1
|
Chen X, Chen L, Chen B, Wei Q, Wu Y, Zhang Y. A Recombinant Lentiviral Vegfr2-Silencing Vector Attenuates Roxarsone-Promoted Growth of Rat Vascular Endothelial Cells and Angiogenesis in Matrigel Plug and B16F10 Xenograft Models. Vet Sci 2024; 11:451. [PMID: 39453043 PMCID: PMC11511396 DOI: 10.3390/vetsci11100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Roxarsone (ROX) is widely used as a feed addictive for livestock and poultry. ROX promotes angiogenesis, which can lead to health problems, and it is necessary to identify methods to counter this angiogenic effect of ROX. The VEGF/VEGFR2 signaling pathway is involved in the growth and reconstruction of new blood vessels during angiogenesis. In this study, a recombinant lentiviral vector encoding Vegfr2 shRNA was transfected into rat vascular endothelial cells and used in mouse matrigel plug and melanoma xenograft models to investigate its potential to regulate ROX-induced angiogenesis and tumor growth. Treating endothelial cells with ROX increased cell proliferation, migration, and a tube-like structure of growth relative to the control group. The addition of the lentiviral Vegfr2-silencing vector significantly attenuated the effects of ROX on endothelial cells. The hemoglobin content of mouse matrigel plugs treated with ROX was increased significantly. This effect was dramatically attenuated by the co-administration of shRNA targeting Vegfr2. The volume, weight and CD34 staining of the melanoma xenograft tumors increased by ROX were also attenuated by Vegfr2 silence. These results indicate that the down-regulation of VEGFR2 protein plays an inhibitory role in the ROX-promoted angiogenesis in vivo and in vitro. These data support the targeting of Vegfr2 gene as an effective means to treat ROX-induced angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Xin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Lin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
| | - Binlin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
| | - Qianhan Wei
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
| | - Yinchao Wu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
| | - Yumei Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
2
|
Guan L, Zhang S, Song P, Xia Y, Zheng X, Li W. Novel bibenzyl compound Ae exhibits anti-agiogenic activity in HUVECs in vitro and zebrafish in vivo. Bioorg Med Chem 2024; 111:117866. [PMID: 39096785 DOI: 10.1016/j.bmc.2024.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The inhibition of angiogenesis has been considered as an attractive method for the discovery of potential anti-cancer drugs. Herein, we report our new synthesized bibenzyl compound Ae had potent anti-angiogenic activity(the lowest effective concentration is to 0.62-1.25 μM) in zebrafish in vivo and showed a concentration-dependent inhibition of inter-segmental blood vessels (ISVs) compared to control. Further, Ae exhibited the obvious inhibitory activity of proliferation, migration, invasion and tube formation in HUVEC cells in vitro. Moreover, qRT-PCR analysis revealed that the anti-angiogenic activity of compound Ae is connected with the ang-2, tek in ANGPT-TEK pathway and the kdr, kdrl signaling axle in VEGF-VEGFR pathway. Molecular docking studies revealed that compound Ae had an interaction with the angiopoietin-2 receptor(TEK) and VEGFR2. Additionally, analysis of the ADMET prediction data indicated that compound Ae possessed favorable physicochemical properties, drug-likeness, and synthetic accessibility. In conclusion, compound Ae had remarkable anti-angiogenic activity and could be served as an candidate for cancer therapy.
Collapse
Affiliation(s)
- Li Guan
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Shengjie Zhang
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Pengfei Song
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanxin Xia
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Xinle Zheng
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Weize Li
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China.
| |
Collapse
|
3
|
Doyle SE, Pannella M, Onofrillo C, Bellotti C, Di Bella C, O’Connell CD, Pirogova E, Lucarelli E, Duchi S. NEST3D printed bone-mimicking scaffolds: assessment of the effect of geometrical design on stiffness and angiogenic potential. Front Cell Dev Biol 2024; 12:1353154. [PMID: 38516128 PMCID: PMC10955058 DOI: 10.3389/fcell.2024.1353154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Tissue-engineered implants for bone regeneration require consideration regarding their mineralization and vascularization capacity. Different geometries, such as biomimetic designs and lattices, can influence the mechanical properties and the vascularization capacity of bone-mimicking implants. Negative Embodied Sacrificial Template 3D (NEST3D) printing is a versatile technique across a wide range of materials that enables the production of bone-mimicking scaffolds. In this study, different scaffold motifs (logpile, Voronoi, and trabecular bone) were fabricated via NEST3D printing in polycaprolactone to determine the effect of geometrical design on stiffness (10.44 ± 6.71, 12.61 ± 5.71, and 25.93 ± 4.16 MPa, respectively) and vascularization. The same designs, in a polycaprolactone scaffold only, or when combined with gelatin methacryloyl, were then assessed for their ability to allow the infiltration of blood vessels in a chick chorioallantoic membrane (CAM) assay, a cost-effective and time-efficient in ovo assay to assess vascularization. Our findings showed that gelatin methacrylolyl alone did not allow new chorioallantoic membrane tissue or blood vessels to infiltrate within its structure. However, polycaprolactone on its own or when combined with gelatin methacrylolyl allowed tissue and vessel infiltration in all scaffold designs. The trabecular bone design showed the greatest mineralized matrix production over the three designs tested. This reinforces our hypothesis that both biomaterial choice and scaffold motifs are crucial components for a bone-mimicking scaffold.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
4
|
Mesas C, Chico MA, Doello K, Lara P, Moreno J, Melguizo C, Perazzoli G, Prados J. Experimental Tumor Induction and Evaluation of Its Treatment in the Chicken Embryo Chorioallantoic Membrane Model: A Systematic Review. Int J Mol Sci 2024; 25:837. [PMID: 38255911 PMCID: PMC10815318 DOI: 10.3390/ijms25020837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The chorioallantoic membrane (CAM) model, generated during avian development, can be used in cancer research as an alternative in vivo model to perform tumorigenesis in ovo due to advantages such as simplicity, low cost, rapid growth, and being naturally immunodeficient. The aim of this systematic review has been to compile and analyze all studies that use the CAM assay as a tumor induction model. For that, a systematic search was carried out in four different databases: PubMed, Scopus, Cochrane, and WOS. After eliminating duplicates and following the established inclusion and exclusion criteria, a total of 74 articles were included. Of these, 62% use the in ovo technique, 13% use the ex ovo technique, 9% study the formation of metastasis, and 16% induce tumors from patient biopsies. Regarding the methodology followed, the main species used is chicken (95%), although some studies use quail eggs (4%), and one article uses ostrich eggs. Therefore, the CAM assay is a revolutionary technique that allows a simple and effective way to induce tumors, test the effectiveness of treatments, carry out metastasis studies, perform biopsy grafts of patients, and carry out personalized medicine. However, unification of the methodology used is necessary.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
| | - Maria Angeles Chico
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Service of Medical Oncology, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Lampejo AO, Hodges NA, Rozenblum M, Murfee WL. Time-Lapse Observation of Cell Dynamics During Angiogenesis Using the Rat Mesentery Culture Model. Methods Mol Biol 2024; 2711:63-75. [PMID: 37776449 DOI: 10.1007/978-1-0716-3429-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The ability to track cells and their interactions with other cells during physiological processes offers a powerful tool for scientific discovery. An ex vivo model that enables real-time investigation of cell migration during angiogenesis in adult microvascular networks would enable observation of endothelial cell dynamics during capillary sprouting. Angiogenesis is defined as the growth of new blood vessels from existing ones and involves multiple cell types including endothelial cells, pericytes, and interstitial cells. The incorporation of these cell types in a physiologically relevant environment, however, represents a challenge for biomimetic model development. Recently, our laboratory has developed the rat mesentery culture model, which enables investigation of angiogenesis in an intact tissue. The objective of this chapter is to detail a protocol for tracking cellular dynamics during angiogenesis using the rat mesentery tissue culture model. The method involves harvesting mesentery tissues from adult SD-EGFP rats, culturing them in MEM + 10% fetal bovine serum, and imaging network regions over the time course of angiogenesis. In example applications, time-lapse comparison of microvascular networks in cultured tissues confirmed dramatic increases in GFP-positive capillary sprouting and GFP-positive segment density. Additionally, tracking of individual capillary sprout extensions revealed their ability to "jump" by disconnecting from one vessel segment and reconnecting to another segment in the network. GFP-positive sprouts were also capable of undergoing subsequent regression. The representative results support the use of the rat mesentery culture model for identifying and tracking cellular dynamics during angiogenesis in intact microvascular networks.
Collapse
Affiliation(s)
- Arinola O Lampejo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nicholas A Hodges
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Maximillian Rozenblum
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Gatina DZ, Gazizov IM, Zhuravleva MN, Arkhipova SS, Golubenko MA, Gomzikova MO, Garanina EE, Islamov RR, Rizvanov AA, Salafutdinov II. Induction of Angiogenesis by Genetically Modified Human Umbilical Cord Blood Mononuclear Cells. Int J Mol Sci 2023; 24:ijms24054396. [PMID: 36901831 PMCID: PMC10002409 DOI: 10.3390/ijms24054396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Stimulating the process of angiogenesis in treating ischemia-related diseases is an urgent task for modern medicine, which can be achieved through the use of different cell types. Umbilical cord blood (UCB) continues to be one of the attractive cell sources for transplantation. The goal of this study was to investigate the role and therapeutic potential of gene-engineered umbilical cord blood mononuclear cells (UCB-MC) as a forward-looking strategy for the activation of angiogenesis. Adenovirus constructs Ad-VEGF, Ad-FGF2, Ad-SDF1α, and Ad-EGFP were synthesized and used for cell modification. UCB-MCs were isolated from UCB and transduced with adenoviral vectors. As part of our in vitro experiments, we evaluated the efficiency of transfection, the expression of recombinant genes, and the secretome profile. Later, we applied an in vivo Matrigel plug assay to assess engineered UCB-MC's angiogenic potential. We conclude that hUCB-MCs can be efficiently modified simultaneously with several adenoviral vectors. Modified UCB-MCs overexpress recombinant genes and proteins. Genetic modification of cells with recombinant adenoviruses does not affect the profile of secreted pro- and anti-inflammatory cytokines, chemokines, and growth factors, except for an increase in the synthesis of recombinant proteins. hUCB-MCs genetically modified with therapeutic genes induced the formation of new vessels. An increase in the expression of endothelial cells marker (CD31) was revealed, which correlated with the data of visual examination and histological analysis. The present study demonstrates that gene-engineered UCB-MC can be used to stimulate angiogenesis and possibly treat cardiovascular disease and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dilara Z. Gatina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ilnaz M. Gazizov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia
| | - Margarita N. Zhuravleva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Svetlana S. Arkhipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Maria A. Golubenko
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Marina O. Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Rustem R. Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ilnur I. Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia
- Correspondence:
| |
Collapse
|
7
|
Deep Semantic Segmentation of Angiogenesis Images. Int J Mol Sci 2023; 24:ijms24021102. [PMID: 36674617 PMCID: PMC9866671 DOI: 10.3390/ijms24021102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis is the development of new blood vessels from pre-existing ones. It is a complex multifaceted process that is essential for the adequate functioning of human organisms. The investigation of angiogenesis is conducted using various methods. One of the most popular and most serviceable of these methods in vitro is the short-term culture of endothelial cells on Matrigel. However, a significant disadvantage of this method is the manual analysis of a large number of microphotographs. In this regard, it is necessary to develop a technique for automating the annotation of images of capillary-like structures. Despite the increasing use of deep learning in biomedical image analysis, as far as we know, there still has not been a study on the application of this method to angiogenesis images. To the best of our knowledge, this article demonstrates the first tool based on a convolutional Unet++ encoder-decoder architecture for the semantic segmentation of in vitro angiogenesis simulation images followed by the resulting mask postprocessing for data analysis by experts. The first annotated dataset in this field, AngioCells, is also being made publicly available. To create this dataset, participants were recruited into a markup group, an annotation protocol was developed, and an interparticipant agreement study was carried out.
Collapse
|
8
|
Abstract
The angiogenesis process was described in its basic concepts in the works of the Scottish surgeon John Hunter and terminologically assessed in the early twentieth century. An aberrant angiogenesis is a prerequisite for cancer cells in solid tumors to grow and metastasize. The sprouting of new blood vessels is one of the major characteristics of cancer and represents a gateway for tumor cells to enter both the blood and lymphatic circulation systems. In vivo, ex vivo, and in vitro models of angiogenesis have provided essential tools for cancer research and antiangiogenic drug screening. Several in vivo studies have been performed to investigate the various steps of tumor angiogenesis and in vitro experiments contributed to dissecting the molecular bases of this phenomenon. Moreover, coculture of cancer and endothelial cells in 2D and 3D matrices have contributed to improve the recapitulation of the complex process of tumor angiogenesis, including the peculiar conditions of tumor microenvironment.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Pisa, Italy
- Museum of Human Anatomy "Filippo Civinini", School of Medicine, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
9
|
Fang J, Liu H, Qiao W, Xu T, Yang Y, Xie H, Lam CH, Yeung KWK, Zhao X. Biomimicking Leaf-Vein Engraved Soft and Elastic Membrane Promotes Vascular Reconstruction. Adv Healthc Mater 2023; 12:e2201220. [PMID: 36330558 DOI: 10.1002/adhm.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Hierarchical vasculature reconstruction is fundamental for tissue regeneration. The regeneration of functional vascular network requires a proper directional guidance, especially in case of large-size defects. To provide the "running track" for vasculature, a leaf-vein mimetic membrane using soft and elastic poly(lactide-co-propylene glycol-co-lactide) dimethacrylate is developed. Engraved with an interconnected and perfusable leaf-vein micropattern, the membrane can guide human umbilical vein endothelial cells (HUVECs) to form vasculature in vitro. In particular, the "running track" upregulates the angiogenesis-related gene expression and promotes the HUVECs to differentiate into tip cells and stalk cells via tuning vascular endothelial growth factor receptor 2 signaling transduction. As a proof of concept, its revascularization capability using a rat calvarial defect model in vivo is evaluated. The in vivo results demonstrate that the leaf-vein engraved membrane accelerates the formation and maturation of vasculature, leading to a hierarchical blood vessel network. With the superior pro-vasculature property, it is believed that the leaf-vein engraved membrane is not only an ideal candidate for the reconstruction of calvarial vasculature but also a promising solution for more complicated vasculature reconstruction, such as muscle, skin, and heart.
Collapse
Affiliation(s)
- Jinghan Fang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Huaqian Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Tianpeng Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Huizhi Xie
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Hei Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
10
|
The inhibition of protein translation promotes tumor angiogenic switch. MOLECULAR BIOMEDICINE 2022; 3:18. [PMID: 35695994 PMCID: PMC9192909 DOI: 10.1186/s43556-022-00081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
The ‘angiogenic switch’ is critical for tumor progression. However, the pathological details and molecular mechanisms remain incompletely characterized. In this study, we established mammal xenografts in zebrafish to visually investigate the first vessel growth (angiogenic switch) in real-time, by inoculating tumor cells into the perivitelline space of live optically transparent Transgenic (flk1:EGFP) zebrafish larvae. Using this model, we found that hypoxia and hypoxia-inducible factor (HIF) signaling were unnecessary for the angiogenic switch, whereas vascular endothelial growth factor A gene (Vegfa) played a crucial role. Mechanistically, transcriptome analysis showed that the angiogenic switch was characterized by inhibition of translation, but not hypoxia. Phosphorylation of eukaryotic translation initiation factor 2 alpha (Eif2α) and the expression of Vegfa were increased in the angiogenic switch microtumors, and 3D tumor spheroids, and puromycin-treated tumor cells. Vegfa overexpression promoted early onset of the angiogenic switch, whereas Vegfa knockout prevented the first tumor vessel from sprouting. Pretreatment of tumor cells with puromycin promoted the angiogenic switch in vivo similarly to Vegfa overexpression, whereas Vegfa knockdown suppressed the increase. This study provides direc and dynamic in vivo evidences that inhibition of translation, but not hypoxia or HIF signaling promotes the angiogenic switch in tumor by increasing Vegfa transcription.
Collapse
|
11
|
Norrby K. Do mast cells contribute to the continued survival of vertebrates? APMIS 2022; 130:618-624. [PMID: 35869669 PMCID: PMC9545593 DOI: 10.1111/apm.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
This study is an attempt to shed light on why the connective tissue mast cell (MC) is preserved in all species with a blood circulatory system, i.e., the vertebrates since >500 million years, which suggests that the MC performs as yet not understood indispensible life-promoting actions. The literature survey focuses on data in published papers on MC functions in immunological and nonimmunological reactions, host protection, pregnancy, inflammation, and wound healing. All data are thus accessible to the reader. The MC is a secretory cell with a unique mediator profile. A distinctive role for MCs is defined not only by their extensive mediator composition but also by their prominent ability to affect the vasculature to expedite selective cell recruitment and permeability changes and to set the stage for an appropriate acquired response. MCs, harboring a wide range of surface membrane receptors, are activated by the major female sex hormones as well as by diverse potentially adverse stimuli. MC activation/degranulation creates a presumably unique triad tissue response in physiological and pathological situations alike: extracellular matrix degradation and tissue remodeling, de novo cell proliferation, and de novo angiogenesis. As shown in the literature, MC-activation is crucial for successful female reproduction in the mouse, implying one of possibly several yet unidentified physiological roles of MCs. Moreover, the activated MC aids newborns to survive to reproductive age owing to its key beneficial actions in inflammation and wound healing. Thus, a not previously described life-perpetuating loop spanning generations are apparently formed, which, hypothetically, could contribute to the continued survival of the vertebrates.
Collapse
Affiliation(s)
- Klas Norrby
- Department of Pathology, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Javanmardi S, Abolmaali SS, Mehrabanpour MJ, Aghamaali MR, Tamaddon AM. PEGylated nanohydrogels delivering anti-MicroRNA-21 suppress ovarian tumor-associated angiogenesis in matrigel and chicken chorioallantoic membrane models. BIOIMPACTS : BI 2022; 12:449-461. [PMID: 36381633 PMCID: PMC9596881 DOI: 10.34172/bi.2022.23263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/31/2021] [Accepted: 09/23/2021] [Indexed: 06/16/2023]
Abstract
Introduction: Recently, MicroRNAs have gained increasing popularity as a novel nucleic acid-mediated medicine to regulate cancer-related protein expression. MicroRNA-21 (miR-21) is known as an oncogenic microRNA which is overexpressed in almost all cancers, including ovarian carcinoma that causes cisplatin (cis-Pt) resistance and vascular endothelial growth factor (VEGF) upregulation. So, miRNA-based therapy can be regarded as knocking down miR-21 expression, inducing tumor cell apoptosis, and suppressing tumor-associated angiogenesis. Methods: PEG5k-carboxymethylated polyethyleneimine nanohydrogels (PEG5k-CMPEI) were loaded with AntagomiR-21 (As-21) at different ratios of nitrogen to phosphorus (N/P). Particle size and ζ potential were determined for the As-21 loaded nanohydrogels. In the cellular experiments, miR-21 expression, cytotoxicity, and cis-Pt sensitivity were studied on A2780 ovarian cancer cell lines. Finally, tumor cell apoptosis and tumor cell-associated angiogenesis were explored in vitro and in vivo. Results: The nanohydrogels, featuring homogeneous size distribution and redox-responsiveness, were steadily loaded by As-21 at the optimum N/P ratio of 5 without any aggregation as determined by transmission electron microscopy (TEM). As-21-loaded nanohydrogels caused sequence-specific suppression of miR-21 expression and provoked apoptosis through ROS generation and caspase 3 activation. Cisplatin cytotoxicity was remarkably enhanced in A2780R as compared to A2780S following co-incubation with As-21-loaded nanohydrogels. Interestingly, the condition of the medium derived from As-21 nanohydrogel-treated A2780R cells inhibited VEGF suppression in human umbilical vein endothelial cells (HUVECs) and the formation of tubes in Matrigel. Moreover, the condition medium caused angiogenesis inhibition in the chicken chorioallantoic membrane (CAM) model. Conclusion: These results suggest that nanohydrogel-based delivery of As-21 can be a promising neoadjuvant therapy for treating resistant tumors via apoptosis induction and angiogenesis suppression.
Collapse
Affiliation(s)
- Sanaz Javanmardi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | | | | | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| |
Collapse
|
13
|
Dolan R, Lampejo AO, Santini-González J, Hodges NA, Phelps EA, Murfee WL. A Novel ex vivo Method for Investigating Vascularization of Transplanted Islets. J Vasc Res 2022; 59:229-238. [PMID: 35462373 PMCID: PMC9308658 DOI: 10.1159/000523925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Revascularization of transplanted pancreatic islets is critical for survival and treatment of type 1 diabetes. Questions concerning how islets influence local microvascular networks and how networks form connections with islets remain understudied and motivate the need for new models that mimic the complexity of real tissue. Recently, our laboratory established the rat mesentery culture model as a tool to investigate cell dynamics involved in microvascular growth. An advantage is the ability to observe blood vessels, lymphatics, and immune cells. The objective of this study was to establish the rat mesentery tissue culture model as a useful tool to investigate islet tissue integration. DiI-labeled islets were seeded onto adult rat mesentery tissues and cultured for up to 3 days. Live lectin labeling enabled time-lapse observation of vessel growth. During culture, DiI-positive islets remained intact. Radial lectin-positive capillary sprouts with DiI labeling were observed to form from islets and connect to host networks. Lectin-positive vessels from host networks were also seen growing toward islets. PECAM and NG2 labeling confirmed that vessels sprouting from islets contained endothelial cells and pericytes. Our results introduce the rat mesentery culture model as a platform for investigating dynamics associated with the initial revascularization of transplanted islets.
Collapse
Affiliation(s)
- Robert Dolan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Arinola O Lampejo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Jorge Santini-González
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Nicholas A Hodges
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Sarogni P, Mapanao AK, Gonnelli A, Ermini ML, Marchetti S, Kusmic C, Paiar F, Voliani V. Chorioallantoic membrane tumor models highlight the effects of cisplatin compounds in oral carcinoma treatment. iScience 2022; 25:103980. [PMID: 35310338 PMCID: PMC8924639 DOI: 10.1016/j.isci.2022.103980] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
The European Society for Medical Oncology (ESMO) suggests the use of chemotherapy as neoadjuvant, adjuvant, and concomitant to surgery and radiotherapy for the treatment of oral carcinoma by depending on the cancer stage. The usual drug of choice belongs to the platinum compounds. In this context, the evaluation of the cancer behavior associated with the administration of standard or emerging cisplatin compounds supports the establishment of optimal cancer management. Here, we have assessed and compared the performance of cisplatin alone and contained in biodegradable nanocapsules on standardized chorioallantoic membrane (CAM) tumor models. The vascularized environment and optimized grafting procedure allowed the establishment of solid tumors. The treatments showed antitumor and anti-angiogenic activities together with deregulation of pivotal genes responsible of treatment resistance and tumor aggressiveness. This study further supports the significance of CAM tumor models in oncological research for the comprehension of the molecular mechanisms involved in tumor treatment response.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| | - Sabrina Marchetti
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| |
Collapse
|
15
|
Majbour D, Suarez-Martinez AD, Hodges NA, Lampejo AO, Lomel BM, Rice EW, Shang H, Katz AJ, Murfee WL. An Ex Vivo Tissue Culture Method for Discovering Cell Dynamics Involved in Stromal Vascular Fraction Vasculogenesis Using the Mouse Mesentery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:157-170. [PMID: 35099735 DOI: 10.1007/978-1-0716-2059-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stromal vascular fraction (SVF), isolated from adipose tissue, identifies as a rich cell source comprised of endothelial cells, endothelial progenitor cells, pericytes, smooth muscle cells, fibroblasts, and immune cells. SVF represents a promising therapeutic heterogonous cell source for growing new blood microvessels due to its rich niche of cells. However, the spatiotemporal dynamics of SVF within living tissues remain largely unknown. The objective of this chapter is to describe a protocol for culturing SVF on mouse mesentery tissues in order to aid in the discovery of SVF dynamics and associated vessel growth over time. SVF was isolated from the inguinal adipose from adult mice and seeded onto mesentery tissues. Tissues were then cultured for up to 5 days and labeled with endothelial cell and pericyte markers. Representative results demonstrate the observation of SVF-derived vasculogenesis characterized by de novo vessel formation and subsequent vessel connection.
Collapse
Affiliation(s)
- Dima Majbour
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ariana D Suarez-Martinez
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nicholas A Hodges
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Arinola O Lampejo
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Banks M Lomel
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Elijah W Rice
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hulan Shang
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Adam J Katz
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Walter L Murfee
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Hegde M, Bhat SM, Guruprasad KP, Moka R, Ramachandra L, Satyamoorthy K, Joshi MB. Human breast tumor derived endothelial cells exhibit distinct biological properties. Biol Cell 2021; 114:73-85. [PMID: 34755911 DOI: 10.1111/boc.202100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND INFORMATION Excessive angiogenesis characterized by leaky, tortuous, and chaotic vasculature is one of the hallmarks of cancers and is significantly correlated to poor prognosis. Disorganized angiogenesis leads to poor perfusion of anti-cancer drugs and limits access to immune cells. Hence, impeding angiogenesis is one of the attractive therapeutic targets to inhibit progression and metastasis in several solid tumors including breast. RESULTS We have developed a robust and reproducible method for isolating and ex vivo culture of endothelial cells (EC) derived from non-malignant (Endo-N) and malignant (Endo-T) part from clinically characterized human breast tumors. RT-PCR and immunoblotting analysis indicated that these cells exhibited expression of endothelial specific genes such as PECAM-1 (CD31), Endoglin (CD105), eNOS, VE-cadherin, VCAM1, and MCAM. Vasculogenic mimicry and contamination of progenitor EC recruited in tumors was ruled out by absence of CD133 expression and normal karyotype. Both the cell types showed stable expression of CD31 and CD105 up to seven passages. Furthermore, compared to Endo-N cells, Endo-T cells showed (a) constitutively increased proliferation marked by nearly 36% of cells in mitotic phase, (b) requirement of glutamine for cell survival, (c) pro-migratory phenotype, (d) produced increased number of sprouts in 3D cultures, and (e) resistance to sorafenib. CONCLUSION Tumor derived EC showed distinct biological properties compared to normal breast EC. SIGNIFICANCE Our method for isolating endothelial cell types from human breast tumors may be explored to (a) understand cellular and molecular mechanisms, (b) screen anti-angiogenic molecules, and (c) formulate organoid cultures to develop personalized medicine facilitating better clinical management of breast cancers.
Collapse
Affiliation(s)
- Mangala Hegde
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sharath Mohan Bhat
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kanive Parashiva Guruprasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rajasekhar Moka
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Lingadakai Ramachandra
- Department of Surgery, Kasturba Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
17
|
Hassan A, Elebeedy D, Matar ER, Fahmy Mohamed Elsayed A, Abd El Maksoud AI. Investigation of Angiogenesis and Wound Healing Potential Mechanisms of Zinc Oxide Nanorods. Front Pharmacol 2021; 12:661217. [PMID: 34721007 PMCID: PMC8552110 DOI: 10.3389/fphar.2021.661217] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The angiogenesis process is an essential issue in tissue engineering. Zinc oxide nanorods are biocompatible metals capable of generating reactive oxygen species (ROS) that respond to induced angiogenesis through various mechanisms; however, released Zn (II) ions suppress the angiogenesis process. In this study, we fabricated green ZnO nanorods using albumin eggshell as a bio-template and investigate its angiogenic potential through chorioallantoic membrane assay and excision wound healing assay. This study demonstrated that angiogenesis and wound healing processes depend on pro-angiogenic factors as VEGF expression due to ZnO nanorods' exiting. Angiogenesis induced via zinc oxide nanorods may develop sophisticated materials to apply in the wound healing field.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Dalia Elebeedy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Emadeldin R Matar
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed I Abd El Maksoud
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt.,College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
18
|
Aref Z, Quax PHA. In Vivo Matrigel Plug Assay as a Potent Method to Investigate Specific Individual Contribution of Angiogenesis to Blood Flow Recovery in Mice. Int J Mol Sci 2021; 22:ijms22168909. [PMID: 34445616 PMCID: PMC8396178 DOI: 10.3390/ijms22168909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Neovascularization restores blood flow recovery after ischemia in peripheral arterial disease. The main two components of neovascularization are angiogenesis and arteriogenesis. Both of these processes contribute to functional improvements of blood flow after occlusion. However, discriminating between the specific contribution of each process is difficult. A frequently used model for investigating neovascularization is the murine hind limb ischemia model (HLI). With this model, it is difficult to determine the role of angiogenesis, because usually the timing for the sacrifice of the mice is chosen to be optimal for the analysis of arteriogenesis. More importantly, the occurring angiogenesis in the distal calf muscles is probably affected by the proximally occurring arteriogenesis. Therefore, to understand and subsequently intervene in the process of angiogenesis, a model is needed which investigates angiogenesis without the influence of arteriogenesis. In this study we evaluated the in vivo Matrigel plug assay in genetic deficient mice to investigate angiogenesis. Mice deficient for interferon regulatory factor (IRF)3, IRF7, RadioProtective 105 (RP105), Chemokine CC receptor CCR7, and p300/CBP-associated factor (PCAF) underwent the in vivo Matrigel model. Histological analysis of the Matrigel plugs showed an increased angiogenesis in mice deficient of IRF3, IRF7, and RP105, and a decreased angiogenesis in PCAF deficient mice. Our results also suggest an involvement of CCR7 in angiogenesis. Comparing our results with results of the HLI model found in the literature suggests that the in vivo Matrigel plug assay is superior in evaluating the angiogenic response after ischemia.
Collapse
Affiliation(s)
| | - Paul H. A. Quax
- Correspondence: ; Tel.: +31-71-526-1584; Fax: +31-71-526-6570
| |
Collapse
|
19
|
Nguyen H, Koh JY, Li H, Islas-Robles A, Meda Venkata SP, Wang JM, Monks TJ. A novel imidazolinone metformin-methylglyoxal metabolite promotes endothelial cell angiogenesis via the eNOS/HIF-1α pathway. FASEB J 2021; 35:e21645. [PMID: 34105824 PMCID: PMC8237315 DOI: 10.1096/fj.202002674rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
Peripheral arterial disease (PAD) is one of the major complications of diabetes due to an impairment in angiogenesis. Since there is currently no drug with satisfactory efficacy to enhance blood vessel formation, discovering therapies to improve angiogenesis is critical. An imidazolinone metabolite of the metformin‐methylglyoxal scavenging reaction, (E)‐1,1‐dimethyl‐2‐(5‐methyl‐4‐oxo‐4,5‐dihydro‐1H‐imidazol‐2‐yl) guanidine (IMZ), was recently characterized and identified in the urine of type‐2 diabetic patients. Here, we report the pro‐angiogenesis effect of IMZ (increased aortic sprouting, cell migration, network formation, and upregulated multiple pro‐angiogenic factors) in human umbilical vein endothelial cells. Using genetic and pharmacological approaches, we showed that IMZ augmented angiogenesis by activating the endothelial nitric oxide synthase (eNOS)/hypoxia‐inducible factor‐1 alpha (HIF‐1α) pathway. Furthermore, IMZ significantly promoted capillary density in the in vivo Matrigel plug angiogenesis model. Finally, the role of IMZ in post‐ischemic angiogenesis was examined in a chronic hyperglycemia mouse model subjected to hind limb ischemia. We observed improved blood perfusion, increased capillary density, and reduced tissue necrosis in mice receiving IMZ compared to control mice. Our data demonstrate the pro‐angiogenic effects of IMZ, its underlying mechanism, and provides a structural basis for the development of potential pro‐angiogenic agents for the treatment of PAD.
Collapse
Affiliation(s)
- Huong Nguyen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jia Yi Koh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hainan Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Sai Pranathi Meda Venkata
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Centers for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Terrence J Monks
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
20
|
Meng N, Mu X, Gong Y, Wang YH, Zhang J, Wang MH, Yang FY, Jiang CS, Zhang H. Autophagy Induced by a Novel Triazol Derivative Promotes Angiogenesis Through Decreasing Interferon-Inducible Protein 10 Level in Vascular Endothelial Cells. J Cardiovasc Pharmacol 2021; 78:e136-e146. [PMID: 34009854 DOI: 10.1097/fjc.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/02/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Autophagy plays an important role in angiogenesis, whereas the mechanisms of vascular endothelial cell (VEC) autophagy associated with angiogenesis remain unclear. In this study, we identified a novel triazol derivative (JL025) that significantly promoted angiogenesis both in vitro and in vivo. Moreover, JL025 had no effects on cell proliferation but dramatically increased the autophagy level of VEC. The suppression of autophagy inhibited JL025-induced angiogenesis in vitro and in vivo, suggesting that JL025-induced angiogenesis was dependent on the enhanced autophagy. Mechanistic studies indicated that JL025-induced VEC autophagy was related to the Protein Kinase B/mTOR signaling pathway. Meanwhile, JL025 decreased the antiangiogenic chemokine interferon-inducible protein 10 (IP10) protein level in human VECs. Importantly, the suppression of autophagy inhibited JL025-induced decrease of IP10 protein level, indicating that autophagy mediated the degradation of IP10. Taken together, our findings provide new insights into the relationship of VEC autophagy with angiogenesis, and JL025 may have a therapeutic potential in related diseases.
Collapse
Affiliation(s)
- Ning Meng
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Xin Mu
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Yan Gong
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Yan Hong Wang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Juan Zhang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Mao Hua Wang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Feng Ying Yang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Cheng Shi Jiang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Hua Zhang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| |
Collapse
|
21
|
Harper K, Yatsyna A, Charbonneau M, Brochu-Gaudreau K, Perreault A, Jeldres C, McDonald PP, Dubois CM. The Chicken Chorioallantoic Membrane Tumor Assay as a Relevant In Vivo Model to Study the Impact of Hypoxia on Tumor Progression and Metastasis. Cancers (Basel) 2021; 13:cancers13051093. [PMID: 33806378 PMCID: PMC7961795 DOI: 10.3390/cancers13051093] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hypoxia is a negative prognostic factor known to be closely associated with tumor progression and metastasis. However, existing animal models with the ability to recreate the tumor hypoxic microenvironment have disadvantages that limit our ability to understand and target this pathological condition. The chicken ChorioAllantoic Membrane (CAM) assay is increasingly used as a rapid cost-effective drug-testing model that recapitulates many aspects of human cancers. Whether this model recreates the hypoxic environment of tumors remains understudied. Here, we demonstrate that the CAM model effectively supports the development of hypoxic zones in a variety of tumor types. Treatment of tumors with angiogenesis inhibitors or inducers significantly modulated the formation of hypoxic zones as well as tumor progression and metastasis. Our findings suggest that the CAM-based tumor model is a relevant in vivo platform to further understand the pathological responses to hypoxia and test therapeutic interventions aimed at targeting hypoxic cancers. Abstract Hypoxia in the tumor microenvironment is a negative prognostic factor associated with tumor progression and metastasis, and therefore represents an attractive therapeutic target for anti-tumor therapy. To test the effectiveness of novel hypoxia-targeting drugs, appropriate preclinical models that recreate tumor hypoxia are essential. The chicken ChorioAllantoic Membrane (CAM) assay is increasingly used as a rapid cost-effective in vivo drug-testing platform that recapitulates many aspects of human cancers. However, it remains to be determined whether this model recreates the hypoxic microenvironment of solid tumors. To detect hypoxia in the CAM model, the hypoxic marker pimonidazole was injected into the vasculature of tumor-bearing CAM, and hypoxia-dependent gene expression was analyzed. We observed that the CAM model effectively supports the development of hypoxic zones in a variety of human tumor cell line-derived and patient’s tumor fragment-derived xenografts. The treatment of both patient and cell line-derived CAM xenografts with modulators of angiogenesis significantly altered the formation of hypoxic zones within the xenografts. Furthermore, the changes in hypoxia translated into modulated levels of chick liver metastasis as measured by Alu-based assay. These findings demonstrate that the CAM xenograft model is a valuable in vivo platform for studying hypoxia that could facilitate the identification and testing of drugs targeting this tumor microenvironment.
Collapse
Affiliation(s)
- Kelly Harper
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; (K.H.); (A.Y.); (M.C.); (K.B.-G.); (A.P.)
| | - Anna Yatsyna
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; (K.H.); (A.Y.); (M.C.); (K.B.-G.); (A.P.)
| | - Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; (K.H.); (A.Y.); (M.C.); (K.B.-G.); (A.P.)
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; (K.H.); (A.Y.); (M.C.); (K.B.-G.); (A.P.)
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; (K.H.); (A.Y.); (M.C.); (K.B.-G.); (A.P.)
| | - Claudio Jeldres
- Department of Surgery, Division of Urology, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada;
| | - Patrick P. McDonald
- Department of Medicine, Pulmonary Division, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada;
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada; (K.H.); (A.Y.); (M.C.); (K.B.-G.); (A.P.)
- Correspondence:
| |
Collapse
|
22
|
Prostaglandin E2 Receptor 4 (EP4) as a Therapeutic Target to Impede Breast Cancer-Associated Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13050942. [PMID: 33668160 PMCID: PMC7956318 DOI: 10.3390/cancers13050942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by the aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and showed that COX-2 is a major promoter of both events, primarily resulting from the activation of prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and the induction of oncogenic microRNAs. The COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and the stimulation of stem-like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors.
Collapse
|
23
|
Khedr S, Klotzsche‐von Ameln A, Khedr M, Elsayed MH, Sudha T, Mousa SA, Deussen A, Martin M. Characterization of tryptophan-containing dipeptides for anti-angiogenic effects. Acta Physiol (Oxf) 2021; 231:e13556. [PMID: 32894635 DOI: 10.1111/apha.13556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
Abstract
AIMS In the pathogenesis of several diseases, neo-angiogenesis is increased (e.g. tumour growth). The peptide L-glutamyl-L-tryptophan (EW/IM862) has been claimed to exhibit inhibitory effects on tumour growth in vivo. However, the potential role of natural peptides with respect to anti-angiogenic properties is unsettled. The current study explores anti-angiogenic effects of the dipeptides WL, EW, IW and WE. METHODS AND RESULTS Using a bottom-up strategy, we first evaluated the effects of the peptides on VEGFR-2 signalling and quantified their effects in different angiogenesis assays. WL consistently had the strongest effects on phosphorylation of VEGFR-2 and downstream signalling. Therefore, this peptide was chosen in comparison with EW to further assess anti-angiogenic properties. However, sprout formation in three-dimensional (3D) fibrin gel bead assay was significantly inhibited by EW only. Furthermore, vessel sprouting in the mouse aortic ring assay was decreased by the presence of WL and EW compared to control. Results from a chorioallantoic membrane assay showed that under vascular endothelial growth factor (VEGF) stimulation WL and EW decreased the number of blood vessels versus control. These results were in line with those obtained in a matrigel plug assay. The VEGF-induced increase in the haemoglobin content was nearly abolished when treatment was combined with either WL or EW application. In the murine model of oxygen-induced retinopathy, WL exhibited a small albeit significant anti-angiogenic effect. CONCLUSION Comprehensive screening of WL suggests an anti-angiogenic effect, demonstrated in in vitro, ex vivo and in vivo models. Thus, WL is a dipeptide with potential anti-angiogenic effects and is worthy for further exploration.
Collapse
Affiliation(s)
- Sherif Khedr
- Institute of Physiology Faculty of Medicine Technische Universität Dresden Dresden Germany
- Physiology Department Faculty of Medicine Ain Shams University Cairo Egypt
| | | | - Maha Khedr
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences Rensselaer NY USA
- Division of Clinical Chemistry and Laboratory Medicine Department of Clinical Pathology Ain Shams University Cairo Egypt
| | - Mohamed H. Elsayed
- Physiology Department Faculty of Medicine Ain Shams University Cairo Egypt
| | - Thangirala Sudha
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences Rensselaer NY USA
| | - Shaker A. Mousa
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences Rensselaer NY USA
| | - Andreas Deussen
- Institute of Physiology Faculty of Medicine Technische Universität Dresden Dresden Germany
| | - Melanie Martin
- Institute of Physiology Faculty of Medicine Technische Universität Dresden Dresden Germany
| |
Collapse
|
24
|
Kwak TJ, Lee E. In vitro modeling of solid tumor interactions with perfused blood vessels. Sci Rep 2020; 10:20142. [PMID: 33214583 PMCID: PMC7677310 DOI: 10.1038/s41598-020-77180-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Molecular crosstalk between intra-tumor blood vessels and tumor cells plays many critical roles in tumorigenesis and cancer metastasis. However, it has been very difficult to investigate the biochemical mechanisms underlying the overlapping, multifactorial processes that occur at the tumor-vascular interface using conventional murine models alone. Moreover, traditional two-dimensional (2D) culture models used in cancer research do not recapitulate aspects of the 3D tumor microenvironment. In the present study, we introduce a microfluidic model of the solid tumor-vascular interface composed of a human umbilical vein endothelial cell (HUVEC)-lined, perfusable, bioengineered blood vessel and tumor spheroids embedded in an extracellular matrix (ECM). We sought to optimize our model by varying the composition of the tumor spheroids (MDA-MB-231 breast tumor cells + mesenchymal stem cells (MSCs)/human lung fibroblasts (HLFs)/HUVECs) and the extracellular matrix (ECM: collagen, Matrigel, and fibrin gels with or without free HLFs) that we used. Our results indicate that culturing tumor spheroids containing MDA-MB-231 cells + HUVECs in an HLF-laden, fibrin-based ECM within our microfluidic device optimally (1) enhances the sprouting and migration of tumor spheroids, (2) promotes angiogenesis, (3) facilitates vascular invasion, and (4) preserves the structural integrity and functionality of HUVEC-lined microfluidic channels. This model may provide a platform for drug screening and mechanism studies on solid tumor interactions with functional blood vessels.
Collapse
Affiliation(s)
- Tae Joon Kwak
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
25
|
Zhang S, Yu Z, Xia J, Zhang X, Liu K, Sik A, Jin M. Anti-Parkinson's disease activity of phenolic acids from Eucommia ulmoides Oliver leaf extracts and their autophagy activation mechanism. Food Funct 2020; 11:1425-1440. [PMID: 31971191 DOI: 10.1039/c9fo02288k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although Parkinson's disease (PD) is the second most common neurodegenerative disorder, the preventative or therapeutic agents for the treatment of PD are limited. Eucommia ulmoides Oliver (EuO) is widely used as a traditional herb to treat various diseases. EuO bark extracts have been reported to possess anti-PD activity. Here, we investigated whether extracts of EuO leaves (EEuOL) also have therapeutic effects on PD since similar components and clinical applications have been found between barks and leaves of this tree. We identified the chemical composition of EEuOL by HPLC-Q-TOF-MS and tested the anti-PD effect of EEuOL using the zebrafish PD model. As a result, 28 compounds including 3 phenolic acids, 7 flavonoids, and 9 iridoids were identified. EEuOL significantly reversed the loss of dopaminergic neurons and neural vasculature and reduced the number of apoptotic cells in zebrafish brain in a concentration-dependent manner. Moreover, EEuOL relieved locomotor impairments in MPTP-modeled PD zebrafish. We also investigated the underlying mechanism and found that EEuOL may activate autophagy, contributing to α-synuclein degradation, therefore alleviating PD-like symptoms. Molecular docking simulation implied the interaction between autophagy regulators (Pink1, Beclin1, Ulk2, and Atg5) and phenolic acids of EEuOL, affirming the involvement of autophagy in EEuOL-exerted anti-PD action. The overall results indicated the anti-PD effect of EEuOL, opening the possibility to use the extract in PD treatment.
Collapse
Affiliation(s)
- Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tan Y, Wang L, Chen G, Liu W, Li Z, Wang Y, Wang L, Li W, Wu J, Hao J. Hyaluronate supports hESC-cardiomyocyte cell therapy for cardiac regeneration after acute myocardial infarction. Cell Prolif 2020; 53:e12942. [PMID: 33107673 PMCID: PMC7705924 DOI: 10.1111/cpr.12942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Enormous progress has been made in cardiac regeneration using human embryonic stem cell‐derived cardiomyocyte (hESC‐CM) grafts in pre‐clinical trials. However, the rate of cell survival has remained very low due to anoikis after transplantation into the heart as single cells. Numerous solutions have been proposed to improve cell survival, and one of these strategies is to co‐transplant biocompatible materials or hydrogels with the hESC‐CMs. Methods In our study, we screened various combinations of biomaterials that could promote anoikis resistance and improve hESC‐CM survival upon co‐transplantation and promote cardiac functional recovery. We injected different combinations of Matrigel, alginate and hyaluronate with hESC‐CM suspensions into the myocardium of rat models with myocardial infarction (MI). Results Our results showed that the group treated with a combination of hyaluronate and hESC‐CMs had the lowest arrhythmia rates when stimulated with programmed electrical stimulation. While all three combinations of hydrogel‐hESC‐CM treatments improved rat cardiac function compared with the saline control group, the combination with hyaluronate most significantly reduced pathological changes from left ventricular remodelling and improved both left ventricular function and left ventricular ejection fraction by 28 days post‐infarction. Conclusion Hence, we concluded that hyaluronate‐hESC‐CM is a superior combination therapy for promoting cardiac regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Yuanqing Tan
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Chen
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Liu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongwen Li
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yukai Wang
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liu Wang
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Khater M, Greco F, Osborn HMI. Antiangiogenic Activity of Flavonoids: A Systematic Review and Meta-Analysis. Molecules 2020; 25:E4712. [PMID: 33066630 PMCID: PMC7594036 DOI: 10.3390/molecules25204712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract: An imbalance of angiogenesis contributes to many pathologies such as cancer, arthritis and retinopathy, hence molecules that can modulate angiogenesis are of considerable therapeutic importance. Despite many reports on the promising antiangiogenic properties of naturally occurring flavonoids, no flavonoids have progressed to the clinic for this application. This systematic review and meta-analysis therefore evaluates the antiangiogenic activities of a wide range of flavonoids and is presented in two sections. The first part of the study (Systematic overview) included 402 articles identified by searching articles published before May 2020 using ScienceDirect, PubMed and Web of Science databases. From this initial search, different classes of flavonoids with antiangiogenic activities, related pathologies and use of in vitro and/or in/ex vivo angiogenesis assays were identified. In the second part (Meta-analysis), 25 studies concerning the antiangiogenic evaluation of flavonoids using the in vivo chick chorioallantoic membrane (CAM) assay were included, following a targeted search on articles published prior to June 2020. Meta-analysis of 15 out of the 25 eligible studies showed concentration dependent antiangiogenic activity of six compared subclasses of flavonoids with isoflavones, flavonols and flavones being the most active (64 to 80% reduction of blood vessels at 100 µM). Furthermore, the key structural features required for the antiangiogenic activity of flavonoids were derived from the pooled data in a structure activity relationship (SAR) study. All in all, flavonoids are promising candidates for the development of antiangiogenic agents, however further investigations are needed to determine the key structural features responsible for their activity.
Collapse
Affiliation(s)
- Mai Khater
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Division, National Research Centre, Cairo 12622, Egypt
| | - Francesca Greco
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| |
Collapse
|
28
|
Lin Y, Zhao WR, Shi WT, Zhang J, Zhang KY, Ding Q, Chen XL, Tang JY, Zhou ZY. Pharmacological Activity, Pharmacokinetics, and Toxicity of Timosaponin AIII, a Natural Product Isolated From Anemarrhena asphodeloides Bunge: A Review. Front Pharmacol 2020; 11:764. [PMID: 32581782 PMCID: PMC7283383 DOI: 10.3389/fphar.2020.00764] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Anemarrhena asphodeloides Bunge is a famous Chinese Materia Medica and has been used in traditional Chinese medicine for more than two thousand years. Steroidal saponins are important active components isolated from A. asphodeloides Bunge. Among which, the accumulation of numerous experimental studies involved in Timosaponin AIII (Timo AIII) draws our attention in the recent decades. In this review, we searched all the scientific literatures using the key word "timosaponin AIII" in the PubMed database update to March 2020. We comprehensively summarized the pharmacological activity, pharmacokinetics, and toxicity of Timo AIII. We found that Timo AIII presents multiple-pharmacological activities, such as anti-cancer, anti-neuronal disorders, anti-inflammation, anti-coagulant, and so on. And the anti-cancer effect of Timo AIII in various cancers, especially hepatocellular cancer and breast cancer, is supposed as its most potential activity. The anti-inflammatory activity of Timo AIII is also beneficial to many diseases. Moreover, VEGFR, X-linked inhibitor of apoptosis protein (XIAP), B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), thromboxane (Tx) A2 receptor, mTOR, NF-κB, COX-2, MMPs, acetylcholinesterase (AChE), and so on are identified as the crucial pharmacological targets of Timo AIII. Furthermore, the hepatotoxicity of Timo AIII was most concerned, and the pharmacokinetics and toxicity of Timo AIII need further studies in diverse animal models. In conclusion, Timo AIII is potent as a compound or leading compound for further drug development while still needs in-depth studies.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wai-Rong Zhao
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ting Shi
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai-Yu Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Ding
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin-Lin Chen
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong-Yan Zhou
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, Macau
| |
Collapse
|
29
|
Dragostin OM, Tatia R, Samal SK, Oancea A, Zamfir AS, Dragostin I, Lisă EL, Apetrei C, Zamfir CL. Designing of Chitosan Derivatives Nanoparticles with Antiangiogenic Effect for Cancer Therapy. NANOMATERIALS 2020; 10:nano10040698. [PMID: 32272625 PMCID: PMC7221956 DOI: 10.3390/nano10040698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Abstract
Angiogenesis is a physiological process involving the growth of new blood vessels, which provides oxygen and required nutrients for the development of various pathological conditions. In a tumor microenvironment, this process upregulates the growth and proliferation of tumor cells, thus any stage of angiogenesis can be a potential target for cancer therapies. In the present study, chitosan and his derivatives have been used to design novel polymer-based nanoparticles. The therapeutic potential of these newly designed nanoparticles has been evaluated. The antioxidant and MTT assays were performed to know the antioxidant properties and their biocompatibility. The in vivo antiangiogenic properties of the nanoparticles were evaluated by using a chick Chorioallantoic Membrane (CAM) model. The obtained results demonstrate that chitosan derivatives-based nanostructures strongly enhance the therapeutic effect compared to chitosan alone, which also correlates with antitumor activity, demonstrated by the in vitro MTT assay on human epithelial cervical Hep-2 tumor cells. This study opens up new direction for the use of the chitosan derivatives-based nanoparticles for designing of antiangiogenic nanostructured materials, for future cancer therapy.
Collapse
Affiliation(s)
- Oana-Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
- Correspondence: (O.-M.D.); (C.A.)
| | - Rodica Tatia
- Romanian National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania; (R.T.); (A.O.)
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Center, Bhubaneswar-751 023, Odisha, India;
| | - Anca Oancea
- Romanian National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania; (R.T.); (A.O.)
| | - Alexandra Simona Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (A.S.Z.); (I.D.); (C.L.Z.)
| | - Ionuț Dragostin
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (A.S.Z.); (I.D.); (C.L.Z.)
| | - Elena-Lăcrămioara Lisă
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, The European Centre of Excellence for the Environment, Faculty of Sciences and Environment, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
- Correspondence: (O.-M.D.); (C.A.)
| | - Carmen Lăcrămioara Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (A.S.Z.); (I.D.); (C.L.Z.)
| |
Collapse
|
30
|
Azimi MS, Motherwell JM, Dutreil M, Fishel RL, Nice M, Hodges NA, Bunnell BA, Katz A, Murfee WL. A novel tissue culture model for evaluating the effect of aging on stem cell fate in adult microvascular networks. GeroScience 2020; 42:515-526. [PMID: 32206968 PMCID: PMC7205973 DOI: 10.1007/s11357-020-00178-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
In vitro models of angiogenesis are valuable tools for understanding the underlying mechanisms of pathological conditions and for the preclinical evaluation of therapies. Our laboratory developed the rat mesentery culture model as a new tool for investigating mechanistic cell-cell interactions at specific locations across intact blood and lymphatic microvascular networks ex vivo. The objective of this study was to report a method for evaluating the effect of aging on human stem cell differentiation into pericytes during angiogenesis in cultured microvascular networks. DiI labeled exogenous stem cells were seeded onto harvested adult Wistar rat mesenteric tissues and cultured in alpha-MEM + 1% serum for up to 5 days according to four experimental groups: (1) adult human adipose-derived stem cells (hASCs), (2) aged hASCs, (3) adult human bone marrow-derived stem cells (hBMSCs), and (4) aged hBMSCs. Angiogenesis per experimental group was supported by observation of increased vessel density and capillary sprouting. For each tissue per experimental group, a subset of cells was observed in typical pericyte location wrapped along blood vessels. Stem cell differentiation into pericytes was supported by the adoption of elongated pericyte morphology along endothelial cells and positive NG2 labeling. The percentage of cells in pericyte locations was not significantly different across the experimental groups, suggesting that aged mesenchymal stem cells are able to retain their differentiation capacity. Our results showcase an application of the rat mesentery culture model for aging research and the evaluation of stem cell fate within intact microvascular networks.
Collapse
Affiliation(s)
- Mohammad S Azimi
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Jessica M Motherwell
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Dutreil
- Tulane Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ryan L Fishel
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Matthew Nice
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Nicholas A Hodges
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Bruce A Bunnell
- Tulane Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Adam Katz
- Depart of Surgery, University of Florida School of Medicine, Gainesville, FL, 32611, USA
| | - Walter L Murfee
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
31
|
Becher T, Riascos-Bernal DF, Kramer DJ, Almonte VM, Chi J, Tong T, Oliveira-Paula GH, Koleilat I, Chen W, Cohen P, Sibinga NES. Three-Dimensional Imaging Provides Detailed Atherosclerotic Plaque Morphology and Reveals Angiogenesis After Carotid Artery Ligation. Circ Res 2020; 126:619-632. [PMID: 31914850 DOI: 10.1161/circresaha.119.315804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Remodeling of the vessel wall and the formation of vascular networks are dynamic processes that occur during mammalian embryonic development and in adulthood. Plaque development and excessive neointima formation are hallmarks of atherosclerosis and vascular injury. As our understanding of these complex processes evolves, there is a need to develop new imaging techniques to study underlying mechanisms. OBJECTIVE We used tissue clearing and light-sheet microscopy for 3-dimensional (3D) profiling of the vascular response to carotid artery ligation and induction of atherosclerosis in mouse models. METHODS AND RESULTS Adipo-Clear and immunolabeling in combination with light-sheet microscopy were applied to image carotid arteries and brachiocephalic arteries, allowing for 3D reconstruction of vessel architecture. Entire 3D neointima formations with different geometries were observed within the carotid artery and scored by volumetric analysis. Additionally, we identified a CD31-positive adventitial plexus after ligation of the carotid artery that evolved and matured over time. We also used this method to characterize plaque extent and composition in the brachiocephalic arteries of ApoE-deficient mice on high-fat diet. The plaques exhibited inter-animal differences in terms of plaque volume, geometry, and ratio of acellular core to plaque volume. A 3D reconstruction of the endothelium overlying the plaque was also generated. CONCLUSIONS We present a novel approach to characterize vascular remodeling in adult mice using Adipo-Clear in combination with light-sheet microscopy. Our method reconstructs 3D neointima formation after arterial injury and allows for volumetric analysis of remodeling, in addition to revealing angiogenesis and maturation of a plexus surrounding the carotid artery. This method generates complete 3D reconstructions of atherosclerotic plaques and uncovers their volume, geometry, acellular component, surface, and spatial position within the brachiocephalic arteries. Our approach may be used in a number of mouse models of cardiovascular disease to assess vessel geometry and volume. Visual Overview: An online visual overview is available for this article.
Collapse
Affiliation(s)
- Tobias Becher
- From the Laboratory of Molecular Metabolism (T.B., D.J.K., J.C., P.C.), The Rockefeller University, NY.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (T.B.).,First Department of Medicine (Division of Cardiology), University Medical Center Mannheim, Germany (T.B.)
| | - Dario F Riascos-Bernal
- (Cardiology Division) Department of Medicine, Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute (D.F.R.-B., V.M.A., G.H.O.-P., N.E.S.S.), Albert Einstein College of Medicine, Bronx, NY
| | - Daniel J Kramer
- From the Laboratory of Molecular Metabolism (T.B., D.J.K., J.C., P.C.), The Rockefeller University, NY
| | - Vanessa M Almonte
- (Cardiology Division) Department of Medicine, Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute (D.F.R.-B., V.M.A., G.H.O.-P., N.E.S.S.), Albert Einstein College of Medicine, Bronx, NY
| | - Jingy Chi
- From the Laboratory of Molecular Metabolism (T.B., D.J.K., J.C., P.C.), The Rockefeller University, NY
| | - Tao Tong
- Bio-Imaging Resource Center (T.T.), The Rockefeller University, NY
| | - Gustavo H Oliveira-Paula
- (Cardiology Division) Department of Medicine, Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute (D.F.R.-B., V.M.A., G.H.O.-P., N.E.S.S.), Albert Einstein College of Medicine, Bronx, NY
| | - Issam Koleilat
- Department of Cardiothoracic and Vascular Surgery (Division of Vascular Surgery), Montefiore Medical Center, Bronx, NY (I.K.)
| | - Wei Chen
- Department of Medicine (Nephrology Division) (W.C.), Albert Einstein College of Medicine, Bronx, NY.,Department of Medicine, University of Rochester School of Medicine and Dentistry, NY (W.C.)
| | - Paul Cohen
- From the Laboratory of Molecular Metabolism (T.B., D.J.K., J.C., P.C.), The Rockefeller University, NY
| | - Nicholas E S Sibinga
- (Cardiology Division) Department of Medicine, Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute (D.F.R.-B., V.M.A., G.H.O.-P., N.E.S.S.), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
32
|
Marshall KM, Kanczler JM, Oreffo ROC. Evolving applications of the egg: chorioallantoic membrane assay and ex vivo organotypic culture of materials for bone tissue engineering. J Tissue Eng 2020; 11:2041731420942734. [PMID: 33194169 PMCID: PMC7594486 DOI: 10.1177/2041731420942734] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
The chick chorioallantoic membrane model has been around for over a century, applied in angiogenic, oncology, dental and xenograft research. Despite its often perceived archaic, redolent history, the chorioallantoic membrane assay offers new and exciting opportunities for material and growth factor evaluation in bone tissue engineering. Currently, superior/improved experimental methodology for the chorioallantoic membrane assay are difficult to identify, given an absence of scientific consensus in defining experimental approaches, including timing of inoculation with materials and the analysis of results. In addition, critically, regulatory and welfare issues impact upon experimental designs. Given such disparate points, this review details recent research using the ex vivo chorioallantoic membrane assay and the ex vivo organotypic culture to advance the field of bone tissue engineering, and highlights potential areas of improvement for their application based on recent developments within our group and the tissue engineering field.
Collapse
Affiliation(s)
- Karen M Marshall
- Bone and Joint Research Group, Centre for Human
Development, Stem Cells and Regeneration, Institute of Developmental Sciences,
University of Southampton, Southampton, UK
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human
Development, Stem Cells and Regeneration, Institute of Developmental Sciences,
University of Southampton, Southampton, UK
| | - Richard OC Oreffo
- Bone and Joint Research Group, Centre for Human
Development, Stem Cells and Regeneration, Institute of Developmental Sciences,
University of Southampton, Southampton, UK
| |
Collapse
|
33
|
Zucchelli E, Majid QA, Foldes G. New artery of knowledge: 3D models of angiogenesis. VASCULAR BIOLOGY 2019; 1:H135-H143. [PMID: 32923965 PMCID: PMC7439835 DOI: 10.1530/vb-19-0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Angiogenesis and vasculogenesis are complex processes by which new blood vessels are formed and expanded. They play a pivotal role not only in physiological development and growth and tissue and organ repair, but also in a range of pathological conditions, from tumour formation to chronic inflammation and atherosclerosis. Understanding the multistep cell-differentiation programmes and identifying the key molecular players of physiological angiogenesis/vasculogenesis are critical to tackle pathological mechanisms. While many questions are yet to be answered, increasingly sophisticated in vitro, in vivo and ex vivo models of angiogenesis/vasculogenesis, together with cutting-edge imaging techniques, allowed for recent major advances in the field. This review aims to summarise the three-dimensional models available to study vascular network formation and to discuss advantages and limitations of the current systems.
Collapse
Affiliation(s)
| | - Qasim A Majid
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, London, UK.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Azimi MS, Motherwell JM, Hodges NA, Rittenhouse GR, Majbour D, Porvasnik SL, Schmidt CE, Murfee WL. Lymphatic-to-blood vessel transition in adult microvascular networks: A discovery made possible by a top-down approach to biomimetic model development. Microcirculation 2019; 27:e12595. [PMID: 31584728 DOI: 10.1111/micc.12595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Emerging areas of vascular biology focus on lymphatic/blood vessel mispatterning and the regulation of endothelial cell identity. However, a fundamental question remains unanswered: Can lymphatic vessels become blood vessels in adult tissues? Leveraging a novel tissue culture model, the objective of this study was to track lymphatic endothelial cell fate over the time course of adult microvascular network remodeling. METHODS Cultured adult Wistar rat mesenteric tissues were labeled with BSI-lectin and time-lapse images were captured over five days of serum-stimulated remodeling. Additionally, rat mesenteric tissues on day 0 and day 3 and 5 post-culture were labeled for PECAM + LYVE-1 or PECAM + podoplanin. RESULTS Cultured networks were characterized by increases in blood capillary sprouting, lymphatic sprouting, and the number of lymphatic/blood vessel connections. Comparison of images from the same network regions identified incorporation of lymphatic vessels into blood vessels. Mosaic lymphatic/blood vessels contained lymphatic marker positive and negative endothelial cells. CONCLUSIONS Our results reveal the ability for lymphatic vessels to transition into blood vessels in adult microvascular networks and discover a new paradigm for investigating lymphatic/blood endothelial cell dynamics during microvascular remodeling.
Collapse
Affiliation(s)
- Mohammad S Azimi
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Jessica M Motherwell
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nicholas A Hodges
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Garret R Rittenhouse
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Dima Majbour
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Stacey L Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Katakia YT, Duddu S, S N, Kumar P, Rahman F, Kumaramanickavel G, Chatterjee S. Ex vivo model for studying endothelial tip cells: Revisiting the classical aortic-ring assay. Microvasc Res 2019; 128:103939. [PMID: 31676309 DOI: 10.1016/j.mvr.2019.103939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
A drug undergoes several in silico, in vitro, ex vivo and in vivo assays before entering into the clinical trials. In 2014, it was reported that only 32% of drugs are likely to make it to Phase-3 trials, and overall, only one in 10 drugs makes it to the market. Therefore, enhancing the precision of pre-clinical trial models could reduce the number of failed clinical trials and eventually time and financial burden in health sciences. In order to attempt the above, in the present study, we have shown that aortic ex-plants isolated from different stages of chick embryo and different regions of the aorta (pulmonary and systemic) have differential sprouting potential and response to angiogenesis modulatory drugs. Aorta isolated from HH37 staged chick embryo showed 16% (p < 0.001) and 11% (p < 0.001) increase in the number of tip cells at 72 h of culture compared to that of HH35 and HH29 respectively. The ascending order of the number of tip cells was found as central (Gen II), proximal (Gen I) and distal (Gen III) in a virtual zonal segmentation of endothelial sprouting. The HH37 staged aortas displayed differential responses to pro- and anti-angiogenic drugs like Vascular endothelial growth factor (VEGF), nitric oxide donor (spNO), and bevacizumab (avastin), thalidomide respectively. The human placenta tissue-culture however evinced endothelial sprouting only on day 12, with a gradual decrease in the number of tip cells until 21 days. In summary, this study provides an avant-garde angiogenic model emphasized on tip cells that would enhance the precision to test next-generation angiogenic drugs.
Collapse
Affiliation(s)
- Yash T Katakia
- Department of Biotechnology, Anna University, Chennai 600 025, India; Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai 600 044, India
| | - Sushmitha Duddu
- Department of Biotechnology, Anna University, Chennai 600 025, India
| | - Nithya S
- Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai 600 044, India
| | - Pavitra Kumar
- Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai 600 044, India
| | - Farhana Rahman
- Department of Pharmacology, Sree Balaji Medical College and Hospital, BIHER, Chennai 600 044, India
| | - Govindasamy Kumaramanickavel
- Research and Centre for Cellular Genomics, Sree Balaji Medical College and Hospital, BIHER, Chennai 600 044, India
| | - Suvro Chatterjee
- Department of Biotechnology, Anna University, Chennai 600 025, India; Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai 600 044, India.
| |
Collapse
|
36
|
Motherwell JM, Rozenblum M, Katakam PV, Murfee WL. Bioreactor System to Perfuse Mesentery Microvascular Networks and Study Flow Effects During Angiogenesis. Tissue Eng Part C Methods 2019; 25:447-458. [PMID: 31280703 PMCID: PMC6686705 DOI: 10.1089/ten.tec.2019.0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 02/03/2023] Open
Abstract
IMPACT STATEMENT Microvascular remodeling, or angiogenesis, plays a central role in multiple pathological conditions, including cancer, diabetes, and ischemia. Tissue-engineered in vitro models have emerged as tools to elucidate the mechanisms that drive the angiogenic process. However, a major challenge with model development is recapitulating the physiological complexity of real microvascular networks, including incorporation of the entire vascular tree and hemodynamics. This study establishes a bioreactor system that incorporates real microvascular networks with physiological flow as a novel ex vivo tissue culture model, thereby providing a platform to evaluate angiogenesis in a physiologically relevant environment.
Collapse
Affiliation(s)
- Jessica M. Motherwell
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Maximillian Rozenblum
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Prasad V.G. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Walter L. Murfee
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
37
|
Garcia-Orue I, Santos-Vizcaino E, Etxabide A, Uranga J, Bayat A, Guerrero P, Igartua M, de la Caba K, Hernandez RM. Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics 2019; 11:E314. [PMID: 31277455 PMCID: PMC6680716 DOI: 10.3390/pharmaceutics11070314] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/17/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
In the current study, we developed a novel gelatin-based bilayer wound dressing. We used different crosslinking agents to confer unique properties to each layer, obtaining a bioinspired multifunctional hydrofilm suitable for wound healing. First, we produced a resistant and non-degradable upper layer by lactose-mediated crosslinking of gelatin, which provided mechanical support and protection to overall design. For the lower layer, we crosslinked gelatin with citric acid, resulting in a porous matrix with a great swelling ability. In addition, we incorporated chitosan into the lower layer to harness its wound healing ability. FTIR and SEM analyses showed that lactose addition changed the secondary structure of gelatin, leading to a more compact and smoother structure than that obtained with citric acid. The hydrofilm was able to swell 384.2 ± 57.2% of its dry weight while maintaining mechanical integrity. Besides, its water vapour transmission rate was in the range of commercial dressings (1381.5 ± 108.6 g/m2·day). In vitro, cytotoxicity assays revealed excellent biocompatibility. Finally, the hydrofilm was analysed through an ex vivo wound healing assay in human skin. It achieved similar results to the control in terms of biocompatibility and wound healing, showing suitable characteristics to be used as a wound dressing.
Collapse
Affiliation(s)
- Itxaso Garcia-Orue
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Alaitz Etxabide
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Jone Uranga
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, University of Manchester, M13 9PL Manchester, UK.
| | - Pedro Guerrero
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Koro de la Caba
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
38
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
39
|
Xiong H, Wu Y, Jiang Z, Zhou J, Yang M, Yao J. pH-activatable polymeric nanodrugs enhanced tumor chemo/antiangiogenic combination therapy through improving targeting drug release. J Colloid Interface Sci 2019; 536:135-148. [PMID: 30366179 DOI: 10.1016/j.jcis.2018.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
It was widely accepted that polymeric nanodrugs held superiority in enhancing antitumor efficacy, reducing side effect and achieving better long-term prognosis. However, there still existed disputes that whether their therapeutic efficiency was closely related to insure effective release of hydrophobic drug located in their hydrophobic core in tumor site. In order to investigate this controversy, we constructed two polymeric nanodrugs (pH-activatable sLMWH-UOA and non-sensitive LMWH-UOA) with low molecular weight heparin (LMWH) and ursolic acid (UOA) for chemo-and anti-angiogenic combination therapy in hepatocellular carcinoma. The degradation ratio of pH-activatable sLMWH-UOA increased by 33% compared with non-sensitive LMWH-UOA in in vitro degradation study. Besides, confocal microscopy captured that sLMWH-UOA could effectively release drug in acidic microenvironment of lysosome while LMWH-UOA nearly could not. More importantly, in contrast with LMWH-UOA, sLMWH-UOA presented pH-dependent cytotoxicity, indicating that promoting drug release played a key role in enhancing the cytotoxicity of polymeric nanodrugs. Additionally, in vivo pharmacodynamic evaluation showed that although non-sensitive LMWH-UOA had benefited from enhanced tumor targeting drug delivery ability to achieve absolute advantage over free drug combination therapy in antitumor combination therapy, sLMWH-UOA could acquire further optimized combined therapeutic effect with better drug release in tumor. All above, application of tumor-triggered chemical bonds to construct polymeric nanodrugs held vast prospect for improving the therapeutic efficiency for tumor cells.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yuanyuan Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhijie Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Min Yang
- Jiangsu Institute of Nuclear Medicine, Molecular Imaging Center, Jiangsu Institute of Nuclear Medicine, 20 Qianrong Rd, Wuxi 214063, China.
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
40
|
Angiopoietin-1 Promotes the Integrity of Neovascularization in the Subcutaneous Matrigel of Type 1 Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2016972. [PMID: 30729120 PMCID: PMC6343146 DOI: 10.1155/2019/2016972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022]
Abstract
Objective This study aimed to investigate the effects of Ang-1 on neovascularization of diabetic organs by subcutaneous Matrigel angiogenesis model, established in type 1 diabetic rats. Methods Ang-1 adenoviral vector was constructed. The rat model was established by STZ and divided into four group. The Matrigel was inserted subcutaneously into the abdominal cavity of rats at 8 weeks, the treatment group was injected with Ang-1 adenovirus vector via tail vein, and the rats were sacrificed at 10 weeks. Neovascularization of Matrigel was observed with transmission electron microscopy. The marker of vascular endothelial cell and pericyte were detected by immunofluorescence. Immunohistochemical detection of the neovascular endothelial junction protein was performed. RT-PCR was used to determine protein expression of neovascular in Matrigel. Results Vascular cavity-like structure could be seen in subcutaneous Matrigel of diabetic rats, and the cavity was filled with a lot of red blood cells. Transmission electron microscopy showed that neovascular endothelial structure of the Matrigel was incomplete, while the Ang-1 treatment group had more vascular cavity-like structures, intact vascular endothelial structure, and reduced inflammatory cell infiltration in Matrigel. Additionally, the integrity of vascularization improved, and the marker of pericyte and the cell tight junctions protein was upregulated in Ang-1 treatment group. Conclusion Hyperglycemia could induce pathological angiogenesis in subcutaneous Matrigel of diabetic rats, and Ang-1 could upregulate the expression of intercellular junction protein in subcutaneous Matrigel of diabetic rats and promote the integrity of neovascularization in the subcutaneous Matrigel of diabetic rats.
Collapse
|
41
|
Suarez-Martinez AD, Peirce SM, Isakson BE, Nice M, Wang J, Lounsbury KM, Scallan JP, Murfee WL. Induction of microvascular network growth in the mouse mesentery. Microcirculation 2018; 25:e12502. [PMID: 30178505 DOI: 10.1111/micc.12502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Motivated by observations of mesenteries harvested from mice treated with tamoxifen dissolved in oil for inducible gene mutation studies, the objective of this study was to demonstrate that microvascular growth can be induced in the avascular mouse mesentery tissue. METHODS C57BL/6 mice were administered an IP injection for five consecutive days of: saline, sunflower oil, tamoxifen dissolved in sunflower oil, corn oil, or peanut oil. RESULTS Twenty-one days post-injection, zero tissues from saline group contained branching microvascular networks. In contrast, all tissues from the three oils and tamoxifen groups contained vascular networks with arterioles, venules, and capillaries. Smooth muscle cells and pericytes were present in their expected locations and wrapping morphologies. Significant increases in vascularized tissue area and vascular density were observed when compared to saline group, but sunflower oil and tamoxifen group were not significantly different. Vascularized tissues also contained LYVE-1-positive and Prox1-positive lymphatic networks, indicating that lymphangiogenesis was stimulated. When comparing the different oils, vascularized tissue area and vascular density of sunflower oil were significantly higher than corn and peanut oils. CONCLUSIONS These results provide novel evidence supporting that induction of microvascular network growth into the normally avascular mouse mesentery is possible.
Collapse
Affiliation(s)
- Ariana D Suarez-Martinez
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana.,Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Brant E Isakson
- Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Matthew Nice
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Jack Wang
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Karen M Lounsbury
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Joshua P Scallan
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Walter L Murfee
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana.,Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
42
|
Patel M, Park S, Lee HJ, Jeong B. Polypeptide Thermogels as Three-Dimensional Scaffolds for Cells. Tissue Eng Regen Med 2018; 15:521-530. [PMID: 30603576 PMCID: PMC6171707 DOI: 10.1007/s13770-018-0148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Thermogel is an aqueous solution that exhibits a sol-to-gel transition as the temperature increases. Stem cells, growth factors, and differentiating factors can be incorporated in situ in the matrix during the sol-to-gel transition, leading to the formation of a three-dimensional (3D) cell-culture scaffold. METHODS The uses of thermogelling polypeptides, such as collagen, Matrigel™, elastin-like polypeptides, and synthetic polypeptides, as 3D scaffolds of cells, are summarized in this paper. RESULTS The timely supply of growth factors to the cells, cell survival, and metabolite removal is to be insured in the cell culture matrix. Various growth factors were incorporated in the matrix during the sol-to-gel transition of the thermogelling polypeptide aqueous solutions, and preferential differentiation of the incorporated stem cells into specific target cells were investigated. In addition, modulus of the matrix was controlled by post-crosslinking reactions of thermogels or employing composite systems. Chemical functional groups as well as biological factors were selected appropriately for targeted differentiation of the incorporated stem cells. CONCLUSION In addition to all the advantages of thermogels including mild conditions for cell-incorporation and controlled supplies of the growth factors, polypeptide thermogels provide neutral pH environments to the cells during the degradation of the gel. Polypeptide thermogels as an injectable scaffold can be a promising system for their eventual in vivo applications in stem cell therapy.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Sohee Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| |
Collapse
|
43
|
As MN, Deshpande R, Kale VP, Bhonde RR, Datar SP. Establishment of an in ovo chick embryo yolk sac membrane (YSM) assay for pilot screening of potential angiogenic and anti-angiogenic agents. Cell Biol Int 2018; 42:1474-1483. [PMID: 30136736 DOI: 10.1002/cbin.11051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/18/2018] [Indexed: 12/26/2022]
Abstract
Angiogenesis, the process of new blood vessel formation from pre-existing vessels, is essential for growth and development. Development of drugs that can accelerate or decelerate angiogenesis in the context of various diseases requires appropriate preclinical screening. As angiogenesis involves complex cellular and molecular processes, in vivo studies are superior to in vitro investigations. Conventional in vitro, in vivo, and ex ovo models of angiogenesis are time consuming and tedious, and require sophisticated infrastructure for embryo culture. In the present study, we established an in ovo chick embryo yolk sac membrane (YSM) assay for angiogenesis and tested the angiogenic potential of arginine, conditioned medium (CM) from human adipose tissue and placenta-derived mesenchymal stem cells (ADMSCs-CM and PDMSCs-CM), avastin and vitamin C. The obtained results were confirmed with the routinely employed chick embryo Chorioallantoic Membrane (CAM) assay. Both assays revealed the pro-angiogenic nature of arginine, ADMSCs-CM, and PDMSCs-CM, and the anti-angiogenic effect of avastin and vitamin C. This novel in ovo YSM model is simple, reproducible, and highly economic in terms of the time frame and cost incurred. The proposed model is thus a suitable substitute to the CAM model for pilot screening of potential angiogenic and anti-angiogenic agents.
Collapse
Affiliation(s)
- Muhammad Nihad As
- School of Regenerative Medicine, Manipal University, Bangalore 560065, Karnataka, India
| | - Rucha Deshpande
- Prof. Ramkrishna More Arts, Science and Commerce College, Akurdi, Pune 411044, Maharashtra, India.,National Centre for Cell Science, Pune 411007, Maharashtra, India
| | | | - Ramesh R Bhonde
- Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, Maharashtra, India
| | - Savita P Datar
- Prof. Ramkrishna More Arts, Science and Commerce College, Akurdi, Pune 411044, Maharashtra, India.,Department of Zoology, S. P. College, Pune 411030, Maharashtra, India
| |
Collapse
|
44
|
Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z, Kumar VA. Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration. Biomacromolecules 2018; 19:3597-3611. [PMID: 30132656 DOI: 10.1021/acs.biomac.8b01137] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implantation of acellular biomimetic scaffolds with proangiogenic motifs may have exciting clinical utility for the treatment of ischemic pathologies such as myocardial infarction. Although direct delivery of angiogenic proteins is a possible treatment option, smaller synthetic peptide-based nanostructured alternatives are being investigated due to favorable factors, such as sustained efficacy and high-density epitope presentation of functional moieties. These peptides may be implanted in vivo at the site of ischemia, bypassing the first-pass metabolism and enabling long-term retention and sustained efficacy. Mimics of angiogenic proteins show tremendous potential for clinical use. We discuss possible approaches to integrate the functionality of such angiogenic peptide mimics into self-assembled peptide scaffolds for application in functional tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek A Kumar
- Rutgers School of Dental Medicine , Newark , New Jersey 07101 , United States
| |
Collapse
|
45
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Jiang X, Zhou J, Lin Q, Gong G, Sun H, Liu W, Guo Q, Feng F, Qu W. Anti-angiogenic and anticancer effects of baicalein derivatives based on transgenic zebrafish model. Bioorg Med Chem 2018; 26:4481-4492. [PMID: 30098912 DOI: 10.1016/j.bmc.2018.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 01/10/2023]
Abstract
Angiogenesis leads to tumor neovascularization by promoting tumor growth and metastatic spread, therefore, angiogenesis is considered as an attractive target for potential small molecule anticancer drug discovery. Herein, we report the structural modification and biological evaluation of baicalein derivatives, among which compound 42 had potent in vivo anti-angiogenic activity and wide security treatment window in transgenic zebrafish model. Further, 42 exhibited the most potent inhibitory activity on HUVEC proliferation, migration and tube formation in vitro. Moreover, 42 significantly inhibited growth of human lung cancer A549 cells and weak influence on human normal fibroblast L929 cells. The present research demonstrated that the significant anti-angiogenic and anticancer effects, which provided the supportive evidence for 42 could be used as a potential compound of cancer therapy.
Collapse
Affiliation(s)
- Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Junting Zhou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qinghua Lin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Guiyi Gong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Food & Pharmaceutical Science College, Huaian 223003, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
47
|
Seynhaeve ALB, Oostinga D, van Haperen R, Eilken HM, Adams S, Adams RH, Ten Hagen TLM. Spatiotemporal endothelial cell - pericyte association in tumors as shown by high resolution 4D intravital imaging. Sci Rep 2018; 8:9596. [PMID: 29941944 PMCID: PMC6018425 DOI: 10.1038/s41598-018-27943-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell – pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells.
Collapse
Affiliation(s)
- Ann L B Seynhaeve
- Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus MC, 3015CE, Rotterdam, The Netherlands.
| | - Douwe Oostinga
- Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| | - Rien van Haperen
- Department of Cell Biology, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| | - Hanna M Eilken
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149, Münster, Germany
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Naik M, Brahma P, Dixit M. A Cost-Effective and Efficient Chick Ex-Ovo CAM Assay Protocol to Assess Angiogenesis. Methods Protoc 2018; 1:mps1020019. [PMID: 31164562 PMCID: PMC6526448 DOI: 10.3390/mps1020019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/13/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022] Open
Abstract
The chick chorioallantoic membrane (CAM) is an extra-embryonic membrane, comprised of a high density of blood and lymphatic vessels. CAM has a dense capillary network and is commonly used to study in vivo angiogenesis and anti-angiogenesis in response to potential biomolecules and drugs. Most of the earlier reported CAM assays described the in-ovo method—where the viability of the embryo is higher, but accessibility to the CAM is limited. Ex-ovo CAM methods were previously described that employed shell-less cultures of chick embryos, but the low viability of embryos reduced the overall robustness of the angiogenesis assays. We described a method (named as cup-CAM method) which is more economical, has better accessibility and has significantly improved the viability of the embryo till advanced developmental stages. We could perform this simple yet useful experimentation with the common tools available in the laboratory. We successfully used the cup-CAM method for showing the paracrine effects of conditioned media from tumor cells, on the angiogenesis. This method can be used to assay the angiogenic potential of a drug or protein and to observe the embryonic development of the chick embryo and other related scientific applications.
Collapse
Affiliation(s)
- Monali Naik
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, PO: Bhimpur-Padanpur, Via: Jatani, Odisha-752050, India.
| | - Pratush Brahma
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, PO: Bhimpur-Padanpur, Via: Jatani, Odisha-752050, India.
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, PO: Bhimpur-Padanpur, Via: Jatani, Odisha-752050, India.
| |
Collapse
|
49
|
Suarez-Martinez AD, Bierschenk S, Huang K, Kaplan D, Bayer CL, Meadows SM, Sperandio M, Murfee WL. A Novel ex vivo Mouse Mesometrium Culture Model for Investigating Angiogenesis in Microvascular Networks. J Vasc Res 2018; 55:125-135. [PMID: 29779031 DOI: 10.1159/000489102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The development of models that incorporate intact microvascular networks enables the investigation of multicellular dynamics during angiogenesis. Our laboratory introduced the rat mesentery culture model as such a tool, which would be enhanced with mouse tissue. Since mouse mesentery is avascular, an alternative is mouse mesometrium, the connective tissue of uterine horns. The study's objective was to demonstrate that mouse mesometrium contains microvascular networks that can be cultured to investigate multicellular dynamics during angiogenesis. METHODS Harvested mesometrium tissues from C57Bl/6 female mice were cultured in media with serum for up to 7 days. PECAM, NG2, αSMA, and LYVE-1 labeling identified endothelial cells, pericytes, smooth muscle cells, and lymphatic endothelial cells, respectively. RESULTS These cells comprised microvascular networks with arterioles, venules, and capillaries. Compared to day 0, capillary sprouts per vascular length were increased by 3 and 5 days in culture (day 0, 0.08 ± 0.01; day 3, 3.19 ± 0.78; day 5, 2.49 ± 0.05 sprouts/mm; p < 0.05). Time-lapse imaging of cultured tissues from FlkEGFP mice showcases the use of the model for lineage studies. The impact is supported by the identification of endothelial cell jumping from one sprout to another. CONCLUSION These results introduce a novel culture model for investigating multicellular dynamics during angiogenesis in real-time ex vivo microvascular networks.
Collapse
Affiliation(s)
- Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.,Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Susanne Bierschenk
- Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katie Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Dana Kaplan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Stryder M Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Markus Sperandio
- Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.,Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
50
|
Fakoya AOJ, Otohinoyi DA, Yusuf J. Current Trends in Biomaterial Utilization for Cardiopulmonary System Regeneration. Stem Cells Int 2018; 2018:3123961. [PMID: 29853910 PMCID: PMC5949153 DOI: 10.1155/2018/3123961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
The cardiopulmonary system is made up of the heart and the lungs, with the core function of one complementing the other. The unimpeded and optimal cycling of blood between these two systems is pivotal to the overall function of the entire human body. Although the function of the cardiopulmonary system appears uncomplicated, the tissues that make up this system are undoubtedly complex. Hence, damage to this system is undesirable as its capacity to self-regenerate is quite limited. The surge in the incidence and prevalence of cardiopulmonary diseases has reached a critical state for a top-notch response as it currently tops the mortality table. Several therapies currently being utilized can only sustain chronically ailing patients for a short period while they are awaiting a possible transplant, which is also not devoid of complications. Regenerative therapeutic techniques now appear to be a potential approach to solve this conundrum posed by these poorly self-regenerating tissues. Stem cell therapy alone appears not to be sufficient to provide the desired tissue regeneration and hence the drive for biomaterials that can support its transplantation and translation, providing not only physical support to seeded cells but also chemical and physiological cues to the cells to facilitate tissue regeneration. The cardiac and pulmonary systems, although literarily seen as just being functionally and spatially cooperative, as shown by their diverse and dissimilar adult cellular and tissue composition has been proven to share some common embryological codevelopment. However, necessitating their consideration for separate review is the immense adult architectural difference in these systems. This review also looks at details on new biological and synthetic biomaterials, tissue engineering, nanotechnology, and organ decellularization for cardiopulmonary regenerative therapies.
Collapse
Affiliation(s)
| | | | - Joshua Yusuf
- All Saints University School of Medicine, Roseau, Dominica
- All Saints University School of Medicine, Kingstown, Saint Vincent and the Grenadines
| |
Collapse
|