1
|
Matesanz S, Ramos-Muñoz M, Rubio Teso ML, Iriondo JM. Effects of parental drought on offspring fitness vary among populations of a crop wild relative. Proc Biol Sci 2022; 289:20220065. [PMID: 36000234 PMCID: PMC9399706 DOI: 10.1098/rspb.2022.0065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Transgenerational plasticity is a form of non-genetic inheritance that can reduce or enhance offspring fitness depending on parental stress. Yet, the adaptive value of such parental environmental effects and whether their expression varies among populations remain largely unknown. We used self-fertilized lines from climatically distinct populations of the crop wild relative Lupinus angustifolius. In the parental generation, full-siblings were grown in two contrasting watering environments. Then, to robustly separate the within-generation and transgenerational response to drought, we reciprocally assigned the offspring of parents to the same experimental treatments. We measured key functional traits and assessed lifetime reproductive fitness. Offspring of drought-stressed parents produced less reproductive biomass, but a similar number of lighter seeds, in dry soil compared to offspring of genetically identical, well-watered parents, an effect not mediated by differences in seed provisioning. Importantly, while the offspring of parents grown in the favourable environment responded to drought by slightly increasing individual seed mass, the pattern of plasticity of the offspring of drought-grown parents showed the opposite direction, and the negative effects of parental drought on seed mass were more pronounced in populations from cooler and moist habitats. Overall, our results show that parental effects may override immediate adaptive responses to drought and provide evidence of population-level variation in the expression of transgenerational plasticity.
Collapse
Affiliation(s)
- Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Marina Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - María Luisa Rubio Teso
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José María Iriondo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
2
|
Transgenerational Genetic Effects Help Explain Latitudinal Variation in Seed Mass and Germination Timing in Plantago lanceolata. PLANTS 2022; 11:plants11040522. [PMID: 35214858 PMCID: PMC8880339 DOI: 10.3390/plants11040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
We know little about the underlying genetic control of phenotypic patterns of seed traits across large-scale geographic and environmental gradients. Such knowledge is important for understanding the evolution of populations within species and for improving species conservation. Therefore, to test for genetic variation in Plantago lanceolata, we made reciprocal crosses between northern and southern genotypes that span the species’ range in Europe. The results provide evidence of transgenerational genetic effects on seed mass and germination timing. Northern mothers produced larger seeds with delayed germination, in contrast to southern mothers, which produced smaller seeds with accelerated germination. A maternal latitude affected both the seed coat, solely maternal tissue, and embryo/endosperm tissues. Thus, latitudinal variation in seed size and germination timing can be explained, in part, by the direct influence of maternal genotype, independent of zygotic genes that parents pass directly to the embryo and endosperm. Data suggest that researchers exploring the existence and evolution of large-scale geographic variation within species test for transgenerational genetic effects. In addition, data suggest that transgenerational control of seed traits should be considered when developing procedures designed to facilitate species conservation and restoration.
Collapse
|
3
|
Zettlemoyer MA, Lau JA. Warming during maternal generations delays offspring germination in native and nonnative species. OIKOS 2021. [DOI: 10.1111/oik.08345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meredith A. Zettlemoyer
- Kellogg Biological Station, Michigan State Univ. Hickory Corners MI USA
- Dept of Plant Biology, Michigan State Univ. East Lansing MI USA
- Dept of Plant Biology, Univ. of Georgia Athens GA USA
| | - Jennifer A. Lau
- Kellogg Biological Station, Michigan State Univ. Hickory Corners MI USA
- Dept of Plant Biology, Michigan State Univ. East Lansing MI USA
- Dept of Biology&Environmental Resilience Inst., Indiana Univ. Bloomington IN USA
| |
Collapse
|
4
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Carhuancho León FM, Aguado Cortijo PL, Morató Izquierdo MDC, Castellanos Moncho MT. Application of the thermal time model for different Typha domingensis populations. BMC PLANT BIOLOGY 2020; 20:377. [PMID: 32807100 PMCID: PMC7430124 DOI: 10.1186/s12870-020-02573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cattail (Typha domingensis Pers.) is a perennial emergent plant which is used in Green Floating Filters (GFFs), one of the most innovative systems of wastewater treatment to bioremediate eutrophic waters and produce biomass as biofuel feedstocks. The establishment of cattails in GFFs depends on the seed germination and plant responses under conditions of a new habitat. This study analysed the germination responses of four different populations of cattails through a thermal time model to know their basic parameters of germination and which population would be more adapted to the conditions tested. RESULTS Seeds from the Badajoz (Ba), Cuenca (Cu), Madrid (Ma), Seville (Se) and Toledo (To) populations were exposed to different thermal regimes (constant, and alternating temperatures between 15 and 30 °C) and different darkness treatments (between 0 and 20 days with 24 h dark photoperiod, then exposed to light with 12 h light/dark photoperiod) to determine the parameters of the thermal model from germination levels in each treatment. To population was used to validate the thermal time parameters of other populations. Regardless of the other parameters, no germination occurred in total darkness. The mean value of base temperature (Tb) was 16.4 ± 0.2 °C in all treatments. Optimum temperature (To) values in Ma and Ba were 25 °C, and those in Cu and Se were 22.5 °C. The germination response decreased when the temperature approached Tb and increased when it was close to To. In comparison to alternating temperatures, constant temperatures had the highest germination response and lowest thermal time (θT(50)). Darkness treatments had a direct relationship with θT(50). The population origin also affected seed germination; Cu had the highest values of To and germination response but had a lower θT(50), which coincides with the lowest mean ambient temperatures. CONCLUSION According to these results, the germination response of cattails was high in all populations under optimal conditions but was affected to a greater or lesser extent depending on thermal regimes, darkness treatments, and populations. The thermal time model allowed us to determine that To was between 22.5-25 °C and that Cu is the best population regarding the germination response under the conditions tested.
Collapse
Affiliation(s)
- Fanny Mabel Carhuancho León
- Agroenergy Research Group, Department of Agricultural Production. School of Agricultural, Food and Biosystems Engineering, Universidad Politecnica de Madrid (UPM), Avenue Complutense s/n, 28040 Madrid, Spain
| | - Pedro Luis Aguado Cortijo
- Agroenergy Research Group, Department of Agricultural Production. School of Agricultural, Food and Biosystems Engineering, Universidad Politecnica de Madrid (UPM), Avenue Complutense s/n, 28040 Madrid, Spain
| | - María del Carmen Morató Izquierdo
- Department of Applied Mathematics. School of Agricultural, Food and Biosystems Engineering, Universidad Politecnica de Madrid (UPM), Avenue Complutense s/n, 28040 Madrid, Spain
| | - María Teresa Castellanos Moncho
- Department of Applied Mathematics. School of Agricultural, Food and Biosystems Engineering, Universidad Politecnica de Madrid (UPM), Avenue Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
6
|
Marshall MM, Remington DL, Lacey EP. Two reproductive traits show contrasting genetic architectures in Plantago lanceolata. Mol Ecol 2019; 29:272-291. [PMID: 31793079 DOI: 10.1111/mec.15320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
In many species, temperature-sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large-effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool- and warm-temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype-by-sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single-environment values for both traits. We identified a large-effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller-effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.
Collapse
Affiliation(s)
- Matthew M Marshall
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - David L Remington
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Elizabeth P Lacey
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
7
|
Grey TL, Eason KM, Wells L, Basinger NT. Effects of Temperature on Seed Germination of Plantago lanceolata and Management in Carya illinoinensis Production. PLANTS 2019; 8:plants8090308. [PMID: 31466301 PMCID: PMC6784207 DOI: 10.3390/plants8090308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/17/2022]
Abstract
Plantago lanceolata L. (buckhorn plantain) is an encroaching winter weed described as one of the most successful noncultivated colonizing species around the world. Control of P. lanceolata in southeastern USA Carya illinoinensis (Wangenh.) K. Koch production has not been studied, nor has the role of temperature on germination using a thermal gradient table. Seed of P. lanceolata collected from a Georgia C. illinoinensis grove were tested for the effects of temperature over time to establish differences in effects on germination using a thermal gradient table. Temperatures ranged from 13.5 to 30.5 °C for 288 h. Cumulative P. lanceolata seed germination was 66% occurring at 17.8 °C at 242 h. Over the 288 h experiment, maximum P. lanceolata germination was 27% occurring at 17.0 °C, 187 h after initiation. Control of P. lanceolata with residual herbicides, or in combination with 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in the interrow of C. illinoinensis groves containing Trifolium repens L., and in greenhouse experiments. Pre- and post-emergent herbicides included indaziflam, halosulfuron-methyl, and simazine applied alone, or in combination with 2,4-D in late autumn after P. lanceolata emergence in a C. illinoinensis grove. Indaziflam in combination with 2,4-D controlled P. lanceolata greater than 90% when applied in C. illinoinensis groves and greenhouse experiments. Halosulfuron-methyl and simazine applied alone, or in combination with 2,4-D, provided 67% or less P. lanceolata control in the grove experiments, and 83% or less in greenhouse experiments. Results suggested that herbicide applications should be made during the time when diurnal temperatures are between 15 and 30 °C, while abiding pre-harvest interval restrictions. Post- and pre-emergent herbicides may aid in controlling emerged weeds and reducing further weed emergence during the autumn of that year.
Collapse
Affiliation(s)
- Timothy L Grey
- College of Agriculture and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA.
| | - Kayla M Eason
- College of Agriculture and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA
| | - Lenny Wells
- College of Agriculture and Environmental Sciences, Horticulture Department, University of Georgia, Tifton, GA 31793, USA
| | - Nicholas T Basinger
- College of Agriculture and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Marshall MM, Batten LC, Remington DL, Lacey EP. Natural selection contributes to geographic patterns of thermal plasticity in Plantago lanceolata. Ecol Evol 2019; 9:2945-2963. [PMID: 30891228 PMCID: PMC6405498 DOI: 10.1002/ece3.4977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
A long-standing debate in evolutionary biology concerns the relative importance of different evolutionary forces in explaining phenotypic diversification at large geographic scales. For example, natural selection is typically assumed to underlie divergence along environmental gradients. However, neutral evolutionary processes can produce similar patterns. We collected molecular genetic data from 14 European populations of Plantago lanceolata to test the contributions of natural selection versus neutral evolution to population divergence in temperature-sensitive phenotypic plasticity of floral reflectance. In P. lanceolata, reflectance plasticity is positively correlated with latitude/altitude. We used population pairwise comparisons between neutral genetic differentiation (F ST and Jost's D) and phenotypic differentiation (P ST) to assess the contributions of geographic distance and environmental parameters of the reproductive season in driving population divergence. Data are consistent with selection having shaped large-scale geographic patterns in thermal plasticity. The aggregate pattern of P ST versus F ST was consistent with divergent selection. F ST explained thermal plasticity differences only when geographic distance was not included in the model. Differences in the extent of cool reproductive season temperatures, and not overall temperature variation, explained plasticity differences independent of distance. Results are consistent with the hypothesis that thermal plasticity is adaptive where growing seasons are shorter and cooler, that is, at high latitude/altitude.
Collapse
Affiliation(s)
- Matthew M. Marshall
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - Leslie C. Batten
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - David L. Remington
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - Elizabeth P. Lacey
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| |
Collapse
|
9
|
Wadgymar SM, Mactavish RM, Anderson JT. Transgenerational and Within-Generation Plasticity in Response to Climate Change: Insights from a Manipulative Field Experiment across an Elevational Gradient. Am Nat 2018; 192:698-714. [DOI: 10.1086/700097] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Hatzig SV, Nuppenau JN, Snowdon RJ, Schießl SV. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC PLANT BIOLOGY 2018; 18:297. [PMID: 30470194 PMCID: PMC6251133 DOI: 10.1186/s12870-018-1531-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Drought stress has a negative effect on both seed yield and seed quality in Brassica napus (oilseed rape, canola). Here we show that while drought impairs the maternal plant performance, it also increases the vigour of progeny of stressed maternal plants. We investigated the transgenerational influence of abiotic stress by detailed analysis of yield, seed quality, and seedling performance on a growth-related and metabolic level. Seeds of eight diverse winter oilseed rape genotypes were generated under well-watered and drought stress conditions under controlled-environment conditions in large plant containers. RESULTS We found a decrease in seed quality in seeds derived from mother plants that were exposed to drought stress. At the same time, the seeds that developed under stress conditions showed higher seedling vigour compared to non-stressed controls.This effect on seed quality and seedling vigour was found to be independent of maternal plant yield performance. CONCLUSIONS Drought stress has a positive transgenerational effect on seedling vigour. Three potential causes for stress-induced improvement of seedling vigour are discussed: (1) Heterotic effects caused by a tendency towards a higher outcrossing rate in response to stress; (2) an altered reservoir of seed storage metabolites to which the seedling resorts during early growth, and (3) inter-generational stress memory, formed by stress-induced changes in the epigenome of the seedling.
Collapse
Affiliation(s)
- Sarah V. Hatzig
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jan-Niklas Nuppenau
- Department of Ecology, Environment and Plant Sciences, 106 91 Stockholm, Sweden
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Sarah V. Schießl
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
11
|
Fernández-Pascual E, Mattana E, Pritchard HW. Seeds of future past: climate change and the thermal memory of plant reproductive traits. Biol Rev Camb Philos Soc 2018; 94:439-456. [PMID: 30188004 DOI: 10.1111/brv.12461] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023]
Abstract
Plant persistence and migration in face of climate change depends on successful reproduction by seed, a central aspect of plant life that drives population dynamics, community assembly and species distributions. Plant reproduction by seed is a chain of physiological processes, the rates of which are a function of temperature, and can be modelled using thermal time models. Importantly, while seed reproduction responds to its instantaneous thermal environment, there is also evidence of phenotypic plasticity in response to the thermal history experienced by the plant's recent ancestors, by the reproducing plant since seedling establishment, and by its seeds both before and after their release. This phenotypic plasticity enables a thermal memory of plant reproduction, which allows individuals to acclimatise to their surroundings. This review synthesises current knowledge on the thermal memory of plant reproduction by seed, and highlights its importance for modelling approaches based on physiological thermal time. We performed a comprehensive search in the Web of Science and analysed 533 relevant articles, of which 81 provided material for a meta-analysis of thermal memory in reproductive functional traits based on the effect size Zr. The articles encompassed the topics of seed development, seed yield (mass and number), seed dormancy (physiological, morphological and physical), germination, and seedling establishment. The results of the meta-analysis provide evidence for a thermal memory of seed yield, physiological dormancy and germination. Seed mass and physiological dormancy appear to be the central hubs of this memory. We argue for integrating thermal memory into a predictive framework based on physiological time modelling. This will provide a quantitative assessment of plant reproduction, a complex system that integrates past and present thermal inputs to achieve successful reproduction in changing environments. The effects of a warming environment on plant reproduction cannot be reduced to a qualitative interpretation of absolute positives and negatives. Rather, these effects need to be understood in terms of changing rates and thresholds for the physiological process that underlie reproduction by seed.
Collapse
Affiliation(s)
- Eduardo Fernández-Pascual
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew; Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, U.K.,Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo; C/ Catedrático Rodrigo Uría, 33006, Oviedo/Uviéu, Spain
| | - Efisio Mattana
- Natural Capital and Plant Health, Royal Botanic Gardens, Kew; Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, U.K
| | - Hugh W Pritchard
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew; Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, U.K
| |
Collapse
|
12
|
Sandner TM, van Braak JL, Matthies D. Transgenerational plasticity in Silene vulgaris in response to three types of stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:751-758. [PMID: 29570927 DOI: 10.1111/plb.12721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
The environment experienced by plants can influence the phenotype of their offspring. Such transgenerational plasticity can be adaptive when it results in higher fitness of the offspring under conditions correlated with those experienced by the mother plant. However, it has rarely been tested if such anticipatory parental effects may be induced with different environments. We grew clonal replicates of Silene vulgaris under control conditions and three types of stress (nutrient deficiency, copper addition and drought), which are known from natural populations of the species. We then subjected offspring from differently treated mother plants to each of the different stress treatments to analyse the influence of maternal and offspring environment on performance and several functional traits. Current stress treatments strongly influenced biomass and functional traits of the plants, mostly in line with responses predicted by the theory of functional equilibrium. Plant performance was also influenced by maternal stress treatments, and some effects independent of initial size differences remained until harvest. In particular, stressed mothers produced offspring of higher fitness than control plants. However, there was no evidence for treatment-specific adaptive transgenerational plasticity, as offspring from a mother plant that had grown in a specific environment did not grow better in that environment than other plants. Our results indicate that the maternal environment may affect offspring traits and performance, but also that this transgenerational plasticity is not necessarily adaptive.
Collapse
Affiliation(s)
- T M Sandner
- Department of Ecology, Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - J L van Braak
- Department of Ecology, Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - D Matthies
- Department of Ecology, Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
13
|
Vayda K, Donohue K, Auge GA. Within- and trans-generational plasticity: seed germination responses to light quantity and quality. AOB PLANTS 2018; 10:ply023. [PMID: 29770181 PMCID: PMC5951028 DOI: 10.1093/aobpla/ply023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/08/2018] [Indexed: 05/28/2023]
Abstract
Plants respond not only to the environment in which they find themselves, but also to that of their parents. The combination of within- and trans-generational phenotypic plasticity regulates plant development. Plants use light as source of energy and also as a cue of competitive conditions, since the quality of light (ratio of red to far-red light, R:FR) indicates the presence of neighbouring plants. Light regulates many aspects of plant development, including seed germination. To understand how seeds integrate environmental cues experienced at different times, we quantified germination responses to changes in light quantity (irradiance) and quality (R:FR) experienced during seed maturation and seed imbibition in Arabidopsis thaliana genotypes that differ in their innate dormancy levels and after treatments that break or reinduce dormancy. In two of the genotypes tested, reduced irradiance as well as reduced R:FR during seed maturation induced higher germination; thus, the responses to light quantity and R:FR reinforced each other. In contrast, in a third genotype, reduced irradiance during seed maturation induced progeny germination, but response to reduced R:FR was in the opposite direction, leading to a very weak or no overall effect of a simulated canopy experienced by the mother plant. During seed imbibition, reduced irradiance and reduced R:FR caused lower germination in all genotypes. Therefore, responses to light experienced at different times (maturation vs. imbibition) can have opposite effects. In summary, seeds responded both to light resources (irradiance) and to cues of competition (R:FR), and trans-generational plasticity to light frequently opposed and was stronger than within-generation plasticity.
Collapse
|
14
|
Auge GA, Leverett LD, Edwards BR, Donohue K. Adjusting phenotypes via within- and across-generational plasticity. THE NEW PHYTOLOGIST 2017; 216:343-349. [PMID: 28262950 DOI: 10.1111/nph.14495] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/10/2017] [Indexed: 05/26/2023]
Abstract
Contents 343 I. 343 II. 343 III. 347 IV. 348 348 References 348 SUMMARY: There is renewed interest in how transgenerational environmental effects, including epigenetic inheritance, contribute to adaptive evolution. The contribution of across-generation plasticity to adaptation, however, needs to be evaluated within the context of within-generation plasticity, which is often proposed to contribute more efficiently to adaptation because of the potentially greater accuracy of progeny than parental cues to predict progeny selective environments. We highlight recent empirical studies of transgenerational plasticity, and find that they do not consistently support predictions based on the higher predictive ability of progeny environmental cues. We discuss these findings within the context of the relative predictive ability of maternal and progeny cues, costs and constraints of plasticity in parental and progeny generations, and the dynamic nature of the adaptive value of within- and across-generation plasticity that varies with the process of adaptation itself. Such contingent and dynamically variable selection could account for the diversity of patterns of within- and across-generation plasticity observed in nature, and can influence the adaptive value of the persistence of environmental effects across generations.
Collapse
Affiliation(s)
- Gabriela A Auge
- Department of Biology and University Program in Ecology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Lindsay D Leverett
- Department of Biology and University Program in Ecology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Brianne R Edwards
- Department of Biology and University Program in Ecology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Kathleen Donohue
- Department of Biology and University Program in Ecology, Duke University, Box 90338, Durham, NC, 27708, USA
| |
Collapse
|
15
|
Thiede DA. MATERNAL INHERITANCE AND ITS EFFECT ON ADAPTIVE EVOLUTION: A QUANTITATIVE GENETIC ANALYSIS OF MATERNAL EFFECTS IN A NATURAL PLANT POPULATION. Evolution 2017; 52:998-1015. [PMID: 28565233 DOI: 10.1111/j.1558-5646.1998.tb01829.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1997] [Accepted: 04/08/1998] [Indexed: 11/28/2022]
Abstract
A mother can influence a trait in her offspring both by the genes she transmits (Mendelian inheritance) and by maternal attributes that directly affect that trait in her offspring (maternal inheritance). Maternal inheritance can alter the direction, rate, and duration of adaptive evolution from standard Mendelian models and its impact on adaptive evolution is virtually unexplored in natural populations. In a hierarchical quantitative genetic analysis to determine the magnitude and structure of maternal inheritance in the winter annual plant, Collinsia verna, I consider three potential models of inheritance. These range from a standard Mendelian model estimating only direct (i.e., Mendelian) additive and environmental variance components to a maternal inheritance model estimating six additive and environmental variance components: direct additive (σAo2) and environmental (σEo2) variances; maternal additive (σAm2) and environmental (σEm2) variances; and the direct-maternal additive (σApAm) and environmental (σEm2) covariances. The structure of maternal inheritance differs among the 10 traits considered at four stages in the life cycle. Early in the life cycle, seed weight and embryo weight display substantial σAm2, a negative σAoAm, and a positive σEoEm. Subsequently, cotyledon diameter displays σAo2 and σAm2 of roughly the same magnitude and negative σAoAm. For fall rosettes, leaf number and length are best described by a Mendelian model. In the spring, leaf length displays maternal inheritance with significant σAo2 and σAm2 and a negative σAoAm. All maternally inherited traits show significant negative σAoAm. Predicted response to selection under maternal inheritance depends on σAo2 and σAm2 as well as σAoAm. Negative σAoAm results in predicted responses in the opposite direction to selection for seed weight and embryo weight and predicted responses near zero for all subsequent maternally inherited traits. Maternal inheritance persists through the life cycle of this annual plant for a number of size-related traits and will alter the direction and rate of evolutionary response in this population.
Collapse
Affiliation(s)
- Denise A Thiede
- W. K. Kellogg Biological Station and Department of Botany and Plant Pathology, Michigan State University, Hickory Corners, Michigan, 49060
| |
Collapse
|
16
|
Galloway LF, Fenster CB. THE EFFECT OF NUCLEAR AND CYTOPLASMIC GENES ON FITNESS AND LOCAL ADAPTATION IN AN ANNUAL LEGUME,
CHAMAECRISTA FASCICULATA. Evolution 2017; 53:1734-1743. [DOI: 10.1111/j.1558-5646.1999.tb04558.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/1998] [Accepted: 05/12/1999] [Indexed: 11/29/2022]
Affiliation(s)
- Laura F. Galloway
- Department of Biology University of Virginia Charlottesville Virginia 22903‐2477
| | - Charles B. Fenster
- Department of Biology University of Maryland College Park Maryland 20742
| |
Collapse
|
17
|
Lu JJ, Tan DY, Baskin CC, Baskin JM. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual. Sci Rep 2016; 6:25076. [PMID: 27117090 PMCID: PMC4846867 DOI: 10.1038/srep25076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD.
Collapse
Affiliation(s)
- Juan J Lu
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Dun Y Tan
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Carol C Baskin
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China.,Department of Biology, University of Kentucky, Lexington, KY 40506, USA.,Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Jerry M Baskin
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China.,Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
18
|
Vu WT, Chang PL, Moriuchi KS, Friesen ML. Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula. BMC Evol Biol 2015; 15:59. [PMID: 25884157 PMCID: PMC4406021 DOI: 10.1186/s12862-015-0322-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transgenerational plasticity provides phenotypic variation that contributes to adaptation. For plants, the timing of seed germination is critical for offspring survival in stressful environments, as germination timing can alter the environmental conditions a seedling experiences. Stored seed transcripts are important determinants of seed germination, but have not previously been linked with transgenerational plasticity of germination behavior. In this study we used RNAseq and growth chamber experiments of the model legume M. trucantula to test whether parental exposure to salinity stress influences the expression of stored seed transcripts and early offspring traits and test for genetic variation. RESULTS We detected genotype-dependent parental environmental effects (transgenerational plasticity) on the expression levels of stored seed transcripts, seed size, and germination behavior of four M. truncatula genotypes. More than 50% of the transcripts detected in the mature, ungerminated seed transcriptome were annotated as regulating seed germination, some of which are involved in abiotic stress response and post-embryonic development. Some genotypes showed increased seed size in response to parental exposure to salinity stress, but no parental environmental influence on germination timing. In contrast, other genotypes showed no seed size differences across contrasting parental conditions but displayed transgenerational plasticity for germimation timing, with significantly delayed germination in saline conditions when parental plants were exposed to salinity. In genotypes that show significant transgenerational plastic germination response, we found significant coexpression networks derived from salt responsive transcripts involved in post-transcriptional regulation of the germination pathway. Consistent with the delayed germination response to saline conditions in these genotypes, we found genes associated with dormancy and up-regulation of abscisic acid (ABA). CONCLUSIONS Our results demonstrate genetic variation in transgenerational plasticity within M. truncatula and show that parental exposure to salinity stress influences the expression of stored seed transcripts, seed weight, and germination behavior. Furthermore, we show that the parental environment influences gene expression to modulate biological pathways that are likely responsible for offspring germination responses to salinity stress.
Collapse
Affiliation(s)
- Wendy T Vu
- Section of Molecular and Computational Biology, Department of Biology, University of Southern California, Los Angeles, USA.
| | - Peter L Chang
- Section of Molecular and Computational Biology, Department of Biology, University of Southern California, Los Angeles, USA.
| | - Ken S Moriuchi
- Plant Pathology, University of California at Davis, 116 Robbins Hall, Davis, CA, USA.
| | - Maren L Friesen
- Section of Molecular and Computational Biology, Department of Biology, University of Southern California, Los Angeles, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Li Z, Lu W, Yang L, Kong X, Deng X. Seed weight and germination behavior of the submerged plant Potamogeton pectinatus in the arid zone of northwest China. Ecol Evol 2015; 5:1504-12. [PMID: 25897389 PMCID: PMC4395179 DOI: 10.1002/ece3.1451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 02/08/2015] [Indexed: 01/10/2023] Open
Abstract
Variation in seed weight is common within and among plant species, but few studies have attempted to document the pattern of seed weight and germination attributes for aquatic macrophytes at a large scale. This study examined within-species variation in seed weight and germination attributes and the effects of environmental factors on seed traits of the submerged plant Potamogeton pectinatus in the arid zone of northwest China. Our results showed that the average seed weight was 0.24 g per 100 seeds with a coefficient of variation (CV) of 28.4% among the eight P. pectinatus populations. The total germination fraction of seeds of P. pectinatus was relatively poor, less than 35% in seven P. pectinatus populations, and the lowest germination percentage found was only 2%. There were significant differences in seed weight, time to onset of germination, and total germination fraction among the eight different populations. Hierarchical partitioning analysis showed a strongly positive correlation between seed weight and water temperature and pH. Seed weight and the maternal environmental factors significantly affected both time to initiation of germination and total germination fraction. Our results suggest that (1) seed weight variation in P. pectinatus primarily is the result of temperature variation during fruit development; (2) relatively poor germination fraction suggests that seeds are relatively unimportant in the short-term survival of populations and that it may be another adaptive trait allowing plants to take place in the right place and at the right time, especially in harsh environment; and (3) variation in seed germination traits should be determined by local environmental and intrinsic factors that interact in a complex fashion.
Collapse
Affiliation(s)
- Zhongqiang Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei UniversityWuhan, 430062, China
| | - Wei Lu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei UniversityWuhan, 430062, China
| | - Lei Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei UniversityWuhan, 430062, China
| | - Xianghong Kong
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei UniversityWuhan, 430062, China
| | - Xuwei Deng
- Wuhan Research Academy of Environmental Protection SciencesWuhan, 430015, China
| |
Collapse
|
20
|
Simons AM. Playing smart vs. playing safe: the joint expression of phenotypic plasticity and potential bet hedging across and within thermal environments. J Evol Biol 2014; 27:1047-56. [DOI: 10.1111/jeb.12378] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- A. M. Simons
- Department of Biology; Carleton University; Ottawa ON Canada
| |
Collapse
|
21
|
Suter L, Widmer A. Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS One 2013; 8:e60364. [PMID: 23585834 PMCID: PMC3621951 DOI: 10.1371/journal.pone.0060364] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/25/2013] [Indexed: 01/29/2023] Open
Abstract
Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana.
Collapse
Affiliation(s)
- Léonie Suter
- ETH Zurich, Institute of Integrative Biology, Zurich, Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology, Zurich, Switzerland
| |
Collapse
|
22
|
Kochanek J, Steadman KJ, Probert RJ, Adkins SW. Parental effects modulate seed longevity: exploring parental and offspring phenotypes to elucidate pre-zygotic environmental influences. THE NEW PHYTOLOGIST 2011; 191:223-233. [PMID: 21434931 DOI: 10.1111/j.1469-8137.2011.03681.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
• Seed longevity, which is essential for germplasm conservation and survival of many land plant species, can vary considerably within species and cultivars. Here, we explore the relationship between parental and offspring phenotypes to elucidate how pre-zygotic environment affects seed longevity. • Plants of the wild species Plantago cunninghamii were exposed to wet or dry soil within a warm or cool glasshouse until flowering and then moved to a common environment. Seeds subsequently produced were collected at maturity, and longevity was assessed by controlled ageing at 45°C, 60% relative humidity. Multivariate analysis was used to examine relationships between the parental and offspring phenotypes. • The pre-zygotic environment resulted in a highly plastic parental response which was passed on to offspring seeds and changed their longevity (p(50)) by more than a factor of 2. Seed longevity is a function of the seed population's distribution of deaths in time (σ) and quality (K(i)); σ was associated with plant size, and K(i) with reproductive plant traits. • The pre-zygotic growth environment modulated seed longevity via a parental effect. Reproductive performance and seed quality (K(i)) were highly correlated with each other and unrelated to the maternal plant phenotype. Hence seed quality may be associated with the paternal plant response to the environment.
Collapse
Affiliation(s)
- Jitka Kochanek
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | - Kathryn J Steadman
- School of Pharmacy and School of Biological Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | - Robin J Probert
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Steve W Adkins
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
23
|
KOCHANEK JITKA, BUCKLEY YVONNEM, PROBERT ROBINJ, ADKINS STEVEW, STEADMAN KATHRYNJ. Pre-zygotic parental environment modulates seed longevity. AUSTRAL ECOL 2010. [DOI: 10.1111/j.1442-9993.2010.02118.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Pías B, Matesanz S, Herrero A, Gimeno TE, Escudero A, Valladares F. Transgenerational effects of three global change drivers on an endemic Mediterranean plant. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.18232.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Revardel E, Franc A, Petit RJ. Sex-biased dispersal promotes adaptive parental effects. BMC Evol Biol 2010; 10:217. [PMID: 20637098 PMCID: PMC3055266 DOI: 10.1186/1471-2148-10-217] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 07/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background In heterogeneous environments, sex-biased dispersal could lead to environmental adaptive parental effects, with offspring selected to perform in the same way as the parent dispersing least, because this parent is more likely to be locally adapted. We investigate this hypothesis by simulating varying levels of sex-biased dispersal in a patchy environment. The relative advantage of a strategy involving pure maternal (or paternal) inheritance is then compared with a strategy involving classical biparental inheritance in plants and in animals. Results We find that the advantage of the uniparental strategy over the biparental strategy is maximal when dispersal is more strongly sex-biased and when dispersal distances of the least mobile sex are much lower than the size of the environmental patches. In plants, only maternal effects can be selected for, in contrast to animals where the evolution of either paternal or maternal effects can be favoured. Moreover, the conditions for environmental adaptive maternal effects to be selected for are more easily fulfilled in plants than in animals. Conclusions The study suggests that sex-biased dispersal can help predict the direction and magnitude of environmental adaptive parental effects. However, this depends on the scale of dispersal relative to that of the environment and on the existence of appropriate mechanisms of transmission of environmentally induced traits.
Collapse
|
26
|
Latzel V, Hájek T, Klimešová J, Gómez S. Nutrients and disturbance history in twoPlantagospecies: maternal effects as a clue for observed dichotomy between resprouting and seeding strategies. OIKOS 2009. [DOI: 10.1111/j.1600-0706.2009.17767.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Dechaine JM, Gardner G, Weinig C. Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. PLANT, CELL & ENVIRONMENT 2009; 32:1297-309. [PMID: 19453482 DOI: 10.1111/j.1365-3040.2009.01998.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ratio of red to far-red light (R : FR) experienced by seeds during maturation affects germination, but the genetic regulation of this effect is poorly understood. In Arabidopsis thaliana, responses to R : FR are governed by five phytochrome photoreceptors, PHYA-PHYE. PHYA, PHYB and PHYE mediate germination, but their roles in germination response to the seed maturation environment are largely unknown. Seeds of A. thaliana phytochrome mutants and natural accessions were matured in a factorial combination of cold (16 degrees C) and warm (24 degrees C) temperatures and high (R : FR = 1) and low (R : FR = 0.6) R : FR environments, resembling sunlight and foliar shade, respectively. Germination was observed in resulting seeds. All five phytochromes mediated germination responses to seed maturation temperature and/or R : FR environment. PHYA suppressed germination in seeds matured under cold temperature, and PHYB promoted germination under the same conditions. PHYD and PHYE promoted germination of seeds matured under warm temperature, but this effect diminished when seeds matured under reduced R : FR. The A. thaliana natural accessions exhibited interesting variation in germination responses to the experimental conditions. Our results suggest that the role of individual PHY loci in regulating plant responses to R : FR varies depending on temperature and provide novel insights into the genetic basis of maternal effects.
Collapse
Affiliation(s)
- Jennifer M Dechaine
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA.
| | | | | |
Collapse
|
28
|
Galloway LF, Etterson JR. Plasticity to canopy shade in a monocarpic herb: within- and between-generation effects. THE NEW PHYTOLOGIST 2009; 182:1003-1012. [PMID: 19320836 DOI: 10.1111/j.1469-8137.2009.02803.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plants exhibit plasticity in response to their current environment and, in some cases, to that of the previous generation (i.e. maternal effects). However, few studies have evaluated both within- and between-generation plasticities and the extent to which they interact to influence fitness, especially in natural environments. The plasticity of adult traits to two generations of natural differences in light was determined for Campanulastrum americanum, a forest-edge herb that expresses annual and biennial life histories. Plasticity was found to an individual's light environment (within generation) and the maternal light environment (between generations). Responses to ambient light for size traits and timing of flowering were probably passive, whereas apparently adaptive responses were found for light acquisition traits. Maternal light influenced the expression of most adult traits but had the strongest effect when plants were germinated in natural environments. The transgenerational effects of light were consistent with adaptive plasticity for several traits. Plastic within-generation changes in flowering time may also result in adaptive between-generation effects by altering the offspring life history schedule. Finally, the results underscore the importance of conducting studies of within- and between-generation plasticity in natural populations, where the environmental context is relevant to that in which the traits evolved.
Collapse
Affiliation(s)
- Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA
| | - Julie R Etterson
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812-3004, USA
| |
Collapse
|
29
|
Violle C, Castro H, Richarte J, Navas ML. Intraspecific seed trait variations and competition: passive or adaptive response? Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2009.01539.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Donohue K. Completing the cycle: maternal effects as the missing link in plant life histories. Philos Trans R Soc Lond B Biol Sci 2009; 364:1059-74. [PMID: 19324611 PMCID: PMC2666684 DOI: 10.1098/rstb.2008.0291] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maternal effects on seed traits such as germination are important components of the life histories of plants because they represent the pathway from adult to offspring: the pathway that completes the life cycle. Maternal environmental effects on germination influence basic life-history expression, natural selection on germination, the expression of genetic variation for germination and even the genes involved in germination. Maternal effects on seed traits can even influence generation time and projected population growth rates. Whether these maternal environmental effects are imposed by the maternal genotype, the endosperm genotype or the embryonic genotype, however, is as yet unknown. Patterns of gene expression and protein synthesis in seeds indicate that the maternal genotype has the opportunity to influence its progeny's germination behaviour. Investigation of the phenotypic consequences of maternal environmental effects, regardless of its genetic determination, is relevant for understanding the variation in plant life cycles. Distinguishing the genotype(s) that control them is relevant for predicting the evolutionary trajectories and patterns of selection on progeny phenotypes and the genes underlying them.
Collapse
Affiliation(s)
- Kathleen Donohue
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
31
|
|
32
|
Galen C. Solar furnaces or swamp coolers: costs and benefits of water use by solar-tracking flowers of the alpine snow buttercup, Ranunculus adoneus. Oecologia 2006; 148:195-201. [PMID: 16465542 DOI: 10.1007/s00442-006-0362-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 01/10/2006] [Indexed: 10/25/2022]
Abstract
Solar tracking or heliotropism simultaneously raises organ temperature and light interception. For leaves and flowers carbon gain is maximized at the expense of water loss. In this study I explore how costs and benefits associated with water use by solar-tracking flowers of the alpine snow buttercup, Ranunculus adoneus change with ambient temperature. First, I test whether heliotropism increases the water cost of reproduction in the snow buttercup under extant alpine conditions. I then explore whether water use for evaporative cooling in solar-tracking flowers reduces the risk of over-heating as temperatures increase. Solar tracking, by elevating floral temperature and irradiance causes a 29% increase in water uptake by flowers. Gas exchange measurements suggest that the extra water taken up by solar-tracking flowers is released through transpiration. Transpirational cooling in turn allows solar-tracking flowers to gain advantages of enhanced light interception and warmth while reducing the risk of over-heating. Transpiration reduces excess temperature in solar-tracking flowers, but at a water cost. Results show that even in cool alpine habitats, flower heliotropism has water costs to balance its reproductive advantages. Plants with solar-tracking flowers may tolerate hotter conditions if soil moisture is plentiful, but not under drought.
Collapse
Affiliation(s)
- Candace Galen
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA.
| |
Collapse
|
33
|
Lacey EP, Herr D. Phenotypic plasticity, parental effects, and parental care in plants? I. An examination of spike reflectance in Plantago lanceolata (Plantaginaceae). AMERICAN JOURNAL OF BOTANY 2005; 92:920-30. [PMID: 21652475 DOI: 10.3732/ajb.92.6.920] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We explore the relationships among phenotypic plasticity, parental effects, and parental care in plants by presenting data from four experiments examining reflectance/color patterns in Plantago lanceolata. In three experiments, we measured spike (inflorescence) reflectance between 362 and 850 nm using a spectrophotometer with an integrating sphere. Experiments show that (1) spike reflectance changes seasonally within and outside the visible portion of the spectrum of radiant energy, (2) increasing ambient temperature causes an individual plant to produce flowering and fruiting spikes that reflect more/lighten in color (the greatest changes occur in the regions around 550 nm and between 750 and 850 nm, the visible and near-infrared regions, respectively), (3) responses are reversible, (4) genotypes within populations and populations from different latitudes differ in mean reflectance and degree of phenotypic plasticity. In a fourth experiment, we measured internal spike temperature. Darker spikes, those produced at lower temperature, got hotter than did lighter spikes in full sun. Thus, plants can partially thermoregulate reproduction and the embryonic development of their offspring. In light of a previous experiment, data suggest that thermoregulation produces adaptive parental effects and is a mechanism by which P. lanceolata provides parental care.
Collapse
Affiliation(s)
- Elizabeth P Lacey
- Department of Biology, 312 Eberhart Building, University of North Carolina, Greensboro, North Carolina 27402 USA
| | | |
Collapse
|
34
|
Galloway LF. Maternal effects provide phenotypic adaptation to local environmental conditions. THE NEW PHYTOLOGIST 2005; 166:93-9. [PMID: 15760354 DOI: 10.1111/j.1469-8137.2004.01314.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In outcrossing plants, seed dispersal distance is often less than pollen movement. If the scale of environmental heterogeneity within a population is greater than typical seed dispersal distances but less than pollen movement, an individual's environment will be similar to that of its mother but not necessarily its father. Under these conditions, environmental maternal effects may evolve as a source of adaptive plasticity between generations, enhancing offspring fitness in the environment that they are likely to experience. This idea is illustrated using Campanula americana, an herb that grows in understory and light-gap habitats. Estimates of seed dispersal suggest that offspring typically experience the same light environment as their mother. In a field experiment testing the effect of open vs understory maternal light environments, maternal light directly influenced offspring germination rate and season, and indirectly affected germination season by altering maternal flowering time. Results to date indicate that these maternal effects are adaptive; further experimental tests are ongoing. Evaluating maternal environmental effects in an ecological context demonstrates that they may provide phenotypic adaptation to local environmental conditions.
Collapse
Affiliation(s)
- Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA.
| |
Collapse
|
35
|
Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, schmitt J. ENVIRONMENTAL AND GENETIC INFLUENCES ON THE GERMINATION OF ARABIDOPSIS THALLANA IN THE FIELD. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01750.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J. ENVIRONMENTAL AND GENETIC INFLUENCES ON THE GERMINATION OF ARABIDOPSIS THALIANA IN THE FIELD. Evolution 2005. [DOI: 10.1554/04-419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
WILLIS SG, HULME PE. Environmental severity and variation in the reproductive traits of Impatiens glandulifera. Funct Ecol 2004. [DOI: 10.1111/j.0269-8463.2004.00907.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Riihimäki M, Savolainen O. Environmental and genetic effects on flowering differences between northern and southern populations of Arabidopsis lyrata (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2004; 91:1036-45. [PMID: 21653459 DOI: 10.3732/ajb.91.7.1036] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis lyrata (Brassicaceae) is a close outcrossing relative of A. thaliana. We examine flowering time variation of northern and southern A. lyrata populations in controlled environmental conditions, in a common garden experiment with A. thaliana, and in the field. Southern populations of A. lyrata flowered earlier than northern ones in all environmental conditions. Individuals from southern populations were more likely to flower in short days (14 h light) than northern ones, and all populations had a higher probability of flowering and flowered more rapidly in long days (20 h). The interaction of population and day length significantly affected flowering probability, and flowering time in one of two comparisons. The common garden experiment demonstrated differences between populations in the response to seed cold treatment, but growth chamber experiments showed no vernalization effect after 4 wk of rosette cold treatment. In a field population in Norway, a high proportion of the plants flowered in each year of the study. The plants progressed to flowering more rapidly in the field and common garden than in the growth chamber. The genetic basis of these flowering time differences here can be further studied using A. thaliana genetic tools.
Collapse
Affiliation(s)
- Mona Riihimäki
- Department of Biology, PO Box 3000, FIN-90014 University of Oulu, Finland
| | | |
Collapse
|
39
|
Griffith C, Kim E, Donohue K. Life-history variation and adaptation in the historically mobile plant Arabidopsis thaliana (Brassicaceae) in North America. AMERICAN JOURNAL OF BOTANY 2004; 91:837-849. [PMID: 21653439 DOI: 10.3732/ajb.91.6.837] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We used field-collected seeds of Arabidopsis thaliana (Brassicaceae) to simulate a colonization event of plants from diverse locations into a common environment to compare regionally "local" and "foreign" populations of this historically mobile species. Life history varied among regional groups, but most variation was found among populations within regions. While we found significant differences among populations and regional groups for important life-history characters, we did not find significant differences in performance of plants from different populations or regional groups. Rather, we found evidence that differences in life history contributed to the ability of plants from foreign regions to perform comparably to local Kentucky plants. Had plants from different regions not differed in the timing and size of reproduction, we would have seen that Kentucky (local) plants had higher total fitness via greater reproductive success of individuals that survived to reproduce and that Michigan plants would have had the lowest fitness. The populations are comparably adapted to the environment in Kentucky but through different combinations of life-history characters. Therefore, the life-history variation in this mobile species appears to contribute not to fitness differences among populations but rather to success in colonizing new locations.
Collapse
Affiliation(s)
- Converse Griffith
- T. H. Morgan School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506 USA
| | | | | |
Collapse
|
40
|
Weis AE, Kossler TM. Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to Brassica rapa. AMERICAN JOURNAL OF BOTANY 2004; 91:825-36. [PMID: 21653438 DOI: 10.3732/ajb.91.6.825] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
It has been argued from first principles that plants mate assortatively by flowering time. However, there have been very few studies of phenological assortative mating, perhaps because current methods to infer paternal phenotype are difficult to apply to natural populations. Two methods are presented to estimate the phenotypic correlation between mates-the quantitative genetic metric for assortative mating-for phenological traits. The first method uses individual flowering schedules to estimate mating probabilities for every potential pairing in a sample. These probabilities are then incorporated into a weighted phenotypic correlation between all potential mates and thus yield a prospective estimate based on mating opportunities. The correlation between mates can also be estimated retrospectively by comparing the regression of offspring phenotype over one parent, which is inflated by assortative mating, to the regression over mid-parent, which is not. In a demonstration experiment with Brassica rapa, the prospective correlation between flowering times (days from germination to anthesis) of pollen recipients and their potential donors was 0.58. The retrospective estimate of this correlation strongly agreed with the prospective estimate. The prospective method is easily employed in field studies that explore the effect of phenological assortative mating on selection response and population differentiation.
Collapse
Affiliation(s)
- Arthur E Weis
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California 92687 USA
| | | |
Collapse
|
41
|
Monro K, Poore AGB. Selection in Modular Organisms: Is Intraclonal Variation in Macroalgae Evolutionarily Important? Am Nat 2004; 163:564-78. [PMID: 15122503 DOI: 10.1086/382551] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 10/21/2003] [Indexed: 11/03/2022]
Abstract
Theoretical and practical difficulties occur when defining the units of selection in modular organisms that grow by iteration of repeated parts (modules). Modules may become physically autonomous through fragmentation and may vary because of genetic variation arising in somatic cell lineages. Since cells destined for gamete production are not sequestered in early development, heritable variation and selection among asexual progeny are possible. We used the branching red macroalgae Delisea pulchra and Asparagopsis armata to test whether modules fulfill three fundamental criteria for units of selection: that they replicate, that they display heritable variation, and that selective agents distinguish among the variants. We detected significant phenotypic variation among modules for fitness-related traits (growth, secondary metabolite concentrations, and rates of tissue loss to herbivory) in each species and significant heritability estimates for secondary metabolite production and tissue loss to herbivory in D. pulchra. Variation in growth rate among A. armata modules was largely phenotypic with small but important estimates of genetic variation. Our results indicate that selection may indeed act on phenotypic variation among modules within individuals and that this process may effect evolutionary change within asexual lineages given sufficient genetic variation in the traits examined.
Collapse
Affiliation(s)
- Keyne Monro
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney 2052, New South Wales, Australia.
| | | |
Collapse
|
42
|
|
43
|
Galen C, Stanton ML. Sunny-side up: flower heliotropism as a source of parental environmental effects on pollen quality and performance in the snow buttercup, Ranunculus adoneus (Ranunculaceae). AMERICAN JOURNAL OF BOTANY 2003; 90:724-729. [PMID: 21659168 DOI: 10.3732/ajb.90.5.724] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Floral traits affect mating success via their influence on the microenvironment in which sexual reproduction occurs as well as their impact on pollinator attraction. Here we investigate the importance of flower heliotropism as a source of parental environmental effects on pollen quality and performance. Flowers of the snow buttercup, Ranunculus adoneus, closely track the sun's rays. We experimentally restrained flowers to test for effects of heliotropism on pollen quality and performance after pollination. When equivalent amounts of pollen were transferred to recipient pistils, pollen from solar-tracking donor flowers exhibited a 32% advantage in germination compared to pollen from stationary (tethered) donor flowers. By the end of anthesis, pistils of tracking flowers contained 40% more germinating pollen grains and 44% more pollen tubes midway down the style than pistils of stationary ones. Solar tracking had no direct effect on pollen tube growth. The greater amount of germinating pollen in tracking flowers accounted for the treatment effect on pollen tube density. A survey of pollen receipt and pollen germination in naturally tracking flowers indicated that solar tracking primarily affects pollen tube density by promoting pollen germination rather than pollen deposition. We conclude that flower heliotropism, by enhancing the paternal environment for pollen development and the maternal environment for pollen germination, represents a source of positive parental environmental effects on pollen performance in snow buttercups.
Collapse
Affiliation(s)
- Candace Galen
- Division of Biological Sciences, 105 Tucker Hall, University of Missouri, Columbia, Missouri 65211-7400 USA
| | | |
Collapse
|
44
|
Etterson JR, Galloway LF. The influence of light on paternal plants in Campanula americana (Campanulaceae): pollen characteristics and offspring traits. AMERICAN JOURNAL OF BOTANY 2002; 89:1899-906. [PMID: 21665618 DOI: 10.3732/ajb.89.12.1899] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Offspring trait expression is determined by the combination of parental genes and parental environments. Although maternal environmental effects have been widely characterized, few studies have focused on paternal environmental effects. To determine whether light availability influences pollen and offspring traits in the woodland herb Campanula americana, we reared clones of 12 genotypes in two light levels. In the parental generation we measured pollen number and size. Plants grown under high light produced more pollen grains per flower than those grown under low light. However, the response was genotype specific; some individuals responded little to changes in light availability while others substantially reduced pollen production. As a consequence, paternity ratios may vary between light environments if more pollen is associated with greater siring success. We crossed a subset of these plants to produce the offspring generation. The paternal and maternal light environments influenced offspring seed mass, percentage germination, and days to germination, while only maternal light levels influenced later life traits, such as leaf number and size. Maternal and paternal environmental effects had opposite influences on seed mass, percentage germination and days to germination. Finally, there was no direct relationship between light effects on pollen production and offspring trait expression.
Collapse
Affiliation(s)
- Julie R Etterson
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota 55812-3003 USA
| | | |
Collapse
|
45
|
Galloway LF. The effect of maternal and paternal environments on seed characters in the herbaceous plant Campanula Americana (Campanulaceae). AMERICAN JOURNAL OF BOTANY 2001; 88:832-840. [PMID: 11353708 DOI: 10.2307/2657035] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Maternal environments typically influence the phenotype of their offspring. However, the effect of the paternal environment or the potential for joint effects of both parental environments on offspring characters is poorly understood. Two populations of Campanula americana, a woodland herb with a variable life history, were used to determine the influence of maternal and paternal light and nutrient environments on offspring seed characters. Families were grown in the greenhouse in three levels of light or three levels of nutrients. Crosses were conducted within each environmental gradient to produce seeds with all combinations of maternal and paternal environments. On average, increasing maternal nutrient and light levels increased seed mass and decreased percentage germination. The paternal environment affected seed mass, germination time, and percentage germination. However, the influence of the paternal environment varied across maternal environments, suggesting that paternal environmental effects should be evaluated in the context of maternal environments. Significant interactions between family and the parental environments for offspring characters suggest that parental environmental effects are genetically variable. In C. americana, the timing of germination determines life history. Therefore parental environmental effects on germination timing, and genetic variation in those parental effects, suggest that parental environments may influence life history evolution in this system.
Collapse
Affiliation(s)
- L F Galloway
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903-2477 USA
| |
Collapse
|
46
|
Toonen RJ, Pawlik JR. FOUNDATIONS OF GREGARIOUSNESS: A DISPERSAL POLYMORPHISM AMONG THE PLANKTONIC LARVAE OF A MARINE INVERTEBRATE. Evolution 2001. [DOI: 10.1554/0014-3820(2001)055[2439:fogadp]2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Donohue K. Seed Dispersal as a Maternally Influenced Character: Mechanistic Basis of Maternal Effects and Selection on Maternal Characters in an Annual Plant. Am Nat 1999; 154:674-689. [PMID: 10600612 DOI: 10.1086/303273] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Maternal influences on progeny characters affect phenotypic correlations between characters expressed in maternal and progeny generations and consequently influence evolutionary responses to selection. Net selection on maternally influenced characters depends on selection both on the progeny character and on the maternal characters that influence it. I used seed dispersal in Cakile edentula as a system in which to identify the mechanisms of environmentally mediated maternal effects and to determine how selection on maternal characters alters the adaptive value of dispersal. In C. edentula, maternal morphology responds to conspecific density experienced by the mother. Maternal morphology in turn affects offspring (seed) dispersal and density and thereby offspring morphology and fitness. I estimated the magnitude of density-mediated maternal effects on dispersal and identified their mechanism by characterizing the plasticity of maternal morphology to density. I also measured density-dependent selection on maternal characters that influence dispersal. Maternal plasticity to density was caused by both allometric and nonallometric variation in morphology, and this plasticity resulted in a negative correlation between maternal and progeny density. Such negative maternal effects are expected to retard responses to selection. Maternal morphology influenced maternal fitness, in part through the relationship of fitness to maternal plant size and in part through size-independent fitness effects. Maternal phenotypes that promote dispersal, and thereby increase progeny fitness, were associated with decreased maternal fitness. Selection on dispersal at the level of progeny favors increased dispersal; maternal influences on dispersal, however, not only cause a greatly reduced adaptive value of dispersal but lead to the prediction of a slower response to selection.
Collapse
|