1
|
Mate PS, Verma VC, Agrawal S, Jaiswal JP, Kumari VV, Kumar R, Kumari M, Gaber A, Hossain A. Effect of fenugreek (Trigonella foenum-graecum L.) seed extract on glycemic index, in vitro digestibility, and physical characterization of wheat (Triticum aestivum L.) starch. J Food Sci 2024; 89:7626-7639. [PMID: 39327545 DOI: 10.1111/1750-3841.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Diabetes is a major health concern and is approaching epidemic proportions worldwide. In 2021, diabetes mellitus was responsible for 6.7 million deaths across the globe. Mortality due to diabetes is predicted to rise nearly 10-fold by 2030 and 783 million by 2045. Wheat starch, which constitutes about 70% of the endosperm, is a key component of wheat grain. The rapid hydrolysis of wheat starch can result in elevated postprandial glucose levels, leading to diabetes. The increase in blood glucose levels is primarily due to carbohydrate hydrolysis, catalyzed by the enzymes α-amylase and α-glucosidase. Although various medications are available for treating diabetes, most of them are costly and may lead to adverse effects. Natural herbs like fenugreek are recommended in traditional medicine for regulating blood glucose levels. This investigation aimed to study the effect of fenugreek seed extract (FSE) on in vitro starch hydrolysis by pancreatic α-amylase and the ultrastructure of starch. Wheat cultivars were characterized for their total starch, amylose content, and resistant starch content, and were screened for their predicted glycemic index. Microscopic studies were conducted to analyze the size and shape of starch granules and to compare native starch with starch treated with FSE. Significant inhibition of enzymatic starch hydrolysis was observed with FSE, with the maximum inhibitory effect caused by 0.2% FSE. These findings suggest that fenugreek could play a role in controlling blood glucose levels by reducing wheat starch hydrolysis and could be effective in managing diabetes.
Collapse
Affiliation(s)
- Payal S Mate
- Department of Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar, India
- Division of Animal Biochemistry, National Dairy Research Institute, Karnal, India
| | - Vivek Chandra Verma
- Department of Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar, India
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Sanjeev Agrawal
- Department of Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Jai Prakash Jaiswal
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, Pantnagar, India
| | | | - Rajeev Kumar
- Division of Plant Physiology & Biochemistry, Indian Institute of Sugarcane Research (ICAR), Lucknow, India
| | - Mala Kumari
- Department of Plant Breeding & Genetics, Bihar Agricultural University, Bhagalpur, India
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
2
|
Zhou T, Zhang Y, Wang Y, Liu Q, Yang Y, Qiu C, Jiao A, Jin Z. Impact of freeze-thaw cycles on the physicochemical properties and structure-function relationship of potato starch with varying granule sizes in frozen dough. Int J Biol Macromol 2024; 279:134864. [PMID: 39163969 DOI: 10.1016/j.ijbiomac.2024.134864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Starch, as a critical component of dough, significantly influences quality preservation during the freezing process. In particular, the fine structure of potato (B-type) starch in frozen processing is a subject of considerable interest. This study aims to investigate the intrinsic differences of B-type starch and the impact of freeze-thaw (F/T) treatment on its molecular structure and physicochemical properties. Chain length distribution and X-ray photoelectron spectroscopy were utilized to examine the structural characteristics of natural potato starch with different granule sizes. Furthermore, the fine structure, thermal properties, and rheological properties of the isolated starches after F/T treatment were analyzed. The results indicate that potato starch with smaller particle sizes exhibits higher surface CC and PO content along with a higher proportion of very short chains (DP < 6, 8.17 %) and long B chains (DP > 25, 20.68 %). The study found that after F/T treatment, the surface of small-sized starch granules was initially damaged, exhibiting threads on the surface centered on the umbilical point. Following F/T treatment, both the crystallinity (very large (VL): 24.52-18.36 %; small (S): 17.03-16.69 %) and short-range order (VL: 2.97-2.61; S: 2.71-2.35) of starch particle size decreased. Both the amylose content (20.88-14.57 %) and ΔH (10.15-8.62 J/g) of isolated starch after freeze-thaw-treated dough exhibited a decrease to varying degrees. With the exception of the fifth cycle, small-size starch particles exhibited relatively higher G' and G" values and showed significant changes as a result of F/T treatment, demonstrating high hardness and complex viscosity. Clarifying the physicochemical properties of potato starches with different granule sizes is expected to expand their applications in frozen dough.
Collapse
Affiliation(s)
- Tongtong Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yucong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qing Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Tian KE, Aldian D, Yayota M. Metabolomic and morphologic surveillance reveals the impact of lactic acid-treated barley on in vitro ruminal fermentation. Anim Biosci 2024; 37:1901-1912. [PMID: 38754844 PMCID: PMC11541031 DOI: 10.5713/ab.23.0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE Lactic acid (LA) treatment of cereals is known to improve ruminant performance. However, changes in cereal nutrient levels and variations in rumen fermentation remain unclear. METHODS This study was designed to compare the effects of 5% LA treatment on the trophic and morphological characteristics of barley and to discover the differences in rumen fermentation characteristics and metabolomes between LA-treated and untreated barley. RESULTS Compared with those of untreated barley (BA), the dry matter (DM), crude protein (CP), ash and water-soluble carbohydrate contents of barley plants treated with 5% LA for 48 h (BALA) decreased, but the resistant starch (RS) and non-fiber carbohydrate contents increased. Moreover, the amount of proteinaceous matrix in BA decreased in response to LA treatment. During in vitro fermentation, BALA had a greater pH but lower dry matter disappearance and ammonia, methane, and short-chain fatty acid levels than BA. The differential metabolites between BA and BALA were clustered into metabolic pathways such as purine metabolism, lysine degradation, and linoleic acid metabolism. Observable differences in ultrastructure between BALA and BA were noted during fermentation. CONCLUSION Lactic treatment altered barley nutrient content, including DM, CP, RS, ash, water-soluble carbohydrates and non-fiber carbohydrates, and affected barley ultrastructure. These variations led to significant and incubation time-dependent changes in the in vitro fermentation characteristics and metabolome.
Collapse
Affiliation(s)
- K E Tian
- The United Graduate School of Agricultural Science, Gifu University, Gifu, 501-1193,
Japan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715/402460,
China
- Postdoctoral Workstation of Animal Science, Southwest University, Chongqing, 400715/402460,
China
| | - Dicky Aldian
- The United Graduate School of Agricultural Science, Gifu University, Gifu, 501-1193,
Japan
| | - Masato Yayota
- The United Graduate School of Agricultural Science, Gifu University, Gifu, 501-1193,
Japan
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193,
Japan
| |
Collapse
|
4
|
Jiao A, Zhou S, Yang Y, Jin Z. The role of non-starch constituents in the extrusion processing of slow-digesting starch diets: A review. Int J Biol Macromol 2024; 280:136060. [PMID: 39341325 DOI: 10.1016/j.ijbiomac.2024.136060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Starch is the main source of energy for the human body through diet, and its digestive properties are closely related to the occurrence of chronic diseases. Extrusion technology, which is characterized by low cost and high efficiency, has been widely used in the field of reducing starch digestibility and modifying starch, and it has great potential for designing and manufacturing precision nutrition for specific populations. However, this aspect of study has not been systemically summarized, so we systematically discuss the role of extrusion and non-starch components in starch modification in this review. This review focuses on the following sections: the effect mechanisms of extrusion on starch digestibility in terms of granule morphology, crystal structure, viscosity and pasting characteristics; the different effects of single or multiple non-starch components on starch digestibility under extrusion; and some of the current applications of extrusion technology in the development of slow-digesting starchy diets. This review summarises the effects of extrusion techniques and non-starch components on starch digestibility under extrusion conditions, and provides the appropriate theoretical basis for the application of starch-based foods in the development of slow-digesting diets, the precise nutritional design of specific populations, and the improvement of the structure of healthy human diets.
Collapse
Affiliation(s)
- Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shiming Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Singarayar MS, Chandrasekaran A, Balasundaram D, Veerasamy V, Neethirajan V, Thilagar S. Prebiotics: Comprehensive analysis of sources, structural characteristics and mechanistic roles in disease regulation. Microb Pathog 2024; 197:107071. [PMID: 39447658 DOI: 10.1016/j.micpath.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Prebiotics are nondigestible components that comprise short-chain carbohydrates, primarily oligosaccharides, which are converted into beneficial compounds by probiotics. Various plant substances with prebiotic properties provide substantial health benefits and are used to prevent different diseases and for medical and clinical applications. Consuming prebiotics gives impeccable benefits since it aids in gut microbial balance. Prebiotic research is primarily concerned with the influence of intestinal disorders. The proposed review will describe recent data on the sources, structures, implementation of prebiotics and potential mechanisms in preventing and treating various disorders, with an emphasis on the gut microbiome. Prebiotics have a distinctive impact on the gastro intestine by explicitly encouraging the growth of probiotic organisms like Bifidobacteria and Lactobacilli. This in turn augments the body's inherent ability to fend off harmful pathogens. Prebiotic carbohydrates may also provide other non-specific advantages due to their fermentation in the large intestine. Additional in vivo research is needed to fully comprehend the interactions between prebiotics and probiotics ingested by hosts to improve their nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Magdalin Sylvia Singarayar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | | | - Veeramurugan Veerasamy
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Vivek Neethirajan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
6
|
Bush JR, Iwuamadi I, Han J, Schibli DJ, Goodlett DR, Deehan EC. Resistant Potato Starch Supplementation Reduces Serum Free Fatty Acid Levels and Influences Bile Acid Metabolism. Metabolites 2024; 14:536. [PMID: 39452917 PMCID: PMC11510092 DOI: 10.3390/metabo14100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Resistant starches, such as high-amylose maize starch and resistant potato starch (RPS), have prebiotic effects that are linked to improved metabolism at >15 g/day, but the effects at lower doses have not been reported. Methods: We performed an exploratory post hoc analysis of free fatty acids (FFAs), bile acids (BAs), and ketone bodies in serum previously collected from a randomized, double-blind, placebo-controlled clinical trial evaluating the effects of one- and four-week consumption of 3.5 g/day RPS versus a placebo using two-way ANOVA adjusted by pFDR. Associations between week 4 changes in FFAs, BAs, and ketone bodies were assessed by Pearson's correlations. Results: RPS consumption reduced total FFAs relative to the placebo, including multiple unsaturated FFAs and octanedioic acid, with reductions in taurine- and glycine-conjugated secondary BAs also detected (q < 0.05). No changes in ketone bodies were observed (q > 0.05). Changes in 7-ketodeoxycholic acid (r = -0.595) and glycolithocholic acid (r = -0.471) were inversely correlated with treatment-induced reductions in FFAs for RPS but not the placebo, suggesting the effects were from the prebiotic. Shifts in β-hydroxybutyrate were further correlated with FFA changes in both treatments (q < 0.05). Conclusions: These findings demonstrate that low doses of RPS positively influence fatty acid metabolism in humans, reducing circulating levels of FFA and conjugated BAs.
Collapse
Affiliation(s)
- Jason R. Bush
- MSP Starch Products Inc., Carberry, MB R0K 0H0, Canada
| | - Izuchukwu Iwuamadi
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA; (I.I.); (E.C.D.)
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Jun Han
- UVic-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada; (J.H.); (D.J.S.); (D.R.G.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | - David J. Schibli
- UVic-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada; (J.H.); (D.J.S.); (D.R.G.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | - David R. Goodlett
- UVic-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada; (J.H.); (D.J.S.); (D.R.G.)
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8Z 7X8, Canada
| | - Edward C. Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA; (I.I.); (E.C.D.)
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
7
|
Cavallo E, Tupa Valencia MV, Rossi E, Errea MI, Foresti ML. Production of resistant starches via citric acid modification: Effects of reaction conditions on chemical structure and final properties. Int J Biol Macromol 2024; 278:134922. [PMID: 39179079 DOI: 10.1016/j.ijbiomac.2024.134922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Aiming to contribute to the current knowledge on the impact of reaction conditions on the chemical structure and target properties of starch citrates, in the current contribution different corn starch citrates were prepared by manipulation of reaction time, temperature and citric acid concentration. Modified starches were characterized in terms of chemical structure, morphology, crystallinity, swelling power and resistant starch content. For the first time, total substitution, crosslinking and monosubstitution degrees were quantitatively determined; and the relationship among final chemical structure, reaction conditions and target starch citrates properties was comprehensively analyzed. Products with total substitution values in the range of 0.075-0.24, crosslinking degrees in the 0.005-0.11 interval, and monosubstitution extents within the 0.05-0.12 range, were produced. By proper selection of reaction conditions products with almost 100 % of resistant starch were obtained. Results evidenced that starch citrates properties (mainly swelling power and RS content) depend on both chemical structure and the reaction conditions employed. Actually, the reaction temperature set (120 °C or 150 °C) proved to play a determinant role in the final products properties as evidenced from starch citrates with similar chemical structure and substantially different swelling and digestibility properties.
Collapse
Affiliation(s)
- Ema Cavallo
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires, Argentina
| | - Maribel Victoria Tupa Valencia
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires, Argentina
| | - Ezequiel Rossi
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - María Inés Errea
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina; CONICET, Argentina
| | - María Laura Foresti
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Oluseyifunmi IW, Lourenco J, Olukosi OA. The interactivity of sources and dietary levels of resistant starches - impact on growth performance, starch, and nutrient digestibility, digesta oligosaccharides profile, cecal microbial metabolites, and indicators of gut health in broiler chickens. Poult Sci 2024; 103:104337. [PMID: 39388980 DOI: 10.1016/j.psj.2024.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
In a 21-d study, 480 Cobb 500 (off-sex) male broiler chicks were used to investigate the effects of feeding different sources and levels of resistant starches (RS) on growth performance, nutrient and energy utilization, and intestinal health in broiler chickens. The birds were allocated to 10 dietary treatments in a 3 × 3 + 1 factorial arrangement. The factors were 3 RS-sources (RSS): banana starch (BS), raw potato starch (RPS), and high-amylose corn starch (HCS); each at 3 levels (RSL) 25, 50, or 100 g/kg plus a corn-soybean meal control diet. Birds and feed were weighed on d 0, 8, and 21. On d 21, samples of jejunal tissue and digesta were collected for chemical analysis. Data were analyzed using the mixed model procedure of JMP with factor levels nested with the control. In the 0 to 21 phase, the birds fed the RPS diets had higher (P = 0.011) FI than those fed HCS or control diets, and FCR was greater (P = 0.030) in birds that received BS diets than in other diets. RSS × RSL was significant (P < 0.05) for total tract nutrient retention, AME, and AMEn on d 21. The starch digestibility was higher (P < 0.001) in birds that received the control diet than in RS diets, and decreased as RS levels increased, except for HCS. The apparent metabolizable energy (AME) and nitrogen-corrected AME (AMEn) were higher (P < 0.001) in birds fed 100 g/kg HCS diet, with both decreasing with increasing levels of BS and RPS, except for HCS. Relative ileal oligosaccharides profile showed significant (P < 0.05) RSS × RSL with a higher relative abundance of Hex(3) (P = 0.01) and Pent(3) (P = 0.001) in HCS diets. In conclusion, RS may influence gut health and growth performance in broiler chickens through modulation of cecal SCFA and nutrient digestion, but these depend largely on the botanical origin and concentrations of individual RS.
Collapse
Affiliation(s)
| | - Jeferson Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Kajubi A, Baingana R, Matovu M, Katwaza R, Kubiriba J, Namanya P. Variation and Abundance of Resistant Starch in Selected Banana Cultivars in Uganda. Foods 2024; 13:2998. [PMID: 39335926 PMCID: PMC11431251 DOI: 10.3390/foods13182998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
The physiochemical, structural, and molecular characteristics of starch influence its functional properties, thereby dictating its utilization. The study aimed to profile the properties and quantity of resistant starch (RS) from 15 different banana varieties, extracted using a combination of alkaline and enzyme treatments. Granular structure and molecular organization were analyzed using light microscopy, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The physiochemical and functional properties were also investigated. RS content ranged from 49% to 80% without significant relationship to amylose (AM) (r = -0.1062). SEM revealed significant microarchitectural differences on the granules potentially affecting granule digestibility. FTIR and chemometrics identified differences in the crystalline peaks, yielding varying degrees of the molecular order of the RS polymers that aid in differentiating the RS sources. Despite similar solubility and swelling profiles, the pasting profiles varied across varieties, indicating high paste stability in hydrothermal processing. Clarity ranged from 43% to 93%, attributed to amylose leaching. This study highlights that RS from bananas varies in quantity, structure, and functionality, necessitating individualized approaches for processing and utilization.
Collapse
Affiliation(s)
- Ali Kajubi
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
- College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Rhona Baingana
- College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Moses Matovu
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
| | - Ronald Katwaza
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
| | - Jerome Kubiriba
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
| | - Priver Namanya
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
| |
Collapse
|
10
|
Amadeu CAA, Conti AC, Oliveira CAF, Martelli SM, Vanin FM. Safflower cake as an ingredient for a composite flour development towards a circular economy: extrusion versus conventional mixing. Food Res Int 2024; 191:114609. [PMID: 39059893 DOI: 10.1016/j.foodres.2024.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
Food waste is responsible for the loss of 1.3 billion tons of food, some of which are related to by-products with great nutritional and energy potential that are still underexplored, such as safflower cake derived from the oil extraction industry. Therefore, the aim of this study was to evaluate the effects of incorporating safflower cake (Carthamus tinctorius) and the mixing method used to produce composite wheat-based flour in order to develop a new ingredient. The results were analyzed using ANOVA, and the Tukey test was applied at a significance level of 5 %. The composite flours obtained by the conventional mixing method showed, when compared to wheat flour, a higher concentration of proteins (+5g 100 g-1), minerals (+86 mg kg-1 of Fe, +30 mg kg-1 of Zn), phenolic compounds (15 mg GAE g-1), flavonoids (0.3 mg QE g-1), and lower oil absorption (-0.5 g oil g sample-1), making them suitable for hot flour-based sauces, salad dressings, frozen desserts, cookies and fried products. While extruded composite flours presented better homogenization, reduction of moisture (1 g 100 g-1), lipids (3 g 100 g-1), and mycotoxin concentrations, increased antioxidant activity (DPPH -0.07 IC50 mg/L and ORAC +9 µmol Trolox Eq/g), water absorption and solubility indexes, and oil absorption index, making it suitable for bakery products, meat, and dairy sausages. The developed composite flour proved to be a good nutritional ingredient; thus, its consumption can represent an important nutritional strategy with low production costs, as well as a sustainable solution, reducing food waste and, therefore, toward the concepts of the circular economy.
Collapse
Affiliation(s)
- Carolina A Antunes Amadeu
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av. Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Ana Carolina Conti
- Department of Food Engineering and Technology, São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São José do Rio Preto, São Paulo, Brazil
| | - Carlos Augusto Fernandes Oliveira
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av. Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Silvia Maria Martelli
- Food Science and Technology Post Graduate Program, Food Engineering Department, Great Dourados Federal University, Faculty of Engineering, (FAEN/UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Fernanda Maria Vanin
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av. Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil.
| |
Collapse
|
11
|
Gutiérrez-Luna K, Ansorena D, Astiasaran I. Effect of baking conditions on resistant starch: Model systems and cake formulations. Food Chem 2024; 449:139174. [PMID: 38604027 DOI: 10.1016/j.foodchem.2024.139174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Five ingredients rich in RS (resistant starch) were assessed in a model system simulating baking process (water addition 30-50%, 180 °C/35 min) and in reformulated cakes (50% replacement of wheat flour). Moreover, two enzymatic methods used for RS determination (official and rapid) were compared. The combined effect of heating and water addition (50%) significantly decreased the RS content in all ingredients. Reformulated vegan cakes presented significantly lower RS values than those theoretically expected, according to the RS value of raw ingredients. The highest RS amount was observed for Hi Maize, which kept 84% and 72% of the initial RS content in the model systems and cake, respectively. Only the cakes made with Hi Maize reached the criteria for the health claim related to the reduction of post-prandial glycemic response (European Union regulation). Finally, differences between the official and rapid methods were less significant in the cakes than in the model systems.
Collapse
Affiliation(s)
- Katherine Gutiérrez-Luna
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition - University of Navarra, Spain; IDISNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain.
| | - Diana Ansorena
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition - University of Navarra, Spain; IDISNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain.
| | - Iciar Astiasaran
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition - University of Navarra, Spain; IDISNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain.
| |
Collapse
|
12
|
Chen X, Guo Q, Yang X, Yuan M, Song J, Fu H, Zhang H, Xu P, Liao Y, Ali A, Du K, Wu X. Triple gene mutations boost amylose and resistant starch content in rice: insights from sbe2b/ sbe1/OE- Wxa mutants. FRONTIERS IN PLANT SCIENCE 2024; 15:1452520. [PMID: 39206035 PMCID: PMC11350245 DOI: 10.3389/fpls.2024.1452520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Previous studies have modified rice's resistant starch (RS) content by mutating single and double genes. These mutations include knocking out or reducing the expression of sbe1 or sbe2b genes, as well as overexpressing Wxa . However, the impact of triple mutant sbe2b/sbe1/OE-Wxa on RS contents remained unknown. Here, we constructed a double mutant with sbe2b/RNAi-sbe1, based on IR36ae with sbe2b, and a triple mutant with sbe2b/RNAi-sbe1/OE-Wxa , based on the double mutant. The results showed that the amylose and RS contents gradually increased with an increase in the number of mutated genes. The triple mutant exhibited the highest amylose and RS contents, with 41.92% and 4.63%, respectively, which were 2- and 5-fold higher than those of the wild type, which had 22.19% and 0.86%, respectively. All three mutants altered chain length and starch composition compared to the wild type. However, there was minimal difference observed among the mutants. The Wxa gene contributed to the improvement of 1000-grain weight and seed-setting rate, in addition to the highest amylose and RS contents. Thus, our study offers valuable insight for breeding rice cultivars with a higher RS content and yields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Miao T, Zhang X, Zhang C, Wu J, Zhu Y, Xiao M, Zhang N, Zhong Y, Liu Y, Lin Y, Wu Y, Li W, Song C, Liu Y, Wang X. Type 3 resistant starch from Canna edulis reduce lipid levels in patients with mild hyperlipidemia through altering gut microbiome: A double- blind randomized controlled trial. Pharmacol Res 2024; 205:107232. [PMID: 38825157 DOI: 10.1016/j.phrs.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Type 3 resistant starch from Canna edulis (Ce-RS3) is an insoluble dietary fiber which could improve blood lipids in animals, but clinically robust evidence is still lacking. We performed a double-blind randomized controlled trial to assess the effects of Ce-RS3 on lipids in mild hyperlipidemia. One hundred and fifteen patients were included followed the recruitment criteria, and were randomly allocated to receive Ce-RS3 or placebo (native starch from Canna edulis) for 12 weeks (20 g/day). In addition to serum lipids, complete blood counts, serum inflammatory factors, antioxidant indexes, and dietary survey, 16 S rRNA sequencing technique was utilized to analyze the gut microbiota alterations. Targeted quantitative metabolomics (TQM) was used to detect metabolite changes. Compared with the placebo, Ce- RS3 significantly decreased levels of total cholesterol, lowdensity lipoprotein cholesterol, and non-high-density lipoprotein cholesterol, and increased the glutathione peroxidase. Based on the 16 S rRNA sequencing, TQM, the correlation analysis, as well as the Kyoto Encyclopedia of Genes (KEGG) and Genomes and Human Metabolome Database (HMDB) analysis, we found that Ce-RS3 could increase the abundances of genera Faecalibacterium and Agathobacter, while reduce the abundances of genera norank_f_Ruminococcaceae and Christensenellaceae_R-7_ group to regulate phenylalanine metabolism, which could reduce the fatty acid biosynthesis and fatty acid elongation in the mitochondria to lower blood lipids. Conclusively, we firstly confirmed the feasibility of Ce-RS3 for clinical application, which presents a novel, effective therapy for the mild hyperlipidemia. (Chictr. org. cn. Clinical study on anti-mild hyperlipidemia of Canna edulis RS3 resistant starch, ID Number: ChiCTR2200062871).
Collapse
Affiliation(s)
- Tingting Miao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinsheng Zhang
- The First Medical Center of PLA General Hospital of China, Beijing 100089, China
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingli Zhu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Maochun Xiao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yucheng Zhong
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Liu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yasi Lin
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuanhua Wu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou 550001, China
| | - Wenmao Li
- Qianxinan Autonomous Prefecture Hospital of Traditional Chinese Medicine, Xingyi 562400, China
| | - Chunying Song
- Qianxinan Autonomous Prefecture Hospital of Traditional Chinese Medicine, Xingyi 562400, China
| | - Yinghua Liu
- The First Medical Center of PLA General Hospital of China, Beijing 100089, China.
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
14
|
Howard EJ, Meyer RK, Weninger SN, Martinez T, Wachsmuth HR, Pignitter M, Auñon-Lopez A, Kangath A, Duszka K, Gu H, Schiro G, Laubtiz D, Duca FA. Impact of Plant-Based Dietary Fibers on Metabolic Homeostasis in High-Fat Diet Mice via Alterations in the Gut Microbiota and Metabolites. J Nutr 2024; 154:2014-2028. [PMID: 38735572 PMCID: PMC11282473 DOI: 10.1016/j.tjnut.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The gut microbiota contributes to metabolic disease, and diet shapes the gut microbiota, emphasizing the need to better understand how diet impacts metabolic disease via gut microbiota alterations. Fiber intake is linked with improvements in metabolic homeostasis in rodents and humans, which is associated with changes in the gut microbiota. However, dietary fiber is extremely heterogeneous, and it is imperative to comprehensively analyze the impact of various plant-based fibers on metabolic homeostasis in an identical setting and compare the impact of alterations in the gut microbiota and bacterially derived metabolites from different fiber sources. OBJECTIVES The objective of this study was to analyze the impact of different plant-based fibers (pectin, β-glucan, wheat dextrin, resistant starch, and cellulose as a control) on metabolic homeostasis through alterations in the gut microbiota and its metabolites in high-fat diet (HFD)-fed mice. METHODS HFD-fed mice were supplemented with 5 different fiber types (pectin, β-glucan, wheat dextrin, resistant starch, or cellulose as a control) at 10% (wt/wt) for 18 wk (n = 12/group), measuring body weight, adiposity, indirect calorimetry, glucose tolerance, and the gut microbiota and metabolites. RESULTS Only β-glucan supplementation during HFD-feeding decreased adiposity and body weight gain and improved glucose tolerance compared with HFD-cellulose, whereas all other fibers had no effect. This was associated with increased energy expenditure and locomotor activity in mice compared with HFD-cellulose. All fibers supplemented into an HFD uniquely shifted the intestinal microbiota and cecal short-chain fatty acids; however, only β-glucan supplementation increased cecal butyrate concentrations. Lastly, all fibers altered the small-intestinal microbiota and portal bile acid composition. CONCLUSIONS These findings demonstrate that β-glucan consumption is a promising dietary strategy for metabolic disease, possibly via increased energy expenditure through alterations in the gut microbiota and bacterial metabolites in mice.
Collapse
Affiliation(s)
- Elizabeth J Howard
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Rachel K Meyer
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
| | - Savanna N Weninger
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Taylor Martinez
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Hallie R Wachsmuth
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Archana Kangath
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Gabriele Schiro
- PANDA Core for Genomics and Microbiome Research, Steele Children's Research Center, University of Arizona, Tucson, AZ, United States
| | - Daniel Laubtiz
- PANDA Core for Genomics and Microbiome Research, Steele Children's Research Center, University of Arizona, Tucson, AZ, United States
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States; BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
15
|
Park M, Lee HB, Kim HR, Kang MC, Jeong D, Choi HD, Hong JS, Park HY. Resistant starch-enriched brown rice exhibits prebiotic properties and enhances gut health in obese mice. Food Res Int 2024; 187:114417. [PMID: 38763667 DOI: 10.1016/j.foodres.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Resistant starch serves as a prebiotic in the large intestine, aiding in the maintenance of a healthy intestinal environment and mitigating associated chronic illnesses. This study aimed to investigate the impact of resistant starch-enriched brown rice (RBR) on intestinal health and functionality. We assessed changes in resistant starch concentration, structural alterations, and branch chain length distribution throughout the digestion process using an in vitro model. The efficacy of RBR in the intestinal environment was evaluated through analyses of its prebiotic potential, effects on intestinal microbiota, and intestinal function-related proteins in obese animals fed a high-fat diet. RBR exhibited a higher yield of insoluble fraction in both the small and large intestines compared to white and brown rice. The total digestible starch content decreased, while the resistant starch content significantly increased during in vitro digestion. Furthermore, RBR notably enhanced the growth of four probiotic strains compared to white and brown rice, displaying higher proliferation activity than the positive control, FOS. Notably, consumption of RBR by high-fat diet-induced obese mice suppressed colon shortening, increased Bifidobacteria growth, and improved intestinal permeability. These findings underscore the potential prebiotic and gut health-promoting attributes of RBR, offering insights for the development of functional foods aimed at preventing gastrointestinal diseases.
Collapse
Affiliation(s)
- Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Ha Ram Kim
- Food Convergence Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Min-Cheol Kang
- Food Convergence Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Duyun Jeong
- Department of Food and Food Service Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Hee-Don Choi
- Food Convergence Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Jung Sun Hong
- Food Convergence Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
16
|
Raval SD, Archana G. Evaluation of synbiotic combinations of commercial probiotic strains with different prebiotics in in vitro and ex vivo human gut microcosm model. Arch Microbiol 2024; 206:315. [PMID: 38904672 DOI: 10.1007/s00203-024-04030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Exploring probiotics for their crosstalk with the host microbiome through the fermentation of non-digestible dietary fibers (prebiotics) for their potential metabolic end-products, particularly short-chain fatty acids (SCFAs), is important for understanding the endogenous host-gut microbe interaction. This study was aimed at a systematic comparison of commercially available probiotics to understand their synergistic role with specific prebiotics in SCFAs production both in vitro and in the ex vivo gut microcosm model. Probiotic strains isolated from pharmacy products including Lactobacillus sporogenes (strain not labeled), Lactobacillus rhamnosus GG (ATCC53103), Streptococcus faecalis (T-110 JPC), Bacillus mesentericus (TO-AJPC), Bacillus clausii (SIN) and Saccharomyces boulardii (CNCM I-745) were assessed for their probiotic traits including survival, antibiotic susceptibility, and antibacterial activity against pathogenic strains. Our results showed that the microorganisms under study had strain-specific abilities to persist in human gastrointestinal conditions and varied anti-infective efficacy and antibiotic susceptibility. The probiotic strains displayed variation in the utilization of six different prebiotic substrates for their growth under aerobic and anaerobic conditions. Their prebiotic scores (PS) revealed which were the most suitable prebiotic carbohydrates for the growth of each strain and suggested xylooligosaccharide (XOS) was the poorest utilized among all. HPLC analysis revealed a versatile pattern of SCFAs produced as end-products of prebiotic fermentation by the strains which was influenced by growth conditions. Selected synbiotic (prebiotic and probiotic) combinations showing high PS and high total SCFAs production were tested in an ex vivo human gut microcosm model. Interestingly, significantly higher butyrate and propionate production was found only when synbiotics were applied as against when individual probiotic or prebiotics were applied alone. qRT-PCR analysis with specific primers showed that there was a significant increase in the abundance of lactobacilli and bifidobacteria with synbiotic blends compared to pre-, or probiotics alone. In conclusion, this work presents findings to suggest prebiotic combinations with different well-established probiotic strains that may be useful for developing effective synbiotic blends.
Collapse
Affiliation(s)
- Shivani D Raval
- Department of Microbiology and Biotechnology Center, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India
| | - G Archana
- Department of Microbiology and Biotechnology Center, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India.
| |
Collapse
|
17
|
Akpo E, Colin C, Perrin A, Cambedouzou J, Cornu D. Encapsulation of Active Substances in Natural Polymer Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2774. [PMID: 38894037 PMCID: PMC11173946 DOI: 10.3390/ma17112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Already used in the food, pharmaceutical, cosmetic, and agrochemical industries, encapsulation is a strategy used to protect active ingredients from external degradation factors and to control their release kinetics. Various encapsulation techniques have been studied, both to optimise the level of protection with respect to the nature of the aggressor and to favour a release mechanism between diffusion of the active compounds and degradation of the barrier material. Biopolymers are of particular interest as wall materials because of their biocompatibility, biodegradability, and non-toxicity. By forming a stable hydrogel around the drug, they provide a 'smart' barrier whose behaviour can change in response to environmental conditions. After a comprehensive description of the concept of encapsulation and the main technologies used to achieve encapsulation, including micro- and nano-gels, the mechanisms of controlled release of active compounds are presented. A panorama of natural polymers as wall materials is then presented, highlighting the main results associated with each polymer and attempting to identify the most cost-effective and suitable methods in terms of the encapsulated drug.
Collapse
Affiliation(s)
| | | | | | - Julien Cambedouzou
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - David Cornu
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| |
Collapse
|
18
|
Munir H, Alam H, Nadeem MT, Almalki RS, Arshad MS, Suleria HAR. Green banana resistant starch: A promising potential as functional ingredient against certain maladies. Food Sci Nutr 2024; 12:3787-3805. [PMID: 38873476 PMCID: PMC11167165 DOI: 10.1002/fsn3.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 06/15/2024] Open
Abstract
This review covers the significance of green banana resistant starch (RS), a substantial polysaccharide. The food industry has taken an interest in green banana flour due to its 30% availability of resistant starch and its approximately 70% starch content on a dry basis, making its use suitable for food formulations where starch serves as the base. A variety of processing techniques, such as heat-moisture, autoclaving, microwaving, high hydrostatic pressure, extrusion, ultrasound, acid hydrolysis, and enzymatic debranching treatments, have made significant advancements in the preparation of resistant starch. These advancements aim to change the structure, techno-functionality, and subsequently the physiological functions of the resistant starch. Green bananas make up the highest RS as compared to other foods and cereals. Many food processing industries and cuisines now have a positive awareness due to the functional characteristics of green bananas, such as their pasting, thermal, gelatinization, foaming, and textural characteristics. It is also found useful for controlling the rates of cancer, obesity, and diabetic disorders. Moreover, the use of GBRS as prebiotics and probiotics might be significantly proved good for gut health. This study aimed at the awareness of the composition, extraction and application of the green banana resistant starch in the future food products.
Collapse
Affiliation(s)
- Haroon Munir
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Hamza Alam
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Riyadh S. Almalki
- Department of Pharmacology and Toxicology, Faculty of PharmacyUmm AL‐Qura UniversityMakkahSaudi Arabia
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
- Department of Agriculture and Food SystemsThe University of MelbourneMelbourneVictoriaAustralia
| | | |
Collapse
|
19
|
Kaur P, Kaur H, Aggarwal R, Bains K, Mahal AK, Singla LD, Gupta K. Analysing the Impact of Resistant Starch Formation in Basmati Rice Products: Exploring Associations with Blood Glucose and Lipid Profiles across Various Cooking and Storage Conditions In Vivo. Foods 2024; 13:1669. [PMID: 38890898 PMCID: PMC11171569 DOI: 10.3390/foods13111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024] Open
Abstract
Common cooking methods were used to prepare basmati rice products, including boiling 1 (boiling by absorption), boiling 2 (boiling in extra amount of water), frying, and pressure cooking. The cooked rice was held at various temperatures and times as follows: it was made fresh (T1), kept at room temperature (20-22 °C) for 24 h (T2), kept at 4 °C for 24 h (T3), and then reheated after being kept at 4 °C for 24 h (T4). The proximate composition, total dietary fibre, resistant starch (RS), and in vitro starch digestion rate of products were examined. The effect of RS on blood glucose and lipid profiles was measured in humans and rats, including a histopathological study of the liver and pancreas in rats. The basmati rice that was prepared via boiling 1 and stored with T3 was found to be low in glycaemic index and glycaemic load, and to be high in resistant starch. Similarly, in rats, the blood glucose level, cholesterol, triglycerides, and LDL were reduced by about 29.7%, 37.9%, 31.3%, and 30.5%, respectively, after the consumption of basmati rice that was prepared via boiling 1 and stored with T3. Awareness should be raised among people about the health benefits of resistant starch consumption and the right way of cooking.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, Punjab, India (R.A.)
| | - Harpreet Kaur
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, Punjab, India (R.A.)
| | - Renuka Aggarwal
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, Punjab, India (R.A.)
| | - Kiran Bains
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, Punjab, India (R.A.)
| | - Amrit Kaur Mahal
- Department of Mathematics, Statistics and Physics, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Lachhman Das Singla
- Department of Parasitology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Kuldeep Gupta
- Department of Veterinary Pathology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| |
Collapse
|
20
|
Gu X, Wang P, Huang J, Chen S, Li D, Pu S, Li J, Wen J. Structural and physicochemical properties of rice starch from a variety with high resistant starch and low amylose content. Front Nutr 2024; 11:1413923. [PMID: 38860156 PMCID: PMC11163103 DOI: 10.3389/fnut.2024.1413923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Research on the physicochemical properties of rice-derived endo-sperm high resistant starch (RS) with low amylose content (AC) is limited. In this study, we evaluated the physicochemical characteristics of such a starch variety and revealed that the starch granules exhibit a smoother, more refined surface with distinct edges, increased compactness, higher order of surface, and fewer cavities compared to those of a low RS rice variety. The starch crystal was classified as an A-type, which may be connected to the high amylose-lipid complex content. The branched internal long chains (B2 + B3) were abundant, allowing for easy entanglement with other molecular chains and a compact structure. Differential scanning calorimetry revealed the need for high temperature and energy to disrupt the double helix structure within the crystallization region of starch. Furthermore, starch viscosity analysis revealed a high cold paste viscosity, consistency, and setback value, with recrystallization yielding a stable structure, increased viscosity, and enhanced hydrolysis resistance to enzymes.
Collapse
Affiliation(s)
- Xue Gu
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Peng Wang
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Juyuan Huang
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shuangqin Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Dandan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shihuang Pu
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Juan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
21
|
Ren J, Dai J, Chen Y, Wang Z, Sha R, Mao J. Physiochemical characterization and ameliorative effect of rice resistant starch modified by heat-stable α-amylase and glucoamylase on the gut microbial community in T2DM mice. Food Funct 2024; 15:5596-5612. [PMID: 38722000 DOI: 10.1039/d3fo05456j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In the presented study, natural rice containing high resistant starch content was used as a raw material to produce rice resistant starch (RRS) through enzymatic hydrolysis with heat-stable α-amylase and glucoamylase. The chemical composition, structural characteristics and in vitro glycemic index (GI) of RRS were evaluated. The effects of RRS at different doses on the body weight, serum biochemical levels, pathological indexes, production of short-chain fatty acids (SCFAs) in the gut and the intestinal microbial composition in T2DM mice were investigated. The results of physiochemical characterization indicated that, relative to rice flour, RRS mainly comprising resistant starch had higher crystallinity (25.85%) and a more stable structure, which contributed to its lower digestibility and decreased GI in vitro. Compared with the model control group, 1 g per kg BW and 2 g per kg BW oral gavage dosages of RRS effectively enhanced the SCFA productivity in the T2DM mouse gut, as well as alleviating T2DM symptoms, involving an increase in body weight, reduction in fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine transaminase and aspartate aminotransferase, and an increase in serum insulin and high-density lipoprotein cholesterol. Besides, 1 g per kg BW and 2 g per kg BW dosages of RRS mitigated T2DM-induced pancreas damage. Furthermore, up-regulation in the abundance of probiotics (Lactobacillus, Ruminococcus, etc.) and down-regulation in the number of harmful bacteria (Desulfovibrio, Prevotella, etc.) were observed in all RRS-treated groups. In summary, this work suggested that RRS prepared using heat-stable α-amylase and glucoamylase could be a potential functional component for amelioration of T2DM applied in the fields of food and pharmaceutics.
Collapse
Affiliation(s)
- Jianing Ren
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yue Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
22
|
Wang H, Feng Y, Guo K, Shi L, Xu X, Wei C. Structural, Thermal, Pasting and Digestion Properties of Starches from Developing Root Tubers of Sweet Potato. Foods 2024; 13:1103. [PMID: 38611407 PMCID: PMC11011326 DOI: 10.3390/foods13071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Three sweet potato varieties with white-, yellow- and purple-fleshed root tubers were harvested at 100, 120, 140 and 160 days after planting (DAP). Their starch structural, thermal, pasting and digestion properties were measured to reveal the influences of harvesting dates on the physicochemical properties of sweet potato root tuber starch. Though starches from different varieties displayed some differences in physicochemical properties due to their different genetic backgrounds, they were influenced by harvesting date in similar ways. Starches isolated from root tubers at 100 and 160 DAP exhibited lower granule sizes than those at 120 and 140 DAP. The amylose content was higher in root tubers at 100 and 120 DAP than at 140 and 160 DAP. Starches from root tubers at 100 DAP exhibited CA-type X-ray diffraction patterns, and then the B-type crystallinity gradually increased at later harvesting dates. The different harvesting dates had no significant effects on the short-ranged ordered structure and lamellar thickness of starch, but the lamellar peak intensity decreased significantly at later harvesting dates. Starch had a lower gelatinization temperature and a wider gelatinization temperature range in root tubers at 140 and 160 DAP than at 100 and 120 DAP. The higher peak viscosity and lower pasting temperature were associated with the late harvesting date. The digestion of starch had slight differences among root tubers at different harvesting dates. The harvesting dates of root tubers played more important roles in starch properties than the variety. This study would be helpful for breeders, farmers and sweet potato starch users.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.W.); (Y.F.); (K.G.); (L.S.); (X.X.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yuanhao Feng
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.W.); (Y.F.); (K.G.); (L.S.); (X.X.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Ke Guo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.W.); (Y.F.); (K.G.); (L.S.); (X.X.)
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Laiquan Shi
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.W.); (Y.F.); (K.G.); (L.S.); (X.X.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Xin Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.W.); (Y.F.); (K.G.); (L.S.); (X.X.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.W.); (Y.F.); (K.G.); (L.S.); (X.X.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Ouyang J, Wang C, Huang Q, Guan Y, Zhu Z, He Y, Jiang G, Xiong Y, Li X. Correlation between in vitro starch digestibility and starch structure/physicochemical properties in rice. Int J Biol Macromol 2024; 263:130316. [PMID: 38382778 DOI: 10.1016/j.ijbiomac.2024.130316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Natural resistant starch (RS) in rice provides human health benefits, and its concentration in rice is influenced by the structure and physicochemical properties of starch. The native starch structures and physicochemical properties of three rice varieties, QR, BR58, and BR50, and their relationships to in vitro digestibility were studied. The starch granules in all three varieties were irregular or polyhedral in shape. There were a few oval granules and a few pinhole structures in QR, no oval granules but a higher number of pinholes in BR58, and no oval granules and pinholes in BR50. QR is a low-amylose (13.8 %), low-RS (0.2 %) variety. BR58 is a low-amylose (15.3 %), high-RS (6.5 %) variety. BR50 is a high-amylose (26.7 %), high-RS (8.3 %) variety. All three starches exhibited typical A-type diffraction patterns. Starch molecular weight, chain length distribution, starch branching degree, pasting capabilities, and thermal properties differed considerably between the rice starches. The RS contents of the rice starch varieties were positively correlated with AAC, Mw/Mn, Mz/Mn, peak 3, B, PTime, and Tp and negatively correlated with Mn, peak 2, DB, PV, and BD, according to Pearson's correlation analysis. These findings may be helpful for the breeding and development of high-RS rice varieties.
Collapse
Affiliation(s)
- Jie Ouyang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Chutao Wang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Qianlong Huang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Yusheng Guan
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Zichao Zhu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Yongxin He
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Gang Jiang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Ying Xiong
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Xianyong Li
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China.
| |
Collapse
|
24
|
Kim MK, Park J, Kim DM. Resistant starch and type 2 diabetes mellitus: Clinical perspective. J Diabetes Investig 2024; 15:395-401. [PMID: 38189639 PMCID: PMC10981144 DOI: 10.1111/jdi.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
The immediate and well-documented benefits of carbohydrate restriction include improved glycemic control in individuals with diabetes mellitus. Starch, a significant source of carbohydrates, is categorized as rapidly digestible, slowly digestible, or resistant starch (RS). RS, which is a non-viscous fermentable fiber, has shown promise in animal studies for antidiabetic effects by improving glucose metabolism. Although the exact mechanism by which RS affects glucose metabolism remains unclear, it is expected to positively impact glucose tolerance and insulin sensitivity. The fermentation of RS by colonic microbiota in the large bowel produces short-chain fatty acids, which exert multiple metabolic effects on glucose regulation and homeostasis. Moreover, RS may influence glucose metabolism via bile acid modulation, independent of its fermentation. Diets rich in RS could aid in blood glucose homeostasis. However, it is uncertain whether they can alter the metabolic pathology associated with glucose regulation. In essence, RS has the potential to lower postprandial glucose levels similarly to a low-glycemic index diet. Yet, its efficacy as a medical nutrition therapy for type 2 diabetes needs further investigation. To confirm the role of RS in glycemic control and to possibly recommend it as an additional dietary approach for people with type 2 diabetes mellitus, a well-designed, large-scale intervention is required.
Collapse
Affiliation(s)
- Min Kyung Kim
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Juri Park
- Department of Internal Medicine, Shihwa Medical Center, Shihwa, South Korea
| | - Doo-Man Kim
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Chen Z, Liang N, Zhang H, Li H, Guo J, Zhang Y, Chen Y, Wang Y, Shi N. Resistant starch and the gut microbiome: Exploring beneficial interactions and dietary impacts. Food Chem X 2024; 21:101118. [PMID: 38282825 PMCID: PMC10819196 DOI: 10.1016/j.fochx.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024] Open
Abstract
The intricate relationship between resistant starch (RS) and the gut microbiome presents a dynamic frontier in nutrition science. This review synthesizes current understandings of how RS, an indigestible form of starch found naturally in certain foods and also enhanced through various modification methods, interacts with the gut microbiome. We particularly focus on how RS fermentation in the colon contributes to the production of beneficial volatile fatty acids (VFAs) such as butyrate, acetate, and propionate. These VFAs have been recognized for their vital roles in maintaining gut barrier integrity, modulating inflammation, and potentially influencing systemic health. Additionally, we discuss the dietary implications of consuming foods rich in RS, both in terms of gut health and broader metabolic outcomes. By consolidating these insights, we emphasize the significance of RS in the context of dietary strategies aimed at harnessing the gut microbiome's potential to impact human health.
Collapse
Affiliation(s)
| | | | - Haili Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huizhen Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujing Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaxin Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Smith AD, Chen C, Cheung L, Ward RE, Jones BS, Pletsch EA, Dawson HD. A type 4 resistant potato starch alters the cecal microbiome and gene expression in mice fed a western diet based on NHANES data. Food Funct 2024; 15:3141-3157. [PMID: 38439638 DOI: 10.1039/d3fo04512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Four major types of resistant starch (RS1-4) are present in foods, all of which can alter the microbiome and are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs). Type 4 RSs are chemically modified starches, not normally found in foods, but have become a popular food additive as their addition increases fiber content. Multiple studies, in humans and rodents, have explored how different RS4 affect post-prandial glucose metabolism, but fewer studies have examined the effects of RS4 consumption on the microbiome. In addition, many RS studies conducted in rodents use high-fat diets that do not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet, for six weeks, and then supplemented with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch, for an additional three weeks. The cecal contents were analyzed for SCFA content and microbiota composition. Butyrate production was increased while branched chain SCFA production decreased. The alpha-diversity of the microbiome decreased in mice fed the TWD with 10% VF 1490 added while the beta-diversity plot showed that the 5% and 10% VF groups were distinct from mice fed the TWD. Similarly, the largest changes in relative abundance of various genera were greatest in mice fed the 10% VF diet. To examine the effect of VF consumption on tissue gene expression, cecal and distal colon tissue mRNA abundance were analyzed by RNASeq. Gene expression changes were more prevalent in the cecum than the colon and in mice fed the 10% VF diet, but the number of changes was substantially lower than we previously observed in mice fed the TWD supplemented with native potato starch (RPS). These results provide additional evidence that the structure of the RS is a major factor determining its effects on the microbiome and gene expression in the cecum and colon.
Collapse
Affiliation(s)
- Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Celine Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Robert E Ward
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, USA
| | - B Sky Jones
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, USA
| | - Elizabeth A Pletsch
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Harry D Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
27
|
Lee I, Kang T. Heat-moisture-treated rice starches with different amylose and moisture contents as stabilizers for nonfat yogurt. Food Chem 2024; 436:137746. [PMID: 37862995 DOI: 10.1016/j.foodchem.2023.137746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Food producers are interested in enhancing native starch properties without chemical modifications. Here, rice starches were physically modified via heat-moisture treatment (HMT) using different amylose (high, medium, low, and waxy) and moisture (15 %, 20 %, 25 %, and 30 %) contents. Hydration properties and pasting viscosities differed for different amylose and moisture contents. The HMT starch with high amylose content and 15 % moisture (High_HMT15) exhibited the highest final viscosity (6.16 Pa.s), and 31.7 % and 35.1 % increased amount of resistant starch compared to native starch in the granule and paste states, respectively. Hence, High_HMT15 was used as a stabilizer for nonfat yogurt. The nonfat yogurt prepared with 1.0 % High_HMT15 as the stabilizer exhibited 37.3 % reduced whey separation, 2.8 times increased viscosity, a high total solids content, and acceptable sensory properties compared to the nonfat yogurt without starch. These HMT starches can replace chemically modified starches derived from other grains in various food applications.
Collapse
Affiliation(s)
- Inae Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Taiyoung Kang
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
28
|
Cheng G, Gu Z, Yang Y, Wang X, Zhao R, Feng Y, Huang Q, Jiang H. Understanding resistant-starch formation during drying high-amylose maize kernels. Int J Biol Macromol 2024; 260:129419. [PMID: 38219936 DOI: 10.1016/j.ijbiomac.2024.129419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Interests in using high-amylose maize (HAM) flour and starch for low glycemic index foods continue to grow. The objective of this work was to understand resistant-starch formation during drying the HAM kernels. Freshly harvested HAM kernels with 28.2 % initial moisture were subjected to sun drying (~30 °C) or hot-air drying at 50 °C, 70 °C, 90 °C, or 110 °C. The enzymatic digestibility of HAM flour decreased from 63.6 % to 41.1 % as the drying temperature increased from 30 °C to 110 °C. The swelling power, solubility, and overall viscosity of HAM flours milled from kernels dried at 110 °C decreased, whereas the peak and conclusion gelatinization temperatures, enthalpy change, and relative crystallinity increased compared to those of flours from kernels dried at 30 °C, 50 °C, 70 °C, and 90 °C. Light microscopic and scanning electron microscopic images showed that starch granule aggregation in HAM flour increased with increasing drying-temperatures. The aggregates remained after 16 h enzymatic hydrolysis of cooked HAM flours. These results suggested that the increase of enzymatic resistance of HAM flour resulted from the formation of high temperature-resistant ordered structures in starch granules and the starch aggregates less accessible to enzymatic hydrolysis.
Collapse
Affiliation(s)
- Gaomin Cheng
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Zhonghua Gu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yunfei Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Zhengzhou, Henan 450001, China
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Zhengzhou, Henan 450001, China.
| | - Yinong Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Hongxin Jiang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Zhengzhou, Henan 450001, China.
| |
Collapse
|
29
|
Lan T, Wang J, Lei Y, Lei J, Sun X, Ma T. A new source of starchy flour: Physicochemical and nutritional properties of starchy kiwifruit flour. Food Chem 2024; 435:137627. [PMID: 37804722 DOI: 10.1016/j.foodchem.2023.137627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
The physicochemical and nutritional properties of three starchy kiwifruit flour (SKF) were systematically studied. The results revealed that the total starch content of SKF was 66.63-80.42%. SKF showed a B-type crystal structure with a grain size between 7.08 and 9.02 μm. In comparison to corn starch and potato starch, SKF possessed a lower pH (3.43-4.28), transparency (0.68-1.11%) and setback value (0.20-1.73 Pa·s) and a higher swelling power (9.42-15.02 g/g) and hot paste viscosity (1.73-2.10 Pa·s). Moreover, SFK was rich in protein and various mineral elements. It also contained high levels of total phenolics and exhibited a strong antioxidant capacity. The resistant starch content in SKF was as high as 67.19-73.22%, and the rapidly digestible starch content was remarkably lower than that of corn and potato starch. Overall, these unique physicochemical properties of SKF, coupled with its nutritional benefits, give it a good development potential in the food industry.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Jiaqi Wang
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Yushan Lei
- Shaanxi Rural Science and Technology Development Center, Xi'an 710054, China
| | - Jing Lei
- Shaanxi Bairui Kiwifruit Research Co, Ltd., Xi'an 710054, China
| | - Xiangyu Sun
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
30
|
Chen K, Wei P, Jia M, Wang L, Li Z, Zhang Z, Liu Y, Shi L. Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch. Foods 2024; 13:558. [PMID: 38397535 PMCID: PMC10888398 DOI: 10.3390/foods13040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Starchy foods are an essential part of people's daily diet. Starch is the primary substance used by plants to store carbohydrates, and it is the primary source of energy for humans and animals. In China, a variety of plants, including edible medicinal plants, such as Pueraria root, yam tuber and coix seed, are rich in starch. However, limited by their inherent properties, kudzu starch and other starches are not suitable for the modern food industry. Natural starch is frequently altered by physical, chemical, or biological means to give it superior qualities to natural starch as it frequently cannot satisfy the demands of industrial manufacturing. Therefore, the deep processing market of modified starch and its products has a great potential. This paper reviews the modification methods which can provide excellent functional, rheological, and processing characteristics for these starches that can be used to improve the physical and chemical properties, texture properties, and edible qualities. This will provide a comprehensive reference for the modification and application of starch from medicinal and edible plants.
Collapse
Affiliation(s)
- Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (K.C.); (P.W.)
| | - Pinghui Wei
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (K.C.); (P.W.)
| | - Meiqi Jia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| | - Lihao Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| | - Zihan Li
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| |
Collapse
|
31
|
Yang Y, Liang Z, Zhang R, Zhou S, Yang H, Chen Y, Zhang J, Yin H, Yu D. Research Advances in Superabsorbent Polymers. Polymers (Basel) 2024; 16:501. [PMID: 38399879 PMCID: PMC10892691 DOI: 10.3390/polym16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Superabsorbent polymers are new functional polymeric materials that can absorb and retain liquids thousands of times their masses. This paper reviews the synthesis and modification methods of different superabsorbent polymers, summarizes the processing methods for different forms of superabsorbent polymers, and organizes the applications and research progress of superabsorbent polymers in industrial, agricultural, and biomedical industries. Synthetic polymers like polyacrylic acid, polyacrylamide, polyacrylonitrile, and polyvinyl alcohol exhibit superior water absorption properties compared to natural polymers such as cellulose, chitosan, and starch, but they also do not degrade easily. Consequently, it is often necessary to modify synthetic polymers or graft superabsorbent functional groups onto natural polymers, and then crosslink them to balance the properties of material. Compared to the widely used superabsorbent nanoparticles, research on superabsorbent fibers and gels is on the rise, and they are particularly notable in biomedical fields like drug delivery, wound dressing, and tissue engineering.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| | | | | | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| |
Collapse
|
32
|
Wang B, Wu Y, Li Q, Wu X, Kang X, Zhang L, Lyu M, Wang S. The Screening and Identification of a Dextranase-Secreting Marine Actinmycete Saccharomonospora sp. K1 and Study of Its Enzymatic Characteristics. Mar Drugs 2024; 22:69. [PMID: 38393040 PMCID: PMC10890608 DOI: 10.3390/md22020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, an actinomycete was isolated from sea mud. The strain K1 was identified as Saccharomonospora sp. by 16S rDNA. The optimal enzyme production temperature, initial pH, time, and concentration of the inducer of this actinomycete strain K1 were 37 °C, pH 8.5, 72 h, and 2% dextran T20 of medium, respectively. Dextranase from strain K1 exhibited maximum activity at 8.5 pH and 50 °C. The molecular weight of the enzyme was <10 kDa. The metal ions Sr2+ and K+ enhanced its activity, whereas Fe3+ and Co2+ had an opposite effect. In addition, high-performance liquid chromatography showed that dextran was mainly hydrolyzed to isomaltoheptose and isomaltopentaose. Also, it could effectively remove biofilms of Streptococcus mutans. Furthermore, it could be used to prepare porous sweet potato starch. This is the first time a dextranase-producing actinomycete strain was screened from marine samples.
Collapse
Affiliation(s)
- Boyan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
| | - Yizhuo Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
33
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
34
|
Tao Z, Wang Y. The health benefits of dietary short-chain fatty acids in metabolic diseases. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 38189336 DOI: 10.1080/10408398.2023.2297811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Short-chain fatty acids (SCFAs) are a subset of fatty acids that play crucial roles in maintaining normal physiology and developing metabolic diseases, such as obesity, diabetes, cardiovascular disease, and liver disease. Even though dairy products and vegetable oils are the direct dietary sources of SCFAs, their quantities are highly restricted. SCFAs are produced indirectly through microbial fermentation of fibers. The biological roles of SCFAs in human health and metabolic diseases are mainly due to their receptors, GPR41 and GPR43, FFAR2 and FFAR3. Additionally, it has been demonstrated that SCFAs modulate DNMTs and HDAC activities, inhibit NF-κB-STAT signaling, and regulate G(i/o)βγ-PLC-PKC-PTEN signaling and PPARγ-UCP2-AMPK autophagic signaling, thus mitigating metabolic diseases. Recent studies have uncovered that SCFAs play crucial roles in epigenetic modifications of DNAs, RNAs, and post-translational modifications of proteins, which are critical regulators of metabolic health and diseases. At the same time, dietary recommendations for the purpose of SCFAs have been proposed. The objective of the review is to summarize the most recent research on the role of dietary SCFAs in metabolic diseases, especially the signal transduction of SCFAs in metabolic diseases and their functional efficacy in different backgrounds and models of metabolic diseases, at the same time, to provide dietary and nutritional recommendations for using SCFAs as food ingredients to prevent metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Nutrition Sciences, Texas Woman's University, Denton, Texas, USA
| | - Yao Wang
- Diabetes Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
35
|
Liang C, Xu H, You H, Zhang O, Han Y, Li Q, Hu Y, Xiang X. Physicochemical properties and molecular mechanisms of different resistant starch subtypes in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1313640. [PMID: 38259949 PMCID: PMC10800921 DOI: 10.3389/fpls.2023.1313640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024]
Abstract
Resistant starch (RS) can help prevent diabetes and decrease calorie intake and that from plants are the main source of mankind consumption. Rice is many people's staple food and that with higher RS will help health management. A significantly positive correlation exists between apparent amylose content (AAC) of rice and its RS content. In this study, 72 accessions with moderate or high AAC were selected to explore the regulatory mechanisms and physicochemical properties on different proceeding types of rice RS. RS in raw milled rice (RSm), hot cooked rice (RSc), and retrogradation rice (RSr) showed a wide variation and distinct controlling mechanisms. They were co-regulated by Waxy (Wx), soluble starch synthase (SS) IIb and SSI. Besides that, RSm was also regulated by SSIIa and SSIVb, RSc by granule-bound starch synthase (GBSS) II and RSr by GBSSII and Pullulanase (PUL). Moreover, Wx had significant interactions with SSIIa, SSI, SSIIb and SSIVb on RSm, but only the dominant interactions with SSIIb and SSI on RSc and RSr. Wx was the key factor for the formation of RS, especially the RSc and RSr. The genes had the highest expression at 17 days after flowering and were beneficial for RS formation. The longer the chain length of starch, the higher the RS3 content. RSc and RSr were likely to be contained in medium-size starch granules. The findings favor understanding the biosynthesis of different subtypes of RS.
Collapse
Affiliation(s)
- Cheng Liang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Haoyang Xu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Hui You
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Ouling Zhang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Yiman Han
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Qingyu Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Yungao Hu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| | - Xunchao Xiang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Rice Research Institute, Southwest University of Science and Technology, Sichuan, Mianyang, China
| |
Collapse
|
36
|
Kim HM, Lee BH. Characterization of green banana starch from " Songkibab" species cultivated in the southern part of Korea. Food Sci Biotechnol 2024; 33:63-71. [PMID: 38186624 PMCID: PMC10766918 DOI: 10.1007/s10068-023-01331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 01/09/2024] Open
Abstract
Resistant starch (RS) has advantages for regulating the colon health as prebiotics and dietary fibers, and green banana has interested due to containing high amounts of RS. Here, the structural, physicochemical, and digestible characteristics of green banana starch from newly bred Songkibab (SB) were determined to evaluate its suitability for application as a new crop in response to global warming and for obtaining genetic diversity. SB starch has structural similarities to the Cavendish (CD) banana, which is widely consumed in Southeast Asia, in its ratio of B3-chains (in high amounts), flattened shapes of smooth surfaces, and B-type crystallinity. Physiochemically, SB shows comparable swelling power, amylose content, and viscosity pattern but a higher RS content. Conclusively, this study suggests that SB banana may be a good resource for replacing CD species with novel varieties in East Asia because of the high degree of similarity in the various characteristics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01331-z.
Collapse
Affiliation(s)
- Hyung-Min Kim
- Department of Food Science & Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
37
|
Gayary MA, Marboh V, Mahnot NK, Chutia H, Mahanta CL. Characteristics of rice starches modified by single and dual heat moisture and osmotic pressure treatments. Int J Biol Macromol 2024; 255:127932. [PMID: 37949279 DOI: 10.1016/j.ijbiomac.2023.127932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The effect of osmotic pressure treatment (OPT), heat moisture treatment (HMT), and their dual combination as HMT-OPT and OPT-HMT on functional and pasting properties, gel texture, crystallinity, thermal, morphological, and rheological properties, and in vitro digestibility of modified starches were investigated. HMT was done with 29 % moisture at 111 °C for 45 min while OPT was performed at 117 °C for 35 min with saturated sodium sulphate solution. All modifications increased amylose content, improved pasting stability, and reduced swelling power and solubility. Dual modifications caused higher morphological changes than single modified starches. HMT and OPT increased pasting temperature, setback and final viscosity while decreased peak viscosity and breakdown, whereas HMT-OPT and OPT-HMT reduced all pasting parameters except pasting temperature. 1047/1022 and 995/1022 ratios and relative crystallinity decreased. V-type polymorphs were formed, and gelatinization temperature range increased with lower gelatinization enthalpy. Starch gel elasticity, RS and SDS content were enhanced to a greater extent after HMT-OPT and OPT-HMT. HMT as a single and dual form with OPT showed prominent effect on pasting, thermal, crystalline, and rheological properties. Application of HMT, OPT and dual modified starches with improved functionalities may be targeted for suitable food applications such as noodles.
Collapse
Affiliation(s)
- Mainao Alina Gayary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India; Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Vegonia Marboh
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Nikhil Kumar Mahnot
- Department of Food Technology, Rajiv Gandhi University, Doimukh 791112, Arunachal Pradesh, India
| | - Hemanta Chutia
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
38
|
Dhull SB, Chandak A, Chawla P, Goksen G, Rose PK, Rani J. Modifications of native lotus (Nelumbo nucifera G.) rhizome starch and its overall characterization: A review. Int J Biol Macromol 2023; 253:127543. [PMID: 37866555 DOI: 10.1016/j.ijbiomac.2023.127543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Lotus (Nelumbo nucifera G.) rhizomes are an under-utilized and sustainable starch source that constitutes up to 20 % starch. The review mainly focused on the extraction methods of starch, the chemical composition of LRS, and techno-functional characteristics such as swelling power, solubility, in vitro digestibility, pasting property, and gelatinization is highlighted in LRS review. Lotus rhizome starch (LRS) is also used as a water retention agent, thickening, gelling, stabilizing, and filling in food and non-food applications. Native starch has limited functional characteristics in food applications so by modifying the starch, functional characteristics are enhanced. Single and dual treatment processes are available to enhance microstructural properties, resistant starch, techno-functional, morphological, and, film-forming properties. Compared with other starch sources, there is a lack of systematic information on the LRS. Many industries are interested in developing food products based on starch such as nanoparticles, hydrogels, edible films, and many others. Additionally, there are several recommendations to improve the applications in the food industry. Finally, we provide an outlook on the future possibility of LRS.
Collapse
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial zone, Tarsus University, 33100 Mersin, Turkey
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| |
Collapse
|
39
|
Luo M, Gong W, Zhang S, Xie L, Shi Y, Wu D, Shu X. Discrepancies in resistant starch and starch physicochemical properties between rice mutants similar in high amylose content. FRONTIERS IN PLANT SCIENCE 2023; 14:1267281. [PMID: 38023836 PMCID: PMC10654750 DOI: 10.3389/fpls.2023.1267281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The content of resistant starch (RS) was considered positively correlated with the apparent amylose content (AAC). Here, we analyzed two Indica rice mutants, RS111 and Zhedagaozhi 1B, similar in high AAC and found that their RS content differed remarkably. RS111 had higher RS3 content but lower RS2 content than Zhedagaozhi 1B; correspondingly, cooked RS111 showed slower digestibility. RS111 had smaller irregular and oval starch granules when compared with Zhedagaozhi 1B and the wild type. Zhedagaozhi 1B showed a B-type starch pattern, different from RS111 and the wild type, which showed A-type starch. Meantime, RS111 had more fa and fb1 but less fb3 than Zhedagaozhi 1B. Both mutants showed decreased viscosity and swelling power when compared with the parents. RS111 had the lowest viscosity, and Zhedagaozhi 1B had the smallest swelling power. The different fine structures of amylopectin between RS111 and Zhedagaozhi 1B led to different starch types, gelatinization properties, paste viscosity, and digestibility. In addition to enhancing amylose content, modifications on amylopectin structure showed great potent in breeding rice with different RS2 and RS3 content, which could meet the increasing needs for various rice germplasms.
Collapse
Affiliation(s)
- Mingrui Luo
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, China
| | - Wanxin Gong
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Siyan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Lanyu Xie
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, China
| | - Yitao Shi
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| |
Collapse
|
40
|
Baek GH, Kim YJ, Lee Y, Jung SC, Seo HW, Kim JS. Prebiotic potential of green banana flour: impact on gut microbiota modulation and microbial metabolic activity in a murine model. Front Nutr 2023; 10:1249358. [PMID: 38024360 PMCID: PMC10644147 DOI: 10.3389/fnut.2023.1249358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Green banana flour can be used as a prebiotic due to its ability to promote gut health and provide several health benefits. In this study, we investigated whether feeding mice green banana flour at different doses would alter intestinal microbiota composition. Methods We fed C57BL/6N mice either a Low-dose (500 mg/kg/day) or High-dose (2000 mg/kg/day) of green banana flour daily for 3 weeks, and fecal samples were collected on days 0, 14, and 21 for microbiota analysis. Results Our results showed that the composition of intestinal microbiota was significantly altered by day 21, regardless of the dose. Notably, the consumption of green banana flour increased the presence of beneficial bacteria, including Coriobacteriaceae_UCG-002, Turicibacter, Parasutterella, Gastranaerophilales_ge, and RF39_ge. These changes in the intestinal microorganisms were accompanied by increased biological processes such as amino acid biosynthesis and secondary metabolite biosynthesis. Conversely, the consumption of green banana flour resulted in a decrease in biological processes related to carbohydrate degradation, glycerol degradation, and similar functions. Discussion These results emphasize the potential of green banana flour as a prebiotic that can benefit the gut microbiome.
Collapse
Affiliation(s)
- Ga Hyeon Baek
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Yu-Jeong Kim
- Infectious Disease Research Center, KRIBB, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yukyung Lee
- B2S Company Co., Ltd., Seoul, Republic of Korea
| | - Suk-Chae Jung
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Hwi Won Seo
- Infectious Disease Research Center, KRIBB, Daejeon, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
41
|
Whent MM, Childs HD, Ehlers Cheang S, Jiang J, Luthria DL, Bukowski MR, Lebrilla CB, Yu L, Pehrsson PR, Wu X. Effects of Blanching, Freezing and Canning on the Carbohydrates in Sweet Corn. Foods 2023; 12:3885. [PMID: 37959004 PMCID: PMC10649117 DOI: 10.3390/foods12213885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Sweet corn is frequently consumed in the US and contains carbohydrates as major macronutrients. This study examined the effects of blanching, freezing, and canning on carbohydrates in sweet corn. Fresh bi-color sweet corn was picked in the field and processed immediately into frozen and canned samples. Simple sugars, starch, and dietary fiber (DF) (including total DF (TDF), insoluble DF (IDF) and two fractions of soluble DF (SDF)) were measured according to the AOAC methods. Additional glycomic analysis including oligosaccharides, monosaccharide composition of total polysaccharides (MCTP) and glycosidic linkage of total polysaccharides (GLTP) were analyzed using UHPLC-MS. Sucrose is the major simple sugar, and IDF is the main contributor to TDF. Sucrose and total simple sugar concentrations were not altered after blanching or freezing but were significantly reduced in canned samples. Kestose was the only oligosaccharide identified in sweet corn and decreased in all heat-treated or frozen samples. Starch content decreased in frozen samples but increased in canned samples. While two SDF fractions did not differ across all samples, blanching, freezing and canning resulted in increases in TDF and IDF. Six monosaccharides were identified as major building blocks of the total polysaccharides from MCTP analysis. Glucose and total monosaccharide concentrations increased in two canned samples. GLTP was also profoundly altered by different food processing methods. This study provided insights into the changes in the content and quality of carbohydrates in sweet corn after food processing. The data are important for accurate assessment of the carbohydrate intake from different sweet corn products.
Collapse
Affiliation(s)
- Monica M. Whent
- Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA; (M.M.W.); (D.L.L.); (M.R.B.); (P.R.P.)
| | - Holly D. Childs
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA (L.Y.)
| | - Shawn Ehlers Cheang
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA; (S.E.C.); (J.J.); (C.B.L.)
- Foods for Health Institute, University of California Davis, Davis, CA 95616, USA
| | - Jiani Jiang
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA; (S.E.C.); (J.J.); (C.B.L.)
- Foods for Health Institute, University of California Davis, Davis, CA 95616, USA
| | - Devanand L. Luthria
- Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA; (M.M.W.); (D.L.L.); (M.R.B.); (P.R.P.)
| | - Michael R. Bukowski
- Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA; (M.M.W.); (D.L.L.); (M.R.B.); (P.R.P.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA; (S.E.C.); (J.J.); (C.B.L.)
- Foods for Health Institute, University of California Davis, Davis, CA 95616, USA
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA (L.Y.)
| | - Pamela R. Pehrsson
- Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA; (M.M.W.); (D.L.L.); (M.R.B.); (P.R.P.)
| | - Xianli Wu
- Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA; (M.M.W.); (D.L.L.); (M.R.B.); (P.R.P.)
| |
Collapse
|
42
|
Zhou Y, Cheng Z, Jiang S, Cen J, Yuan S, Yu C, Huo S, Zhang N, Wu D, Shu X. Inactivation of SSIIIa enhances the RS content through altering starch structure and accumulating C18:2 in japonica rice. Carbohydr Polym 2023; 318:121141. [PMID: 37479448 DOI: 10.1016/j.carbpol.2023.121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
SSIIIa was the key gene responsible for RS formation in rice endosperm. The higher RS content in ssIIIa mutant has been proposed to be majorly due to the increased amylose-lipid complexes (RS5). However, the formation of RS5 elicited by ssIIIa mutation and the importance of RS5 for total RS content in rice are still unclear. With japonica ssIIIa loss-of-function mutants created by CRISPR/Cas9 gene editing, the effects of SSIIIa mutation on RS5 were furtherly evaluated through investigating the transcriptome and metabolites. Inactivation of SSIIIa caused significant enhancement in amylose and RS content but without depletion in starch reserves. SSIIIa mutation modulated the genes involved in carbohydrate and lipid metabolisms and the redistribution of substances, led to accumulated protein, glucose, fructose, and C18:2. Besides the increased amylose content and altered amylopectin structure, the increased C18:2 contributed greatly to the enhancement in RS content in japonica ssIIIa mutants through complexing with amylose to form RS5, while the existence of lipid counted against the enhancement of RS content in indica rice. RS5 showed discrepant contributions for the total RS in rice with different genetic background. Inactivation of SSIIIa has great potential in improving RS5 content in japonica rice without great yield loss.
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Zhenfeng Cheng
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Shuo Jiang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jinxi Cen
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Siyuan Yuan
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Chao Yu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Shaojie Huo
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Ning Zhang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
43
|
Zhao D, Li Z, Xia J, Kang Y, Sun P, Xiao Z, Niu Y. Research progress of starch as microencapsulated wall material. Carbohydr Polym 2023; 318:121118. [PMID: 37479436 DOI: 10.1016/j.carbpol.2023.121118] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Starch is non-toxic, low cost, and possesses good biocompatibility and biodegradability. As a natural polymer material, starch is an ideal choice for microcapsule wall materials. Starch-based microcapsules have a wide range of applications and application prospects in fields such as food, pharmaceuticals, cosmetics, and others. This paper firstly reviews the commonly used wall materials and preparation methods of starch-based microcapsules. Then the effect of starch wall materials on microcapsule properties is introduced in detail. It is expected to provide researchers with design inspiration and ideas for the development of starch-based microcapsules. Next the applications of starch-based microcapsules in various fields are presented. Finally, the future trends of starch-based microcapsules are discussed. Molecular simulation, green chemistry, and solutions to the main problems faced by resistant starch microcapsules may be the future research trends of starch-based microcapsules.
Collapse
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Zhibin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Jiayi Xia
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
44
|
Zheng F, Xu Q, Zeng S, Zhao Z, Xing Y, Chen J, Zhang P. Multi-scale structural characteristics of black Tartary buckwheat resistant starch by autoclaving combined with debranching modification. Int J Biol Macromol 2023; 249:126102. [PMID: 37541464 DOI: 10.1016/j.ijbiomac.2023.126102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
The impact of autoclaving or autoclave-debranching treatments on the multi-scale structure of resistant starch (RS) and the relationship with starch digestion remains unclear, despite their widespread use in its preparation. This work investigated the relationship between RS structure in black Tartary buckwheat and its digestibility by analyzing the effects of autoclaving and autoclave-debranching combined treatments on the multi-scale structure of RS. The results showed that black Tartary buckwheat RS exhibited a more extensive honeycomb-like network structure and enhanced thermal stability than either black Tartary buckwheat native starch (BTBNS) or common buckwheat native starch (CBNS). Autoclaving and autoclaving-debranching converted A-type native starch to V-type and possibly the formation of flavonoid-starch complexes. Autoclaving treatment significantly increased the proportion of short A chain (DP 6-12) and the amylose (AM) content, reduced the viscosity and the total crystallinity. Notably, the autoclave-debranching co-treatment significantly enhanced the resistance of starch to digestion, promoted the formation of perfect microcrystallines, and increased the AM content, short-range ordered degree, and the proportion of long B2 chain (DP 25-36). This study reveals the relationship between the multi-scale structure and digestibility of black Tartary buckwheat RS by autoclaving combined with debranching modification.
Collapse
Affiliation(s)
- Faying Zheng
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shanshan Zeng
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zixian Zhao
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | | | - Ping Zhang
- Huantai Biotechnology Co., Ltd., Chengdu 610225, China
| |
Collapse
|
45
|
Yang R, Tang J, Zhao Q, Piao Z, Lee G, Wan C, Bai J. Starch Properties of Roasting Rice from Naturally High-Resistant Starch Rice Varieties. Molecules 2023; 28:6408. [PMID: 37687237 PMCID: PMC10490166 DOI: 10.3390/molecules28176408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study investigates the effects of moisture content control on the characteristics, properties, and in vitro starch digestion of roasted rice powder made from natural high-resistant starch (RS) rice varieties. The results demonstrate that adjusting the moisture content before roasting significantly affects the RS content of the roasted rice powder. Among various moisture levels tested, the addition of 15% water (rice-to-water ratio of 85:15) before roasting resulted in the highest RS content, reaching 22.61%. Several key parameters of the rice samples before and after optimal moisture control were analyzed, including thermal stability, chain length distribution, volatile flavor composition, and scanning electron microscopy. Additionally, in vitro digestion properties were measured. The findings revealed that the volatile flavor compounds in the high-RS roasted rice significantly increased compared to non-roasted rice. Moreover, the thermal stability of the rice samples improved, and the chain length distribution exhibited significant changes. The water absorption and expansion properties were significantly lower in the high-RS roasted rice. Furthermore, the in vitro starch digestion of the roasted flour made from high-RS rice showed a significantly lower digestion rate compared to common rice, indicating a lower starch hydrolysis index in high-RS rice with the sbe-rs genotype. Overall, the roasting process of natural high-RS rice modifies its characteristics, increases the RS content, enhances the flavor, and results in a lower starch digestion rate compared to common rice. This study provides valuable data for the food industry to promote the application of high-RS rice varieties with mutations in the SBEIIb gene, such as Youtangdao2 (YTD2).
Collapse
Affiliation(s)
- Ruifang Yang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Jianhao Tang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Qi Zhao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Zhongze Piao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Gangseob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Changzhao Wan
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Jianjiang Bai
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| |
Collapse
|
46
|
Sun S, Hong Y, Gu Z, Cheng L, Ban X, Li Z, Li C. Different starch varieties influence the complexing state and digestibility of the resulting starch-lipid complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
47
|
Torreggiani A, Demarinis C, Pinto D, Papale A, Difonzo G, Caponio F, Pontonio E, Verni M, Rizzello CG. Up-Cycling Grape Pomace through Sourdough Fermentation: Characterization of Phenolic Compounds, Antioxidant Activity, and Anti-Inflammatory Potential. Antioxidants (Basel) 2023; 12:1521. [PMID: 37627516 PMCID: PMC10451973 DOI: 10.3390/antiox12081521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite its appealing composition, because it is rich in fibers and polyphenols, grape pomace, the major by-product of the wine industry, is still discarded or used for feed. This study aimed at exploiting grape pomace functional potential through fermentation with lactic acid bacteria (LAB). A systematic approach, including the progressively optimization of the grape pomace substrate, was used, evaluating pomace percentage, pH, and supplementation of nitrogen and carbon sources. When grape pomace was used at 10%, especially without pH correction, LAB cell viability decreased up to 2 log cycles. Hence, the percentage was lowered to 5 or 2.5% and supplementations with carbon and nitrogen sources, which are crucial for LAB metabolism, were considered aiming at obtaining a proper fermentation of the substrate. The optimization of the substrate enabled the comparison of strains performances and allowed the selection of the best performing strain (Lactiplantibacillus plantarum T0A10). A sourdough, containing 5% of grape pomace and fermented with the selected strain, showed high antioxidant activity on DPPH and ABTS radicals and anti-inflammatory potential on Caco2 cells. The anthocyanins profile of the grape pomace sourdough was also characterized, showing qualitative and quantitative differences before and after fermentation. Overall, the grape pomace sourdough showed promising applications as a functional ingredient in bread making.
Collapse
Affiliation(s)
- Andrea Torreggiani
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy; (A.T.); (C.G.R.)
| | - Chiara Demarinis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Daniela Pinto
- Human Microbiome Advanced Project, 20129 Milan, Italy; (D.P.); (A.P.)
| | - Angela Papale
- Human Microbiome Advanced Project, 20129 Milan, Italy; (D.P.); (A.P.)
| | - Graziana Difonzo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Michela Verni
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy; (A.T.); (C.G.R.)
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy; (A.T.); (C.G.R.)
| |
Collapse
|
48
|
Basilicata M, Pieri M, Marrone G, Nicolai E, Di Lauro M, Paolino V, Tomassetti F, Vivarini I, Bollero P, Bernardini S, Noce A. Saliva as Biomarker for Oral and Chronic Degenerative Non-Communicable Diseases. Metabolites 2023; 13:889. [PMID: 37623833 PMCID: PMC10456419 DOI: 10.3390/metabo13080889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Saliva is a very complex fluid and it is essential to maintain several physiological processes and functions, including oral health, taste, digestion and immunological defenses. Saliva composition and the oral microbiome can be influenced by several factors, like diet and smoking habits, and their alteration can represent an important access point for pathogens and, thus, for systemic illness onset. In this review, we explore the potentiality of saliva as a new tool for the early detection of some pathological conditions, such as oral diseases, chronic degenerative non-communicable diseases, among these chronic kidney disease (CKD). We also examined the possible correlation between oral and systemic diseases and oral and gut microbiota dysbiosis. In particular, we deeply analyzed the relationship between oral diseases and CKD. In this context, some salivary parameters can represent a new device to detect either oral or systemic pathologies. Moreover, the positive modulation of oral and gut microbiota induced by prebiotics, postbiotics, or symbiotics could represent a new possible adjuvant therapy in the clinical management of oral diseases and CKD.
Collapse
Affiliation(s)
- Michele Basilicata
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Vivarini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
49
|
Panda D, Mohanty S, Das S, Mishra B, Baig MJ, Behera L. Light intensity-mediated auxin homeostasis in spikelets links carbohydrate metabolism enzymes with grain filling rate in rice. PROTOPLASMA 2023; 260:1233-1251. [PMID: 36847862 DOI: 10.1007/s00709-023-01844-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 06/07/2023]
Abstract
Low light (LL) stress during the grain-filling stage acutely impairs the quality and quantity of starch accumulation in rice grains. Here, we observed that LL-induced poor starch biosynthesis is modulated by auxin homeostasis, which regulates the activities of major carbohydrate metabolism enzymes such as starch synthase (SS) and ADP-glucose pyrophosphorylase (AGPase) in rice. Further, during the grain-filling period under LL, the starch/sucrose ratio increased in leaves but significantly decreased in the developing spikelets. This suggests poor sucrose biosynthesis in leaves and starch in the grains of the rice under LL. A lower grain starch was found to be correlated with the depleted AGPase and SS activities in the developing rice grains under LL. Further, under LL, the endogenous auxin (IAA) level in the spikelets was found to be synchronized with the expression of a heteromeric G protein gene, RGB1. Interestingly, under LL, the expression of OsYUC11 was significantly downregulated, which subsequently resulted in reduced IAA in the developing rice spikelets, followed by poor activation of grain-filling enzymes. This resulted in lowered grain starch accumulation, grain weight, panicle number, spikelet fertility, and eventually grain yield, which was notably higher in the LL-susceptible (GR4, IR8) than in the LL-tolerant (Purnendu, Swarnaprabha) rice genotypes. Therefore, we hypothesize that depletion in auxin biosynthesis under LL stress is associated with the downregulation of RBG1, which discourages the expression and activities of grain-filling enzymes, resulting in lower starch production, panicle formation, and grain yield in rice.
Collapse
Affiliation(s)
- Darshan Panda
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Soumya Mohanty
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Swagatika Das
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Baneeta Mishra
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Mirza Jaynul Baig
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India.
| |
Collapse
|
50
|
Mora-Flores LP, Moreno-Terrazas Casildo R, Fuentes-Cabrera J, Pérez-Vicente HA, de Anda-Jáuregui G, Neri-Torres EE. The Role of Carbohydrate Intake on the Gut Microbiome: A Weight of Evidence Systematic Review. Microorganisms 2023; 11:1728. [PMID: 37512899 PMCID: PMC10385781 DOI: 10.3390/microorganisms11071728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Carbohydrates are the most important source of nutritional energy for the human body. Carbohydrate digestion, metabolism, and their role in the gut microbiota modulation are the focus of multiple studies. The objective of this weight of evidence systematic review is to investigate the potential relationship between ingested carbohydrates and the gut microbiota composition at different taxonomic levels. (2) Methods: Weight of evidence and information value techniques were used to evaluate the relationship between dietary carbohydrates and the relative abundance of different bacterial taxa in the gut microbiota. (3) Results: The obtained results show that the types of carbohydrates that have a high information value are: soluble fiber with Bacteroides increase, insoluble fiber with Bacteroides and Actinobacteria increase, and Firmicutes decrease. Oligosaccharides with Lactobacillus increase and Enterococcus decrease. Gelatinized starches with Prevotella increase. Starches and resistant starches with Blautia decrease and Firmicutes increase. (4) Conclusions: This work provides, for the first time, an integrative review of the subject by using statistical techniques that have not been previously employed in microbiota reviews.
Collapse
Affiliation(s)
- Lorena P Mora-Flores
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Rubén Moreno-Terrazas Casildo
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - José Fuentes-Cabrera
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Hugo Alexer Pérez-Vicente
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Ciudad de México 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Programa de Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
| | - Elier Ekberg Neri-Torres
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| |
Collapse
|