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Liesbeth Frederix
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Marilena Crescente
- Department of Life Sciences, Manchester Metropolitan University, United Kingdom (M.C.)
| | | | - Pieter Baatsen
- Electron Microscopy-Platform of the VIB Bio Imaging Core and VIB Center for Brain and Disease Research (P.B.), KU Leuven, Belgium
| | - Thomas Vanassche
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences (S.M., M.L., S.K., L.L., C.P.M., L.F., S.V.B., T.V., P.V., K.M.), KU Leuven, Belgium
| |
Collapse
|
8
|
Meyers S, Crescente M, Verhamme P, Martinod K. Staphylococcus aureus and Neutrophil Extracellular Traps: The Master Manipulator Meets Its Match in Immunothrombosis. Arterioscler Thromb Vasc Biol 2022; 42:261-276. [PMID: 35109674 PMCID: PMC8860219 DOI: 10.1161/atvbaha.121.316930] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.
Collapse
Affiliation(s)
- Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Marilena Crescente
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.).,Department of Life Sciences, Manchester Metropolitan University, United Kingdom (M.C.)
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Kimberly Martinod
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| |
Collapse
|
9
|
Barua N, Huang L, Li C, Yang Y, Luo M, Wei WI, Wong KT, Lo NWS, Kwok KO, Ip M. Comparative Study of Two-Dimensional (2D) vs. Three-Dimensional (3D) Organotypic Kertatinocyte-Fibroblast Skin Models for Staphylococcus aureus (MRSA) Infection. Int J Mol Sci 2021; 23:ijms23010299. [PMID: 35008727 PMCID: PMC8745520 DOI: 10.3390/ijms23010299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 01/03/2023] Open
Abstract
The invasion of skin tissue by Staphylococcus aureus is mediated by mechanisms that involve sequential breaching of the different stratified layers of the epidermis. Induction of cell death in keratinocytes is a measure of virulence and plays a crucial role in the infection progression. We established a 3D-organotypic keratinocyte-fibroblast co-culture model to evaluate whether a 3D-skin model is more effective in elucidating the differences in the induction of cell death by Methicillin-resistant Staphylococcus aureus (MRSA) than in comparison to 2D-HaCaT monolayers. We investigated the difference in adhesion, internalization, and the apoptotic index in HaCaT monolayers and our 3D-skin model using six strains of MRSA representing different clonal types, namely, ST8, ST30, ST59, ST22, ST45 and ST239. All the six strains exhibited internalization in HaCaT cells. Due to cell detachment, the invasion study was limited up to two and a half hours. TUNEL assay showed no significant difference in the cell death induced by the six MRSA strains in the HaCaT cells. Our 3D-skin model provided a better insight into the interactions between the MRSA strains and the human skin during the infection establishment as we could study the infection of MRSA in our skin model up to 48 h. Immunohistochemical staining together with TUNEL assay in the 3D-skin model showed co-localization of the bacteria with the apoptotic cells demonstrating the induction of apoptosis by the bacteria and revealed the variation in bacterial transmigration among the MRSA strains. The strain representing ST59 showed maximum internalization in HaCaT cells and the maximum cell death as measured by Apoptotic index in the 3D-skin model. Our results show that 3D-skin model might be more likely to imitate the physiological response of skin to MRSA infection than 2D-HaCaT monolayer keratinocyte cultures and will enhance our understanding of the difference in pathogenesis among different MRSA strains.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Lin Huang
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Carmen Li
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Ying Yang
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Mingjing Luo
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wan In Wei
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.I.W.); (K.O.K.)
| | - Kam Tak Wong
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Norman Wai Sing Lo
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Kin On Kwok
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.I.W.); (K.O.K.)
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
- Correspondence: ; Tel.: +852-35051265
| |
Collapse
|
10
|
Kearney KJ, Ariëns RAS, Macrae FL. The Role of Fibrin(ogen) in Wound Healing and Infection Control. Semin Thromb Hemost 2021; 48:174-187. [PMID: 34428799 DOI: 10.1055/s-0041-1732467] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.
Collapse
Affiliation(s)
- Katherine J Kearney
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Butt JH, Fosbøl EL, Verhamme P, Gerds TA, Iversen K, Bundgaard H, Bruun NE, Larsen AR, Petersen A, Andersen PS, Skov RL, Gislason GH, Torp-Pedersen C, Køber L, Olesen JB. Dabigatran and the Risk of Staphylococcus aureus Bacteremia: A Nationwide Cohort Study. Clin Infect Dis 2021; 73:480-486. [PMID: 32478836 DOI: 10.1093/cid/ciaa661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Treatment with dabigatran, an oral direct thrombin inhibitor, reduces the virulence of Staphylococcus aureus in in vitro and in vivo models. However, it remains to be determined whether dabigatran reduces the risk of S. aureus infections in humans. We investigated the incidence rate of S. aureus bacteremia (SAB) in patients with atrial fibrillation treated with the direct thrombin inhibitor dabigatran compared with patients treated with the factor Xa-inhibitors rivaroxaban, apixaban, and edoxaban. METHODS In this observational cohort study, 112 537 patients with atrial fibrillation who initiated treatment with direct oral anticoagulants (August 2011-December 2017) were identified from Danish nationwide registries. The incidence rates of SAB in patients treated with dabigatran versus patients treated with the factor Xa-inhibitors were examined by multivariable Cox regression accounting for time-dynamic changes in exposure status during follow-up. RESULTS A total of 112 537 patients were included. During a median follow-up of 2.0 years, 186 patients in the dabigatran group and 356 patients in the factor Xa-inhibitor group were admitted with SAB. The crude incidence rate of SAB was lower in the dabigatran group compared with the factor Xa-inhibitor group (22.8 [95% confidence interval [CI], 19.7-26.3] and 33.8 [95% CI, 30.5-37.6] events per 10 000 person-years, respectively). In adjusted analyses, dabigatran was associated with a significantly lower incidence rate of SAB compared with factor Xa-inhibitors (incidence rate ratio, .76; 95% CI, .63-.93). CONCLUSIONS Treatment with dabigatran was associated with a significantly lower incidence rate of SAB compared with treatment with factor Xa-inhibitors.
Collapse
Affiliation(s)
- Jawad H Butt
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil L Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Verhamme
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thomas A Gerds
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark.,The Danish Heart Foundation, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte University Hospital, Herlev, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Eske Bruun
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark.,Institute of Clinical Medicine, Copenhagen University, Copenhagen, Denmark.,Clinical Institute, Aalborg University, Aalborg, Denmark
| | | | | | - Paal S Andersen
- Statens Serum Institut, Copenhagen, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Gunnar H Gislason
- The Danish Heart Foundation, Copenhagen, Denmark.,Department of Cardiology, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | - Christian Torp-Pedersen
- Department of Cardiology and Clinical Investigation, Nordsjællands Hospital, Hillerød, Denmark.,Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jonas B Olesen
- Department of Cardiology, Herlev and Gentofte University Hospital, Hellerup, Denmark
| |
Collapse
|
12
|
Panizzi P, Krohn-Grimberghe M, Keliher E, Ye YX, Grune J, Frodermann V, Sun Y, Muse CG, Bushey K, Iwamoto Y, van Leent MMT, Meerwaldt A, Toner YC, Munitz J, Maier A, Soultanidis G, Calcagno C, Pérez-Medina C, Carlucci G, Riddell KP, Barney S, Horne G, Anderson B, Maddur-Appajaiah A, Verhamme IM, Bock PE, Wojtkiewicz GR, Courties G, Swirski FK, Church WR, Walz PH, Tillson DM, Mulder WJM, Nahrendorf M. Multimodal imaging of bacterial-host interface in mice and piglets with Staphylococcus aureus endocarditis. Sci Transl Med 2021; 12:12/568/eaay2104. [PMID: 33148623 DOI: 10.1126/scitranslmed.aay2104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/05/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Acute bacterial endocarditis is a rapid, difficult to manage, and frequently lethal disease. Potent antibiotics often cannot efficiently kill Staphylococcus aureus that colonizes the heart's valves. S. aureus relies on virulence factors to evade therapeutics and the host's immune response, usurping the host's clotting system by activating circulating prothrombin with staphylocoagulase and von Willebrand factor-binding protein. An insoluble fibrin barrier then forms around the bacterial colony, shielding the pathogen from immune cell clearance. Targeting virulence factors may provide previously unidentified avenues to better diagnose and treat endocarditis. To tap into this unused therapeutic opportunity, we codeveloped therapeutics and multimodal molecular imaging to probe the host-pathogen interface. We introduced and validated a family of small-molecule optical and positron emission tomography (PET) reporters targeting active thrombin in the fibrin-rich environment of bacterial colonies. The imaging agents, based on the clinical thrombin inhibitor dabigatran, are bound to heart valve vegetations in mice. Using optical imaging, we monitored therapy with antibodies neutralizing staphylocoagulase and von Willebrand factor-binding protein in mice with S. aureus endocarditis. This treatment deactivated bacterial defenses against innate immune cells, decreased in vivo imaging signal, and improved survival. Aortic or tricuspid S. aureus endocarditis in piglets was also successfully imaged with clinical PET/magnetic resonance imaging. Our data map a route toward adjuvant immunotherapy for endocarditis and provide efficient tools to monitor this drug class for infectious diseases.
Collapse
Affiliation(s)
- Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Marvin Krohn-Grimberghe
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA.,University Heart Center Freiburg, 79106 Freiburg, Germany
| | - Edmund Keliher
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Yu-Xiang Ye
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Jana Grune
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Vanessa Frodermann
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Yuan Sun
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Charlotte G Muse
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | - Yoshiko Iwamoto
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anu Meerwaldt
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yohana C Toner
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jazz Munitz
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Maier
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claudia Calcagno
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Pérez-Medina
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Centro Nacional de Investigaciones Cardivasculares, 28029 Madrid, Spain
| | - Giuseppe Carlucci
- Bernard and Irene Schwarz Center for Biomedical Imaging, New York University, New York, NY 10016, USA
| | - Kay P Riddell
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Sharron Barney
- Department of Clinical Science, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Glenn Horne
- Department of Clinical Science, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Brian Anderson
- Swine Research and Education Center, Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ashoka Maddur-Appajaiah
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Paul E Bock
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Gregory R Wojtkiewicz
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Gabriel Courties
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | - Paul H Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - D Michael Tillson
- Department of Clinical Science, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA. .,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Lerche CJ, Schwartz F, Theut M, Fosbøl EL, Iversen K, Bundgaard H, Høiby N, Moser C. Anti-biofilm Approach in Infective Endocarditis Exposes New Treatment Strategies for Improved Outcome. Front Cell Dev Biol 2021; 9:643335. [PMID: 34222225 PMCID: PMC8249808 DOI: 10.3389/fcell.2021.643335] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Infective endocarditis (IE) is a life-threatening infective disease with increasing incidence worldwide. From early on, in the antibiotic era, it was recognized that high-dose and long-term antibiotic therapy was correlated to improved outcome. In addition, for several of the common microbial IE etiologies, the use of combination antibiotic therapy further improves outcome. IE vegetations on affected heart valves from patients and experimental animal models resemble biofilm infections. Besides the recalcitrant nature of IE, the microorganisms often present in an aggregated form, and gradients of bacterial activity in the vegetations can be observed. Even after appropriate antibiotic therapy, such microbial formations can often be identified in surgically removed, infected heart valves. Therefore, persistent or recurrent cases of IE, after apparent initial infection control, can be related to biofilm formation in the heart valve vegetations. On this background, the present review will describe potentially novel non-antibiotic, antimicrobial approaches in IE, with special focus on anti-thrombotic strategies and hyperbaric oxygen therapy targeting the biofilm formation of the infected heart valves caused by Staphylococcus aureus. The format is translational from preclinical models to actual clinical treatment strategies.
Collapse
Affiliation(s)
- Christian Johann Lerche
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Franziska Schwartz
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Theut
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
14
|
Bacteria and Host Interplay in Staphylococcus aureus Septic Arthritis and Sepsis. Pathogens 2021; 10:pathogens10020158. [PMID: 33546401 PMCID: PMC7913561 DOI: 10.3390/pathogens10020158] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are a major healthcare challenge and new treatment alternatives are needed. S. aureus septic arthritis, a debilitating joint disease, causes permanent joint dysfunction in almost 50% of the patients. S. aureus bacteremia is associated with higher mortalities than bacteremia caused by most other microbes and can develop to severe sepsis and death. The key to new therapies is understanding the interplay between bacterial virulence factors and host immune response, which decides the disease outcome. S. aureus produces numerous virulence factors that facilitate bacterial dissemination, invasion into joint cavity, and cause septic arthritis. Monocytes, activated by several components of S. aureus such as lipoproteins, are responsible for bone destructions. In S. aureus sepsis, cytokine storm induced by S. aureus components leads to the hyperinflammatory status, DIC, multiple organ failure, and later death. The immune suppressive therapies at the very early time point might be protective. However, the timing of treatment is crucial, as late treatment may aggravate the immune paralysis and lead to uncontrolled infection and death.
Collapse
|
15
|
Three-Dimensional In Vitro Staphylococcus aureus Abscess Communities Display Antibiotic Tolerance and Protection from Neutrophil Clearance. Infect Immun 2020; 88:IAI.00293-20. [PMID: 32817328 DOI: 10.1128/iai.00293-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a prominent human pathogen in bone and soft-tissue infections. Pathophysiology involves abscess formation, which consists of central staphylococcal abscess communities (SACs), surrounded by a fibrin pseudocapsule and infiltrating immune cells. Protection against the ingress of immune cells such as neutrophils, or tolerance to antibiotics, remains largely unknown for SACs and is limited by the lack of availability of in vitro models. We describe a three-dimensional in vitro model of SACs grown in a human plasma-supplemented collagen gel. The in vitro SACs reached their maximum size by 24 h and elaborated a fibrin pseudocapsule, as confirmed by electron and immunofluorescence microscopy. The in vitro SACs tolerated 100× the MIC of gentamicin alone and in combination with rifampin, while planktonic controls and mechanically dispersed SACs were efficiently killed. To simulate a host response, SACs were exposed to differentiated PLB-985 neutrophil-like (dPLB) cells and to primary human neutrophils at an early stage of SAC formation or after maturation at 24 h. Both cell types were unable to clear mature in vitro SACs, but dPLB cells prevented SAC growth upon early exposure before pseudocapsule maturation. Neutrophil exposure after plasmin pretreatment of the SACs resulted in a significant decrease in the number of bacteria within the SACs. The in vitro SAC model mimics key in vivo features, offers a new tool to study host-pathogen interactions and drug efficacy assessment, and has revealed the functionality of the S. aureus pseudocapsule in protecting the bacteria from host phagocytic responses and antibiotics.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Fibrin(ogen) is a multifunctional clotting protein that not only has critical roles in hemostasis but is also important in inflammatory processes that control bacterial infection. As a provisional extracellular matrix protein, fibrin(ogen) functions as a physical barrier, a scaffold for immune cell migration, or as a spatially-defined cue to drive inflammatory cell activation. These mechanisms contribute to overall host antimicrobial defense against infection. However, numerous bacterial species have evolved mechanisms to manipulate host fibrin(ogen) to promote microbial virulence and survival. Staphylococcal species, in particular, express numerous virulence factors capable of engaging fibrin(ogen), promoting fibrin formation, and driving the dissolution of fibrin matrices. RECENT FINDINGS Recent studies have highlighted both new insights into the molecular mechanisms involved in fibrin(ogen)-mediated host defense and pathogen-driven virulence. Of particular interest is the role of fibrin(ogen) in forming host protective biofilms versus pathogen protective barriers and biofilms as well as the role of fibrin(ogen) in mediating direct host antimicrobial responses. SUMMARY Current data suggest that the role of fibrin(ogen) in staphylococcal infection is highly context-dependent and that better defining the precise cellular and molecular pathways activated will provide unique opportunities of therapeutic intervention to better treat Staphylococcal disease.
Collapse
|
17
|
Zhang H, Luan Y, Jing S, Wang Y, Gao Z, Yang P, Ding Y, Wang L, Wang D, Wang T. Baicalein mediates protection against Staphylococcus aureus-induced pneumonia by inhibiting the coagulase activity of vWbp. Biochem Pharmacol 2020; 178:114024. [PMID: 32413427 DOI: 10.1016/j.bcp.2020.114024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
The emergence and spread of multidrug-resistant Staphylococcus aureus (S. aureus) necessitate the research on therapeutic tactics which are different from classical antibiotics in overcoming resistance andtreatinginfections. In S. aureus, von Willebrand factor-binding protein (vWbp) is one of the key virulence determinants because it mediates not only the activation of thrombin to convert fibrinogen to fibrin, thereby enabling S. aureus to escape from the host immune clearance, but also the adhesion of S. aureus to host cells. Thus, vWbp is regarded as a promising druggable target to treat S. aureus-associated infections. Here we identify that baicalein, a natural compound isolated from the Chinese herb Scutellaria baicalensis, can effectively block the coagulase activity of vWbp without inhibiting the growth of the bacteria. Through thermal shift and fluorescence quenching assays, we demonstrated that baicalein directly binds to vWbp. Molecular dynamics simulations and mutagenesis assays revealed that the Asp-75 and Lys-80 residues are necessary for baicalein binding to vWbp. Importantly, we demonstrated that baicalein treatment attenuates the virulence of S. aureus and protects mice from S. aureus-induced lethal pneumonia. In addition, baicalein can improve the therapeutic effect of penicillin G by 75% in vivo. These findings indicate that baicalein might be developed as a promising therapeutic agent against drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Haitao Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yongxin Luan
- Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yanling Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Zeyuan Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Panpan Yang
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Ying Ding
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun 130062, China.
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
18
|
Liesenborghs L, Meyers S, Vanassche T, Verhamme P. Coagulation: At the heart of infective endocarditis. J Thromb Haemost 2020; 18:995-1008. [PMID: 31925863 DOI: 10.1111/jth.14736] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Infective endocarditis is a life-threatening and enigmatic disease with a mortality of 30% and a pathophysiology that is poorly understood. However, at its core, an endocarditis lesion is mainly a fibrin and platelet blood clot infested with bacteria, clinging at the cardiac valves. Infective endocarditis therefore serves as a paradigm of immunothrombosis gone wrong. Immunothrombosis refers to the entanglement of the coagulation system with innate immunity and the role of coagulation in the isolation and clearance of invading pathogens. However, in the case of infective endocarditis, instead of containing the infection, immunothrombosis inadvertently creates the optimal shelter from the immune system and allows some bacteria to grow almost unimpeded. In every step of the disease, the coagulation system is heavily involved. It mediates the initial adhesion of bacteria to the leaflets, fuels the growth and maturation of a vegetation, and facilitates complications such as embolization and valve destruction. In addition, the number one cause of infective endocarditis, Staphylococcus aureus, has proven to be a true manipulator of immunothrombosis and thrives in the fibrin rich environment of an endocarditis vegetation. Considering its central role in infective endocarditis, the coagulation system is an attractive therapeutic target for this deadly disease. There is, however, a very delicate balance at play and the use of antithrombotic drugs in patients with endocarditis is often accompanied with a high bleeding risk.
Collapse
Affiliation(s)
- Laurens Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Thomas Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Targeting staphylocoagulase with isoquercitrin protects mice from Staphylococcus aureus-induced pneumonia. Appl Microbiol Biotechnol 2020; 104:3909-3919. [PMID: 32130467 DOI: 10.1007/s00253-020-10486-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Abstract
Staphylocoagulase (Coa) is a virulence factor of Staphylococcus aureus (S. aureus) that promotes blood coagulation by activating prothrombin to convert fibrinogen to fibrin. Coa plays a crucial role in disease pathogenesis and is a promising target for the treatment of S. aureus infections. Here, we identified that isoquercitrin, a natural flavonol compound, can markedly reduce the activity of Coa at concentrations that have no effect on bacterial growth. Mechanistic studies employing molecular dynamics simulation revealed that isoquercitrin binds to Coa by interacting with Asp-181 and Tyr-188, thereby affecting the binding of Coa to prothrombin. Importantly, in vivo studies showed that isoquercitrin treatment significantly reduced the bacterial burden, pathological damage, and inflammation of lung tissue and improved the percentage of survival of mice infected with S. aureus Newman strain. These data suggest that isoquercitrin is a promising inhibitor of Coa that can be used for the development of therapeutic drugs to combat S. aureus infections.Key Points• Staphylocoagulase plays a key role in the pathogenesis of S. aureus infection.• We identified that isoquercitrin is a direct inhibitor of staphylocoagulase.• Isoquercitrin treatment can significantly attenuate S. aureus virulence in vivo.
Collapse
|
20
|
Wang L, Li B, Si X, Liu X, Deng X, Niu X, Jin Y, Wang D, Wang J. Quercetin protects rats from catheter-related Staphylococcus aureus infections by inhibiting coagulase activity. J Cell Mol Med 2019; 23:4808-4818. [PMID: 31094081 PMCID: PMC6584481 DOI: 10.1111/jcmm.14371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/18/2019] [Accepted: 04/22/2019] [Indexed: 11/30/2022] Open
Abstract
Coagulase (Coa) activity is essential for the virulence of Staphylococcus aureus (S aureus), one of the most important pathogenic bacteria leading to catheter‐related bloodstream infections (CRBSI). We have demonstrated that the mutation of coagulase improved outcomes in disease models of S aureus CRBSI, suggesting that targeting Coa may represent a novel antiinfective strategy for CRBSI. Here, we found that quercetin, a natural compound that does not affect S aureus viability, could inhibit Coa activity. Chemical biological analysis revealed that the direct engagement of quercetin with the active site (residues Tyr187, Leu221 and His228) of Coa inhibited its activity. Furthermore, treatment with quercetin reduced the retention of bacteria on catheter surfaces, decreased the bacterial load in the kidneys and alleviated kidney abscesses in vivo. These data suggest that antiinfective therapy targeting Coa with quercetin may represent a novel strategy and provide a new leading compound with which to combat bacterial infections.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - BangBang Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.,College of Animal Science, Jilin University, Changchun, Jilin, China.,The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaosa Si
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yingli Jin
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, Jilin, China
| | - Dacheng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.,College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Lerche CJ, Christophersen LJ, Goetze JP, Nielsen PR, Thomsen K, Enevold C, Høiby N, Jensen PØ, Bundgaard H, Moser C. Adjunctive dabigatran therapy improves outcome of experimental left-sided Staphylococcus aureus endocarditis. PLoS One 2019; 14:e0215333. [PMID: 31002679 PMCID: PMC6474597 DOI: 10.1371/journal.pone.0215333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Staphylococcus aureus is the most frequent and fatal cause of left-sided infective endocarditis (IE). New treatment strategies are needed to improve the outcome. S. aureus coagulase promotes clot and fibrin formation. We hypothesized that dabigatran, could reduce valve vegetations and inflammation in S. aureus IE. Methods We used a rat model of severe aortic valve S. aureus IE. All infected animals were randomized to receive adjunctive dabigatran (10 mg/kg b.i.d., n = 12) or saline (controls, n = 11) in combination with gentamicin. Valve vegetation size, bacterial load, cytokine, cell integrins expression and peripheral platelets and neutrophils were assessed 3 days post-infection. Results Adjunctive dabigatran treatment significantly reduced valve vegetation size compared to controls (p< 0.0001). A significant reduction of the bacterial load in aortic valves was seen in dabigatran group compared to controls (p = 0.02), as well as expression of key pro-inflammatory markers keratinocyte-derived chemokine, IL-6, ICAM-1, TIMP-1, L-selectin (p< 0.04). Moreover, the dabigatran group had a 2.5-fold increase of circulating platelets compared to controls and a higher expression of functional and activated platelets (CD62p+) unbound to neutrophils. Conclusion Adjunctive dabigatran reduced the vegetation size, bacterial load, and inflammation in experimental S. aureus IE.
Collapse
Affiliation(s)
- Christian J. Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
- * E-mail:
| | - Lars J. Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens Peter Goetze
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Pia R. Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Peter Ø. Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Mancini S, Oechslin F, Menzi C, Que YA, Claes J, Heying R, Veloso TR, Vanassche T, Missiakas D, Schneewind O, Moreillon P, Entenza JM. Marginal role of von Willebrand factor-binding protein and coagulase in the initiation of endocarditis in rats with catheter-induced aortic vegetations. Virulence 2019; 9:1615-1624. [PMID: 30280967 PMCID: PMC7000203 DOI: 10.1080/21505594.2018.1528845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Staphylococcus aureus is the leading cause of infective endocarditis (IE). While the role of S. aureus cell-wall associated protein clumping factor A (ClfA) in promoting IE has been already demonstrated, that of the secreted plasma-clotting factors staphylocoagulase (Coa) and von Willebrand factor-binding protein (vWbp) has not yet been elucidated. We investigated the role of Coa and vWbp in IE initiation in rats with catheter-induced aortic vegetations, using Lactococcus lactis expressing coa, vWbp, clfA or vWbp/clfA, and S. aureus Newman Δcoa, ΔvWbp, ΔclfA or Δcoa/ΔvWbp/ΔclfA mutants. vWbp-expression increased L. lactis valve infection compared to parent and coa-expressing strains (incidence: 62%, versus 0% and 13%, respectively; P < 0.01). Likewise, expression of clfA increased L. lactis infectivity (incidence: 80%), which was not further affected by co-expression of vWbp. In symmetry, deletion of the coa or vWbp genes in S. aureus did not decrease infectivity (incidence: 68 and 64%, respectively) whereas deletion of clfA did decrease valve infection (incidence: 45%; P = 0.03 versus parent), which was not further affected by the triple deletion Δcoa/ΔvWbp/ΔclfA (incidence: 36%; P > 0.05 versus ΔclfA mutant). Coa does not support the initial colonization of IE (in L. lactis) without other key virulence factors and vWbp contributes to initiation of IE (in L. lactis) but is marginal in the present of ClfA.
Collapse
Affiliation(s)
- Stefano Mancini
- a Department of Fundamental Microbiology , University of Lausanne , Lausanne , Switzerland
| | - Frank Oechslin
- a Department of Fundamental Microbiology , University of Lausanne , Lausanne , Switzerland
| | - Carmen Menzi
- a Department of Fundamental Microbiology , University of Lausanne , Lausanne , Switzerland
| | - Yok Ai Que
- b Department of Intensive Care Medicine , Bern University Hospital , Bern , Switzerland
| | - Jorien Claes
- c Cardiovascular Developmental Biology, Department of Cardiovascular Sciences , KU Leuven , Leuven , Belgium.,d Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences , KU Leuven , Leuven , Belgium
| | - Ruth Heying
- c Cardiovascular Developmental Biology, Department of Cardiovascular Sciences , KU Leuven , Leuven , Belgium
| | - Tiago Rafael Veloso
- a Department of Fundamental Microbiology , University of Lausanne , Lausanne , Switzerland
| | - Thomas Vanassche
- d Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences , KU Leuven , Leuven , Belgium
| | | | - Olaf Schneewind
- e Department of Microbiology , University of Chicago , Chicago , IL , USA
| | - Philippe Moreillon
- a Department of Fundamental Microbiology , University of Lausanne , Lausanne , Switzerland
| | - José Manuel Entenza
- a Department of Fundamental Microbiology , University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
23
|
Trivedi U, Madsen JS, Everett J, Fell C, Russel J, Haaber J, Crosby HA, Horswill AR, Burmølle M, Rumbaugh KP, Sørensen SJ. Staphylococcus aureus coagulases are exploitable yet stable public goods in clinically relevant conditions. Proc Natl Acad Sci U S A 2018; 115:E11771-E11779. [PMID: 30463950 PMCID: PMC6294911 DOI: 10.1073/pnas.1804850115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Coagulation is an innate defense mechanism intended to limit blood loss and trap invading pathogens during infection. However, Staphylococcus aureus has the ability to hijack the coagulation cascade and generate clots via secretion of coagulases. Although many S. aureus have this characteristic, some do not. The population dynamics regarding this defining trait have yet to be explored. We report here that coagulases are public goods that confer protection against antimicrobials and immune factors within a local population or community, thus promoting growth and virulence. By utilizing variants of a methicillin-resistant S. aureus we infer that the secretion of coagulases is a cooperative trait, which is subject to exploitation by invading mutants that do not produce the public goods themselves. However, overexploitation, "tragedy of the commons," does not occur at clinically relevant conditions. Our micrographs indicate this is due to spatial segregation and population viscosity. These findings emphasize the critical role of coagulases in a social evolution context and provide a possible explanation as to why the secretion of these public goods is maintained in mixed S. aureus communities.
Collapse
Affiliation(s)
- Urvish Trivedi
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jake Everett
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Cody Fell
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Jakob Russel
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jakob Haaber
- Department of Veterinary and Animal Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| | - Heidi A Crosby
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Alexander R Horswill
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
| |
Collapse
|
24
|
Richards AC, O'Shea M, Beard PM, Goncheva MI, Tuffs SW, Fitzgerald JR, Lengeling A. Staphylococcus pseudintermedius Surface Protein L (SpsL) Is Required for Abscess Formation in a Murine Model of Cutaneous Infection. Infect Immun 2018; 86:IAI.00631-18. [PMID: 30181348 PMCID: PMC6204706 DOI: 10.1128/iai.00631-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus pseudintermedius is the leading cause of pyoderma in dogs and is often associated with recurrent skin infections that require prolonged antibiotic therapy. High levels of antibiotic use have led to multidrug resistance, including the emergence of epidemic methicillin-resistant clones. Our understanding of the pathogenesis of S. pseudintermedius skin infection is very limited, and the identification of the key host-pathogen interactions underpinning infection could lead to the design of novel therapeutic or vaccine-based approaches for controlling disease. Here, we employ a novel murine cutaneous-infection model of S. pseudintermedius and investigate the role of the two cell wall-associated proteins (SpsD and SpsL) in skin disease pathogenesis. Experimental infection with wild-type S. pseudintermedius strain ED99 or a gene-deletion derivative deficient in expression of SpsD led to a focal accumulation of neutrophils and necrotic debris in the dermis and deeper tissues of the skin characteristic of a classical cutaneous abscess. In contrast, mice infected with mutants deficient in SpsL or both SpsD and SpsL developed larger cutaneous lesions with distinct histopathological features of regionally extensive cellulitis rather than focal abscessation. Furthermore, comparison of the bacterial loads in S. pseudintermedius-induced cutaneous lesions revealed a significantly increased burden of bacteria in the mice infected with SpsL-deficient mutants. These findings reveal a key role for SpsL in murine skin abscess formation and highlight a novel function for a bacterial surface protein in determining the clinical outcome and pathology of infection caused by a major canine pathogen.
Collapse
Affiliation(s)
- Amy C Richards
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie O'Shea
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa M Beard
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mariya I Goncheva
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen W Tuffs
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Lengeling
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Pigozzo AB, Missiakas D, Alonso S, Dos Santos RW, Lobosco M. Development of a Computational Model of Abscess Formation. Front Microbiol 2018; 9:1355. [PMID: 29997587 PMCID: PMC6029511 DOI: 10.3389/fmicb.2018.01355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/05/2018] [Indexed: 01/06/2023] Open
Abstract
In some bacterial infections, the immune system cannot eliminate the invading pathogen. In these cases, the invading pathogen is successful in establishing a favorable environment to survive and persist in the host organism. For example, S. aureus bacteria survive in organ tissues employing a set of mechanisms that work in a coordinated and highly regulated way allowing: (1) efficient impairment of the immune response; and (2) protection from the immune cells and molecules. S. aureus secretes several proteins including coagulases and toxins that drive abscess formation and persistence. Unless staphylococcal abscesses are surgically drained and treated with antibiotics, disseminated infection and septicemia produce a lethal outcome. Within this context, this paper develops a simple mathematical model of abscess formation incorporating characteristics that we judge important for an abscess to be formed. Our aim is to build a mathematical model that reproduces some characteristics and behaviors that are observed in the process of abscess formation.
Collapse
Affiliation(s)
- Alexandre B Pigozzo
- Department of Computer Science, Federal University of São João Del-Rei, São João Del-Rei, Brazil
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, IL, United States
| | - Sergio Alonso
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Rodrigo W Dos Santos
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo Lobosco
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
26
|
Liesenborghs L, Verhamme P, Vanassche T. Staphylococcus aureus, master manipulator of the human hemostatic system. J Thromb Haemost 2018; 16:441-454. [PMID: 29251820 DOI: 10.1111/jth.13928] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/15/2022]
Abstract
The coagulation system does not only offer protection against bleeding, but also aids in our defense against invading microorganisms. The hemostatic system and innate immunity are strongly entangled, which explains why so many infections are complicated by either bleeding or thrombosis. Staphylococcus aureus (S. aureus), currently the most deadly infectious agent in the developed world, causes devastating intravascular infections such as sepsis and infective endocarditis. During these infections S. aureus comes in close contact with the host hemostatic system and proves to be a master in manipulating coagulation. The coagulases of S. aureus directly induce coagulation by activating prothrombin. S. aureus also manipulates fibrinolysis by triggering plasminogen activation via staphylokinase. Furthermore, S. aureus binds and activates platelets and interacts with key coagulation proteins such as fibrin(ogen), fibronectin and von Willebrand factor. By manipulating the coagulation system S. aureus gains a significant advantage over the host defense mechanisms. Studying the interplay between S. aureus and the hemostatic system can therefore lead to new innovative therapies for battling S. aureus infections.
Collapse
Affiliation(s)
- L Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - P Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - T Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Claes J, Liesenborghs L, Peetermans M, Veloso TR, Missiakas D, Schneewind O, Mancini S, Entenza JM, Hoylaerts MF, Heying R, Verhamme P, Vanassche T. Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J Thromb Haemost 2017; 15:1009-1019. [PMID: 28182324 PMCID: PMC6232194 DOI: 10.1111/jth.13653] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 01/10/2023]
Abstract
Essentials Staphylococcus aureus (S. aureus) binds to endothelium via von Willebrand factor (VWF). Secreted VWF-binding protein (vWbp) mediates S. aureus adhesion to VWF under shear stress. vWbp interacts with VWF and the Sortase A-dependent surface protein Clumping factor A (ClfA). VWF-vWbp-ClfA anchor S. aureus to vascular endothelium under shear stress. SUMMARY Objective When establishing endovascular infections, Staphylococcus aureus (S. aureus) overcomes shear forces of flowing blood by binding to von Willebrand factor (VWF). Staphylococcal VWF-binding protein (vWbp) interacts with VWF, but it is unknown how this secreted protein binds to the bacterial cell wall. We hypothesized that vWbp interacts with a staphylococcal surface protein, mediating the adhesion of S. aureus to VWF and vascular endothelium under shear stress. Methods We studied the binding of S. aureus to vWbp, VWF and endothelial cells in a micro-parallel flow chamber using various mutants deficient in Sortase A (SrtA) and SrtA-dependent surface proteins, and Lactococcus lactis expressing single staphylococcal surface proteins. In vivo adhesion of bacteria was evaluated in the murine mesenteric circulation using real-time intravital vascular microscopy. Results vWbp bridges the bacterial cell wall and VWF, allowing shear-resistant binding of S. aureus to inflamed or damaged endothelium. Absence of SrtA and Clumping factor A (ClfA) reduced adhesion of S. aureus to vWbp, VWF and activated endothelial cells. ADAMTS-13 and an anti-VWF A1 domain antibody, when combined, reduced S. aureus adhesion to activated endothelial cells by 90%. Selective overexpression of ClfA in the membrane of Lactococcus lactis enabled these bacteria to bind to VWF and activated endothelial cells but only in the presence of vWbp. Absence of ClfA abolished bacterial adhesion to the activated murine vessel wall. Conclusions vWbp interacts with VWF and with the SrtA-dependent staphylococcal surface protein ClfA. The complex formed by VWF, secreted vWbp and bacterial ClfA anchors S. aureus to vascular endothelium under shear stress.
Collapse
Affiliation(s)
- J Claes
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - L Liesenborghs
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - M Peetermans
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - T R Veloso
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - D Missiakas
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - O Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - S Mancini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - J M Entenza
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - M F Hoylaerts
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - R Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - P Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - T Vanassche
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Claushuis TAM, de Stoppelaar SF, Stroo I, Roelofs JJTH, Ottenhoff R, van der Poll T, Van't Veer C. Thrombin contributes to protective immunity in pneumonia-derived sepsis via fibrin polymerization and platelet-neutrophil interactions. J Thromb Haemost 2017; 15:744-757. [PMID: 28092405 DOI: 10.1111/jth.13625] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 01/20/2023]
Abstract
Essentials Immunity and coagulation are linked during sepsis but the role of thrombin is not fully elucidated. We investigated the effect of thrombin inhibition on murine Klebsiella pneumosepsis outcome. Thrombin is crucial for survival and limiting bacterial growth in pneumonia derived sepsis. Thrombin improves host defense via fibrin and enhancement of platelet-neutrophil interactions. SUMMARY Background Innate immunity and coagulation are closely linked during sepsis. Their interaction can be detrimental to the outcome because of microvascular failure but can also enhance host defense. The role of thrombin therein has not been fully elucidated. Objective We aimed to investigate the contribution of thrombin to the host response during pneumonia-derived sepsis. Methods Mice treated with the specific thrombin inhibitor dabigatran or control chow were infected with the common human sepsis pathogen Klebsiella (K.) pneumoniae via the airways. In subsequent infection experiments, mice were additionally treated with ancrod to deplete fibrinogen. Ex vivo Klebsiella growth was assessed by incubating human whole blood or specific blood components in various conditions with Klebsiella. Results Thrombin inhibition by dabigatran enhanced bacterial outgrowth and spreading, and accelerated mortality. Thrombin inhibition did not influence neutrophil recruitment to the lung or activation or neutrophil extracellular trap formation. Dabigatran reduced D-dimer formation and fibrin deposition in the lung. Fibrin depletion also enhanced bacterial outgrowth and spreading, and thrombin inhibition had no additional effect. Both thrombin and fibrin polymerization inhibited ex vivo Klebsiella outgrowth in human whole blood, which was neutrophil dependent, and the effect of thrombin required the presence of platelets and platelet protease activated receptor-1. In vivo thrombin inhibition reduced platelet-neutrophil complex formation and endothelial cell activation, but did not prevent sepsis-induced thrombocytopenia or organ damage. Conclusions These results suggest that thrombin plays an important role in protective immunity during pneumonia-derived sepsis by fibrin polymerization and enhancement of platelet-neutrophil interactions.
Collapse
Affiliation(s)
- T A M Claushuis
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - S F de Stoppelaar
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - I Stroo
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - R Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C Van't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:1-41. [PMID: 27565579 DOI: 10.1016/bs.aambs.2016.07.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion.
Collapse
Affiliation(s)
- H A Crosby
- University of Iowa, Iowa City, IA, United States
| | - J Kwiecinski
- University of Iowa, Iowa City, IA, United States
| | - A R Horswill
- University of Iowa, Iowa City, IA, United States
| |
Collapse
|
30
|
Contribution of Staphylococcus aureus Coagulases and Clumping Factor A to Abscess Formation in a Rabbit Model of Skin and Soft Tissue Infection. PLoS One 2016; 11:e0158293. [PMID: 27336691 PMCID: PMC4918888 DOI: 10.1371/journal.pone.0158293] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus produces numerous factors that facilitate survival in the human host. S. aureus coagulase (Coa) and von Willebrand factor-binding protein (vWbp) are known to clot plasma through activation of prothrombin and conversion of fibrinogen to fibrin. In addition, S. aureus clumping factor A (ClfA) binds fibrinogen and contributes to platelet aggregation via a fibrinogen- or complement-dependent mechanism. Here, we evaluated the contribution of Coa, vWbp and ClfA to S. aureus pathogenesis in a rabbit model of skin and soft tissue infection. Compared to skin abscesses caused by the Newman wild-type strain, those caused by isogenic coa, vwb, or clfA deletion strains, or a strain deficient in coa and vwb, were significantly smaller following subcutaneous inoculation in rabbits. Unexpectedly, we found that fibrin deposition and abscess capsule formation appear to be independent of S. aureus coagulase activity in the rabbit infection model. Similarities notwithstanding, S. aureus strains deficient in coa and vwb elicited reduced levels of several proinflammatory molecules in human blood in vitro. Although a specific mechanism remains to be determined, we conclude that S. aureus Coa, vWbp and ClfA contribute to abscess formation in rabbits.
Collapse
|
31
|
Ko YP, Flick MJ. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Semin Thromb Hemost 2016; 42:408-21. [PMID: 27056151 PMCID: PMC5514417 DOI: 10.1055/s-0036-1579635] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
32
|
Tissue Plasminogen Activator Coating on Implant Surfaces Reduces Staphylococcus aureus Biofilm Formation. Appl Environ Microbiol 2015; 82:394-401. [PMID: 26519394 DOI: 10.1128/aem.02803-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus biofilm infections of indwelling medical devices are a major medical challenge because of their high prevalence and antibiotic resistance. As fibrin plays an important role in S. aureus biofilm formation, we hypothesize that coating of the implant surface with fibrinolytic agents can be used as a new method of antibiofilm prophylaxis. The effect of tissue plasminogen activator (tPA) coating on S. aureus biofilm formation was tested with in vitro microplate biofilm assays and an in vivo mouse model of biofilm infection. tPA coating efficiently inhibited biofilm formation by various S. aureus strains. The effect was dependent on plasminogen activation by tPA, leading to subsequent local fibrin cleavage. A tPA coating on implant surfaces prevented both early adhesion and later biomass accumulation. Furthermore, tPA coating increased the susceptibility of biofilm infections to antibiotics. In vivo, significantly fewer bacteria were detected on the surfaces of implants coated with tPA than on control implants from mice treated with cloxacillin. Fibrinolytic coatings (e.g., with tPA) reduce S. aureus biofilm formation both in vitro and in vivo, suggesting a novel way to prevent bacterial biofilm infections of indwelling medical devices.
Collapse
|
33
|
Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol 2015; 42:866-82. [PMID: 26485450 DOI: 10.3109/1040841x.2015.1080214] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both coagulation and fibrinolysis are tightly connected with the innate immune system. Infection and inflammation cause profound alterations in the otherwise well-controlled balance between coagulation and fibrinolysis. Many pathogenic bacteria directly exploit the host's hemostatic system to increase their virulence. Here, we review the capacity of bacteria to activate plasminogen. The resulting proteolytic activity allows them to breach tissue barriers and evade innate immune defense, thus promoting bacterial spreading. Yersinia pestis, streptococci of group A, C and G and Staphylococcus aureus produce a specific bacterial plasminogen activator. Moreover, surface plasminogen receptors play an established role in pneumococcal, borrelial and group B streptococcal infections. This review summarizes the mechanisms of bacterial activation of host plasminogen and the role of the fibrinolytic system in infections caused by these pathogens.
Collapse
Affiliation(s)
- Marijke Peetermans
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Thomas Vanassche
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | | | - Roger H Lijnen
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Peter Verhamme
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| |
Collapse
|
34
|
Lerche CJ, Christophersen LJ, Trøstrup H, Thomsen K, Jensen PØ, Hougen HP, Bundgaard H, Høiby N, Moser C. Low efficacy of tobramycin in experimental Staphylococcus aureus endocarditis. Eur J Clin Microbiol Infect Dis 2015; 34:2349-57. [PMID: 26440039 DOI: 10.1007/s10096-015-2488-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
The empiric treatment of infective endocarditis (IE) varies widely and, in some places, a regimen of penicillin in combination with an aminoglycoside is administered. The increasing incidence of Staphylococcus aureus IE, poor tissue penetration by aminoglycosides and low frequency of penicillin-susceptible S. aureus may potentially lead to functional tobramycin monotherapy. Therefore, this study aimed to evaluate tobramycin monotherapy in an experimental S. aureus IE rat model. Catheter-induced IE at the aortic valves were established with S. aureus (NCTC 8325-4) and rats were randomised into untreated (n = 22) or tobramycin-treated (n = 13) groups. The treatment group received tobramycin once-daily. Animals were evaluated at 1 day post infection (DPI), 2 DPI or 3 DPI. Quantitative bacteriology and cytokine expression were measured for valves, myocardium and serum. A decrease of bacterial load was observed in valves and the spleens of the treated (n = 6) compared to the untreated group at 2 DPI (n = 8) (p ≤ 0.02 and p ≤ 0.01, respectively), but not at 3 DPI (n = 7). Quantitative bacteriology in the myocardium was not different between the groups. Keratinocyte-derived chemokine (KC) in the aortic valves was significantly reduced at 2 DPI in the tobramycin-treated group (p ≤ 0.03). However, the expression of interleukin (IL)-1b, IL-6 and granulocyte-colony stimulating factor (G-CSF) in the valves was not different between the two groups. In the myocardium, a significant reduction in IL-1b was observed at 2 DPI (p ≤ 0.001) but not at 3 DPI. Tobramycin as functional monotherapy only reduced bacterial load and inflammation transiently, and was insufficient in most cases of S. aureus IE.
Collapse
Affiliation(s)
- C J Lerche
- Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Juliane Maries vej 22, 2100, Copenhagen, Denmark.
| | - L J Christophersen
- Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Juliane Maries vej 22, 2100, Copenhagen, Denmark
| | - H Trøstrup
- Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Juliane Maries vej 22, 2100, Copenhagen, Denmark
| | - K Thomsen
- Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Juliane Maries vej 22, 2100, Copenhagen, Denmark
| | - P Ø Jensen
- Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Juliane Maries vej 22, 2100, Copenhagen, Denmark
| | - H P Hougen
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - H Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - N Høiby
- Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Juliane Maries vej 22, 2100, Copenhagen, Denmark.,Institute of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - C Moser
- Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Juliane Maries vej 22, 2100, Copenhagen, Denmark
| |
Collapse
|
35
|
Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense. Blood 2015; 126:2047-58. [PMID: 26228483 DOI: 10.1182/blood-2015-04-639849] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/26/2015] [Indexed: 12/14/2022] Open
Abstract
Fibrin(ogen) is central to hemostasis and thrombosis and also contributes to multiple physiologic and pathologic processes beyond coagulation. However, the precise contribution of soluble fibrinogen vs insoluble fibrin matrices to vascular integrity, tissue repair, inflammation, and disease has been undefined and unapproachable. To establish the means to distinguish fibrinogen- and fibrin-dependent processes in vivo, Fib(AEK) mice were generated that carry normal levels of circulating fibrinogen but lack the capacity for fibrin polymer formation due to a germ-line mutation in the Aα chain thrombin cleavage site. Homozygous Fib(AEK) mice developed to term and exhibited postnatal survival superior to that of fibrinogen-deficient mice. Unlike fibrinogen-deficient mice, platelet-rich plasma from Fib(AEK) mice supported normal platelet aggregation in vitro, highlighting that fibrinogen(AEK) retains the functional capacity to support interactions with platelets. Thrombin failed to release fibrinopeptide-A from fibrinogen(AEK) and failed to induce polymer formation with Fib(AEK) plasma or purified fibrinogen(AEK) in 37°C mixtures regardless of incubation time. Fib(AEK) mice displayed both an absence of fibrin polymer formation following liver injury, as assessed by electron microscopy, and a failure to generate stable occlusive thrombi following FeCl3 injury of carotid arteries. Fib(AEK) mice exhibited a profound impediment in Staphylococcus aureus clearance following intraperitoneal infection similar to fibrinogen-deficient mice, yet Fib(AEK) mice displayed a significant infection dose-dependent survival advantage over fibrinogen-deficient mice following peritonitis challenge. Collectively, these findings establish for the first time that fibrin polymer is the molecular form critical for antimicrobial mechanisms while simultaneously highlighting biologically meaningful contributions and functions of the soluble molecule.
Collapse
|
36
|
Kwiecinski J, Peetermans M, Liesenborghs L, Na M, Björnsdottir H, Zhu X, Jacobsson G, Johansson BR, Geoghegan JA, Foster TJ, Josefsson E, Bylund J, Verhamme P, Jin T. Staphylokinase Control of Staphylococcus aureus Biofilm Formation and Detachment Through Host Plasminogen Activation. J Infect Dis 2015; 213:139-48. [PMID: 26136471 DOI: 10.1093/infdis/jiv360] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/22/2015] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus biofilms, a leading cause of persistent infections, are highly resistant to immune defenses and antimicrobial therapies. In the present study, we investigated the contribution of fibrin and staphylokinase (Sak) to biofilm formation. In both clinical S. aureus isolates and laboratory strains, high Sak-producing strains formed less biofilm than strains that lacked Sak, suggesting that Sak prevents biofilm formation. In addition, Sak induced detachment of mature biofilms. This effect depended on plasminogen activation by Sak. Host-derived fibrin, the main substrate cleaved by Sak-activated plasminogen, was a major component of biofilm matrix, and dissolution of this fibrin scaffold greatly increased susceptibility of biofilms to antibiotics and neutrophil phagocytosis. Sak also attenuated biofilm-associated catheter infections in mouse models. In conclusion, our results reveal a novel role for Sak-induced plasminogen activation that prevents S. aureus biofilm formation and induces detachment of existing biofilms through proteolytic cleavage of biofilm matrix components.
Collapse
Affiliation(s)
- Jakub Kwiecinski
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Marijke Peetermans
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Laurens Liesenborghs
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Manli Na
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Halla Björnsdottir
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology
| | - Gunnar Jacobsson
- Department of Infectious Diseases, Skaraborg Hospital, Skövde, Sweden
| | | | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Elisabet Josefsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Johan Bylund
- Department of Rheumatology and Inflammation Research, Institute of Medicine Department of Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| |
Collapse
|
37
|
Schneider H, Vogt M, Boekenkamp R, Hoerer J, Eicken A, Foth R, Kriebel T, Paul T, Sigler M. Melody transcatheter valve: Histopathology and clinical implications of nine explanted devices. Int J Cardiol 2015; 189:124-31. [PMID: 25889442 DOI: 10.1016/j.ijcard.2015.04.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES We examined interventionally implanted valved Melody conduits after surgical explantation by means of histology and immunohistochemistry and matched these findings with clinical data in order to assess in vivo biocompatibility and to identify risk factors for graft failure. METHODS 9 Melody valves had been implanted in 8 patients (pulmonary n = 7, tricuspid position n = 1). Indication for explantation included significant obstruction in 7 patients and valve insufficiency in 1 patient. 4 of 8 patients had suffered from endocarditis. Mean interval between implantation and explantation was 3.2 (1.8-5.2) years. All explants were worked up using a uniform protocol with fixation in formalin and embedding in methylmethacrylate. RESULTS All but one valve of the explanted Melody grafts were thin and histologically intact without any pathological findings. Complete neo-endothelialization could be demonstrated by means of immunohistochemistry. All 4 Melody valves from patients with endocarditis showed dense granulocytic infiltrations, 3 of these showed thrombotic material within the valves. CONCLUSION This report covers the first series of explanted Melody valves from humans applying a uniform protocol for histopathological examination. Good biocompatibility of the Melody valves could be demonstrated after a mid-term follow-up. Factors for graft failure included endocarditis, outgrowth, and residual stenosis. These findings may have significant implications for the implant procedure as well as care of the patients during long-term follow-up.
Collapse
Affiliation(s)
- Heike Schneider
- Department of Pediatric Cardiology and Pediatric Intensive Care Medicine, Georg-August University, Goettingen, Germany
| | - Manfred Vogt
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center at the Technische Universitaet Muenchen, Germany
| | - Regina Boekenkamp
- Leiden University Medical Center, Department of Pediatric Cardiology, Netherlands
| | - Juergen Hoerer
- Department of Cardiovascular Surgery, German Heart Center at the Technische Universitaet Muenchen, Germany
| | - Andreas Eicken
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center at the Technische Universitaet Muenchen, Germany
| | - Rudi Foth
- Department of Pediatric Cardiology and Pediatric Intensive Care Medicine, Georg-August University, Goettingen, Germany
| | - Thomas Kriebel
- Department of Pediatric Cardiology and Pediatric Intensive Care Medicine, Georg-August University, Goettingen, Germany
| | - Thomas Paul
- Department of Pediatric Cardiology and Pediatric Intensive Care Medicine, Georg-August University, Goettingen, Germany
| | - Matthias Sigler
- Department of Pediatric Cardiology and Pediatric Intensive Care Medicine, Georg-August University, Goettingen, Germany.
| |
Collapse
|
38
|
Loof TG, Goldmann O, Naudin C, Mörgelin M, Neumann Y, Pils MC, Foster SJ, Medina E, Herwald H. Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. MICROBIOLOGY-SGM 2014; 161:621-627. [PMID: 25533444 DOI: 10.1099/mic.0.000019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent work has shown that coagulation and innate immunity are tightly interwoven host responses that help eradicate an invading pathogen. Some bacterial species, including Staphylococcus aureus, secrete pro-coagulant factors that, in turn, can modulate these immune reactions. Such mechanisms may not only protect the micro-organism from a lethal attack, but also promote bacterial proliferation and the establishment of infection. Our data showed that coagulase-positive S. aureus bacteria promoted clotting of plasma which was not seen when a coagulase-deficient mutant strain was used. Furthermore, in vitro studies showed that this ability constituted a mechanism that supported the aggregation, survival and persistence of the micro-organism within the fibrin network. These findings were also confirmed when agglutination and persistence of coagulase-positive S. aureus bacteria at the local focus of infection were studied in a subcutaneous murine infection model. In contrast, the coagulase-deficient S. aureus strain which was not able to induce clotting failed to aggregate and to persist in vivo. In conclusion, our data suggested that coagulase-positive S. aureus have evolved mechanisms that prevent their elimination within a fibrin clot.
Collapse
Affiliation(s)
- Torsten G Loof
- 1Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.,2Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Goldmann
- 2Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Clément Naudin
- 1Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- 1Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Yvonne Neumann
- 3Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Germany.,4Systems-oriented Immunology and Inflammation Research Group, Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marina C Pils
- 5Mousepathology, Animal Experimental Unit, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Simon J Foster
- 6Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Eva Medina
- 2Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heiko Herwald
- 1Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Peetermans M, Vanassche T, Liesenborghs L, Claes J, Vande Velde G, Kwiecinksi J, Jin T, De Geest B, Hoylaerts MF, Lijnen RH, Verhamme P. Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiol 2014; 14:310. [PMID: 25515118 PMCID: PMC4274676 DOI: 10.1186/s12866-014-0310-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a frequent cause of skin and soft tissue infections. A unique feature of S. aureus is the combined presence of coagulases that trigger fibrin formation and of the plasminogen activator staphylokinase (SAK). Whereas the importance of fibrin generation for S. aureus virulence has been established, the role of SAK remains unclear. We studied the role of plasminogen activation by SAK in a skin infection model in mice and evaluated the impact of alpha-2-antiplasmin (α2AP) deficiency on the spreading and proteolytic activity of S. aureus skin infections. The species-selectivity of SAK was overcome by adenoviral expression of human plasminogen. Bacterial spread and density was assessed non-invasively by imaging the bioluminescence of S. aureus Xen36. RESULTS SAK-mediated plasmin activity increased the local invasiveness of S. aureus, leading to larger lesions with skin disruption as well as decreased bacterial clearance by the host. Even though fibrin and bacterial surfaces protected SAK-mediated plasmin activity from inhibition by α2AP, the deficiency of α2AP resulted in increased bacterial spreading. SAK-mediated plasmin also induced secondary activation of gelatinases, shown both in vitro and in lesions from the in vivo model. CONCLUSION SAK contributes to the phenotype of S. aureus skin infections by enhancing bacterial spreading as a result of fibrinolytic and proteolytic activation.
Collapse
Affiliation(s)
- Marijke Peetermans
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Thomas Vanassche
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Laurens Liesenborghs
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Jorien Claes
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center, KU Leuven, Herestraat 49, Box 505, Leuven, Belgium.
| | - Jakub Kwiecinksi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Guldhedsgatan 10, Box 480, Gothenburg, Sweden.
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Guldhedsgatan 10, Box 480, Gothenburg, Sweden.
| | - Bart De Geest
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Marc F Hoylaerts
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Roger H Lijnen
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| |
Collapse
|
40
|
Veloso TR, Que YA, Chaouch A, Giddey M, Vouillamoz J, Rousson V, Moreillon P, Entenza JM. Prophylaxis of Experimental Endocarditis With Antiplatelet and Antithrombin Agents: A Role for Long-term Prevention of Infective Endocarditis in Humans? J Infect Dis 2014; 211:72-9. [DOI: 10.1093/infdis/jiu426] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor-binding protein. Blood 2014; 124:1669-76. [PMID: 24951431 DOI: 10.1182/blood-2014-02-558890] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion of Staphylococcus aureus to blood vessels under shear stress requires von Willebrand factor (VWF). Several bacterial factors have been proposed to interact with VWF, including VWF-binding protein (vWbp), a secreted coagulase that activates the host's prothrombin to generate fibrin. We measured the adhesion of S aureus Newman and a vWbp-deficient mutant (vwb) to VWF, collagen, and activated endothelial cells in a microparallel flow chamber. In vivo adhesion of S aureus was evaluated in the mesenteric circulation of wild-type (WT) and VWF-deficient mice. We found a shear-dependent increase in adhesion of S aureus to the (sub)endothelium that was dependent on interactions between vWbp and the A1-domain of VWF. Adhesion was further enhanced by coagulase-mediated fibrin formation that clustered bacteria and recruited platelets into bacterial microthrombi. In vivo, deficiency of vWbp or VWF as well as inhibition of coagulase activity reduced S aureus adhesion. We conclude that vWbp contributes to vascular adhesion of S aureus through 2 independent mechanisms: shear-mediated binding to VWF and activation of prothrombin to form S aureus-fibrin-platelet aggregates.
Collapse
|
42
|
Ellis CR, Kaiser DW. The clinical efficacy of dabigatran etexilate for preventing stroke in atrial fibrillation patients. Vasc Health Risk Manag 2013; 9:341-52. [PMID: 23874100 PMCID: PMC3711881 DOI: 10.2147/vhrm.s28271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The use of novel oral anticoagulants (NOACs) for stroke and systemic embolism prevention in the setting of specifically non valvular atrial fibrillation has provided clinicians with a realistic treatment alternative to the traditional dose-adjusted, warfarin-based anticoagulation that is targeted to a therapeutic international normalized ratio range of 2.0–3.0. We discuss the use of dabigatran in the setting of mechanical heart valves, atrial fibrillation or left atrial catheter ablation procedures, reversal of the drug in the setting of adverse bleeding events, and background on the molecular biology and development of this novel treatment for stroke reduction.
Collapse
|
43
|
Kwiecinski J, Jacobsson G, Karlsson M, Zhu X, Wang W, Bremell T, Josefsson E, Jin T. Staphylokinase Promotes the Establishment of Staphylococcus aureus Skin Infections While Decreasing Disease Severity. J Infect Dis 2013; 208:990-9. [DOI: 10.1093/infdis/jit288] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
44
|
Vanassche T, Peetermans M, Van Aelst LNL, Peetermans WE, Verhaegen J, Missiakas DM, Schneewind O, Hoylaerts MF, Verhamme P. The role of staphylothrombin-mediated fibrin deposition in catheter-related Staphylococcus aureus infections. J Infect Dis 2013; 208:92-100. [PMID: 23532100 DOI: 10.1093/infdis/jit130] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a frequent cause of catheter-related infections. S. aureus secretes the coagulases staphylocoagulase and von Willebrand factor-binding protein, both of which form a staphylothrombin complex upon binding to prothrombin. Although fibrinogen and fibrin facilitate the adhesion of S. aureus to catheters, the contribution of staphylothrombin-mediated fibrin has not been examined. In this study, we use a S. aureus mutant lacking both coagulases (Δcoa/vwb) and dabigatran, a pharmacological inhibitor of both staphylothrombin and thrombin, to address this question. Genetic absence or chemical inhibition of pathogen-driven coagulation reduced both fibrin deposition and the retention of S. aureus on catheters in vitro. In a mouse model of jugular vein catheter infection, dabigatran reduced bacterial load on jugular vein catheters, as well as metastatic kidney infection. Importantly, inhibition of staphylothrombin improved the efficacy of vancomycin treatment both in vitro and in the mouse model.
Collapse
Affiliation(s)
- Thomas Vanassche
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
van Ryn J, Goss A, Hauel N, Wienen W, Priepke H, Nar H, Clemens A. The discovery of dabigatran etexilate. Front Pharmacol 2013; 4:12. [PMID: 23408233 PMCID: PMC3569592 DOI: 10.3389/fphar.2013.00012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/23/2013] [Indexed: 01/18/2023] Open
Abstract
Thromboembolic disease is a major cause of mortality and morbidity in the developed world and is caused by an excessive stimulation of coagulation. Thrombin is a key serine protease in the coagulation cascade and numerous efforts have been made to develop safe and effective orally active direct thrombin inhibitors (DTIs). Current anticoagulant therapy includes the use of indirect thrombin inhibitors (e.g., heparins, low-molecular-weight-heparins) and vitamin K antagonists such as warfarin. However there are several caveats in the clinical use of these agents including narrow therapeutic window, parenteral delivery, and food- and drug-drug interactions. Dabigatran is a synthetic, reversible DTI with high affinity and specificity for its target binding both free and clot-bound thrombin, and offers a favorable pharmacokinetic profile. Large randomized clinical trials have demonstrated that dabigatran provides comparable or superior thromboprophylaxis in multiple thromboembolic disease indications compared to standard of care. This minireview will highlight the discovery and development of dabigatran, the first in a class of new oral anticoagulant agents to be licensed worldwide for the prevention of thromboembolism in the setting of orthopedic surgery and stroke prevent in atrial fibrillation.
Collapse
Affiliation(s)
- Joanne van Ryn
- Department of CardioMetabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Ashley Goss
- Department of CardioMetabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc.Ridgefield, CT, USA
| | - Norbert Hauel
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Wolfgang Wienen
- Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Henning Priepke
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Herbert Nar
- Department of Lead Identification and Optimization Support, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Andreas Clemens
- Global Clinical Development and Medical Affairs, Boehringer Ingelheim Pharma GmbH & Co. KGIngelheim, Baden-Württemberg, Germany
| |
Collapse
|
46
|
Genetic elimination of the binding motif on fibrinogen for the S. aureus virulence factor ClfA improves host survival in septicemia. Blood 2013; 121:1783-94. [PMID: 23299312 DOI: 10.1182/blood-2012-09-453894] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fibrinogen can support host antimicrobial containment/clearance mechanisms, yet selected pathogens appear to benefit from host procoagulants to drive bacterial virulence. Here, we explored the hypothesis that host fibrin(ogen), on balance, supports Staphylococcus aureus infection in the context of septicemia. Survival studies following intravenous infection in control and fibrinogen-deficient mice established the overall utility of host fibrin(ogen) to S. aureus virulence. Complementary studies in mice expressing mutant forms of fibrinogen-retaining clotting function, but lacking either the bacterial ClfA (Fibγ(Δ5)) binding motif or the host leukocyte integrin receptor αMβ2 (Fibγ(390-396A)) binding motif, revealed the preeminent importance of the bacterial ClfA-fibrin(ogen) interaction in determining host survival. Studies of mice lacking platelets or the platelet integrin receptor subunit αIIb established that the survival benefits observed in Fibγ(Δ5) mice were largely independent of platelet αIIbβ3-mediated engagement of fibrinogen. Fibγ(Δ5) mice exhibited reduced bacterial burdens in the hearts and kidneys, a blunted host proinflammatory cytokine response, diminished microscopic tissue damage, and significantly diminished plasma markers of cardiac and other organ damage. These findings indicate that host fibrin(ogen) and bacterial ClfA are dual determinants of virulence and that therapeutic interventions at the level of fibrinogen could be advantageous in S. aureus septicemia.
Collapse
|
47
|
Vanassche T, Kauskot A, Verhaegen J, Peetermans WE, van Ryn J, Schneewind O, Hoylaerts MF, Verhamme P. Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation. Thromb Haemost 2012; 107:1107-21. [PMID: 22437005 DOI: 10.1160/th11-12-0891] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/01/2012] [Indexed: 11/05/2022]
Abstract
Interactions of Staphylococcus aureus (S. aureus) and platelets play an important role in the pathogenesis of intravascular infections such as infective endocarditis (IE). A typical feature of S. aureus is the ability to generate thrombin activity through the secretion of two prothrombin activating molecules, staphylocoagulase and von Willebrand factor-binding protein (vWbp), which bind to human prothrombin to form the enzymatically active staphylothrombin complex. The role of staphylothrombin in the interaction between S. aureus and platelets has not yet been studied. We found that in contrast with thrombin, staphylothrombin did not directly activate human platelets. However, the staphylothrombin-mediated conversion of fibrinogen to fibrin initiated platelet aggregation and secondary activation and facilitated S. aureus-platelet interactions. Both the genetic absence of staphylocoagulase and vWbp and pharmacological inhibition of staphylothrombin increased the lag time to aggregation, and reduced platelet trapping by S. aureus in high shear stress conditions. The combined inhibition of staphylothrombin and immunoglobulin binding to platelets completely abolished the ability of S. aureus to aggregate platelets in vitro. In conclusion, although staphylothrombin did not directly activate platelets, the formation of a fibrin scaffold facilitated bacteria-platelet interaction, and the inhibition of staphylothrombin resulted in a reduced activation of platelets by S. aureus.
Collapse
Affiliation(s)
- Thomas Vanassche
- Center for Molecular and Vascular Biology, University of Leuven, University Hospitals Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Stöllberger C, Finsterer J. Concerns regarding the use of dabigatran for stroke prevention in atrial fibrillation. Pharmaceuticals (Basel) 2012; 5:155-68. [PMID: 24288086 PMCID: PMC3763635 DOI: 10.3390/ph5020155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 12/17/2022] Open
Abstract
Dabigatran is an oral thrombin inhibitor which has been approved in several countries as an alternative to vitamin-K-antagonists for the prevention of stroke or embolism in atrial fibrillation patients. Dabigatran is introduced into clinical practice, although many issues regarding this drug are still unclear, like laboratory monitoring, use in elderly patients, drug- and food-interactions and use in patients with renal insufficiency. Additionally, there is no antidote for dabigatran. Thus, aim of the present review is to give an overview of concerns and unresolved issues concerning dabigatran.
Collapse
Affiliation(s)
- Claudia Stöllberger
- Krankenanstalt Rudolfstiftung, Second Medical Department, Juchgasse 25, Wien A-1030, Austria
- Author to whom correspondence should be addressed; ; Tel.: +43-1-945-4291; Fax: +43-1-945-4291
| | - Josef Finsterer
- Krankenanstalt Rudolfstiftung, Second Medical Department, Juchgasse 25, Wien A-1030, Austria
- Danube University Krems, Doktor-Karl-Dorrek-Straße 30, Krems A-3500, Austria;
| |
Collapse
|