1
|
Fioravanti A, Mathelie-Guinlet M, Dufrêne YF, Remaut H. The Bacillus anthracis S-layer is an exoskeleton-like structure that imparts mechanical and osmotic stabilization to the cell wall. PNAS NEXUS 2022; 1:pgac121. [PMID: 36714836 PMCID: PMC9802277 DOI: 10.1093/pnasnexus/pgac121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023]
Abstract
Surface layers (S-layers) are 2D paracrystalline protein monolayers covering the cell envelope of many prokaryotes and archaea. Proposed functions include a role in cell support, as scaffolding structure, as molecular sieve, or as virulence factor. Bacillus anthracis holds two S-layers, composed of Sap or EA1, which interchange in early and late exponential growth phase. We previously found that acute disruption of B. anthracis Sap S-layer integrity, by means of nanobodies, results in severe morphological cell surface defects and cell collapse. Remarkably, this loss of function is due to the destruction of the Sap lattice structure rather than detachment of monomers from the cell surface. Here, we combine force nanoscopy and light microscopy observations to probe the contribution of the S-layer to the mechanical, structural, and functional properties of the cell envelope, which have been so far elusive. Our experiments reveal that cells with a compromised S-layer lattice show a decreased compressive stiffness and elastic modulus. Furthermore, we find that S-layer integrity is required to resist cell turgor under hypotonic conditions. These results present compelling experimental evidence indicating that the S-layers can serve as prokaryotic exoskeletons that support the cell wall in conferring rigidity and mechanical stability to bacterial cells.
Collapse
Affiliation(s)
- Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marion Mathelie-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Specific Isolation of Clostridium botulinum Group I Cells by Phage Lysin Cell Wall Binding Domain with the Aid of S-Layer Disruption. Int J Mol Sci 2022; 23:ijms23158391. [PMID: 35955526 PMCID: PMC9368847 DOI: 10.3390/ijms23158391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Clostridium botulinum is a notorious pathogen that raises health and food safety concerns by producing the potent botulinum neurotoxin and causing botulism, a potentially fatal neuroparalytic disease in humans and animals. Efficient methods for the identification and isolation of C. botulinum are warranted for laboratory diagnostics of botulism and for food safety risk assessment. The cell wall binding domains (CBD) of phage lysins are recognized by their high specificity and affinity to distinct types of bacteria, which makes them promising for the development of diagnostic tools. We previously identified CBO1751, which is the first antibotulinal phage lysin showing a lytic activity against C. botulinum Group I. In this work, we assessed the host specificity of the CBD of CBO1751 and tested its feasibility as a probe for the specific isolation of C. botulinum Group I strains. We show that the CBO1751 CBD specifically binds to C. botulinum Group I sensu lato (including C. sporogenes) strains. We also demonstrate that some C. botulinum Group I strains possess an S-layer, the disruption of which by an acid glycine treatment is required for efficient binding of the CBO1751 CBD to the cells of these strains. We further developed CBO1751 CBD-based methods using flow cytometry and magnetic separation to specifically isolate viable cells of C. botulinum Group I. These methods present potential for applications in diagnostics and risk assessment in order to control the botulism hazard.
Collapse
|
3
|
Du Y, Li H, Shao J, Wu T, Xu W, Hu X, Chen J. Adhesion and Colonization of the Probiotic Lactobacillus plantarum HC-2 in the Intestine of Litopenaeus Vannamei Are Associated With Bacterial Surface Proteins. Front Microbiol 2022; 13:878874. [PMID: 35535252 PMCID: PMC9076606 DOI: 10.3389/fmicb.2022.878874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Surface proteins are a type of proteins expressed on the surface of bacteria that play an important role in cell wall synthesis, maintenance of cell morphology, and signaling with the host. Our previous study showed that the probiotic Lactobacillus plantarum HC-2 improved the growth performance and immune response of Litopenaeus vannamei. To further investigate the probiotic mechanism, we determined the automatic aggregation ability of the bacteria and surface hydrophobicity of HC-2 after being treated with 5 M of lithium chloride (LiCl) and observed the morphology and adhesion of the bacteria to HCT116 cells. The results showed that with the removal of the HC-2 surface protein, the auto-aggregation ability and surface hydrophobicity of HC-2 decreased, and the crude mucus layer coated on the bacterial surface gradually dissociated. The adhesion rate of HC-2 to HCT116 cells decreased from 98.1 to 20.9%. Moreover, a total of 201 unique proteins were identified from the mixture of the surface proteins by mass spectrometry (MS). Several proteins are involved in transcription and translation, biosynthetic or metabolic process, cell cycle or division, cell wall synthesis, and emergency response. Meanwhile, a quantitative real-time PCR qPCR_ showed that HC-2 was mainly colonized in the midgut of shrimp, and the colonization numbers were 15 times higher than that in the foregut, while the colonization rate in the hindgut was lower. The adhesion activity measurement showed that the adhesion level of HC-2 to crude intestinal mucus of L. vannamei was higher than that of bovine serum albumin (BSA) and collagen, and the adhesion capacity of the bacterial cells decreased with the extension of LiCl-treatment time. Finally, we identified the elongation factor Tu, Type I glyceraldehyde-3-phosphate dehydrogenase, small heat shock protein, and 30S ribosomal protein from the surface proteins, which may be the adhesion proteins of HC-2 colonization in the shrimp intestine. The above results indicate that surface proteins play an important role in maintaining the cell structure stability and cell adhesion. Surface proteomics analysis contributes to describing potential protein-mediated probiotic-host interactions. The identification of some interacting proteins in this work may be beneficial to further understand the adhesion/colonization mechanism and probiotic properties of L. plantarum HC-2 in the shrimp intestine.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jianchun Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - WenLong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Izadi P, Izadi P, Eldyasti A. Holistic insights into extracellular polymeric substance (EPS) in anammosx bacterial matrix and the potential sustainable biopolymer recovery: A review. CHEMOSPHERE 2021; 274:129703. [PMID: 33578118 DOI: 10.1016/j.chemosphere.2021.129703] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic ammonia oxidation (anammox) process has been proven to be a favorable and innovative process, for treatment of nitrogen-rich wastewater due to decreased oxygen and carbon requirements at very high nitrogen loading rates. Anammox process is mainly operated through biofilm or granular sludge structures, as for such slow-growing microorganisms, elevated settling velocity of granules allows for adequate biomass retention and lowered potential risk of washouts. Stability of granular sludge biomass is extremely critical, yet the formation mechanism is poorly understood. There are number of important functions linked to Extracellular Polymeric Substance (EPS) in anammox bacterial matrix, such as; structural stability, aggregation promotion, maintenance of physical structure in the granules, water preserving and protective cell barrier. There is an increasing demand to introduce accurate methods for proper EPS extraction and characterization, to expand the perception of anammox granule stability and potential resource recovery. Analyzing EPS with a focus on various (mechanical and physical) properties can lead to biopolymer production from granular sludge. Biopolymers such as EPS are attractive alternatives substituting the conventional chemical polymers furthermore their recovery from the waste sludge and the potential applications in industrial sectors, leads to a radical enhancement of both environmental and economical sustainability, accelerating the circular economy advancements. Here, this study aims to overview the newest understanding on the structure of anammox sludge EPS, obtained recently and to assess the potential challenges and prospects to identify the knowledge gaps towards constructing an inclusive anammox EPS recovery and characterization procedure.
Collapse
Affiliation(s)
- Parin Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Parnian Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Ahmed Eldyasti
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
5
|
Lee HH, Park J, Jung H, Seo YS. Pan-Genome Analysis Reveals Host-Specific Functional Divergences in Burkholderia gladioli. Microorganisms 2021; 9:1123. [PMID: 34067383 PMCID: PMC8224644 DOI: 10.3390/microorganisms9061123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.
Collapse
Affiliation(s)
- Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| |
Collapse
|
6
|
Computational characterizations of GDP-mannose 4,6-dehydratase (NoeL) Rhizobial proteins. Curr Genet 2021; 67:769-784. [PMID: 33837815 DOI: 10.1007/s00294-021-01184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
A growing body of evidence suggests that Nod Factors molecules are the critical structural components in nitrogen fixation. These molecules have been implicated in plant-microbe signaling. Many enzymes involved in Nod factors biosynthesis; however, the enzymes that decorate (modify) nod factor main structure play a vital role. Here, the computational analysis of GDP-mannose 4,6-dehydratase (NoeL) proteins with great impact in modification of nod factor structure in four genomes of agriculturally important rhizobia (Bradyrhizobium, Mesorhizobium, Rhizobium, Sinorhizobium) presented. The NoeL number of amino acids was in the range of 147 (M5AMF5) to 372 (A0A023XWX0, Q89TZ1). The molecular weights were around 41 KDa. The results showed that the strain-specific purification strategy should apply as the pI of the sequences varied significantly (in the range of 5.59 to 9.12). The enzyme sequences and eight 3-dimensional structures predicted with homology modeling and machine learning representing the phylogenetic tree revealed the stability of enzymes in different conditions (Instability and Aliphatic index); however, this stability is also strain-specific. Disulphide bonds were observed in some species; however, the pattern was not detected in all members of the same species. Alpha helix was the dominant secondary structure predicted in all cytoplasmic NoeL. All models were homo-tetramer with acceptable sequence identity, GMEAN and coverage (60, - 1.80, 88, respectively). Additionally, Ramachandran maps showed that more than 94% of residues are in favored regions. We also highlight several key characterizations of NoeL from four rhizobia genomes annotation. These findings provide novel insights into the complexity and diversity of NoeL enzymes among important rhizobia and suggest considering a broader framework of biofilm for future research.
Collapse
|
7
|
Schuster B, Sleytr UB. S-Layer Ultrafiltration Membranes. MEMBRANES 2021; 11:275. [PMID: 33918014 PMCID: PMC8068369 DOI: 10.3390/membranes11040275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 11/29/2022]
Abstract
Monomolecular arrays of protein subunits forming surface layers (S-layers) are the most common outermost cell envelope components of prokaryotic organisms (bacteria and archaea). Since S-layers are periodic structures, they exhibit identical physicochemical properties for each constituent molecular unit down to the sub-nanometer level. Pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes. The functional groups on the surface and in the pores of the S-layer protein lattice are accessible for chemical modifications and for binding functional molecules in very precise fashion. S-layer ultrafiltration membranes (SUMs) can be produced by depositing S-layer fragments as a coherent (multi)layer on microfiltration membranes. After inter- and intramolecular crosslinking of the composite structure, the chemical and thermal resistance of these membranes was shown to be comparable to polyamide membranes. Chemical modification and/or specific binding of differently sized molecules allow the tuning of the surface properties and molecular sieving characteristics of SUMs. SUMs can be utilized as matrices for the controlled immobilization of functional biomolecules (e.g., ligands, enzymes, antibodies, and antigens) as required for many applications (e.g., biosensors, diagnostics, enzyme- and affinity-membranes). Finally, SUM represent unique supporting structures for stabilizing functional lipid membranes at meso- and macroscopic scale.
Collapse
Affiliation(s)
- Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Uwe B. Sleytr
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
8
|
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P. Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 2021; 44:874-908. [PMID: 32785584 DOI: 10.1093/femsre/fuaa037] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrification is the microbial conversion of reduced forms of nitrogen (N) to nitrate (NO3-), and in fertilized soils it can lead to substantial N losses via NO3- leaching or nitrous oxide (N2O) production. To limit such problems, synthetic nitrification inhibitors have been applied but their performance differs between soils. In recent years, there has been an increasing interest in the occurrence of biological nitrification inhibition (BNI), a natural phenomenon according to which certain plants can inhibit nitrification through the release of active compounds in root exudates. Here, we synthesize the current state of research but also unravel knowledge gaps in the field. The nitrification process is discussed considering recent discoveries in genomics, biochemistry and ecology of nitrifiers. Secondly, we focus on the 'where' and 'how' of BNI. The N transformations and their interconnections as they occur in, and are affected by, the rhizosphere, are also discussed. The NH4+ and NO3- retention pathways alternative to BNI are reviewed as well. We also provide hypotheses on how plant compounds with putative BNI ability can reach their targets inside the cell and inhibit ammonia oxidation. Finally, we discuss a set of techniques that can be successfully applied to solve unresearched questions in BNI studies.
Collapse
Affiliation(s)
- Pierfrancesco Nardi
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, 69134, France
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Centro Ecotekne - via Provinciale Lecce-Monteroni, I-73100, Lecce, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Alessandra Trinchera
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Paolo Nannipieri
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| |
Collapse
|
9
|
Yazhiniprabha M, Vaseeharan B. In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109763. [PMID: 31349432 DOI: 10.1016/j.msec.2019.109763] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 11/19/2022]
Abstract
In the present study, we investigated the larvicidal and bacteriostatic activity of biosynthesized selenium nanoparticles using aqueous berry extract of Murraya koenigii (Mk-Se NPs). The synthesized Mk-Se NPs were characterized using UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. XRD analysis revealed the crystalline nature of Mk-Se NPs as hexagonal. The FTIR spectra of Mk-Se NPs exhibited a strong peak at 3441 cm-1 corresponding to the OH group. SEM and TEM analysis showed that the Mk-Se NPs were spherical in shape with a size between 50 and 150 nm. EDX peaks confirm the presence of 73.38% of selenium and 26.62% of oxide in Mk-Se NPs. Mk-Se NPs showed significant larvicidal property against the 4th instar larvae of a dengue fever-causing vector Aedes aegypti with LC50- - 3.54 μg mL-1 and LC90- - 8.128 μg mL-1 values. Mk-Se NPs displayed anti-bacterial activity against Gram-positive (Enterococcus faecalis &Streptococcus mutans) and Gram-negative (Shigella sonnei &Pseudomonas aeruginosa) bacteria at 40 and 50 μg mL-1. In addition, Mk-Se NPs reduced bacterial biofilm thickness extensively at 25 μg mL-1. The high antioxidant property at 50 μg mL-1 and low hemolysis activity till 100 μg mL-1 proved the biocompatible nature of Mk-Se NPs. In vitro and in vivo toxicity assessment of Mk-Se NPs showed low cytotoxicity against RAW 264.7 macrophages and Artemia nauplii. Together, our results suggest the potential application of Mk-Se NPs as a nano-biomedicine.
Collapse
Affiliation(s)
- Mariappan Yazhiniprabha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
10
|
Abstract
Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
11
|
do Carmo FLR, Rabah H, De Oliveira Carvalho RD, Gaucher F, Cordeiro BF, da Silva SH, Le Loir Y, Azevedo V, Jan G. Extractable Bacterial Surface Proteins in Probiotic-Host Interaction. Front Microbiol 2018; 9:645. [PMID: 29670603 PMCID: PMC5893755 DOI: 10.3389/fmicb.2018.00645] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp), this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs), and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.
Collapse
Affiliation(s)
- Fillipe L R do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, INRA, Rennes, France.,Pôle Agronomique Ouest, Rennes, France
| | | | - Floriane Gaucher
- STLO, Agrocampus Ouest, INRA, Rennes, France.,Bioprox, Levallois-Perret, France
| | - Barbara F Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
12
|
Identification and analysis of the function of surface layer proteins from three Lactobacillus strains. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1335-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Tansel B. Morphology, composition and aggregation mechanisms of soft bioflocs in marine snow and activated sludge: A comparative review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 205:231-243. [PMID: 28987986 DOI: 10.1016/j.jenvman.2017.09.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Conditions that lead to marine snow formation and aggregates that constitute the marine snow have similarities with the soft bioflocs that form during wastewater treatment by activated sludge process. Analysis of the conditions and similarities of the soft bioflocs in these two aquatic environments provide insight for the processes that lead to formation and growth of hydrated aggregates consisting of both living and nonliving particles, their chemical and biolocial composition, settling/suspension behavior, and contributing factors for their structure and morphology. This literature review provides a comparative analysis of the soft aggregates that form in marine and wastewater environments to characterize the conditions for formation and growth of highly hydrated aggregates consisting of microorganisms, suspended solids and large molecules. The marine snow and bioflocs that form in wastewater are visually similar and even contain microorganisms that are of similar type (i.e., Zoogloea, filamentous bacteria). During wastewater treatment, the microorganisms are not stressed and exopolymeric substances (EPS) produced have shorter molecules and higher protein content while EPS produced by the marine organisms are significantly larger in molecular size (by orders of magnitude) and have higher carbohydrate content.
Collapse
Affiliation(s)
- Berrin Tansel
- Florida International University, Civil and Environmental Engineering Department, Miami, FL, USA.
| |
Collapse
|
14
|
New Extracellular Polymeric Substance Producing Enteric Bacterium from Earthworm, Metaphire posthuma: Modulation Through Culture Conditions. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s12595-017-0250-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Olson AP, Spies KB, Browning AC, Soneral PAG, Lindquist NC. Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates. Sci Rep 2017; 7:9135. [PMID: 28831104 PMCID: PMC5567233 DOI: 10.1038/s41598-017-08915-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/18/2017] [Indexed: 11/10/2022] Open
Abstract
Plasmonic hotspots generate a blinking Surface Enhanced Raman Spectroscopy (SERS) effect that can be processed using Stochastic Optical Reconstruction Microscopy (STORM) algorithms for super-resolved imaging. Furthermore, by imaging through a diffraction grating, STORM algorithms can be modified to extract a full SERS spectrum, thereby capturing spectral as well as spatial content simultaneously. Here we demonstrate SERS and STORM combined in this way for super-resolved chemical imaging using an ultra-thin silver substrate. Images of gram-positive and gram-negative bacteria taken with this technique show excellent agreement with scanning electron microscope images, high spatial resolution at <50 nm, and spectral SERS content that can be correlated to different regions. This may be used to identify unique chemical signatures of various cells. Finally, because we image through as-deposited, ultra-thin silver films, this technique requires no nanofabrication beyond a single deposition and looks at the cell samples from below. This allows direct imaging of the cell/substrate interface of thick specimens or imaging samples in turbid or opaque liquids since the optical path doesn’t pass through the sample. These results show promise that super-resolution chemical imaging may be used to differentiate chemical signatures from cells and could be applied to other biological structures of interest.
Collapse
Affiliation(s)
- Aeli P Olson
- Physics Department, Bethel University, St Paul, MN, 55112, USA
| | - Kelsey B Spies
- Biology Department, Bethel University, St Paul, MN, 55112, USA
| | - Anna C Browning
- Biology Department, Bethel University, St Paul, MN, 55112, USA
| | | | | |
Collapse
|
16
|
do Carmo FLR, Rabah H, Huang S, Gaucher F, Deplanche M, Dutertre S, Jardin J, Le Loir Y, Azevedo V, Jan G. Propionibacterium freudenreichii Surface Protein SlpB Is Involved in Adhesion to Intestinal HT-29 Cells. Front Microbiol 2017; 8:1033. [PMID: 28642747 PMCID: PMC5462946 DOI: 10.3389/fmicb.2017.01033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium traditionally used as a cheese ripening starter and more recently for its probiotic abilities based on the release of beneficial metabolites. In addition to these metabolites (short-chain fatty acids, vitamins, and bifidogenic factor), P. freudenreichii revealed an immunomodulatory effect confirmed in vivo by the ability to protect mice from induced acute colitis. This effect is, however, highly strain-dependent. Local action of metabolites and of immunomodulatory molecules is favored by the ability of probiotics to adhere to the host cells. This property depends on key surface compounds, still poorly characterized in propionibacteria. In the present study, we showed different adhesion rates to cultured human intestinal cells, among strains of P. freudenreichii. The most adhesive one was P. freudenreichii CIRM-BIA 129, which is known to expose surface-layer proteins. We evidenced here the involvement of these proteins in adhesion to cultured human colon cells. We then aimed at deciphering the mechanisms involved in adhesion. Adhesion was inhibited by antibodies raised against SlpB, one of the surface-layer proteins in P. freudenreichii CIRM-BIA 129. Inactivation of the corresponding gene suppressed adhesion, further evidencing the key role of slpB product in cell adhesion. This work confirms the various functions fulfilled by surface-layer proteins, including probiotic/host interactions. It opens new perspectives for the understanding of probiotic determinants in propionibacteria, and for the selection of the most efficient strains within the P. freudenreichii species.
Collapse
Affiliation(s)
- Fillipe L R do Carmo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Houem Rabah
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
- Pôle Agronomique OuestRennes, France
| | - Song Huang
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow UniversitySuzhou, China
| | - Floriane Gaucher
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Martine Deplanche
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Stéphanie Dutertre
- Microscopy Rennes Imaging Center, Biosit - UMS CNRS 3480/US, INSERM 018, University of Rennes 1Rennes, France
| | - Julien Jardin
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Yves Le Loir
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Vasco Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | - Gwénaël Jan
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| |
Collapse
|
17
|
Landry Z, Swan BK, Herndl GJ, Stepanauskas R, Giovannoni SJ. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter. mBio 2017; 8:e00413-17. [PMID: 28420738 PMCID: PMC5395668 DOI: 10.1128/mbio.00413-17] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 01/09/2023] Open
Abstract
Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist.IMPORTANCE Carbon in the ocean is massively sequestered in a complex mixture of biologically refractory molecules that accumulate as the chemical end member of biological oxidation and diagenetic change. However, few details are known about the biochemical machinery of carbon sequestration in the deep ocean. Reconstruction of the metabolism of a deep-ocean microbial clade, SAR202, led to postulation of new biochemical pathways that may be the penultimate stages of DOM oxidation to refractory forms that persist. These pathways are tied to a proliferation of oxidative enzymes. This research illuminates dark-ocean biochemistry that is broadly consequential for reconstructing the global carbon cycle.
Collapse
Affiliation(s)
- Zachary Landry
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Brandon K Swan
- Bigelow Laboratory for Ocean Sciences, Single-Cell Genomics Center, East Boothbay, Maine, USA
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, USA
| | - Gerhard J Herndl
- Department of Marine Biology, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Texel, The Netherlands
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, Single-Cell Genomics Center, East Boothbay, Maine, USA
| | | |
Collapse
|
18
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
19
|
Zhu C, Guo G, Ma Q, Zhang F, Ma F, Liu J, Xiao D, Yang X, Sun M. Diversity in S-layers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 123:1-15. [PMID: 27498171 DOI: 10.1016/j.pbiomolbio.2016.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/16/2016] [Accepted: 08/02/2016] [Indexed: 01/29/2023]
Abstract
Surface layers, referred simply as S-layers, are the two-dimensional crystalline arrays of protein or glycoprotein subunits on cell surface. They are one of the most common outermost envelope components observed in prokaryotic organisms (Archaea and Bacteria). Over the past decades, S-layers have become an issue of increasing interest due to their ubiquitousness, special features and functions. Substantial work in this field provides evidences of an enormous diversity in S-layers. This paper reviews and illustrates the diversity from several different aspects, involving the S-layer-carrying strains, the structure of S-layers, the S-layer proteins and genes, as well as the functions of S-layers.
Collapse
Affiliation(s)
- Chaohua Zhu
- College of Environment and Plant protection, Hainan University/Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources (Hainan University), Ministry of Education, Haikou, 570228, Hainan, PR China
| | - Gang Guo
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China; State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Qiqi Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Fengjuan Zhang
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Funing Ma
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Jianping Liu
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm 17177, Sweden
| | - Dao Xiao
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Xiaolin Yang
- College of Environment and Plant protection, Hainan University/Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources (Hainan University), Ministry of Education, Haikou, 570228, Hainan, PR China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
20
|
Lighezan L, Georgieva R, Neagu A. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:491-509. [DOI: 10.1007/s00249-016-1117-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022]
|
21
|
Raff J, Matys S, Suhr M, Vogel M, Günther T, Pollmann K. S-Layer-Based Nanocomposites for Industrial Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:245-279. [PMID: 27677516 DOI: 10.1007/978-3-319-39196-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This chapter covers the fundamental aspects of bacterial S-layers: what are S-layers, what is known about them, and what are their main features that makes them so interesting for the production of nanostructures. After a detailed introduction of the paracrystalline protein lattices formed by S-layer systems in nature the chapter explores the engineering of S-layer-based materials. How can S-layers be used to produce "industry-ready" nanoscale bio-composite materials, and which kinds of nanomaterials are possible (e.g., nanoparticle synthesis, nanoparticle immobilization, and multifunctional coatings)? What are the advantages and disadvantages of S-layer-based composite materials? Finally, the chapter highlights the potential of these innovative bacterial biomolecules for future technologies in the fields of metal filtration, catalysis, and bio-functionalization.
Collapse
Affiliation(s)
- Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany.
| | - Sabine Matys
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Matthias Suhr
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Manja Vogel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Tobias Günther
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Katrin Pollmann
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| |
Collapse
|
22
|
Lakatos M, Matys S, Raff J, Pompe W. Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles. Talanta 2015; 144:241-6. [PMID: 26452816 DOI: 10.1016/j.talanta.2015.05.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 11/29/2022]
Abstract
Herein, we present simple and rapid colorimetric and UV/VIS spectroscopic methods for detecting anionic arsenic (V) complexes in aqueous media. The methods exploit the aggregation of S-layer-functionalized spherical gold nanoparticles of sizes between 20 and 50 nm in the presence of arsenic species. The gold nanoparticles were functionalized with oligomers of the S-layer protein of Lysinibacillus sphaericus JG-A12. The aggregation of the nanoparticles results in a color change from burgundy-red for widely dispersed nanoparticles to blue for aggregated nanoparticles. A detailed signal analysis was achieved by measuring the shift of the particle plasmon resonance signal with UV/VIS spectroscopy. To further improve signal sensitivity, the influence of larger nanoparticles was tested. In the case of 50 nm gold nanoparticles, a concentration of the anionic arsenic (V) complex lower than 24 ppb was detectable.
Collapse
Affiliation(s)
- Mathias Lakatos
- Dresden University of Technology, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Strasse 27, 01069 Dresden, Germany.
| | - Sabine Matys
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Halsbruecker Strasse 34, 09599 Freiberg, Germany
| | - Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Halsbruecker Strasse 34, 09599 Freiberg, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Wolfgang Pompe
- Dresden University of Technology, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Strasse 27, 01069 Dresden, Germany
| |
Collapse
|
23
|
|
24
|
Selvakumar R, Seethalakshmi N, Thavamani P, Naidu R, Megharaj M. Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv 2014. [DOI: 10.1039/c4ra07903e] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microbial biotemplates for synthesizing inorganic nanostructures of defined morphology and size.
Collapse
Affiliation(s)
- R. Selvakumar
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004, India
| | - N. Seethalakshmi
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004, India
| | - P. Thavamani
- Centre for Environmental Risk Assessment and Remediation (CERAR)
- University of South Australia
- Adelaide 5095, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR)
- University of South Australia
- Adelaide 5095, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR)
- University of South Australia
- Adelaide 5095, Australia
| |
Collapse
|
25
|
Ultrastructure of the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera," a novel polygon-shaped bacterium. J Bacteriol 2011; 194:284-91. [PMID: 22020652 DOI: 10.1128/jb.05816-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
"Candidatus Methylomirabilis oxyfera" is a newly discovered denitrifying methanotroph that is unrelated to previously known methanotrophs. This bacterium is a member of the NC10 phylum and couples methane oxidation to denitrification through a newly discovered intra-aerobic pathway. In the present study, we report the first ultrastructural study of "Ca. Methylomirabilis oxyfera" using scanning electron microscopy, transmission electron microscopy, and electron tomography in combination with different sample preparation methods. We observed that "Ca. Methylomirabilis oxyfera" cells possess an atypical polygonal shape that is distinct from other bacterial shapes described so far. Also, an additional layer was observed as the outermost sheath, which might represent a (glyco)protein surface layer. Further, intracytoplasmic membranes, which are a common feature among proteobacterial methanotrophs, were never observed under the current growth conditions. Our results indicate that "Ca. Methylomirabilis oxyfera" is ultrastructurally distinct from other bacteria by its atypical cell shape and from the classical proteobacterial methanotrophs by its apparent lack of intracytoplasmic membranes.
Collapse
|
26
|
Kern J, Wilton R, Zhang R, Binkowski TA, Joachimiak A, Schneewind O. Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J Biol Chem 2011; 286:26042-9. [PMID: 21572039 DOI: 10.1074/jbc.m111.248070] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface (S)-layers, para-crystalline arrays of protein, are deposited in the envelope of most bacterial species. These surface organelles are retained in the bacterial envelope through the non-covalent association of proteins with cell wall carbohydrates. Bacillus anthracis, a Gram-positive pathogen, produces S-layers of the protein Sap, which uses three consecutive repeats of the surface-layer homology (SLH) domain to engage secondary cell wall polysaccharides (SCWP). Using x-ray crystallography, we reveal here the structure of these SLH domains, which assume the shape of a three-prong spindle. Each SLH domain contributes to a three-helical bundle at the spindle base, whereas another α-helix and its connecting loops generate the three prongs. The inter-prong grooves contain conserved cationic and anionic residues, which are necessary for SLH domains to bind the B. anthracis SCWP. Modeling experiments suggest that the SLH domains of other S-layer proteins also fold into three-prong spindles and capture bacterial envelope carbohydrates by a similar mechanism.
Collapse
Affiliation(s)
- Justin Kern
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kummer K, Vyalikh DV, Blüher A, Sivkov V, Maslyuk VV, Bredow T, Mertig I, Mertig M, Molodtsov SL. Real-Time Study of the Modification of the Peptide Bond by Atomic Calcium. J Phys Chem B 2011; 115:2401-7. [DOI: 10.1021/jp109555j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kurt Kummer
- Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden, Germany
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - Denis V. Vyalikh
- Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Anja Blüher
- Max-Bergmann-Zentrum für Biomaterialien und Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Victor Sivkov
- Komi Science Center, Russian Academy of Science, Ural Division, Syktyvkar 167982, Russia
| | - Volodymyr V. Maslyuk
- Martin-Luther-Universität Halle-Wittenberg, Fachbereich Physik, D-06099 Halle, Germany
| | - Thomas Bredow
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, D-53115 Bonn, Germany
| | - Ingrid Mertig
- Martin-Luther-Universität Halle-Wittenberg, Fachbereich Physik, D-06099 Halle, Germany
| | - Michael Mertig
- Max-Bergmann-Zentrum für Biomaterialien und Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden, Germany
| | | |
Collapse
|
28
|
Fluorescence energy transfer in the bi-fluorescent S-layer tandem fusion protein ECFP-SgsE-YFP. J Struct Biol 2010; 172:276-83. [PMID: 20650318 DOI: 10.1016/j.jsb.2010.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/21/2022]
Abstract
This work reports for the first time on the fabrication of a bi-functional S-layer tandem fusion protein which is able to self-assemble on solid supports without losing its functionality. Two variants of the green fluorescent protein (GFP) were genetically combined with a self-assembly system having the remarkable opportunity to interact with each other and act as functional nanopatterning biocoating. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the cyan ECFP donor protein at the SgsE N-terminus and with the yellow YFP acceptor protein at the C-terminus. The fluorescence energy transfer was studied with spectrofluorimetry, confocal microscopy and flow cytometry, whilst protein self-assembly (on silicon dioxide particles) and structural investigations were carried out with atomic force microscopy (AFM). The fluorescence resonance energy transfer efficiency of reassembled SgsE tandem protein was 20.0 ± 6.1% which is almost the same transfer efficiency shown in solution (19.6 ± 0.1%). This work shows that bi-fluorescent S-layer fusion proteins self-assemble on silica particles retaining their fluorescent properties.
Collapse
|
29
|
Tang J, Ebner A, Ilk N, Lichtblau H, Huber C, Zhu R, Pum D, Leitner M, Pastushenko V, Gruber HJ, Sleytr UB, Hinterdorfer P. High-affinity tags fused to s-layer proteins probed by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1324-1329. [PMID: 18001070 DOI: 10.1021/la702276k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two-dimensional, crystalline bacterial cell surface layers, termed S-layers, are one of the most commonly observed cell surface structures of prokaryotic organisms. In the present study, genetically modified S-layer protein SbpA of Bacillus sphaericus CCM 2177 carrying the short affinity peptide Strep-tag I or Strep-tag II at the C terminus was used to generate a 2D crystalline monomolecular protein lattice on a silicon surface. Because of the genetic modification, the 2D crystals were addressable via Strep-tag through streptavidin molecules. Atomic force microscopy (AFM) was used to investigate the topography of the single-molecules array and the functionality of the fused Strep-tags. In high-resolution imaging under near-physiological conditions, structural details such as protein alignment and spacing were resolved. By applying molecular recognition force microscopy, the Strep-tag moieties were proven to be fully functional and accessible. For this purpose, streptavidin molecules were tethered to AFM tips via approximately 8-nm-long flexible polyethylene glycol (PEG) linkers. These functionalized tips showed specific interactions with 2D protein crystals containing either the Strep-tag I or Strep-tag II, with similar energetic and kinetic behavior in both cases.
Collapse
Affiliation(s)
- Jilin Tang
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ryzhkov PM, Ostermann K, Rödel G. Isolation, gene structure, and comparative analysis of the S-layer gene sslA of Sporosarcina ureae ATCC 13881. Genetica 2007; 131:255-65. [PMID: 17242964 DOI: 10.1007/s10709-006-9135-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 12/15/2006] [Indexed: 11/27/2022]
Abstract
The surface (S)-layer of Sporosarcina ureae strain ATCC 13881, a periodic ordered structure with p4 square type symmetry, was recently reported to be an excellent biotemplate for the formation of highly ordered metal clusters. The S-layer is formed by self-assembly of a single subunit, the 116 kDa SslA protein. Here we report on the isolation and sequence analysis of the sslA gene. The protein sequence reveals a high degree of similarity to the sequences of other S-layer proteins that form self-assembly lattices with the p4 square type symmetry, especially to those of Bacillus sphaericus. Two conserved surface layer homology (SLH) domains in the extreme aminoterminal portion are likely to mediate attachment of the protein to secondary cell wall polymers. A central HisXXXHis motif and a cysteine residue in the carboxyl-terminal part of the protein, both extremely rare in S-layer proteins, may contribute to the high affinity for metal ions. The strong bias in the codon usage may explain that heterologous expression of SslA in E. coli is not very intense. With respect to the regulatory region we notice several features that are also present in other S-layer genes. The distance between the -35/-10 region and the ATG initiation codon is unusually long, and a 41 bp palindromic sequence is present in the immediate vicinity of the -35/-10 region.
Collapse
Affiliation(s)
- Pavel M Ryzhkov
- Institut für Genetik, Technische Universität Dresden, Helmholtzstr. 10, 01062 Dresden, Germany.
| | | | | |
Collapse
|
31
|
Gonçalves RP, Agnus G, Sens P, Houssin C, Bartenlian B, Scheuring S. Two-chamber AFM: probing membrane proteins separating two aqueous compartments. Nat Methods 2006; 3:1007-12. [PMID: 17060909 DOI: 10.1038/nmeth965] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 09/20/2006] [Indexed: 11/08/2022]
Abstract
Biological membranes compartmentalize and define physical borders of cells. They are crowded with membrane proteins that fulfill diverse crucial functions. About one-third of all genes in organisms code for, and the majority of drugs target, membrane proteins. To combine structure and function analysis of membrane proteins, we designed a two-chamber atomic force microscopy (AFM) setup that allows investigation of membranes spanned over nanowells, therefore separating two aqueous chambers. We imaged nonsupported surface layers (S layers) of Corynebacterium glutamicum at sufficient resolution to delineate a 15 A-wide protein pore. We probed the elastic and yield moduli of nonsupported membranes, giving access to the lateral interaction energy between proteins. We combined AFM and fluorescence microscopy to demonstrate the functionality of proteins in the setup by documenting proton pumping by Halobacterium salinarium purple membranes.
Collapse
|
32
|
Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Pühler A, Kalinowski J. The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology (Reading) 2006; 152:923-935. [PMID: 16549657 DOI: 10.1099/mic.0.28673-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The surface (S)-layer gene region of the Gram-positive bacterium Corynebacterium glutamicum ATCC 14067 was identified on fosmid clones, sequenced and compared with the genome sequence of C. glutamicum ATCC 13032, whose cell surface is devoid of an ordered S-layer lattice. A 5·97 kb DNA region that is absent from the C. glutamicum ATCC 13032 chromosome was identified. This region includes cspB, the structural gene encoding the S-layer protomer PS2, and six additional coding sequences. PCR experiments demonstrated that the respective DNA region is conserved in different C. glutamicum wild-type strains capable of S-layer formation. The DNA region is flanked by a 7 bp direct repeat, suggesting that illegitimate recombination might be responsible for gene loss in C. glutamicum ATCC 13032. Transfer of the cloned cspB gene restored the PS2− phenotype of C. glutamicum ATCC 13032, as confirmed by visualization of the PS2 proteins by SDS-PAGE and imaging of ordered hexagonal S-layer lattices on living C. glutamicum cells by atomic force microscopy. Furthermore, the promoter of the cspB gene was mapped by 5′ rapid amplification of cDNA ends PCR and the corresponding DNA fragment was used in DNA affinity purification assays. A 30 kDa protein specifically binding to the promoter region of the cspB gene was purified. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and peptide mass fingerprinting of the purified protein led to the identification of the putative transcriptional regulator Cg2831, belonging to the LuxR regulatory protein family. Disruption of the cg2831 gene in C. glutamicum resulted in an almost complete loss of PS2 synthesis. These results suggested that Cg2831 is a transcriptional activator of cspB gene expression in C. glutamicum.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Corynebacterium glutamicum/genetics
- Corynebacterium glutamicum/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/physiology
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Bacterial
- Gene Library
- Genomic Islands
- Mass Spectrometry
- Microscopy, Atomic Force
- Molecular Sequence Data
- Open Reading Frames
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Proteome/analysis
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Repressor Proteins/genetics
- Repressor Proteins/isolation & purification
- Repressor Proteins/physiology
- Sequence Analysis, DNA
- Sequence Homology
- Synteny
- Terminal Repeat Sequences
- Trans-Activators/genetics
- Trans-Activators/isolation & purification
- Trans-Activators/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Nicole Hansmeier
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Albersmeier
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Thomas Damberg
- Lehrstuhl für Experimentelle Biophysik und Angewandte Nanowissenschaften, Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Robert Ros
- Lehrstuhl für Experimentelle Biophysik und Angewandte Nanowissenschaften, Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Dario Anselmetti
- Lehrstuhl für Experimentelle Biophysik und Angewandte Nanowissenschaften, Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
33
|
Claus H, Akça E, Debaerdemaeker T, Evrard C, Declercq JP, Harris JR, Schlott B, König H. Molecular organization of selected prokaryotic S-layer proteins. Can J Microbiol 2006; 51:731-43. [PMID: 16391651 DOI: 10.1139/w05-093] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regular crystalline surface layers (S-layers) are widespread among prokaryotes and probably represent the earliest cell wall structures. S-layer genes have been found in approximately 400 different species of the prokaryotic domains bacteria and archaea. S-layers usually consist of a single (glyco-)protein species with molecular masses ranging from about 40 to 200 kDa that form lattices of oblique, tetragonal, or hexagonal architecture. The primary sequences of hyperthermophilic archaeal species exhibit some characteristic signatures. Further adaptations to their specific environments occur by various post-translational modifications, such as linkage of glycans, lipids, phosphate, and sulfate groups to the protein or by proteolytic processing. Specific domains direct the anchoring of the S-layer to the underlying cell wall components and transport across the cytoplasma membrane. In addition to their presumptive original role as protective coats in archaea and bacteria, they have adapted new functions, e.g., as molecular sieves, attachment sites for extracellular enzymes, and virulence factors.
Collapse
Affiliation(s)
- Harald Claus
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gonçalves RP, Scheuring S. Manipulating and imaging individual membrane proteins by AFM. SURF INTERFACE ANAL 2006. [DOI: 10.1002/sia.2350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S. Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 2005; 71:5532-43. [PMID: 16151146 PMCID: PMC1214696 DOI: 10.1128/aem.71.9.5532-5543.2005] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus sphaericus JG-A12 is a natural isolate recovered from a uranium mining waste pile near the town of Johanngeorgenstadt in Saxony, Germany. The cells of this strain are enveloped by a highly ordered crystalline proteinaceous surface layer (S-layer) possessing an ability to bind uranium and other heavy metals. Purified and recrystallized S-layer proteins were shown to be phosphorylated by phosphoprotein-specific staining, inductive coupled plasma mass spectrometry analysis, and a colorimetric method. We used extended X-ray absorption fine-structure (EXAFS) spectroscopy to determine the structural parameters of the uranium complexes formed by purified and recrystallized S-layer sheets of B. sphaericus JG-A12. In addition, we investigated the complexation of uranium by the vegetative bacterial cells. The EXAFS analysis demonstrated that in all samples studied, the U(VI) is coordinated to carboxyl groups in a bidentate fashion with an average distance between the U atom and the C atom of 2.88 +/- 0.02 A and to phosphate groups in a monodentate fashion with an average distance between the U atom and the P atom of 3.62 +/- 0.02 A. Transmission electron microscopy showed that the uranium accumulated by the cells of this strain is located in dense deposits at the cell surface.
Collapse
Affiliation(s)
- Mohamed L Merroun
- Institute of Radiochemistry, Forschungszentrum Rossendorf, P.O. Box 510119, D-01314 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Blecha A, Zarschler K, Sjollema KA, Veenhuis M, Rödel G. Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells. Microb Cell Fact 2005; 4:28. [PMID: 16202167 PMCID: PMC1262761 DOI: 10.1186/1475-2859-4-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/04/2005] [Indexed: 12/01/2022] Open
Abstract
Background Native as well as recombinant bacterial cell surface layer (S-layer) protein of Geobacillus (G.) stearothermophilus ATCC 12980 assembles to supramolecular structures with an oblique symmetry. Upon expression in E. coli, S-layer self assembly products are formed in the cytosol. We tested the expression and assembly of a fusion protein, consisting of the mature part (aa 31–1099) of the S-layer protein and EGFP (enhanced green fluorescent protein), in eukaryotic host cells, the yeast Saccharomyces cerevisiae and human HeLa cells. Results Upon expression in E. coli the recombinant mSbsC-EGFP fusion protein was recovered from the insoluble fraction. After denaturation by Guanidine (Gua)-HCl treatment and subsequent dialysis the fusion protein assembled in solution and yielded green fluorescent cylindric structures with regular symmetry comparable to that of the authentic SbsC. For expression in the eukaryotic host Saccharomyces (S.) cerevisiae mSbsC-EGFP was cloned in a multi-copy expression vector bearing the strong constitutive GPD1 (glyceraldehyde-3-phosophate-dehydrogenase) promoter. The respective yeast transfomants were only slightly impaired in growth and exhibited a needle-like green fluorescent pattern. Transmission electron microscopy (TEM) studies revealed the presence of closely packed cylindrical structures in the cytosol with regular symmetry comparable to those obtained after in vitro recrystallization. Similar structures are observed in HeLa cells expressing mSbsC-EGFP from the Cytomegalovirus (CMV IE) promoter. Conclusion The mSbsC-EGFP fusion protein is stably expressed both in the yeast, Saccharomyces cerevisiae, and in HeLa cells. Recombinant mSbsC-EGFP combines properties of both fusion partners: it assembles both in vitro and in vivo to cylindrical structures that show an intensive green fluorescence. Fusion of proteins to S-layer proteins may be a useful tool for high level expression in yeast and HeLa cells of otherwise instable proteins in their native conformation. In addition the self assembly properties of the fusion proteins allow their simple purification. Moreover the binding properties of the S-layer part can be used to immobilize the fusion proteins to various surfaces. Arrays of highly ordered and densely structured proteins either immobilized on surfaces or within living cells may be advantageous over the respective soluble variants with respect to stability and their potential interference with cellular metabolism.
Collapse
Affiliation(s)
- Andreas Blecha
- Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Kristof Zarschler
- Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Klaas A Sjollema
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, NL-9750 AA Haren, The Netherlands
| | - Marten Veenhuis
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, NL-9750 AA Haren, The Netherlands
| | - Gerhard Rödel
- Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
37
|
|
38
|
Schachtsiek M, Hammes WP, Hertel C. Characterization of Lactobacillus coryniformis DSM 20001T surface protein Cpf mediating coaggregation with and aggregation among pathogens. Appl Environ Microbiol 2005; 70:7078-85. [PMID: 15574903 PMCID: PMC535140 DOI: 10.1128/aem.70.12.7078-7085.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phenotypic characterization of aggregation phenotypes of Lactobacillus coryniformis revealed that strain DSM 20001T coaggregated with Escherichia coli K88, Campylobacter coli, and Campylobacter jejuni but not with other human pathogens. In addition, cells of these pathogens aggregated in the presence of the spent culture supernatant (SCS) of strain DSM 20001T. Cells of E. coli K88 remained viable in the coaggregates and aggregates for up to 24 h. Both coaggregation and aggregation (co/aggregation) occurred at pH 3.5 to 7.5 and was sensitive to heat (85 degrees C for 15 min) and proteinase K. The co/aggregation-promoting factor (Cpf) was purified, and the gene was identified by PCR with degenerate primers derived from internal amino acid sequences. The cpf gene encoded a 19.9-kDa preprotein with a sec-dependent leader and an isoelectric point of 4.4. The amino acid sequence had no significant similarity to proteins with known functions. Northern analysis revealed not only major transcription from the promoter of cpf but also major transcription from the promoter of the preceding insertion element, ISLco1 belonging to the IS3 family. Recombinant Cpf produced in E. coli mediated aggregation of pathogens comparable to the aggregation obtained with purified Cpf or SCS of strain DSM 20001T. Cpf could be removed from cells of strain DSM 20001T by treatment with 5 M LiCl and could be subsequently reattached to the cell surface by using SCS or recombinant Cpf, which resulted in restoration of the co/aggregation property. These results together with those of the amino acid sequence analysis suggest that Cpf is a novel surface protein of L. coryniformis that mediates co/aggregation of some pathogens.
Collapse
Affiliation(s)
- Martina Schachtsiek
- Institute of Food Technology, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | |
Collapse
|
39
|
Holden MA, Jung SY, Yang T, Castellana ET, Cremer PS. Creating Fluid and Air-Stable Solid Supported Lipid Bilayers. J Am Chem Soc 2004; 126:6512-3. [PMID: 15161253 DOI: 10.1021/ja048504a] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid supported lipid bilayers are rapidly delaminated when drawn through the air/water interface. We have discovered that a close packed monolayer of specifically bound protein prevents this process. The protection mechanism worked in two ways. First, when protein-protected bilayers were drawn through the air/water interface, a thin bulk water layer was visible over the entire bilayer region, thereby preventing air from contacting the surface. Second, a stream of nitrogen was used to remove all bulk water from a protected bilayer, which remained fully intact as determined by fluorescence microscopy. The condition of this dried bilayer was further probed by fluorescence recovery after photobleaching. It was found that lipids were not two-dimensionally mobile in dry air. However, when the bilayer was placed in a humid environment, 91% of the bleached fluorescence signal was recovered, indicating long-range two-dimensional mobility. The diffusion coefficient of lipids under humid conditions was an order of magnitude slower than the same bilayer under water. Protected bilayers could be rehydrated after drying, and their characteristic diffusion coefficient was reestablished. Insights into the mechanism of bilayer preservation were suggested.
Collapse
Affiliation(s)
- Matthew A Holden
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
40
|
Mizuno M, Tonozuka T, Suzuki S, Uotsu-Tomita R, Kamitori S, Nishikawa A, Sakano Y. Structural insights into substrate specificity and function of glucodextranase. J Biol Chem 2003; 279:10575-83. [PMID: 14660574 DOI: 10.1074/jbc.m310771200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A glucodextranase (iGDase) from Arthrobacter globiformis I42 hydrolyzes alpha-1,6-glucosidic linkages of dextran from the non-reducing end to produce beta-D-glucose via an inverting reaction mechanism and classified into the glycoside hydrolase family 15 (GH15). Here we cloned the iGDase gene and determined the crystal structures of iGDase of the unliganded form and the complex with acarbose at 2.42-A resolution. The structure of iGDase is composed of four domains N, A, B, and C. Domain A forms an (alpha/alpha)(6)-barrel structure and domain N consists of 17 antiparallel beta-strands, and both domains are conserved in bacterial glucoamylases (GAs) and appear to be mainly concerned with catalytic activity. The structure of iGDase complexed with acarbose revealed that the positions and orientations of the residues at subsites -1 and +1 are nearly identical between iGDase and GA; however, the residues corresponding to subsite 3, which form the entrance of the substrate binding pocket, and the position of the open space and constriction of iGDase are different from those of GAs. On the other hand, domains B and C are not found in the bacterial GAs. The primary structure of domain C is homologous with a surface layer homology domain of pullulanases, and the three-dimensional structure of domain C resembles the carbohydrate-binding domain of some glycohydrolases.
Collapse
Affiliation(s)
- Masahiro Mizuno
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Müller DJ, Janovjak H, Lehto T, Kuerschner L, Anderson K. Observing structure, function and assembly of single proteins by AFM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 79:1-43. [PMID: 12225775 DOI: 10.1016/s0079-6107(02)00009-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Single molecule experiments provide insight into the individuality of biological macromolecules, their unique function, reaction pathways, trajectories and molecular interactions. The exceptional signal-to-noise ratio of the atomic force microscope allows individual proteins to be imaged under physiologically relevant conditions at a lateral resolution of 0.5-1nm and a vertical resolution of 0.1-0.2nm. Recently, it has become possible to observe single molecule events using this technique. This capability is reviewed on various water-soluble and membrane proteins. Examples of the observation of function, variability, and assembly of single proteins are discussed. Statistical analysis is important to extend conclusions derived from single molecule experiments to protein species. Such approaches allow the classification of protein conformations and movements. Recent developments of probe microscopy techniques allow simultaneous measurement of multiple signals on individual macromolecules, and greatly extend the range of experiments possible for probing biological systems at the molecular level. Biologists exploring molecular mechanisms will benefit from a burgeoning of scanning probe microscopes and of their future combination with molecular biological experiments.
Collapse
Affiliation(s)
- Daniel J Müller
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Str. 108, D-01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
42
|
Abstract
A total of 37 complete genome sequences of bacteria, archaea, and eukaryotes were compared. The percentage of orthologous genes of each species contained within any of the other 36 genomes was established. In addition, the mean identity of the orthologs was calculated. Several conclusions result: (i) a greater absolute number of orthologs of a given species is found in larger species than in smaller ones; (ii) a greater percentage of the orthologous genes of smaller genomes is contained in other species than is the case for larger genomes, which corresponds to a larger proportion of essential genes; (iii) before species can be specifically related to one another in terms of gene content, it is first necessary to correct for the size of the genome; (iv) eukaryotes have a significantly smaller percentage of bacterial orthologs after correction for genome size, which is consistent with their placement in a separate domain; (v) the archaebacteria are specifically related to one another but are not significantly different in gene content from the bacteria as a whole; (vi) determination of the mean identity of all orthologs (involving hundreds of gene comparisons per genome pair) reduces the impact of errors in misidentification of orthologs and to misalignments, and thus it is far more reliable than single gene comparisons; (vii) however, there is a maximum amount of change in protein sequences of 37% mean identity, which limits the use of percentage sequence identity to the lower taxa, a result which should also be true for single gene comparisons of both proteins and rRNA; (viii) most of the species that appear to be specifically related based upon gene content also appear to be specifically related based upon the mean identity of orthologs; (ix) the genes of a majority of species considered in this study have diverged too much to allow the construction of all-encompassing evolutionary trees. However, we have shown that eight species of gram-negative bacteria, six species of gram-positive bacteria, and eight species of archaebacteria are specifically related in terms of gene content, mean identity of orthologs, or both.
Collapse
Affiliation(s)
- Arvind K Bansal
- Department of Computer Science, Kent State University, Kent, Ohio 44242, USA
| | | |
Collapse
|
43
|
Macario AJ, Lange M, Ahring BK, Conway de Macario E. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 1999; 63:923-67, table of contents. [PMID: 10585970 PMCID: PMC98981 DOI: 10.1128/mmbr.63.4.923-967.1999] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The field covered in this review is new; the first sequence of a gene encoding the molecular chaperone Hsp70 and the first description of a chaperonin in the archaea were reported in 1991. These findings boosted research in other areas beyond the archaea that were directly relevant to bacteria and eukaryotes, for example, stress gene regulation, the structure-function relationship of the chaperonin complex, protein-based molecular phylogeny of organisms and eukaryotic-cell organelles, molecular biology and biochemistry of life in extreme environments, and stress tolerance at the cellular and molecular levels. In the last 8 years, archaeal stress genes and proteins belonging to the families Hsp70, Hsp60 (chaperonins), Hsp40(DnaJ), and small heat-shock proteins (sHsp) have been studied. The hsp70(dnaK), hsp40(dnaJ), and grpE genes (the chaperone machine) have been sequenced in seven, four, and two species, respectively, but their expression has been examined in detail only in the mesophilic methanogen Methanosarcina mazei S-6. The proteins possess markers typical of bacterial homologs but none of the signatures distinctive of eukaryotes. In contrast, gene expression and transcription initiation signals and factors are of the eucaryal type, which suggests a hybrid archaeal-bacterial complexion for the Hsp70 system. Another remarkable feature is that several archaeal species in different phylogenetic branches do not have the gene hsp70(dnaK), an evolutionary puzzle that raises the important question of what replaces the product of this gene, Hsp70(DnaK), in protein biogenesis and refolding and for stress resistance. Although archaea are prokaryotes like bacteria, their Hsp60 (chaperonin) family is of type (group) II, similar to that of the eukaryotic cytosol; however, unlike the latter, which has several different members, the archaeal chaperonin system usually includes only two (in some species one and in others possibly three) related subunits of approximately 60 kDa. These form, in various combinations depending on the species, a large structure or chaperonin complex sometimes called the thermosome. This multimolecular assembly is similar to the bacterial chaperonin complex GroEL/S, but it is made of only the large, double-ring oligomers each with eight (or nine) subunits instead of seven as in the bacterial complex. Like Hsp70(DnaK), the archaeal chaperonin subunits are remarkable for their evolution, but for a different reason. Ubiquitous among archaea, the chaperonins show a pattern of recurrent gene duplication-hetero-oligomeric chaperonin complexes appear to have evolved several times independently. The stress response and stress tolerance in the archaea involve chaperones, chaperonins, other heat shock (stress) proteins including sHsp, thermoprotectants, the proteasome, as yet incompletely understood thermoresistant features of many molecules, and formation of multicellular structures. The latter structures include single- and mixed-species (bacterial-archaeal) types. Many questions remain unanswered, and the field offers extraordinary opportunities owing to the diversity, genetic makeup, and phylogenetic position of archaea and the variety of ecosystems they inhabit. Specific aspects that deserve investigation are elucidation of the mechanism of action of the chaperonin complex at different temperatures, identification of the partners and substitutes for the Hsp70 chaperone machine, analysis of protein folding and refolding in hyperthermophiles, and determination of the molecular mechanisms involved in stress gene regulation in archaeal species that thrive under widely different conditions (temperature, pH, osmolarity, and barometric pressure). These studies are now possible with uni- and multicellular archaeal models and are relevant to various areas of basic and applied research, including exploration and conquest of ecosystems inhospitable to humans and many mammals and plants.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, School of Public Health, The University at Albany, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
44
|
Gössner AS, Devereux R, Ohnemüller N, Acker G, Stackebrandt E, Drake HL. Thermicanus aegyptius gen. nov., sp. nov., isolated from oxic soil, a fermentative microaerophile that grows commensally with the thermophilic acetogen Moorella thermoacetica. Appl Environ Microbiol 1999; 65:5124-33. [PMID: 10543831 PMCID: PMC91689 DOI: 10.1128/aem.65.11.5124-5133.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A thermophilic, fermentative microaerophile (ET-5b) and a thermophilic acetogen (ET-5a) were coisolated from oxic soil obtained from Egypt. The 16S rRNA gene sequence of ET-5a was 99.8% similar to that of the classic acetogen Moorella thermoacetica. Further analyses confirmed that ET-5a was a new strain of M. thermoacetica. For ET-5b, the nearest 16S rRNA gene sequence similarity value to known genera was approximately 88%. ET-5b was found to be a motile rod with a genomic G+C content of 50.3 mol%. Cells were weakly gram positive and lacked spores. Growth was optimal at 55 to 60 degrees C and pH 6.5 to 7.0. ET-5b grew under both oxic and anoxic conditions, but growth was erratic under atmospheric concentrations of O(2). Utilizable substrates included oligosaccharides and monosaccharides. Acetate, formate, and succinate supported growth only under oxic conditions. Saccharides yielded succinate, lactate, ethanol, acetate, formate, and H(2) under anoxic conditions; fermentation products were also formed under oxic conditions. A new genus is proposed, the type strain being Thermicanus aegyptius ET-5b gen. nov., sp. nov. (DSMZ 12793). M. thermoacetica ET-5a (DSMZ 12797) grew commensally with T. aegyptius ET-5b on oligosaccharides via the interspecies transfer of H(2) formate, and lactate. In support of this interaction, uptake hydrogenase and formate dehydrogenase specific activities were fundamentally greater in M. thermoacetica ET-5a than in T. aegyptius ET-5b. These results demonstrate that (i) soils subject to high temperatures harbor uncharacterized thermophilic microaerophiles, (ii) the classic acetogen M. thermoacetica resides in such soils, and (iii) trophic links between such soil bacteria might contribute to their in situ activities.
Collapse
Affiliation(s)
- A S Gössner
- Department of Ecological Microbiology, BITOEK, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Sleytr UB, Messner P, Pum D, Sára M. Kristalline Zelloberflächen-Schichten prokaryotischer Organismen (S-Schichten): von der supramolekularen Zellstruktur zur Biomimetik und Nanotechnologie. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990419)111:8<1098::aid-ange1098>3.0.co;2-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
47
|
Weygand M, Wetzer B, Pum D, Sleytr UB, Cuvillier N, Kjaer K, Howes PB, Lösche M. Bacterial S-layer protein coupling to lipids: x-ray reflectivity and grazing incidence diffraction studies. Biophys J 1999; 76:458-68. [PMID: 9876158 PMCID: PMC1302535 DOI: 10.1016/s0006-3495(99)77213-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows that the phosphatidylethanolamine headgroups must reorient toward the surface normal to accommodate such changes. In terms of the protein structure (which is as yet unknown in three dimensions), the electron density profile reveals a thickness lz approximately 90 A of the recrystallized S-layer and shows water-filled cavities near its center. The protein volume fraction reaches maxima of >60% in two horizontal sections of the S-layer, close to the lipid monolayer and close to the free subphase. In between it drops to approximately 20%. Four S-layer protein monomers are located within the unit cell of a square lattice with a spacing of approximately 131 A.
Collapse
Affiliation(s)
- M Weygand
- University for Agricultural Sciences, Center for Ultrastructure Research and Ludwig-Boltzmann-Institute for Molecular Nanotechnology, A-1180 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|