1
|
Serum glial fibrillary acidic protein is a body fluid biomarker: A valuable prognostic for neurological disease – A systematic review. Int Immunopharmacol 2022; 107:108624. [DOI: 10.1016/j.intimp.2022.108624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
|
2
|
Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18:158-172. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Citation(s) in RCA: 315] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.
Collapse
|
3
|
van Asperen JV, Fedorushkova DM, Robe PAJT, Hol E. Investigation of glial fibrillary acidic protein (GFAP) in body fluids as a potential biomarker for glioma: a systematic review and meta-analysis. Biomarkers 2021; 27:1-12. [PMID: 34844498 DOI: 10.1080/1354750x.2021.2006313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Liquid biopsies are promising diagnostic tools for glioma. In this quantitative systematic review, we investigate whether the detection of intermediate filaments (IF) in body fluids can be used as a tool for glioma diagnosis and prognosis. MATERIALS AND METHODS We included all studies in which IF-levels were determined in patients with glioma and healthy controls. Of the 28 identified eligible studies, 12 focused on levels of GFAP in serum (sGFAP) and were included for metadata analysis. RESULTS In all studies combined, 62.7% of all grade IV patients had detectable levels of sGFAP compared to 12.7% of healthy controls. sGFAP did not surpass the limit of detection in lower grade patients or healthy controls, but sGFAP was significantly elevated in grade IV glioma (0.12 ng/mL (0.06 - 0.18), P < 0.001) and showed an average median difference of 0.15 ng/mL (0.04 - 0.25, P < 0.01) compared to healthy controls. sGFAP levels were linked to tumour volume, but not to patient outcome. CONCLUSION The presence of sGFAP is indicative of grade IV glioma, but additional studies are necessary to fully determine the usefulness of GFAP in body fluids as a tool for grade IV glioma diagnosis and follow-up.
Collapse
Affiliation(s)
- Jessy Van van Asperen
- Department of Translational Neurosciences, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Daria M Fedorushkova
- Department of Translational Neurosciences, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Pierre A J T Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,University Hospital Liege, Liege, Belgium
| | - Elly Hol
- Department of Translational Neurosciences, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Cisneros IE, Cunningham KA. Covid-19 interface with drug misuse and substance use disorders. Neuropharmacology 2021; 198:108766. [PMID: 34454912 PMCID: PMC8388132 DOI: 10.1016/j.neuropharm.2021.108766] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
The coronavirus disease 2019 (Covid-19) pandemic intensified the already catastrophic drug overdose and substance use disorder (SUD) epidemic, signaling a syndemic as social isolation, economic and mental health distress, and disrupted treatment services disproportionally impacted this vulnerable population. Along with these social and societal factors, biological factors triggered by intense stress intertwined with incumbent overactivity of the immune system and the resulting inflammatory outcomes may impact the functional status of the central nervous system (CNS). We review the literature concerning SARS-CoV2 infiltration and infection in the CNS and the prospects of synergy between stress, inflammation, and kynurenine pathway function during illness and recovery from Covid-19. Taken together, inflammation and neuroimmune signaling, a consequence of Covid-19 infection, may dysregulate critical pathways and underlie maladaptive changes in the CNS, to exacerbate the development of neuropsychiatric symptoms and in the vulnerability to develop SUD. This article is part of the special Issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- I E Cisneros
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA.
| | - K A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
5
|
Ali H, Harting R, de Vries R, Ali M, Wurdinger T, Best MG. Blood-Based Biomarkers for Glioma in the Context of Gliomagenesis: A Systematic Review. Front Oncol 2021; 11:665235. [PMID: 34150629 PMCID: PMC8211985 DOI: 10.3389/fonc.2021.665235] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gliomas are the most common and aggressive tumors of the central nervous system. A robust and widely used blood-based biomarker for glioma has not yet been identified. In recent years, a plethora of new research on blood-based biomarkers for glial tumors has been published. In this review, we question which molecules, including proteins, nucleic acids, circulating cells, and metabolomics, are most promising blood-based biomarkers for glioma diagnosis, prognosis, monitoring and other purposes, and align them to the seminal processes of cancer. METHODS The Pubmed and Embase databases were systematically searched. Biomarkers were categorized in the identified biomolecules and biosources. Biomarker characteristics were assessed using the area under the curve (AUC), accuracy, sensitivity and/or specificity values and the degree of statistical significance among the assessed clinical groups was reported. RESULTS 7,919 references were identified: 3,596 in PubMed and 4,323 in Embase. Following screening of titles, abstracts and availability of full-text, 262 articles were included in the final systematic review. Panels of multiple biomarkers together consistently reached AUCs >0.8 and accuracies >80% for various purposes but especially for diagnostics. The accuracy of single biomarkers, consisting of only one measurement, was far more variable, but single microRNAs and proteins are generally more promising as compared to other biomarker types. CONCLUSION Panels of microRNAs and proteins are most promising biomarkers, while single biomarkers such as GFAP, IL-10 and individual miRNAs also hold promise. It is possible that panels are more accurate once these are involved in different, complementary cancer-related molecular pathways, because not all pathways may be dysregulated in cancer patients. As biomarkers seem to be increasingly dysregulated in patients with short survival, higher tumor grades and more pathological tumor types, it can be hypothesized that more pathways are dysregulated as the degree of malignancy of the glial tumor increases. Despite, none of the biomarkers found in the literature search seem to be currently ready for clinical implementation, and most of the studies report only preliminary application of the identified biomarkers. Hence, large-scale validation of currently identified and potential novel biomarkers to show clinical utility is warranted.
Collapse
Affiliation(s)
- Hamza Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Romée Harting
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, Netherlands
| | - Meedie Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Myron G. Best
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
6
|
Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol 2021; 160:103283. [PMID: 33667657 DOI: 10.1016/j.critrevonc.2021.103283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, the most common primary brain malignancy, is an exceptionally fatal cancer. Lack of suitable biomarkers and efficient treatment largely contribute to the therapy failure. Cytoskeletal proteins are crucial proteins in glioblastoma pathogenesis and can potentially serve as biomarkers and therapeutic targets. Among them, GFAP, has gained most attention as potential diagnostic biomarker, while vimentin and microtubules are considered as prospective therapeutic targets. Microtubules represent one of the best anti-cancer targets due to their critical role in cell proliferation. Despite testing in clinical trials, the efficiency of taxanes, epothilones, vinca-domain binding drugs, colchicine-domain binding drugs and γ-tubulin binding drugs remains to be confirmed. Moreover, tumor treating field that disrupts microtubules draw attention because of its high efficiency and is called "the fourth cancer treatment modality". Thereby, because of the involvement of cytoskeleton in key physiological and pathological processes, its therapeutic potential in glioblastoma is currently extensively investigated.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Linhares P, Carvalho B, Vaz R, Costa BM. Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? Int J Mol Sci 2020; 21:E5809. [PMID: 32823572 PMCID: PMC7461098 DOI: 10.3390/ijms21165809] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent malignant primary brain tumor in adults, characterized by a highly aggressive, inflammatory and angiogenic phenotype. It is a remarkably heterogeneous tumor at several levels, including histopathologically, radiographically and genetically. The 2016 update of the WHO Classification of Tumours of the Central Nervous System highlighted molecular parameters as paramount features for the diagnosis, namely IDH1/2 mutations that distinguish primary and secondary GBM. An ideal biomarker is a molecule that can be detected/quantified through simple non- or minimally invasive methods with the potential to assess cancer risk; promote early diagnosis; increase grading accuracy; and monitor disease evolution and treatment response, as well as fundamentally being restricted to one aspect. Blood-based biomarkers are particularly attractive due to their easy access and have been widely used for various cancer types. A number of serum biomarkers with multiple utilities for glioma have been reported that could classify glioma grades more precisely and provide prognostic value among these patients. At present, screening for gliomas has no clinical relevance. This is because of the low incidence, the lack of sensitive biomarkers in plasma, and the observation that gliomas may develop apparently de novo within few weeks or months. To the best of our knowledge, there is no routine use of a serum biomarker for clinical follow-up. The purpose of this paper is to review the serum biomarkers described in the literature related to glioblastoma and their possible relationship with clinical features.
Collapse
Affiliation(s)
- Paulo Linhares
- Neurosurgery Department, Centro Hospitalar São João, Alameda Prof Hernani Monteiro, 4200–319 Porto, Portugal; (P.L.); (R.V.)
- Clinical Neurosciences and Mental Health Department, Faculty of Medicine, University of Oporto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bruno Carvalho
- Neurosurgery Department, Centro Hospitalar São João, Alameda Prof Hernani Monteiro, 4200–319 Porto, Portugal; (P.L.); (R.V.)
- Clinical Neurosciences and Mental Health Department, Faculty of Medicine, University of Oporto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Vaz
- Neurosurgery Department, Centro Hospitalar São João, Alameda Prof Hernani Monteiro, 4200–319 Porto, Portugal; (P.L.); (R.V.)
- Clinical Neurosciences and Mental Health Department, Faculty of Medicine, University of Oporto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Pacia CP, Zhu L, Yang Y, Yue Y, Nazeri A, Michael Gach H, Talcott MR, Leuthardt EC, Chen H. Feasibility and safety of focused ultrasound-enabled liquid biopsy in the brain of a porcine model. Sci Rep 2020; 10:7449. [PMID: 32366915 PMCID: PMC7198482 DOI: 10.1038/s41598-020-64440-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Although blood-based liquid biopsy is a promising noninvasive technique to acquire a comprehensive molecular tumor profile by detecting cancer-specific biomarkers (e.g. DNA, RNA, and proteins), there has been limited progress for brain tumor application partially because the low permeability of the blood-brain barrier (BBB) hinders the release of tumor biomarkers. We previously demonstrated focused ultrasound-enabled liquid biopsy (FUS-LBx) that uses FUS to increase BBB permeability in murine glioblastoma models and thus enhance the release of tumor-specific biomarkers into the bloodstream. The objective of this study was to evaluate the feasibility and safety of FUS-LBx in the normal brain tissue of a porcine model. Increased BBB permeability was confirmed by the significant increase (p = 0.0053) in Ktrans (the transfer coefficient from blood to brain extravascular extracellular space) when comparing the FUS-sonicated brain area with the contralateral non-sonicated area. Meanwhile, there was a significant increase in the blood concentrations of glial fibrillary acidic protein (GFAP, p = 0.0074) and myelin basic protein (MBP, p = 0.0039) after FUS sonication as compared with before FUS. There was no detectable tissue damage by T2*-weighted MRI and histological analysis. Findings from this study suggest that FUS-LBx is a promising technique for noninvasive and localized diagnosis of the molecular profiles of brain diseases with the potential to translate to the clinic.
Collapse
Affiliation(s)
- Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - H Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Michael R Talcott
- Division of Comparative Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
| |
Collapse
|
9
|
Lyubimova NV, Timofeev YS, Mitrofanov AA, Bekyashev AK, Goncharova ZA, Kushlinskii NE. Glial Fibrillary Acidic Protein in the Diagnosis and Prognosis of Malignant Glial Tumors. Bull Exp Biol Med 2020; 168:503-506. [PMID: 32147765 DOI: 10.1007/s10517-020-04741-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 10/24/2022]
Abstract
Serum levels of glial fibrillar acidic protein (GFAP) were analyzed in 317 patients with primary and metastatic tumors of the brain, 78 patients with neurological diseases, and 66 normal subjects. A significant increase in the basal level of GFAP was typical of patients with glioblastomas in comparison with other groups (patients with astrocytomas, cerebral metastases, benign tumors, non-tumor diseases, and healthy subjects). An association of GFAP levels with unfavorable prognosis of overall survival in patients with glioblastoma was revealed. The data attest to high specificity and sensitivity of GFAP as a biochemical marker of glioblastoma.
Collapse
Affiliation(s)
- N V Lyubimova
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Yu S Timofeev
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Mitrofanov
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Kh Bekyashev
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Z A Goncharova
- Clinical Department of Rostov State Medical University, Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| | - N E Kushlinskii
- N. N. Blokhin National Research Medical Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
10
|
Klingler-Hoffmann M, Mittal P, Hoffmann P. The Emerging Role of Cytoskeletal Proteins as Reliable Biomarkers. Proteomics 2019; 19:e1800483. [PMID: 31525818 DOI: 10.1002/pmic.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Indexed: 12/26/2022]
Abstract
Cytoskeletal proteins are essential building blocks of cells. More than 100 cytoskeletal and cytoskeleton-associated proteins are known and for some, their function and regulation are understood in great detail. Apart from cell shape and support, they facilitate many processes such as intracellular signaling and transport, and cancer related processes such as proliferation, migration, and invasion. During the last decade, comparative proteomic studies have identified cytoskeletal proteins as in vitro markers for tumor progression and metastasis. Here, these results are summarized and a number of unrelated studies are highlighted, identifying the same cytoskeletal proteins as potential biomarkers. These findings might indicate that the abundance of these potential markers of tumor progression is associated with the biological outcome and are independent of the cancer origin. This correlates well with recently published results from the Cancer Genome Atlas, indicating that cancers show remarkable similarities in their analyzed molecular information, independent of their organ of origin. It is postulated that the quantification of cytoskeletal proteins in healthy tissues, tumors, in adjacent tissues, and in stroma, is a great source of molecular information, which might not only be used to classify tumors, but more importantly to predict patients' outcome or even best treatment choices.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| |
Collapse
|
11
|
Zhao T, Ding Y, Li M, Zhou C, Lin W. Silencing lncRNA PVT1 inhibits activation of astrocytes and increases BDNF expression in hippocampus tissues of rats with epilepsy by downregulating the Wnt signaling pathway. J Cell Physiol 2019; 234:16054-16067. [PMID: 30805931 DOI: 10.1002/jcp.28264] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/31/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The aim of this study is to investigate the effects of long-chain noncoding RNA plasmacytoma variant translocation 1 (PVT1) on the activation of astrocytes and the expression of brain-derived neurotrophic factor (BDNF) in hippocampus tissues of epileptic rats. The epilepsy rat model was induced by intraperitoneal injection of lithium chloride-pilocarpine. Successfully modeled rats were grouped, and their spatial learning and memory, neuronal loss, number of TdT-mediated dUTP nick labeling (TUNEL)-positive cells, and the expression of cleaved-caspase-3, pro-caspase-3, Bax, Bcl-2, GFAP, BDNF, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, axin, and cyclin D1 in hippocampus tissues were evaluated. Increased expression of PVT1 was found in hippocampus tissues of epileptic rats. Silencing of PVT1 improved spatial learning and memory, decreased neuronal loss, decreased the number of TUNEL-positive cell, decreased the expression of cleaved-caspase-3 and Bax while increased pro-caspase-3 and Bcl-2 expression, decreased the expression of GFAP, increased the expression of BDNF, decreased the expression of TNF-α, IL-1β, and IL-6, and decreased the expression of axin and cyclin D1 in hippocampus tissues in epileptic rats. Our study provides evidence that the inhibition of PVT1 may decrease the loss of neurons, inhibit the activation of astrocytes, and increase the expression of BDNF in hippocampus by downregulating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Teng Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Ding
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chunkui Zhou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Wang J, Wang ML, Wang CH, Sun SY, Zhang HB, Jiang YY, Xu QW, Wang Y, Gu SX. A novel functional polymorphism of GFAP decrease glioblastoma susceptibility through inhibiting the binding of miR-139. Aging (Albany NY) 2019; 10:988-999. [PMID: 29746255 PMCID: PMC5990380 DOI: 10.18632/aging.101442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most commonly diagnosed solid tumor outside the central nervous system. However, genetic factors underlying GBM remain largely unclear. Previous studies indicated that Glial fibrillary acidic protein (GFAP) might play an important role in the aggressiveness of GBM and also contributed to its poor overall survival. The present study aims to test (1) the associations between GFAP single nucleotide polymorphisms (SNPs) and GBM cells chemoresistance and metastasis, and (2) the molecular mechanism accounting for their effects. Four tagging SNPs of GFAP were initially genotyped in 667 subjects and the significant SNP was further analyzed via online bioinformatical tools. SNP rs11558961 was found to be significantly associated with GBM susceptibility. It was predicted to influence microRNA(miR)-139 binding to 3'UTR of GFAP gene. In functional experiments, we found that cells transfected with rs11558961 G-allele constructs had lower baseline luciferase activities and were more responsive to miR-139 changes, compared to C-allele constructs. Moreover, rs11558961 C>G variant reduced the chemoresistance of GBM cells and migration capability. In conclusion, rs11558961 might influence the chemoresistance and progression of GBM cells via promoting the binding of miR-139, ultimately decrease the susceptibility of GBM. This investigation will shed light on the optimizing for clinical trial design and individualizing of therapeutic plans.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, The Shanghai Neuromedical Center, Qingdao University, Shanghai, China
| | - Ming-Lei Wang
- Department of Neurosurgery, PuTuo District People's Hospital, Shanghai, China
| | - Chang-Hui Wang
- Department of Neurosurgery, The Shanghai Neuromedical Center, Qingdao University, Shanghai, China
| | - Shu-Yan Sun
- Department of pathology, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Han-Bing Zhang
- Department of Neurosurgery, The Shanghai Neuromedical Center, Qingdao University, Shanghai, China
| | - Yang-Yang Jiang
- Department of Neurosurgery, The Shanghai Neuromedical Center, Qingdao University, Shanghai, China
| | - Qi-Wu Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital& Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Shi-Xin Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Zheng P, Bin H, Chen W. Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF. Cancer Cell Int 2019; 19:109. [PMID: 31049031 PMCID: PMC6482545 DOI: 10.1186/s12935-019-0821-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study is to explore the effect of microRNA-103a (miR-103a) on astrocytes activation and hippocampal neuron injury in epilepsy rats by targeting brain-derived neurotrophic factor (BDNF). Methods The epilepsy rat model was induced by intraperitoneal injection of lithium chloride-pilocarpine. Successful modeled rats were intralateroventricularly microinjected with miR-103a inhibitors, inhibitors negative control (NC), siRNA-NC and BDNF-siRNA, respectively. The RT-qPCR and western blot analysis were used to detect the expression of miR-103a, BDNF and glial fibrillary acidic protein (GFAP) in hippocampus tissues of rats. TUNEL staining was used to detect the apoptosis of hippocampal neurons. The RT-PCR and ELISA was used to detect the levels of TNF-α and IL-6 in hippocampal tissues and in serum, respectively. Results Increased expression of miR-103a, GFAP, and number of apoptotic neurons, decreased expression of BDNF and number of surviving neurons were found in hippocampus tissues of epilepsy rats. After miR-103a inhibitors interfered with epilepsy rats, there showed decreased expression of miR-103a and GFAP, increased expression of BDNF and decreased number of apoptotic neuron as well as increased number of surviving neurons. Compared with miR-103a inhibitors alone, epilepsy rats treated with BDNF-siRNA combined with miR-103a inhibitors significantly increased expression of GFAP in hippocampal tissues of epilepsy rats, increased number of apoptotic neurons and significantly decreased the number of surviving neurons. Conclusion Our study provides evidence that the inhibition of miR-103a can inhibit the activation of astrocytes in hippocampus tissues and improve the pathological injury of neurons of epilepsy rats by regulating BDNF gene. Electronic supplementary material The online version of this article (10.1186/s12935-019-0821-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Zheng
- 1Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, No 490, South Chuanhuan Road, Shanghai, 201299 People's Republic of China
| | - He Bin
- 1Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, No 490, South Chuanhuan Road, Shanghai, 201299 People's Republic of China
| | - Wei Chen
- 1Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, No 490, South Chuanhuan Road, Shanghai, 201299 People's Republic of China.,2Department of Neurosurgery, First affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Du Y, Chi X, An W. Downregulation of microRNA-200c-3p reduces damage of hippocampal neurons in epileptic rats by upregulating expression of RECK and inactivating the AKT signaling pathway. Chem Biol Interact 2019; 307:223-233. [PMID: 31018114 DOI: 10.1016/j.cbi.2019.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the role of mircoRNA-200c-3p (miR-200c-3p) on hippocampal neuron injury in epileptic rats through the regulation of the AKT signaling pathway by targeting RECK. METHODS The epilepsy rat model was induced by intraperitoneal injection of lithium chloride-pilocarpine. Successful modeled rats were injected with miR-200c-3p inhibitors, inhibitors NC, siRNA-negative control (NC) and RECK-siRNA. The astrocyte activation, levels of oxidative stress indexes, contents of inflammatory factors and the AKT signaling pathway-related proteins in hippocampus tissues were evaluated. RESULTS High expression of miR-200c-3p and low expression of RECK were found in the hippocampus tissues of epileptic rats. Downregulation of miR-200c-3p or upregulation of RECK decreased apoptosis of hippocampal neurons, expression of GFAP, content of MDA and increased the activities of GSH-Px and SOD, decreased expression of TNF-α, IL-1β and IL-6 as well as expression of p-PI3K/t-PI3K and p-Akt/t-Akt in hippocampus tissues of epileptic rats. CONCLUSION Our study provides evidence that downregulation of miR-200c-3p reduces damage of hippocampal neurons in epileptic rats by upregulating RECK and inactivating the AKT signaling pathway.
Collapse
Affiliation(s)
- Yumin Du
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China.
| | - Xiaowen Chi
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Wen An
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| |
Collapse
|
15
|
Hallal S, Ebrahimkhani S, Shivalingam B, Graeber MB, Kaufman KL, Buckland ME. The emerging clinical potential of circulating extracellular vesicles for non-invasive glioma diagnosis and disease monitoring. Brain Tumor Pathol 2019; 36:29-39. [PMID: 30859343 DOI: 10.1007/s10014-019-00335-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Abstract
Diffuse gliomas (grades II-IV) are amongst the most frequent and devastating primary brain tumours of adults. Currently, patients are monitored by clinical examination and radiographic imaging, which can be challenging to interpret and insensitive to early signs of treatment failure and tumour relapse. While brain biopsy and histologic analysis can evaluate disease progression, serial biopsies are invasive and impractical given the cumulative surgical risk, and may not capture the complete molecular landscape of an evolving tumour. The availability of a minimally invasive 'liquid biopsy' that could assess tumour activity and molecular phenotype in situ has the potential to greatly enhance patient care. Circulating extracellular vesicles (EVs) hold significant promise as robust disease-specific biomarkers accessible in the blood of patients with glioblastoma and other diffuse gliomas. EVs are membrane-bound nanoparticles shed from most if not all cells of the body, and carry DNA, RNA, protein, and lipids that reflect the identity and molecular state of their cell-of-origin. EVs can cross the blood-brain barrier and their release is upregulated in neoplasia. In this review, we describe the current knowledge of EV biology, the role of EVs in glioma biology and the current experience and challenges in profiling glioma-EVs from the circulation.
Collapse
Affiliation(s)
- Susannah Hallal
- Brainstorm Brain Cancer Research, Brain Tumour Research Laboratories, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Saeideh Ebrahimkhani
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Brain and Mind Centre, Camperdown, NSW, Australia
| | - Brindha Shivalingam
- Department of Neurosurgery, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Manuel B Graeber
- Brain Tumour Research Laboratories, Brain and Mind Centre, Charles Perkins Centre, Bosch Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Kimberley L Kaufman
- Brainstorm Brain Cancer Research, Brain Tumour Research Laboratories, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Department of Neurosurgery, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Michael E Buckland
- Brainstorm Brain Cancer Research, Brain Tumour Research Laboratories, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia. .,Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia. .,Department of Neuropathology, Royal Prince Alfred Hospital, Brain and Mind Centre, Camperdown, NSW, Australia.
| |
Collapse
|
16
|
Baumgarten P, Quick-Weller J, Gessler F, Wagner M, Tichy J, Forster MT, Foerch C, Seifert V, Mittelbronn M, Senft C. Pre- and early postoperative GFAP serum levels in glioma and brain metastases. J Neurooncol 2018; 139:541-546. [PMID: 29797180 DOI: 10.1007/s11060-018-2898-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 05/13/2018] [Indexed: 11/25/2022]
Abstract
SUBJECT To date there is no established tumor marker for the clinical follow-up of glioblastoma, WHO grade IV, (GBM) which constitutes the most frequent and malignant primary brain tumor. However, since there is promising data that the serum glial fibrillary acidic protein (sGFAP) may serve as a biomarker for glial brain tumors, this prospective study aimed at evaluating the diagnostic relevance of perioperative changes in sGFAP levels for the assessment of residual glial tumor tissue in patients undergoing surgery of intracerebral tumors. METHODS Serum GFAP was measured using an electrochemiluminometric immunoassay (ElecsysR GFAP prototype test, Roche Diagnostics, Penzberg/Germany) in 32 prospectively recruited patients between September 2009 and August 2010. Twenty-five were diagnosed with glioma and seven with brain metastases (BM). We assessed sGFAP levels prior to and at different time points during the early postoperative phase until patient discharge. RESULTS There were only significant differences in the pre-operative sGFAP levels of patients with gliomas compared to BM (0.18 vs. 0.08 µg/l; p = 0.0198, Welch's t-Test). Even though there was an increase of sGFAP after surgery, there were no significant differences between glioma and BM patients at any other time point. Peak sGFAP levels where reached on postoperative day 1 followed by a slight decrease, but not reaching pre-operative levels until postop day 7. There was no significant correlation between postoperative glioma tumor volume and sGFAP levels in univariate analyses. CONCLUSION According to our data sGFAP does not appear to be suitable to detect residual glioma tissue in the acute postoperative phase.
Collapse
Affiliation(s)
- Peter Baumgarten
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany.
| | - Johanna Quick-Weller
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Florian Gessler
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Tichy
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie-Therese Forster
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Christian Senft
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Katiyar V, Sharma R, Gurjar HK. Letter: Is Serum Glial Fibrillary Acidic Protein a Comprehensive Marker for High-Grade Glioma? Oper Neurosurg (Hagerstown) 2018; 14:E28-E30. [PMID: 29228384 DOI: 10.1093/ons/opx242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Varidh Katiyar
- Department of Neurosurgery All India Institute of Medical Sciences New Delhi, India
| | - Ravi Sharma
- Department of Neurosurgery All India Institute of Medical Sciences New Delhi, India
| | - Hitesh Kumar Gurjar
- Department of Neurosurgery All India Institute of Medical Sciences New Delhi, India
| |
Collapse
|
18
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
19
|
Luoto TM, Raj R, Posti JP, Gardner AJ, Panenka WJ, Iverson GL. A Systematic Review of the Usefulness of Glial Fibrillary Acidic Protein for Predicting Acute Intracranial Lesions following Head Trauma. Front Neurol 2017; 8:652. [PMID: 29255443 PMCID: PMC5722790 DOI: 10.3389/fneur.2017.00652] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/20/2017] [Indexed: 01/09/2023] Open
Abstract
Background The extensive use of computed tomography (CT) after acute head injury is costly and carries potential iatrogenic risk. This systematic review examined the usefulness of blood-based glial fibrillary acidic protein (GFAP) for predicting acute trauma-related CT-positive intracranial lesions following head trauma. The main objective was to summarize the current evidence on blood-based GFAP as a potential screening test for acute CT-positive intracranial lesions following head trauma. Methods We screened MEDLINE, EMBASE, PsychInfo, CINAHL, Web of Science, the Cochrane Database, Scopus, Clinical Trials, OpenGrey, ResearchGate, and the reference lists of eligible publications for original contributions published between January 1980 and January 2017. Eligibility criteria included: (i) population: human head and brain injuries of all severities and ages; (ii) intervention: blood-based GFAP measurement ≤24 h post-injury; and (iii) outcome: acute traumatic lesion on non-contrast head CT ≤24 h post-injury. Three authors completed the publication screening, data extraction, and quality assessment of eligible articles. Results The initial search identified 4,706 articles, with 51 eligible for subsequent full-text assessment. Twenty-seven articles were ultimately included. Twenty-four (89%) studies reported a positive association between GFAP level and acute trauma-related intracranial lesions on head CT. The area under the receiver operating characteristic curve for GFAP prediction of intracranial pathology ranged from 0.74 to 0.98 indicating good to excellent discrimination. GFAP seemed to discriminate mass lesions and diffuse injury, with mass lesions having significantly higher GFAP levels. There was considerable variability between the measured GFAP averages between studies and assays. No well-designed diagnostic studies with specific GFAP cutoff values predictive of acute traumatic intracranial lesions have been published. Conclusion Intracranial CT-positive trauma lesions were associated with elevated GFAP levels in the majority of studies. Methodological heterogeneity in GFAP assessments and the lack of well-designed diagnostic studies with commercially validated GFAP platforms hinder the level of evidence, and variability in levels of GFAP with no clearly established cutoff for abnormality limit the clinical usefulness of the biomarker. However, blood-based GFAP holds promise as a means of screening for acute traumatic CT-positive lesion following head trauma.
Collapse
Affiliation(s)
- Teemu M Luoto
- Department of Neurosurgery, Tampere University Hospital, Tampere, Finland
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, and Turku Brain Injury Centre, Turku University Hospital, and University of Turku, Turku, Finland
| | - Andrew J Gardner
- Priority Research Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Sports Concussion Program, Hunter New England Local Health District, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - William J Panenka
- British Columbia Neuropsychiatry Program, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, MassGeneral Hospital for Children™ Sports Concussion Program, Boston, MA, United States
| |
Collapse
|
20
|
Galbo PM, Ciesielski MJ, Figel S, Maguire O, Qiu J, Wiltsie L, Minderman H, Fenstermaker RA. Circulating CD9+/GFAP+/survivin+ exosomes in malignant glioma patients following survivin vaccination. Oncotarget 2017; 8:114722-114735. [PMID: 29383115 PMCID: PMC5777727 DOI: 10.18632/oncotarget.21773] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
Abstract
Glioma cells release exosomes in culture and into the extracellular matrix in vivo. These nanobodies transport an array of biomolecules and are capable of mediating cell-cell communication. Circulating exosomes in cancer patients may be indicative of disease status and response to therapy. The inhibitor of apoptosis protein (IAP) survivin (SVN) promotes cancer cell proliferation, local immune suppression and resistance to chemotherapy and it is a potential cancer biomarker. We used imaging flow cytometry to perform quantitative measurements of circulating SVN+ exosomes in the serum of malignant glioma patients undergoing investigational treatment with an anti-survivin vaccine (SurVaxM). Serum from glioma patients contained abundant CD9+ exosomes with both SVN and glial fibrillary acidic protein (GFAP) on their surface. Survivin and GFAP were evaluated both independently and together as possible tumor markers on CD9+ exosomes. Patients with longer time to tumor progression generally exhibited a decrease in circulating CD9+/SVN+ and CD9+/GFAP+/SVN+ exosomes immediately following survivin vaccination; whereas, those with early tumor progression had an increase in exosomes, despite anti-survivin immunotherapy. Serum from non-cancer healthy control individuals had very few detectable CD9+/GFAP+/SVN+ exosomes, although CD9+/GFAP+ exosomes were detectable in small numbers. This study demonstrates that patients with malignant gliomas have CD9+/GFAP+/SVN+ and CD9+/SVN+ exosomes that are released into the circulation and that early reductions in their numbers following anti-survivin immunotherapy might be associated with longer progression-free survival.
Collapse
Affiliation(s)
- Phillip M Galbo
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Michael J Ciesielski
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, 14214 USA
| | - Sheila Figel
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Orla Maguire
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Jingxin Qiu
- Pathology, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Laura Wiltsie
- Pediatrics, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, 14214 USA
| | - Hans Minderman
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Robert A Fenstermaker
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, 14214 USA
| |
Collapse
|
21
|
Vietheer JM, Rieger J, Wagner M, Senft C, Tichy J, Foerch C. Serum concentrations of glial fibrillary acidic protein (GFAP) do not indicate tumor recurrence in patients with glioblastoma. J Neurooncol 2017; 135:193-199. [PMID: 28717884 DOI: 10.1007/s11060-017-2565-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023]
Abstract
Recent studies identified serum concentrations of the astroglial protein glial fibrillary acidic protein (GFAP) to be indicative of glioblastoma (GBM) in patients with newly diagnosed space occupying cerebral mass lesions. Until now, no data is available whether GFAP serum concentrations decrease after first therapy and whether GFAP may be used as a predictor of survival and an indicator of tumor recurrence. In this prospective study, we included 44 patients with a single space occupying cerebral mass lesion suspicious for GBM. GBM was histopathologically proven in 33 cases. After initial therapy, patients were followed up until tumor recurrence (defined according to the RANO criteria) or death (maximum observation period 78 weeks). Blood was sampled on a regular basis, and GFAP serum levels were determined using an immunofluorescence assay. Prior to any intervention, 14 of the 33 GBM patients had elevated GFAP serum concentrations (median 0.25 µg/L, interquartile range 0.13-0.53), whereas only one out of 11 patients having other tumor entities revealed a slightly increased GFAP serum level (0.06 µg/L). Following surgery (i.e., biopsy, full or partial resection), all initially GFAP positive GBM patients showed decreased serum concentrations. During the follow-up period, we found a minimal GFAP increase in one patient only (0.04 µg/L; week 52), although 23 out of 31 available GBM patients developed tumor progression or died. No difference was found regarding the survival rate and the time to tumor recurrence between initially GFAP positive and GFAP negative GBM patients. In GBM patients, initially elevated GFAP serum concentrations decrease after the first diagnostic or therapeutic intervention. GFAP was not predictive for tumor recurrence.
Collapse
Affiliation(s)
- Julia-Mareen Vietheer
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Johannes Rieger
- Department of Neuro-Oncology, Goethe University, Frankfurt am Main, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Julia Tichy
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,Department of Neuro-Oncology, Goethe University, Frankfurt am Main, Germany.
| | - Christian Foerch
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Holla FK, Postma TJ, Blankenstein MA, van Mierlo TJM, Vos MJ, Sizoo EM, de Groot M, Uitdehaag BMJ, Buter J, Klein M, Reijneveld JC, Heimans JJ. Prognostic value of the S100B protein in newly diagnosed and recurrent glioma patients: a serial analysis. J Neurooncol 2016; 129:525-532. [PMID: 27401156 PMCID: PMC5020117 DOI: 10.1007/s11060-016-2204-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 12/03/2022]
Abstract
The S100B protein is associated with brain damage and a breached blood–brain barrier. A previous pilot study showed that high serum levels of S100B are associated with shorter survival in glioma patients. The aim of our study was to assess the prognostic value in terms of survival and longitudinal dynamics of serum S100B for patients with newly diagnosed and recurrent glioma. We obtained blood samples from patients with newly diagnosed and recurrent glioma before the start (baseline) and at fixed time-points during temozolomide chemotherapy. S100B-data were dichotomized according to the upper limit of the reference value of 0.1 μg/L. Overall survival (OS) was estimated with Kaplan–Meier curves and groups were compared with the log rank analysis. To correct for potential confounders a Cox regression analysis was used. We included 86 patients with newly-diagnosed and 27 patients with recurrent glioma. Most patients in both groups had baseline serum levels within normal limits. In the newly diagnosed patients we found no significant difference in OS between the group of patients with S100B levels >0.1 μg/L at baseline compared to those with <0.1 μg/L. In the patients with recurrent glioma we found a significantly shorter OS for patients with raised levels. In both groups, S100B values did not change significantly throughout the course of the disease. Serum S100B levels do not seem to have prognostic value in newly diagnosed glioma patients. In recurrent glioma patients S100B might be of value in terms of prognostication of survival.
Collapse
Affiliation(s)
- F K Holla
- Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - T J Postma
- Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - M A Blankenstein
- Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - T J M van Mierlo
- Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - M J Vos
- Department of Neurology, Medical Center Haaglanden, The Hague, The Netherlands
| | - E M Sizoo
- Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - M de Groot
- Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - B M J Uitdehaag
- Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - J Buter
- Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - M Klein
- Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands
| | - J C Reijneveld
- Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - J J Heimans
- Department of Neurology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Touat M, Duran-Peña A, Alentorn A, Lacroix L, Massard C, Idbaih A. Emerging circulating biomarkers in glioblastoma: promises and challenges. Expert Rev Mol Diagn 2016; 15:1311-23. [PMID: 26394701 DOI: 10.1586/14737159.2015.1087315] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM) is the most common and devastating primary malignant brain tumor in adults. The past few years have seen major progress in our understanding of the molecular basis of GBM. These advances, which have contributed to the development of novel targeted therapies, will change the paradigms in GBM therapy from disease-based to individually tailored molecular target-based treatment. No validated circulating biomarkers have yet been integrated into clinical practice for GBM. There is thus a critical need to implement minimally invasive clinical tests enabling molecular stratification and prognosis assessment, as well as the prediction and monitoring of treatment response. After examination of data from recent studies exploring several categories of tumor-associated biomarkers (circulating tumor cells, extracellular vesicles, nucleic acids and oncometabolites) identified in the blood, cerebrospinal fluid and urine, this article discusses the challenges and prospects for the development of circulating biomarkers in GBM.
Collapse
Affiliation(s)
- Mehdi Touat
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,b 2 Département d'innovations thérapeutiques précoces, Gustave Roussy, F-94805 Villejuif, France
| | - Alberto Duran-Peña
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Agusti Alentorn
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France.,d 4 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Ludovic Lacroix
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,e 5 Département de biologie médicale et de pathologie, Gustave Roussy, F-94805 Villejuif, France.,f 6 Laboratoire de recherche translationnelle et centre de ressources biologiques, Gustave Roussy, F-94805 Villejuif, France
| | - Christophe Massard
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,b 2 Département d'innovations thérapeutiques précoces, Gustave Roussy, F-94805 Villejuif, France
| | - Ahmed Idbaih
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France.,d 4 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| |
Collapse
|
24
|
Tichy J, Spechtmeyer S, Mittelbronn M, Hattingen E, Rieger J, Senft C, Foerch C. Prospective evaluation of serum glial fibrillary acidic protein (GFAP) as a diagnostic marker for glioblastoma. J Neurooncol 2015; 126:361-9. [PMID: 26518540 DOI: 10.1007/s11060-015-1978-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/25/2015] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor. Although clinical presentation and brain imaging might be suggestive, histopathological evaluation by means of a brain biopsy is routinely performed to establish the diagnosis. A serum marker indicative of GBM may simplify the diagnostic work-up of patients suspected to having a brain tumor. We prospectively examined 113 patients with newly diagnosed single supratentorial or infratentorial space-occupying brain lesions. Glial fibrillary acidic protein (GFAP) levels were determined from venous blood samples via a prototype ELISA assay prior to any invasive procedures. Serum levels of GFAP were correlated with histopathological findings and MRI parameters. GFAP values were significantly higher in GBM patients (n = 33) compared to all other tumors (p < 0.001). A GFAP serum concentration of ≥0.01 µg/L revealed a sensitivity of 85 % and a specificity of 70 % for differentiating GBM from other entities. By applying a GFAP cut-off point of 0.20 µg/L, specificity was maximized (99 %), but sensitivity dropped to 27 %. In GBM patients, serum GFAP values were significantly correlated with tumor volume. GBM patients with high GFAP levels showed more in vivo GFAP expression as well as more necrosis and perilesional edema compared to GBM patients having low or non-detectable GFAP levels. GFAP serum concentrations differentiated between patients with GBM and patients with cerebral mass lesions of other entities with a moderate diagnostic accuracy. Serum GFAP levels in GBM patients were positively correlated with tumor volume and histopathological tumor characteristics.
Collapse
Affiliation(s)
- Julia Tichy
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany. .,Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany. .,Neurological Institute (Edinger Institute), Goethe-University, Frankfurt am Main, Germany. .,Dr. Senckenberg Institute of Neurooncology, Department of Neurology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany.
| | | | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), Goethe-University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe-University, Frankfurt am Main, Germany
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe-University, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Kiviniemi A, Gardberg M, Frantzén J, Parkkola R, Vuorinen V, Pesola M, Minn H. Serum levels of GFAP and EGFR in primary and recurrent high-grade gliomas: correlation to tumor volume, molecular markers, and progression-free survival. J Neurooncol 2015; 124:237-45. [PMID: 26033547 DOI: 10.1007/s11060-015-1829-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/25/2015] [Indexed: 11/28/2022]
Abstract
Our aim was to study the association of two potential serum biomarkers glial fibrillary acidic protein (GFAP) and epidermal growth factor receptor (EGFR) with prognostic markers such as IDH1 mutation, tumor burden, and survival in patients with high-grade gliomas (HGG). Additionally, our objective was to evaluate the potential of serum EGFR as a surrogate marker for EGFR status in the tumor. Pre-operative serum samples were prospectively collected from patients with primary (n = 17) or recurrent (n = 10) HGG. Serum GFAP and EGFR levels were determined by ELISA and studied for correlation with molecular markers including EGFR amplification, tumor volume in contrast-enhanced T1-weighted MRI, and progression-free survival (PFS). Pre-operative serum GFAP level of ≥0.014 ng/ml was 86 % sensitive and 85 % specific for the diagnosis of glioblastoma. High GFAP was related to the lack of IDH1 mutation (P = 0.016), high Ki67 proliferation index (P < 0.001), and poor PFS (HR 5.9, CI 1.2-29.9, P = 0.032). Serum GFAP correlated with enhancing tumor volume in primary (r = 0.64 P = 0.005), but also in recurrent HGGs (r = 0.76 P = 0.011). In contrast, serum EGFR levels did not differ between HGG patients and 13 healthy controls, and were not related to EGFR status in the tumor. We conclude that high serum GFAP associates with IDH1 mutation-negative HGG, and poor PFS. Correlation with tumor burden in recurrent HGG implicates the potential of serum GFAP for detection of tumor recurrence. Our results suggest that circulating EGFR is not derived from glioma cells and cannot be used as a marker for EGFR status in the tumor.
Collapse
Affiliation(s)
- Aida Kiviniemi
- Department of Radiology, Turku University Hospital, University of Turku, Kiinamyllynkatu 4-8, 20521, Turku, Finland.
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital, University of Turku, Kiinamyllynkatu 4-8, 20521, Turku, Finland
| | - Janek Frantzén
- Department of Neurosurgery, Turku University Hospital, Hämeentie 11, 20521, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, Kiinamyllynkatu 4-8, 20521, Turku, Finland
| | - Ville Vuorinen
- Department of Neurosurgery, Turku University Hospital, Hämeentie 11, 20521, Turku, Finland
| | - Marko Pesola
- Department of Radiology, Turku University Hospital, University of Turku, Kiinamyllynkatu 4-8, 20521, Turku, Finland
| | - Heikki Minn
- Department of Oncology and Radiotherapy, Turku University Hospital, Hämeentie 11, 20521, Turku, Finland
| |
Collapse
|
26
|
Liquid biopsies in patients with diffuse glioma. Acta Neuropathol 2015; 129:849-65. [PMID: 25720744 PMCID: PMC4436687 DOI: 10.1007/s00401-015-1399-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Diffuse gliomas are the most common malignant primary tumors of the central nervous system. Like other neoplasms, these gliomas release molecular information into the circulation. Tumor-derived biomarkers include proteins, nucleic acids, and tumor-derived extracellular vesicles that accumulate in plasma, serum, blood platelets, urine and/or cerebrospinal fluid. Recently, also circulating tumor cells have been identified in the blood of glioma patients. Circulating molecules, vesicles, platelets, and cells may be useful as easily accessible diagnostic, prognostic and/or predictive biomarkers to guide patient management. Thereby, this approach may help to circumvent problems related to tumor heterogeneity and sampling error at the time of diagnosis. Also, liquid biopsies may allow for serial monitoring of treatment responses and of changes in the molecular characteristics of gliomas over time. In this review, we summarize the literature on blood-based biomarkers and their potential value for improving the management of patients with a diffuse glioma. Incorporation of the study of circulating molecular biomarkers in clinical trials is essential for further assessment of the potential of liquid biopsies in this context.
Collapse
|
27
|
Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 2015; 38:364-74. [PMID: 25975510 PMCID: PMC4559283 DOI: 10.1016/j.tins.2015.04.003] [Citation(s) in RCA: 600] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). GFAP is also subject to numerous post-translational modifications (PTMs), while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.
Collapse
Affiliation(s)
- Zhihui Yang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA.
| |
Collapse
|
28
|
Ambady P, Bettegowda C, Holdhoff M. Emerging methods for disease monitoring in malignant gliomas. CNS Oncol 2015; 2:511-22. [PMID: 25054821 DOI: 10.2217/cns.13.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MRI remains the backbone of measuring disease burden and treatment response in individuals with malignant gliomas. Traditional radiographic approaches, however, are largely limited to depicting anatomic changes and are not a direct measure of disease burden. For example, contrast enhancement is related to blood-brain barrier integrity rather than actual tumor size. Without accurate measures of disease, common clinical dilemmas include 'pseudo-progression' (e.g., after chemoradiation) or 'pseudo-response' (e.g., with steroid treatment and antiangiogenic agents), which can lead to delays in therapy, premature discontinuation of successful treatments and to unnecessary surgical procedures. This overview focuses on novel, minimally invasive approaches in the area of imaging and blood-based biomarkers that aim to more accurately determine disease status and response to treatment in malignant brain tumors.
Collapse
Affiliation(s)
- Prakash Ambady
- Brain Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1550 Orleans Street, 1M16, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
29
|
Quick Q, Paul M, Skalli O. Roles and potential clinical applications of intermediate filament proteins in brain tumors. Semin Pediatr Neurol 2015; 22:40-8. [PMID: 25976260 DOI: 10.1016/j.spen.2014.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intermediate filament (IF) proteins are cytoplasmic and nuclear cytoskeletal proteins. Of the ~70 IF proteins, nearly 12 are found in the nervous system, where their expression is largely cell-type specific. Astrocytes express glial fibrillary acidic protein (GFAP), whereas different neuron types contain neurofilament proteins, α-internexin, or peripherin. These proteins are often downregulated in brain cancer. In addition, brain cancer cells may also contain vimentin, nestin, and synemin, which are the IF proteins found in neural progenitor cells. In different brain tumor types, the expression of nestin, vimentin, and α-internexin appears to correlate with the clinical outcome. Experimental investigations have also demonstrated that IF proteins have distinct roles in specific brain tumor cell behaviors: nestin, for instance, is important for the proliferation of glioma cells, whereas synemin also affect their mobility. The mechanisms responsible for these effects involve the interaction of IF proteins with specific signaling pathways. Synemin, for instance, positively regulates glioma cell proliferation by antagonizing protein phosphatase 2A. Further evidence for the potential of IF proteins as therapeutic targets derives from animal models showing the influence of IF proteins on tumor growth. Nestin downregulation, for instance, dramatically reduced intracerebral glioma growth. Selective targeted therapies of IFs to date primarily include gene therapy approaches using nestin or GFAP gene promoters to drive transgene expression into glioma cells. Although attempts to identify small molecules specifically antagonizing IF proteins have been unsuccessful to date, it is anticipated that the identification of such compounds will be instrumental in expanding therapeutic approaches for brain tumors.
Collapse
Affiliation(s)
- Quincy Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN
| | - Madhumita Paul
- Department of Biological Sciences, The University of Memphis, Memphis, TN
| | - Omar Skalli
- Department of Biological Sciences, The University of Memphis, Memphis, TN.
| |
Collapse
|
30
|
|
31
|
Kros JM, Mustafa DM, Dekker LJM, Sillevis Smitt PAE, Luider TM, Zheng PP. Circulating glioma biomarkers. Neuro Oncol 2014; 17:343-60. [PMID: 25253418 DOI: 10.1093/neuonc/nou207] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/13/2014] [Indexed: 02/06/2023] Open
Abstract
Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers.
Collapse
Affiliation(s)
- Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Dana M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Lennard J M Dekker
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Peter A E Sillevis Smitt
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Theo M Luider
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| |
Collapse
|
32
|
Diagnostic and prognostic value of preoperative combined GFAP, IGFBP-2, and YKL-40 plasma levels in patients with glioblastoma. Cancer 2014; 120:3972-80. [DOI: 10.1002/cncr.28949] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 11/07/2022]
|
33
|
Lange RP, Everett A, Dulloor P, Korley FK, Bettegowda C, Blair C, Grossman SA, Holdhoff M. Evaluation of eight plasma proteins as candidate blood-based biomarkers for malignant gliomas. Cancer Invest 2014; 32:423-9. [PMID: 25019213 DOI: 10.3109/07357907.2014.933237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Eight brain-derived proteins were evaluated regarding their potential for further development as a blood-based biomarker for malignant gliomas. Plasma levels for glial fibrillary acidic protein, neurogranin, brain-derived neurotrophic factor, intracellular adhesion molecule 5, metallothionein-3, beta-synuclein, S100 and neuron specific enolase were tested in plasma of 23 patients with high-grade gliomas (WHO grade IV), 11 low-grade gliomas (WHO grade II), and 15 healthy subjects. Compared to the healthy controls, none of the proteins appeared to be specific for glioblastomas. However, the data are suggestive of higher protein levels in gliosarcomas (n = 2), which may deserve further exploration.
Collapse
Affiliation(s)
- Ryan P Lange
- The Johns Hopkins University, School of Medicine, Departments of1 Pediatrics2 Emergency Medicine3 Neurosurgery,4 and Oncology,5 Baltimore, MD, USA; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, MD , USA 6
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Starkweather AR, Sherwood P, Lyon DE, Bovbjerg DH, Broaddus WC, Elswick RK, Sturgill J. Depressive symptoms and cytokine levels in Serum and Tumor Tissue in patients with an Astrocytoma: a pilot study. BMC Res Notes 2014; 7:423. [PMID: 24997057 PMCID: PMC4118281 DOI: 10.1186/1756-0500-7-423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/30/2014] [Indexed: 12/02/2022] Open
Abstract
Background Preoperative depressive symptoms are associated with poor outcomes in patients with an astrocytoma. Cytokines are associated with depressive symptoms in the general population and are important mediators of tumor growth and progression. The aims of this study were to: (1) characterize depressive symptoms, other treatment-related symptoms and biological mediators; and (2) determine whether preoperative depressive symptoms were associated with the selected biological mediators. Methods A prospective, exploratory study was carried out among 22 patients with a high-grade astrocytoma. Self-report questionnaires and peripheral blood samples were collected on the day of surgery. Tumor tissue was collected intraoperatively. Self-report questionnaires were assessed at 3, 6, 9, and 12-months postoperatively. Results In circulation, serum IL-8 was inversely correlated with depressive symptoms while IL-17 measured in tumor tissue supernatant was inversely correlated with depressive symptoms. Depressive symptoms showed a significant increase at 12 months from baseline levels and were positively associated with treatment-related symptoms at 3 months and symptom distress at 12 months post-surgery. Conclusions In this pilot study, depressive symptoms were negatively associated with IL-8 in serum and IL-17 in tumor tissue. The changes among depressive symptoms, treatment-related symptoms and symptom distress highlight the need for multi-faceted symptom management strategies over the treatment trajectory in this patient population.
Collapse
Affiliation(s)
- Angela R Starkweather
- Department of Adult Health and Nursing Systems, Virginia Commonwealth University School of Nursing, 1100 East Leigh Street, P, O, Box 980567, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Lépinoux-Chambaud C, Eyer J. Review on intermediate filaments of the nervous system and their pathological alterations. Histochem Cell Biol 2013; 140:13-22. [PMID: 23749407 DOI: 10.1007/s00418-013-1101-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2013] [Indexed: 11/28/2022]
Abstract
Intermediate filaments (IFs) of the nervous system, including neurofilaments, α-internexin, glial fibrillary acidic protein, synemin, nestin, peripherin and vimentin, are finely expressed following elaborated cell, tissue and developmental specific patterns. A common characteristic of several neurodegenerative diseases is the abnormal accumulation of neuronal IFs in cell bodies or along the axon, often associated with impairment of the axonal transport and degeneration of neurons. In this review, we also present several perturbations of IF metabolism and organization associated with neurodegenerative disorders. Such modifications could represent strong markers of neuronal damages. Moreover, recent data suggest that IFs represent potential biomarkers to determine the disease progression or the differential stages of a neuronal disorder. Finally, recent investigations on IF expression and function in cancer provide evidence that they may be useful as markers, or targets of brain tumours, especially high-grade glioma. A better knowledge of the molecular mechanisms of IF alterations, combined to neuroimaging, is essential to improve diagnosis and therapeutic strategies of such neurodegenerative diseases and glioma.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie and Transgenese, LUNAM, UPRES EA-3143, Centre Hospitalier Universitaire, Bâtiment IBS-IRIS, Université d'Angers, 49033, Angers, France
| | | |
Collapse
|
36
|
Blood-based biomarkers for malignant gliomas. J Neurooncol 2013; 113:345-352. [PMID: 23670054 DOI: 10.1007/s11060-013-1144-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/27/2013] [Indexed: 02/07/2023]
Abstract
Malignant gliomas remain incurable and present unique challenges to clinicians, radiologists and clinical and translational investigators. One of the major problems in treatment of these tumors is our limited ability to reliably assess tumor response or progression. The most frequently used neuro-imaging studies (contrast-enhanced MRI and CT) rely on changes of blood-brain barrier (BBB) integrity, providing only an indirect assessment of tumor burden. In addition, the BBB can be altered by commonly used interventions including radiation, glucocorticoids and vascular endothelial growth factor inhibitors, further complicating the interpretation of scans. Newer radiologic techniques including PET and magnetic resonance spectroscopy are theoretically promising but thus far have not meaningfully changed the assessment of patients with malignant gliomas. A tumor-specific, blood-based biomarker would be of immediate use to clinicians and investigators if sufficiently sensitive and specific. This review discusses the potential utility of such a biomarker, the general classes of tumor-derived blood-based biomarkers and it summarizes the currently available data on circulating tumor cells, circulating nucleic acids and circulating proteins in patients with malignant gliomas. It is unclear which marker or marker class appears to be the most promising for these tumors. This article provides thoughts on how novel candidate blood-based markers could be discovered and tested in a more comprehensive way and why these efforts should be among the top priorities in neuro-oncologic research in the coming years.
Collapse
|
37
|
Ilhan-Mutlu A, Berghoff AS, Furtner J, Dieckmann K, Slavc I, Czech T, Marosi C, Wagner L, Preusser M. High plasma-GFAP levels in metastatic myxopapillary ependymoma. J Neurooncol 2013; 113:359-63. [PMID: 23624779 DOI: 10.1007/s11060-013-1134-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/25/2013] [Indexed: 11/26/2022]
Abstract
Myxopapillary ependymoma (MPE) is a rare tumor of the distal spinal cord. Despite benign histopathology, local recurrences occur in ~30 % of patients and distant metastases have been described in few cases. MPE tumor cells typically express glial fibrillary acidic protein (GFAP), which could be released to the circulation. In this current report, we investigated circulating plasma-GFAP in a series of MPE patients. We analyzed circulating plasma-GFAP using a commercially available ELISA kit in 3 patients with completely resected MPE, 1 patient with locally advanced MPE and 2 patients with pleuropulmonary metastases of MPE. As controls we used blood samples of age and gender-matched healthy volunteers (n = 3), 6 glioblastoma patients with known plasma-GFAP status (positive for 3 and negative for 3 patients) and 3 brain metastases patients with known plasma-GFAP negativity. We found very high concentrations of plasma-GFAP in two MPE patients with pleuropulmonary metastases, while in none of the other MPE patients circulating plasma-GFAP was detectable. Circulating GFAP could be useful as marker for early detection or follow-up of distant metastases in MPE patients.
Collapse
Affiliation(s)
- Ayseguel Ilhan-Mutlu
- Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mayer CA, Brunkhorst R, Niessner M, Pfeilschifter W, Steinmetz H, Foerch C. Blood levels of glial fibrillary acidic protein (GFAP) in patients with neurological diseases. PLoS One 2013; 8:e62101. [PMID: 23626774 PMCID: PMC3633915 DOI: 10.1371/journal.pone.0062101] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/16/2013] [Indexed: 12/05/2022] Open
Abstract
Background and Purpose The brain-specific astroglial protein GFAP is a blood biomarker candidate indicative of intracerebral hemorrhage in patients with symptoms suspicious of acute stroke. Comparably little, however, is known about GFAP release in other neurological disorders. In order to identify potential “specificity gaps” of a future GFAP test used to diagnose intracerebral hemorrhage, we measured GFAP in the blood of a large and rather unselected collective of patients with neurological diseases. Methods Within a one-year period, we randomly selected in-patients of our university hospital for study inclusion. Patients with ischemic stroke, transient ischemic attack and intracerebral hemorrhage were excluded. Primary endpoint was the ICD-10 coded diagnosis reached at discharge. During hospital stay, blood was collected, and GFAP plasma levels were determined using an advanced prototype immunoassay at Roche Diagnostics. Results A total of 331 patients were included, covering a broad spectrum of neurological diseases. GFAP levels were low in the vast majority of patients, with 98.5% of cases lying below the cut-off that was previously defined for the differentiation of intracerebral hemorrhage and ischemic stroke. No diagnosis or group of diagnoses was identified that showed consistently increased GFAP values. No association with age and sex was found. Conclusion Most acute and chronic neurological diseases, including typical stroke mimics, are not associated with detectable GFAP levels in the bloodstream. Our findings underline the hypothesis that rapid astroglial destruction as in acute intracerebral hemorrhage is mandatory for GFAP increase. A future GFAP blood test applied to identify patients with intracerebral hemorrhage is likely to have a high specificity.
Collapse
Affiliation(s)
| | - Robert Brunkhorst
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany
| | | | | | - Helmuth Steinmetz
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
39
|
Ilhan-Mutlu A, Wagner L, Preusser M. Circulating biomarkers of CNS tumors: an update. Biomark Med 2013; 7:267-85. [DOI: 10.2217/bmm.13.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CNS tumors comprise approximately 120 histological subtypes. Advances of surgical resection, radiation and systemic therapy have increased the survival rates of distinct types of CNS tumor patients. There is growing interest in identification of diagnostic, prognostic or predictive blood biomarkers in CNS tumor patients, and emerging studies indicate that certain brain tumors are indeed associated with distinct profiles of circulating factors such as proteins (e.g., glial fibrillary acidic protein), DNA fragments (e.g., containing mutated IDH) or miRNAs (e.g., miRNA-21). However, blood biomarker research in neurooncology is, for the most part, at an exploratory level, and adequately powered and well-designed studies are needed to translate the available interesting but preliminary findings into actual clinical use. In this review, the current knowledge on circulating biomarkers of CNS tumors is briefly summarized.
Collapse
Affiliation(s)
- Aysegül Ilhan-Mutlu
- Department of Medicine I/Oncology, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Central Nervous System Tumours Unit, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
| | - Ludwig Wagner
- Comprehensive Cancer Center Vienna, Central Nervous System Tumours Unit, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
- Department of Nephrology, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
| | - Matthias Preusser
- Comprehensive Cancer Center Vienna, Central Nervous System Tumours Unit, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
- Department of Medicine I/Oncology, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria.
| |
Collapse
|
40
|
Ilhan-Mutlu A, Wagner L, Widhalm G, Wöhrer A, Bartsch S, Czech T, Heinzl H, Leutmezer F, Prayer D, Marosi C, Base W, Preusser M. Exploratory investigation of eight circulating plasma markers in brain tumor patients. Neurosurg Rev 2012; 36:45-55; discussion 55-6. [PMID: 22763625 DOI: 10.1007/s10143-012-0401-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/25/2011] [Accepted: 05/20/2012] [Indexed: 11/28/2022]
Abstract
Several blood biomarkers have been established for the early diagnosis, screening and follow-up of non central nervous system cancers. However, there is lack of knowledge on biochemical blood alterations in brain tumor patients. In this study, we prospectively collected blood plasma samples of 105 adult brain tumor patients with diffuse low-grade glioma (World Health Organization (WHO) II, n = 7), anaplastic glioma (WHO III, n = 10), glioblastoma multiforme (WHO IV, glioblastoma multiforme (GBM)) (n = 34), meningioma (WHO I, n = 8), atypical meningioma (WHO II, n = 5), and intracerebral metastasis (ICM; n = 41). In each case, we measured plasma concentrations of neuropeptide Y, brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, placental growth factor (PlGF), S100B, secretagogin, interleukin 8, and glial fibrillary acidic protein (GFAP) using enzyme-linked immunosorbent assay. Plasma marker concentrations were correlated to patient parameters including neuropathological diagnosis and neuroradiological features. Most of the markers were detectable in all diagnostic categories in variable concentrations. GFAP plasma detectability was strongly associated with a diagnosis of GBM (p < 0.001). Plasma GFAP and plasma placental growth factor showed promising moderate potential in the differential diagnosis of unifocal GBM versus unifocal supratentorial ICM (area under the curve = 0.73, p < 0.05). To summarize, our data show that none of the investigated markers is suitable to substitute histological diagnosis. However, measurement of circulating GFAP and PlGF may support neuroradiological differential diagnosis of GBM versus ICM.
Collapse
Affiliation(s)
- Aysegul Ilhan-Mutlu
- Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Husain H, Savage W, Grossman SA, Ye X, Burger PC, Everett A, Bettegowda C, Diaz LA, Blair C, Romans KE, Holdhoff M. Pre- and post-operative plasma glial fibrillary acidic protein levels in patients with newly diagnosed gliomas. J Neurooncol 2012; 109:123-7. [PMID: 22492246 DOI: 10.1007/s11060-012-0874-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
Therapies that disrupt or repair blood-brain barrier integrity can result in major changes in MRI images even when the tumor volume remains constant. Thus, a reliable blood-based tumor biomarker could significantly improve clinical care and research studies in these patients. This study was performed to assess plasma concentrations of glial fibrillary acidic protein (GFAP) in patients with high- and low-grade gliomas before and after debulking surgery. Pre-operative plasma was collected from 33 patients with radiation- and chemotherapy-naïve gliomas. Additional plasma was collected 24-48 h post-operatively from 23 of these patients. Plasma GFAP (pGFAP) concentrations were determined using an electrochemiluminescent immunoassay and were analyzed as a function of tumor grade, tumor GFAP expression, the integrity of the blood-brain barrier, and post-operative status. Detectable pGFAP levels (≥ 0.04 ng/mL) were found pre-operatively in 52 % of patients and post-operatively in 96 %. Detectable pGFAP was more common in patients with WHO grade IV (100 %) than WHO grade III (56 %) or WHO grade II gliomas (20 %). No patient with undetectable GFAP had WHO grade IV glioma. Higher pGFAP concentrations were also associated with contrast enhancement but not related to tumor GFAP expression. GFAP is commonly detected in the plasma of patients with high-grade gliomas. pGFAP levels rise rather than fall following debulking surgery which is probably a result of surgical trauma. GFAP remains a potentially informative plasma biomarker for gliomas. Longitudinal studies are required to correlate pGFAP levels with patient outcomes.
Collapse
Affiliation(s)
- Hatim Husain
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Cancer Research Building II, 1550 Orleans Street, 1M-16, Baltimore, MD, 21287, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ilhan A, Furtner J, Birner P, Rössler K, Marosi C, Preusser M. Myxopapillary ependymoma with pleuropulmonary metastases and high plasma glial fibrillary acidic protein levels. J Clin Oncol 2011; 29:e756-7. [PMID: 21900103 DOI: 10.1200/jco.2011.36.6401] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
43
|
Starkweather AR, Sherwood P, Lyon DE, McCain NL, Bovbjerg DH, Broaddus WC. A biobehavioral perspective on depressive symptoms in patients with cerebral astrocytoma. J Neurosci Nurs 2011; 43:17-28. [PMID: 21338041 PMCID: PMC3732744 DOI: 10.1097/jnn.0b013e3182029859] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
More than 51,000 individuals are diagnosed with a primary brain tumor in the United States each year, and for those with the most common type of malignant tumor, an astrocytoma, almost 75% will die within 5 years of diagnosis. Although surgery, radiation, and chemotherapy have improved length of survival, mortality remains high, which underscores the need to understand how other factors affect the disease trajectory. Several recent studies have shown that depressive symptoms are independently associated with reduced quality of life and survival time after controlling for other variables in patients with an astrocytoma. Thus, depressive symptoms represent a significant risk factor for adverse outcomes in this patient population. A growing body of evidence indicates that depressive symptoms are linked to underlying biological phenomena, particularly inflammatory activation modulated through increased peripheral levels of proinflammatory cytokines. Recent research has shown that neoplastic astrocytes respond to elevated proinflammatory cytokine levels by secreting immune mediators within the central nervous system, including cytokines and glial fibrillary acidic protein that promote astrogliosis and angiogenesis and may increase tumor growth and metastasis. However, because these biological factors have not as yet been measured in conjunction with depressive symptoms in these patients, little is known about the interactions that potentially influence the treatment trajectory. To guide future research and to provide a deeper understanding of the factors that may influence depressive symptoms and length of survival in patients with an astrocytoma, a review of the literature was undertaken. Publications over the past 10 years were analyzed to examine the theoretical models and measures of depressive symptoms used in previous research. Although numerous studies have documented the relationship between depression and reduced length of survival, there were several methodological concerns identified, and there were no studies that included biological variables. Yet, research in the basic sciences provides compelling evidence of specific neuroendocrine-immune interactions orchestrated by astrocytes that can cause depressive symptoms and alter the tumor microenvironment so that standard treatments are not as effective. These findings support the need for clinically based research so that we can begin to understand the potentially modifiable biobehavioral mechanisms underlying depressive symptoms in patients with an astrocytoma. Grounded in the biobehavioral research paradigm of psychoneuroimmunology, a novel research program is presented that may provide a new level of understanding regarding the high prevalence of depressive symptoms in patients with an astrocytoma and lead to new treatment strategies, with possible implications for improved symptom management and quality of life in patients with brain tumors.
Collapse
|
44
|
Danzer E, Zhang L, Radu A, Bebbington MW, Liechty KW, Adzick NS, Flake AW. Amniotic fluid levels of glial fibrillary acidic protein in fetal rats with retinoic acid induced myelomeningocele: a potential marker for spinal cord injury. Am J Obstet Gynecol 2011; 204:178.e1-11. [PMID: 21284970 DOI: 10.1016/j.ajog.2010.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The objective of this study was to determine whether amniotic fluid levels of glial acidic fibrillary protein (GFAP) would reflect myelomeningocele-related neurodegeneration in the rat model of retinoic acid-induced myelomeningocele, which is a model that is very similar to human myelomeningocele and develops the entire spectrum of disease severity including features of the Chiari II malformation. STUDY DESIGN Time-dated (embryonic day 10) pregnant Sprague-Dawley rats were gavage fed 60 mg/kg/bodyweight retinoic acid that had been dissolved in olive oil or olive oil alone. Myelomeningocele, retinoic acid-exposed no myelomeningocele, and control fetuses were harvested at specific time points throughout gestation. A standard set of pinching tests was performed to interrogate the sensorimotor reflex arc of hindpaws and tails. Amniotic fluid-GFAP levels were analyzed by standard enzyme-linked immunosorbent assay techniques. RESULTS Amniotic fluid-GFAP levels were similar between groups at embryonic days 14, 16, and 18, respectively. Compared with control fetuses, amniotic fluid GFAP levels were significantly increased in myelomeningocele fetuses at embryonic days 20 and 22 (P < .001). Defect size (P < .001), presence of clubfoot deformity (P = .0004), and absence of sensorimotor function (P < .01) at embryonic day 22 correlated with amniotic fluid-GFAP levels. CONCLUSION Amniotic fluid-GFAP levels appear to correlate with spinal cord injury as gestation proceeds in fetal rats with myelomeningocele.
Collapse
Affiliation(s)
- Enrico Danzer
- Children's Center for Fetal Research, The Children's Hospital of Philadelphia and The University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Wu B, Liu W, Zhu H, Feng H, Liu J. Primary glioblastoma of the cerebellopontine angle in adults. J Neurosurg 2011; 114:1288-93. [PMID: 21250796 DOI: 10.3171/2010.12.jns10912] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gliomas are rare entities in the cerebellopontine angle (CPA) in adults. The authors present clinical, neuroradiological, serological, and neuropathological findings in a 60-year-old man with an extraaxial CPA glioblastoma arising from the proximal portion of cranial nerve VIII. The patient presented with progressive left-sided deafness and left-sided facial palsy lasting less than 2 months and progressive dysarthria and dysphagia lasting 2 weeks. Preoperative neuroimaging suggested the diagnosis of CPA meningioma with "dural-tail" sign and involvement of the internal auditory canal. Serological examination showed an increase in the malignant markers of ferritin and neuron-specific enolase, which suggested underlying malignancy. The tumor was subtotally removed, and it was confirmed to be completely separated from the brainstem and cerebellum. Cranial nerves VII and VIII were destroyed and sacrificed. Transient severe bradycardia occurred during surgery due to entrapment of the caudal cranial nerve complex by the tumor in such an infiltrative way. The neuropathological examination revealed a glioblastoma. The patient underwent no further treatment and died of cachexia 2 months postoperatively. To the authors' knowledge, this represents the first case of a primary glioblastoma in the CPA in an adult. A high index of suspicion along with reliance on clinical assessment, radiological findings, and serum detection of specific malignant markers is essential to diagnose such uncommon CPA lesions.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China.
| | | | | | | | | |
Collapse
|
46
|
Yusubalieva GM, Baklaushev VP, Gurina OI, Tsitrin EB, Chekhonin VP. Immunochemical Analysis of Glial Fibrillary Acidic Protein as a Tool to Assess Astroglial Reaction in Experimental C6 Glioma. Bull Exp Biol Med 2010; 149:125-30. [DOI: 10.1007/s10517-010-0890-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Shnaper S, Desbaillets I, Brown DA, Murat A, Migliavacca E, Schluep M, Ostermann S, Hamou MF, Stupp R, Breit SN, de Tribolet N, Hegi ME. Elevated levels of MIC-1/GDF15 in the cerebrospinal fluid of patients are associated with glioblastoma and worse outcome. Int J Cancer 2009; 125:2624-30. [PMID: 19521960 DOI: 10.1002/ijc.24639] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For patients with brain tumors identification of diagnostic and prognostic markers in easy accessible biological material, such as plasma or cerebrospinal fluid (CSF), would greatly facilitate patient management. MIC-1/GDF15 (growth differentiation factor 15) is a secreted protein of the TGF-beta superfamily and emerged as a candidate marker exhibiting increasing mRNA expression during malignant progression of glioma. Determination of MIC-1/GDF15 protein levels by ELISA in the CSF of a cohort of 94 patients with intracranial tumors including gliomas, meningioma and metastasis revealed significantly increased concentrations in glioblastoma patients (median, 229 pg/ml) when compared with control cohort of patients treated for non-neoplastic diseases (median below limit of detection of 156 pg/ml, p < 0.0001, Mann-Whitney test). However, plasma MIC-1/GDF15 levels were not elevated in the matching plasma samples from these patients. Most interestingly, patients with glioblastoma and increased CSF MIC-1/GDF15 had a shorter survival (p = 0.007, log-rank test). In conclusion, MIC-1/GDF15 protein measured in the CSF may have diagnostic and prognostic value in patients with intracranial tumors.
Collapse
Affiliation(s)
- Sophie Shnaper
- Department of Neurosurgery, Laboratory of Brain Tumor Biology and Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nomura S, Miyasho T, Maeda N, Doh-ura K, Yokota H. Autoantibody to glial fibrillary acidic protein in the sera of cattle with bovine spongiform encephalopathy. Proteomics 2009; 9:4029-35. [DOI: 10.1002/pmic.200900066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|