1
|
Fenneman AC, Boulund U, Collard D, Galenkamp H, Zwinderman AH, van den Born BJH, van der Spek AH, Fliers E, Rampanelli E, Blaser MJ, Nieuwdorp M. Comparative Analysis of Taxonomic and Functional Gut Microbiota Profiles in Relation to Seroconversion of Thyroid Peroxidase Antibodies in Euthyroid Participants. Thyroid 2024; 34:101-111. [PMID: 38010921 PMCID: PMC10818057 DOI: 10.1089/thy.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background: Previous studies have reported gut microbiome alterations in Hashimoto's autoimmune thyroiditis (HT) patients. Yet, it is unknown whether an aberrant microbiome is present before clinical disease onset in participants susceptible to HT or whether it reflects the effects of the disease itself. In this study, we report for the first time a comprehensive characterization of the taxonomic and functional profiles of the gut microbiota in euthyroid seropositive and seronegative participants. Our primary goal was to determine taxonomic and functional signatures of the intestinal microbiota associated with serum thyroid peroxidase antibodies (TPOAb). A secondary aim was to determine whether different ethnicities warrant distinct reference intervals for accurate interpretation of serum thyroid biomarkers. Methods: In this cross-sectional study, euthyroid participants with (N = 159) and without (N = 1309) TPOAb were selected from the multiethnic (European Dutch, Moroccan, and Turkish) HEalthy Life In an Urban Setting (HELIUS) cohort. Fecal microbiota composition was profiled using 16S rRNA sequencing. Differences between the groups were analyzed based on the overall composition (alpha and beta diversity), as well as differential abundance (DA) of microbial taxa and functional pathways using multiple DA tools. Results: Overall composition showed a substantial overlap between the two groups (p > 0.05 for alpha-diversity; p = 0.39 for beta-diversity), indicating that TPOAb-seropositivity does not significantly differentiate gut microbiota composition and diversity. Interestingly, TPOAb status accounted for only a minor fraction (0.07%) of microbiome variance (p = 0.545). Further exploration of taxonomic differences identified 138 taxa nominally associated with TPOAb status. Among these, 13 taxa consistently demonstrated nominal significance across three additional DA methods, alongside notable associations within various functional pathways. Furthermore, we showed that ethnicity-specific reference intervals for serum thyroid biomarkers are not required, as no significant disparities in serum thyroid markers were found among the three ethnic groups residing in an iodine-replete area (p > 0.05 for thyrotropin, free thyroxine, and TPOAb). Conclusion: These findings suggest that there is no robust difference in gut microbiome between individuals with or without TPOAb in terms of alpha and beta-diversity. Nonetheless, several taxa were identified with nominal significance related to TPOAb presence. Further research is required to determine whether these changes indeed imply a higher risk of overt HT.
Collapse
Affiliation(s)
- Aline C. Fenneman
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Didier Collard
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam Public Health (APH), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Aeilko H. Zwinderman
- Department of Public and Occupational Health, Amsterdam Public Health (APH), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Bert-Jan H. van den Born
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Public and Occupational Health, Amsterdam Public Health (APH), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Anne H. van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway New Jersey, USA
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Fenneman AC, Bruinstroop E, Nieuwdorp M, van der Spek AH, Boelen A. A Comprehensive Review of Thyroid Hormone Metabolism in the Gut and Its Clinical Implications. Thyroid 2023; 33:32-44. [PMID: 36322786 DOI: 10.1089/thy.2022.0491] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: The gut is a target organ of thyroid hormone (TH) that exerts its action via the nuclear thyroid hormone receptor α1 (TRα1) expressed in intestinal epithelial cells. THs are partially metabolized via hepatic sulfation and glucuronidation, resulting in the production of conjugated iodothyronines. Gut microbiota play an important role in peripheral TH metabolism as they produce and secrete enzymes with deconjugation activity (β-glucuronidase and sulfatase), via which TH can re-enter the enterohepatic circulation. Summary: Intestinal epithelium homeostasis (the finely tuned balance between cell proliferation and differentiation) is controlled by the crosstalk between triiodothyronine and TRα1 and the presence of specific TH transporters and TH-activating and -inactivating enzymes. Patients and experimental murine models with a dominant-negative mutation in the TRα exhibit gross abnormalities in the morphology of the intestinal epithelium and suffer from severe symptoms of a dysfunctional gastrointestinal tract. Over the past decade, gut microbiota has been identified as an essential factor in health and disease, depending on its compositional and functional profile. This has led to a renewed interest in the so-called gut-thyroid axis. Disruption of gut microbial homeostasis (dysbiosis) is associated with autoimmune thyroid disease (AITD), including Hashimoto's thyroiditis, Graves' disease, and Graves' orbitopathy. These studies reviewed here provide new insights into the gut microbiota roles in thyroid disease pathogenesis and may be an initial step toward microbiota-based therapies in AITD. However, it should be noted that cause-effect mechanisms remain to be proven, for which prospective cohort studies, randomized clinical trials, and experimental studies are needed. Conclusion: This review aims at providing a comprehensive insight into the interplay between TH metabolism and gut homeostasis.
Collapse
Affiliation(s)
- Aline C Fenneman
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne H van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Yu J, Zhang H, Zhang Y, Zhan Y, Ma S, Hu T, Zhang N, Lou Y, Bao H, Xu Z, Zhong D, Miao L, Diao X. Absorption, metabolism, and excretion of [ 14C]YY-20394, a highly selective PI3K-delta inhibitor in humans. Xenobiotica 2022; 52:254-264. [PMID: 35373704 DOI: 10.1080/00498254.2022.2062581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201210, China
| | - Hua Zhang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215123, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
| | - Yifan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201210, China
| | - Yan Zhan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201210, China
| | - Sheng Ma
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215123, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
| | - Tao Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201210, China
| | - Ning Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201210, China
| | - Yangtong Lou
- Shanghai Yingli Pharmaceutical Co., Ltd., 2829 Jinke Road, Shanghai, 201203, China
| | - Hanying Bao
- Shanghai Yingli Pharmaceutical Co., Ltd., 2829 Jinke Road, Shanghai, 201203, China
| | - Zusheng Xu
- Shanghai Yingli Pharmaceutical Co., Ltd., 2829 Jinke Road, Shanghai, 201203, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201210, China
| | - Liyan Miao
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215123, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201210, China
| |
Collapse
|
4
|
Groeneweg S, van Geest FS, Chen Z, Farina S, van Heerebeek REA, Meima ME, Peeters RP, Heuer H, Medici M, Visser WE. Functional Characterization of the Novel and Specific Thyroid Hormone Transporter SLC17A4. Thyroid 2022; 32:326-335. [PMID: 34937426 DOI: 10.1089/thy.2021.0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: A recent genome-wide association study identified the SLC17A4 locus associated with circulating free thyroxine (T4) concentrations. Human SLC17A4, being widely expressed in the gastrointestinal tract, was characterized as a novel triiodothyronine (T3) and T4 transporter. However, apart from the cellular uptake of T3 and T4, transporter characteristics are currently unknown. In this study, we delineated basic transporter characteristics of this novel thyroid hormone (TH) transporter. Methods: We performed a broad range of well-established TH transport studies in COS-1 cells transiently overexpressing SLC17A4. We studied cellular TH uptake in various incubation buffers, TH efflux, and the inhibitory effects of different TH metabolites and known inhibitors of other TH transporters on SLC17A4-mediated TH transport. Finally, we determined the effect of tunicamycin, a pharmacological inhibitor of N-linked glycosylation, and targeted mutations in Asn residues on SLC17A4 function. Results: SLC17A4 induced the cellular uptake of T3 and T4 by ∼4 times, and of reverse (r)T3 by 1.5 times over control cells. The uptake of T4 by SLC17A4 was Na+ and Cl- independent, stimulated by low extracellular pH, and reduced by various iodothyronines and metabolites thereof, particularly those that contain at least three iodine moieties irrespective of the presence of modification at the alanine side chain. None of the classical TH transporter inhibitors studied attenuated SLC17A4-mediated TH transport. SLC17A4 also facilitates the efflux of T3 and T4, and to a lesser extent of 3,3'-diiodothyronine (T2). Immunoblot studies on lysates of transfected cells cultured in absence or presence of tunicamycin indicated that SLC17A4 is subject to N-linked glycosylation. Complementary mutational studies identified Asn66, Asn75, and Asn90, which are located in extracellular loop 1, as primary targets. Conclusions: Our studies show that SLC17A4 facilitates the transport of T3 and T4, and less efficiently rT3 and 3,3'-T2. Further studies should reveal the physiological role of SLC17A4 in TH regulation.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ferdy S van Geest
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Zhongli Chen
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stefania Farina
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ramona E A van Heerebeek
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel E Meima
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Duisburg-Essen, Essen, Germany
| | - Marco Medici
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
A Novel β-Glucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3- O-Mono-β-d-Glucuronide. Appl Environ Microbiol 2018; 84:AEM.00755-18. [PMID: 30054355 DOI: 10.1128/aem.00755-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022] Open
Abstract
Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), which possesses a higher sweetness and stronger pharmacological activity than those of glycyrrhizin (GL), can be obtained by removal of the distal glucuronic acid (GlcA) from GL. In this study, we isolated a β-glucuronidase (TpGUS79A) from the filamentous fungus Talaromyces pinophilus Li-93 that can specifically and precisely convert GL to GAMG without the formation of the by-product glycyrrhetinic acid (GA) from the further hydrolysis of GAMG. First, TpGUS79A was purified and identified through matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF-TOF MS) and deglycosylation, indicating that TpGUS79A is a highly N-glycosylated monomeric protein with a molecular mass of around 85 kDa, including around 25 kDa of glycan moiety. The gene for TpGUS79A was then cloned and verified by heterologous expression in Pichia pastoris TpGUS79A belonged to glycoside hydrolase family 79 (GH79) but shared low amino acid sequence identity (<35%) with the available GH79 GUS enzymes. TpGUS79A had strict specificity toward the glycan moiety but poor specificity toward the aglycone moiety. Interestingly, TpGUS79A recognized and hydrolyzed the distal glucuronic bond of GL but could not cleave the glucuronic bond in GAMG. TpGUS79A showed a much higher catalytic efficiency on GL (kcat/Km of 11.14 mM-1 s-1) than on the artificial substrate pNP β-glucopyranosiduronic acid (kcat/Km of 0.01 mM-1 s-1), which is different from the case for most GUSs. Homology modeling, substrate docking, and sequence alignment were employed to identify the key residues for substrate recognition. Finally, a fed-batch fermentation in a 150-liter fermentor was established to prepare GAMG through GL hydrolysis by T. pinophilus Li-93. Therefore, TpGUS79A is potentially a powerful biocatalyst for environmentally friendly and cost-effective production of GAMG.IMPORTANCE Compared to chemical methods, the biotransformation of glycyrrhizin (GL) into glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), which has a higher sweetness and stronger pharmacological activity than those of GL, via catalysis by β-glucuronidase is an environmentally friendly approach due to the mild reaction conditions and the high yield of GAMG. However, currently available GUSs show low substrate specificity toward GL and further hydrolyze GAMG to glycyrrhetinic acid (GA) as a by-product, increasing the difficulty of subsequent separation and purification. In the present study, we succeeded in isolating a novel β-glucuronidase (named TpGUS79A) from Talaromyces pinophilus Li-93 that specifically hydrolyzes GL to GAMG without the formation of GA. TpGUS79A also shows higher activity on GL than those of the previously characterized GUSs. Moreover, the gene for TpGUS79A was cloned and its function verified by heterologous expression in P. pastoris Therefore, TpGUS79A can serve as a powerful biocatalyst for the cost-effective production of GAMG through GL transformation.
Collapse
|
6
|
Virili C, Centanni M. Does microbiota composition affect thyroid homeostasis? Endocrine 2015; 49:583-7. [PMID: 25516464 DOI: 10.1007/s12020-014-0509-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/08/2014] [Indexed: 12/17/2022]
Abstract
The intestinal microbiota is essential for the host to ensure digestive and immunologic homeostasis. When microbiota homeostasis is impaired and dysbiosis occurs, the malfunction of epithelial barrier leads to intestinal and systemic disorders, chiefly immunologic and metabolic. The role of the intestinal tract is crucial in the metabolism of nutrients, drugs, and hormones, including exogenous and endogenous iodothyronines as well as micronutrients involved in thyroid homeostasis. However, the link between thyroid homeostasis and microbiota composition is not yet completely ascertained. A pathogenetic link with dysbiosis has been described in different autoimmune disorders but not yet fully elucidated in autoimmune thyroid disease which represents the most frequent of them. Anyway, it has been suggested that intestinal dysbiosis may trigger autoimmune thyroiditis. Furthermore, hypo- and hyper-thyroidism, often of autoimmune origin, were respectively associated to small intestinal bacterial overgrowth and to changes in microbiota composition. Whether some steps of this thyroid network may be affected by intestinal microbiota composition is briefly discussed below.
Collapse
Affiliation(s)
- Camilla Virili
- Endocrinology Section, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy
| | | |
Collapse
|
7
|
Naz H, Islam A, Waheed A, Sly WS, Ahmad F, Hassan MI. Humanβ-Glucuronidase: Structure, Function, and Application in Enzyme Replacement Therapy. Rejuvenation Res 2013; 16:352-63. [DOI: 10.1089/rej.2013.1407] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Huma Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Abdul Waheed
- The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, University School of Medicine, St. Louis, Missouri
| | - William S. Sly
- The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, University School of Medicine, St. Louis, Missouri
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
8
|
Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1288-95. [PMID: 23064760 DOI: 10.1152/ajpgi.00341.2012] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is increasing interest in the bidirectional communication between the mammalian host and prokaryotic cells. Catecholamines (CA), candidate molecules for such communication, are presumed to play an important role in the gut lumen; however, available evidence is limited because of the lack of actual data about luminal CA. This study evaluated luminal CA levels in the gastrointestinal tract and elucidated the involvement of gut microbiota in the generation of luminal CA by comparing the findings among specific pathogen-free mice (SPF-M), germ-free mice (GF-M), and gnotobiotic mice. Substantial levels of free dopamine and norepinephrine were identified in the gut lumen of SPF-M. The free CA levels in the gut lumen were lower in GF-M than in SPF-M. The majority of CA was a biologically active, free form in SPF-M, whereas it was a biologically inactive, conjugated form in GF-M. The association of GF-M with either Clostridium species or SPF fecal flora, both of which have abundant β-glucuronidase activity, resulted in the drastic elevation of free CA. The inoculation of E. coli strain into GF-M induced a substantial amount of free CA, but the inoculation of its mutant strain deficient in the β-glucuronidase gene did not. The intraluminal administration of DA increased colonic water absorption in an in vivo ligated loop model of SPF-M, thus suggesting that luminal DA plays a role as a proabsorptive modulator of water transport in the colon. These results indicate that gut microbiota play a critical role in the generation of free CA in the gut lumen.
Collapse
Affiliation(s)
- Yasunari Asano
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The major thyroid hormone (TH) secreted by the thyroid gland is thyroxine (T(4)). Triiodothyronine (T(3)), formed chiefly by deiodination of T(4), is the active hormone at the nuclear receptor, and it is generally accepted that deiodination is the major pathway regulating T(3) bioavailability in mammalian tissues. The alternate pathways, sulfation and glucuronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form iodothyroacetic acids, and ether link cleavage provide additional mechanisms for regulating the supply of active hormone. Sulfation may play a general role in regulation of iodothyronine metabolism, since sulfation of T(4) and T(3) markedly accelerates deiodination to the inactive metabolites, reverse triiodothyronine (rT(3)) and T(2). Sulfoconjugation is prominent during intrauterine development, particularly in the precocial species in the last trimester including humans and sheep, where it may serve both to regulate the supply of T(3), via sulfation followed by deiodination, and to facilitate maternal-fetal exchange of sulfated iodothyronines (e.g., 3,3'-diiodothyronine sulfate [T(2)S]). The resulting low serum T(3) may be important for normal fetal development in the late gestation. The possibility that T(2)S or its derivative, transferred from the fetus and appearing in maternal serum or urine, can serve as a marker of fetal thyroid function is being studied. Glucuronidation of TH often precedes biliary-fecal excretion of hormone. In rats, stimulation of glucuronidation by various drugs and toxins may lead to lower T(4) and T(3) levels, provocation of thyrotropin (TSH) secretion, and goiter. In man, drug induced stimulation of glucuronidation is limited to T(4), and does not usually compromise normal thyroid function. However, in hypothyroid subjects, higher doses of TH may be required to maintain euthyroidism when these drugs are given. In addition, glucuronidates and sulfated iodothyronines can be hydrolyzed to their precursors in gastrointestinal tract and various tissues. Thus, these conjugates can serve as a reservoir for biologically active iodothyronines (e.g., T(4), T(3), or T(2)). The acetic acid derivatives of T(4), tetrac and triac, are minor products in normal thyroid physiology. However, triac has a different pattern of receptor affinity than T(3), binding preferentially to the beta receptor. This makes it useful in the treatment of the syndrome of resistance to thyroid hormone action, where the typical mutation affects only the beta receptor. Thus, adequate binding to certain mutated beta receptors can be achieved without excessive stimulation of alpha receptors, which predominate in the heart. Ether link cleavage of TH is also a minor pathway in normal subjects. However, this pathway may become important during infections, when augmented TH breakdown by ether-link cleavage (ELC) may assist in bactericidal activity. There is a recent claim that decarboxylated derivates of thyronines, that is, monoiodothyronamine (T(1)am) and thyronamine (T(0)am), may be biologically important and have actions different from those of TH. Further information on these interesting derivatives is awaited.
Collapse
Affiliation(s)
- Sing-Yung Wu
- Nuclear Medicine and Medical Services, University of California, Irvine and Department of Veterans' Affairs Healthcare System, Long Beach, California 90822, USA.
| | | | | | | | | |
Collapse
|
10
|
Liang WJ, Wilson KJ, Xie H, Knol J, Suzuki S, Rutherford NG, Henderson PJF, Jefferson RA. The gusBC genes of Escherichia coli encode a glucuronide transport system. J Bacteriol 2005; 187:2377-85. [PMID: 15774881 PMCID: PMC1065211 DOI: 10.1128/jb.187.7.2377-2385.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genes, gusB and gusC, from a natural fecal isolate of Escherichia coli are shown to encode proteins responsible for transport of beta-glucuronides with synthetic [(14)C]phenyl-1-thio-beta-d-glucuronide as the substrate. These genes are located in the gus operon downstream of the gusA gene on the E. coli genome, and their expression is induced by a variety of beta-d-glucuronides. Measurements of transport in right-side-out subcellular vesicles show the system has the characteristics of secondary active transport energized by the respiration-generated proton motive force. When the genes were cloned together downstream of the tac operator-promoter in the plasmid pTTQ18 expression vector, transport activity was increased considerably with isopropylthiogalactopyranoside as the inducer. Amplified expression of the GusB and GusC proteins enabled visualization and identification by N-terminal sequencing of both proteins, which migrated at ca. 32 kDa and 44 kDa, respectively. Separate expression of the GusB protein showed that it is essential for glucuronide transport and is located in the inner membrane, while the GusC protein does not catalyze transport but assists in an as yet unknown manner and is located in the outer membrane. The output of glucuronides as waste by mammals and uptake for nutrition by gut bacteria or reabsorption by the mammalian host is discussed.
Collapse
Affiliation(s)
- Wei-Jun Liang
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Korobov VP, Titova AV, Lemkina LM, Polyudova TV, Pan’kova NV. The dependence of the antibacterial effect of the polycationic peptide warnerin on the energy state of target cells. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Visser TJ, Kaptein E, Gijzel A, de Herder WW, Cannon ML, Bonthuis F, de Greef WJ. Effects of thyroid status and thyrostatic drugs on hepatic glucuronidation of lodothyronines and other substrates in rats : Induction of phenol UDP-glucuronyltransferase by methimazole. Endocrine 1996; 4:79-85. [PMID: 21153295 DOI: 10.1007/bf02738878] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/1995] [Revised: 10/31/1995] [Accepted: 11/22/1995] [Indexed: 11/27/2022]
Abstract
Glucuronidation of iodothyronines in rat liver is catalyzed by at least three UDP-glucuronyltransferases (UGTs): bilirubin UGT, phenol UGT, and androsterone UGT. Bilirubin and phenol UGT activities are regulated by thyroid hormone, but the effect of thyroid status on hepatic glucuronidation of iodothyronines is unknown. We examined the effects of hypothyroidism induced by treatment of rats with propylthiouracil (PTU) or methimazole (MMI) or by thyroidectomy as well as the effects of T4-induced hyperthyroidism on the hepatic UGT activities for T4, T3, bilirubin,p-nitrophenol (PNP), and androsterone. Bilirubin UGT activity was increased in MMI- or PTU-induced hypothyroid and thyroidectomized rats, and decreased in hyperthyroid animals. T4 and, to a lesser extent, T3 UGT activities were increased in MMI- or PTU-induced hypothyroid rats, and T4 but not T3 glucuronidation also showed a significant increase in thyroidectomized rats. T4 but not T3 UGT activity was slightly decreased in hyperthyroid rats. While PNP UGT activity was decreased in thyroidectomized rats and increased in hyperthyroid animals, it was also markedly increased by MMI and slightly increased by PTU-induced hypothyroidism. In T4-substituted rats, MMI did not affect T4, T3, bilirubin and androsterone UGT activities but again strongly induced PNP UGT activity, indicating that this represented a direct induction of PNP UGT by the drug independent of its thyrostatic action. Androsterone UGT activity was hardly affected by thyroid status. Our results suggest a modest, negative control of the hepatic glucuronidation of thyroid hormone by thyroid status, which may be mediated by changes in bilirubin UGT activity. To our knowledge, this is the first report of the marked induction of a hepatic enzyme by MMI, which is not mediated by its thyroid hormone-lowering effect.
Collapse
Affiliation(s)
- T J Visser
- Department of Internal Medicine III, Erasmus University Medical School, Room Bd 234, PO Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Whitaker A, Eales JG. Comparison of 3,5,3'-triiodo-L-thyronine and L-thyroxine absorption from the intestinal lumen of the fasted rainbow trout, Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 10:431-441. [PMID: 24214382 DOI: 10.1007/bf00004510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/1992] [Indexed: 06/02/2023]
Abstract
The absorptions of 3,5,3'-triiodo-L-thyronine (T3) and L-thyroxine (T4) from the intestinal lumen of the rainbow trout were compared in vivo. Tracer doses of [(125)I]T4 ((+)T4) or [(125)I]T3 ((*)T3) were injected through an anal cannula into the duodenum of trout fasted for 3 days at 12°C, and radioactivity was measured in blood and tissues at 4-48 h. (*)T3 was removed more extensively than (*)T4 from the intestinal lumen and more radioactivity was absorbed into the blood and tissues of u+T3-injected trout than (*)T4-injected trout. HPLC analysis showed that a high proportion of the radioactivity in the plasma, liver, kidney and intestinal lumen of (*)T3-injected trout remained as the parent (*)T3. However, in (*)T4-injected trout most plasma radioactivity was in the form of (125)I(-), and by 24 h a high proportion of luminal radioactivity was (125)I(-). By 48 h, over 4% of the injected (*)T3 and 1% of the injected (*)T4 dose resided in the gall bladder, primarily as derivatives of (*)T3 or (*)T4. We conclude that T3 is absorbed more effectively than T4 from the intestinal lumen of fasted trout, indicating the potential for an enterohepatic T3 cycle.
Collapse
Affiliation(s)
- A Whitaker
- Department of Zoology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
14
|
de Herder WW, Hazenberg MP, Pennock-Schröder AM, Oosterlaken AC, Rutgers M, Visser TJ. On the enterohepatic cycle of triiodothyronine in rats; importance of the intestinal microflora. Life Sci 1989; 45:849-56. [PMID: 2770425 DOI: 10.1016/0024-3205(89)90179-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Until 70 h after a single iv injection of 10 uCi [125I]triiodothyronine (T3), normal rats excreted 15.8 +/- 2.8% of the radioactivity with the feces and 17.5 +/- 2.7% with the urine, while in intestine-decontaminated rats fecal and urinary excretion over this period amounted to 25.1 +/- 7.2% and 23.6 +/- 4.0% of administered radioactivity, respectively (mean +/- SD, n = 4). In fecal extracts of decontaminated rats 11.5 +/- 6.8% of the excreted radioactivity consisted of T3 glucuronide (T3G) and 10.9 +/- 2.8% of T3 sulfate (T3S), whereas no conjugates were detected in feces from normal rats. Until 26 h after ig administration of 10 uCi [125I]T3, integrated radioactivity in blood of decontaminated rats was 1.5 times higher than that in normal rats. However, after ig administration of 10 uCi [125I]T3G or [125I]T3S, radioactivity in blood of decontaminated rats was 4.9- and 2.8-fold lower, respectively, than in normal rats. The radioactivity in the serum of control animals was composed of T3 and iodide in proportions independent of the tracer injected, while T3 conjugates represented less than 10% of serum radioactivity. These results suggest an important role of the intestinal microflora in the enterohepatic circulation of T3 in rats.
Collapse
Affiliation(s)
- W W de Herder
- Department of Internal Medicine III, Erasmus University Medical School, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|