1
|
Hong X, Cai L, Li L, Zheng D, Lin J, Liang Z, Fu W, Liang D, Zeng T, Sun K, Wang W, Chen S, Ren M, Yan L. Keratinocyte-derived small extracellular vesicles delay diabetic wound healing by triggering fibroblasts autophagy. Arch Physiol Biochem 2025; 131:11-23. [PMID: 38828847 DOI: 10.1080/13813455.2024.2358020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Keratinocyte and fibroblast dysfunctions contribute to delayed healing of diabetic wounds. Small extracellular vesicles (sEV) are key mediators of intercellular communication and are involved in the pathogenesis of several diseases. Recent findings suggest that sEV derived from high-glucose-treated keratinocyte (HaCaT-HG-sEV) can transport LINC01435 to inhibit tube formation and migration of HUVECs, thereby delaying wound healing. This study aimed to elucidate sEV-related communication mechanisms between keratinocytes and fibroblasts during diabetic wound healing. HaCaT-HG-sEV treatment and LINC01435 overexpression significantly decreased fibroblast collagen level and migration ability but significantly increased fibroblast autophagy. However, treatment with an autophagy inhibitor suppressed LINC01435 overexpression-induced decrease in collagen levels in fibroblasts. In diabetic mice, HaCaT-HG-sEV treatment decreased collagen levels and increased the expression of the autophagy-related proteins Beclin-1 and LC3 at the wound site, thereby delaying wound healing. Conclusively, LINC01435 in keratinocyte-derived sEV activates fibroblast autophagy and reduces fibroblast collagen synthesis, leading to impaired diabetic wound healing.
Collapse
Affiliation(s)
- Xiaosi Hong
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Leiqin Cai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lanlan Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dinghao Zheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianghong Lin
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoxian Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wan Fu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Zeng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kan Sun
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Endocrinology, Shenshan Medical center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sifan Chen
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Chen X, Zhou F, Lin Y, Xia Y, Zhang J, Hou W, Sun Y, Lai W, Zheng Y. MiR-4298 and lncKRTAP5-6-3 regulated Cathepsin D expression through ERK-MAPK signaling pathway in chronic UVB-damaged HaCaT cells. Front Med (Lausanne) 2025; 11:1485224. [PMID: 39871835 PMCID: PMC11769817 DOI: 10.3389/fmed.2024.1485224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025] Open
Abstract
Objective MiRNAs and lncRNAs are important regulators in the process of skin photoaging. In this study, we investigated the expression changes and interactions between miR4298 and lncKRTAP5-6-3 in chronically UVB-damaged human keratinocyte cell line (HaCaT) cells and explored miR4298-MAPK/ERK signaling pathway-Cathepsin D-lncKRTAP5-6-3 mechanisms in photoaging cells. Methods HaCaT cells were irradiated with 12 mJ/cm2 UVB once a day for 7 days. miR-4298 mimics and miR-4298 inhibitors were transfected into HaCaT cells by lipo3000 transfection reagent, and the HaCaT cells were divided into three groups: blank control group; UVB-damaged group; and UVB damage+miR-4298 regulation (overexpression or inhibition) group. The expression levels of miR4298 and lncKRTAP5-6-3 were quantitatively analyzed using RT-PCR, while the expression of Cathepsin D and MAPK/ERK signaling pathway proteins was detected using Western blot. Results After 7 consecutive days of UVB irradiation, the expression of miR-4298 decreased by 0.64 ± 0.06 (P < 0.001) compared to the un-irradiated HaCaT cells, and the expression of the KRTAP5-6-3 decreased by 0.80 ± 0.13 (P < 0.001) compared to the control group. The expression of p-ERK signaling was increased by 0.9437 ± 0.1186 (P < 0.0001), and Cathepsin D was decreased by 0.6163 ± 0.075 (P < 0.0001). In HaCaT cells transfected with miR-4298 mimics and then irradiated by UVB for 7 days, the expression of lncKRTAP5-6-3 was increased to 0.5114 ± 0.1438 (P < 0.05)-fold, and the phosphorylation level of ERK signaling was decreased by 0.3880 ± 0.1185 (P < 0.01), while Cathepsin D expression was increased by 0.2617 ± 0.0749 (P < 0.0001) compared to the UVB-damaged group. In HaCaT cells transfected with miR-4298 inhibitors and then irradiated by UVB for 7 days, lncKRTAP5-6-3 was decreased by 0.1697 ± 0.1383, the phosphorylation level of ERK signaling was increased by 1.096 ± 0.7836 (P < 0.05), while Cathepsin D expression was decreased by 0.05197 ± 0.24827 compared to the UVB-damaged group. Conclusion The synergistic effects of miR4298 and lncKRTAP5-6-3 play important roles in chronic UVB-damaged HaCaT cells by regulating the MAPK/ERK signaling pathway and Cathepsin D expression. This study presents novel targets for intervening in chronic ultraviolet damage (photoaging) skin and UV-related dermatoses.
Collapse
Affiliation(s)
- Xinling Chen
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Zhou
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yao Lin
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xia
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Zhang
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyi Hou
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Sun
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Lai
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Zheng
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Baek SH, Hong S, Kim E, Park S, Lee M, Park J, Cho Y, Yoon H, Kim D, Yun Y, Kim Y, Choi Y, Kang K, Jung S, Kim JP, Kim E, Seo SW, Jung YK, Jo DG. A Novel RAGE Modulator Induces Soluble RAGE to Reduce BACE1 Expression in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407812. [PMID: 39755927 DOI: 10.1002/advs.202407812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Indexed: 01/06/2025]
Abstract
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology. The research reveals that the anticancer agent 6-thioguanosine (6-TG) markedly diminishes BACE1 expression without eliciting cytotoxicity while enhancing microglial phagocytic activity, and ameliorate cognitive impairments with reducing Aβ accumulation in AD mice. Leveraging advanced deep learning-based tool for target identification, and corroborating with surface plasmon resonance assays, it is elucidated that 6-TG directly interacts with RAGE, modulating BACE1 expression through the JAK2-STAT1 pathway and elevating soluble RAGE (sRAGE) levels in the brain. The findings illuminate the therapeutic potential of 6-TG in ameliorating AD manifestations and advocate for small molecule strategies to increase brain sRAGE levels, offering a strategic alternative to the challenges posed by the complexity of AD.
Collapse
Affiliation(s)
- Seung-Hyun Baek
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suji Hong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sunyoung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minyoung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jinsu Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | | | - Youngkwang Yun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Youbin Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Keunsoo Kang
- Deargen Inc., Daejeon, 34051, Republic of Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, 13496, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, Republic of Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
4
|
Weiting L, Kawaguchi M, Fukushima T, Sato Y. Loss of hepatocyte growth factor activator inhibitor type 1 (HAI-1) upregulates MMP-9 expression and induces degradation of the epidermal basement membrane. Hum Cell 2024; 38:36. [PMID: 39730982 DOI: 10.1007/s13577-024-01159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1), which is encoded by the SPINT1 gene, is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. We had previously demonstrated that HAI-1 is critical for placental development, epidermal keratinization, and maintenance of keratinocyte morphology by regulating cognate proteases, matriptase and prostasin. After performing ultrastructural analysis of Spint1-deleted skin tissues, our results showed that Spint1-deleted epidermis exhibited partially disrupted epidermal basement-membrane structures. Matrix metalloproteinases-9 (MMP-9) expression levels were upregulated in Spint1-deleted primary cultured keratinocytes and SPINT1 knockout (KO) HaCaT cells. Furthermore, gelatin zymography of the conditioned medium showed increased MMP activities in keratinocytes with reduced HAI-1 expression. Treating SPINT1 KO HaCaT cells with dehydroxymethylepoxyquinomicin (DHMEQ), a small molecule inhibitor of NF-κB, abrogated the upregulation of MMP9 and the gelatinolytic activity associated with MMP-9. These results suggest that HAI-1 may play a critical role in epidermal basement membrane integrity by regulating NF-κB activation-induced upregulation of MMP-9.
Collapse
Affiliation(s)
- Liang Weiting
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan.
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| | - Yuichiro Sato
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| |
Collapse
|
5
|
Radziszewski M, Galus R, Łuszczyński K, Winiarski S, Wąsowski D, Malejczyk J, Włodarski P, Ścieżyńska A. The RAGE Pathway in Skin Pathology Development: A Comprehensive Review of Its Role and Therapeutic Potential. Int J Mol Sci 2024; 25:13570. [PMID: 39769332 PMCID: PMC11676465 DOI: 10.3390/ijms252413570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, is expressed in various cell types and mediates cellular responses to a wide range of ligands. The activation of RAGE triggers complex signaling pathways that drive inflammatory, oxidative, and proliferative responses, which are increasingly implicated in the pathogenesis of skin diseases. Despite its well-established roles in conditions such as diabetes, cancer, and chronic inflammation, the contribution of RAGE to skin pathologies remains underexplored. This review synthesizes current findings on RAGE's involvement in the pathophysiology of skin diseases, including conditions such as psoriasis, atopic dermatitis, and lichen planus, focusing on its roles in inflammatory signaling, tissue remodeling, and skin cancer progression. Additionally, it examines RAGE-modulating treatments investigated in dermatological contexts, highlighting their potential as therapeutic options. Given RAGE's significance in a variety of skin conditions, further research into its mediated pathways may uncover new opportunities for targeted interventions in skin-specific RAGE signaling.
Collapse
Affiliation(s)
- Marcin Radziszewski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Łuszczyński
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| | - Sebastian Winiarski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Dariusz Wąsowski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Paweł Włodarski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| |
Collapse
|
6
|
Jiang C, Lao G, Ran J, Zhu P. Berberine alleviates AGEs-induced ferroptosis by activating NRF2 in the skin of diabetic mice. Exp Biol Med (Maywood) 2024; 249:10280. [PMID: 39735782 PMCID: PMC11673220 DOI: 10.3389/ebm.2024.10280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/07/2024] [Indexed: 12/31/2024] Open
Abstract
Advanced glycation end products (AGEs) have adverse effects on the development of diabetic complications. Berberine (BBR), a natural alkaloid, has demonstrated its ability to promote the delayed healing of skin wounds. However, the impact of BBR on AGEs-induced ferroptosis in skin cells and the underlying molecular mechanisms remains unexplored. This study investigated the involvement of ferroptosis in AGEs-induced keratinocyte death, and the impact of BBR on ferroptosis in a db/db mouse model with long-term hyperglycemia was elucidated. A remarkable reduction in cell viability was observed along with increased malondialdehyde (MDA) production in AGEs-induced HaCaT cells. Intracellular reactive oxygen species (ROS) and iron levels were elevated in cells exposed to AGEs. Meanwhile, the protein expression of glutathione peroxidase 4 (GPX4) and ferritin light chain (FTL) was significantly decreased in AGEs-treated cells. However, pretreatment with BBR markedly protected cell viability and inhibited MDA levels, attenuating the intracellular ROS and iron levels and increased expression of GPX4 and FTL in vitro. Significantly diminished antiferroptotic effects of BBR on AGEs-treated keratinocytes were observed upon the knockdown of the nuclear factor E2-related factor 2 (NRF2) gene. In vivo, GPX4, FTL, and FTH expression in the epidermis of diabetic mice was significantly reduced, accompanied by enhanced lipid peroxidation. Treatment with BBR effectively rescued lipid peroxidation accumulation and upregulated GPX4, FTL, FTH, and NRF2 levels in diabetic skin. Collectively, the findings indicate that ferroptosis may play a significant role in AGEs-induced keratinocyte death. BBR protects diabetic keratinocytes against ferroptosis, partly by activating NRF2.
Collapse
Affiliation(s)
- Chunjie Jiang
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Guojuan Lao
- Department of Endocrinology and Metabolism, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianmin Ran
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Ping Zhu
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Kim G, Yoo HJ, Yoo MK, Choi JH, Lee KW. Methylglyoxal-derived hydroimidazolone-1/RAGE axis induces renal oxidative stress and renal fibrosis in vitro and in vivo. Toxicology 2024; 507:153887. [PMID: 39019314 DOI: 10.1016/j.tox.2024.153887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Advanced glycation end products (AGEs) are important contributors to the progression of chronic kidney diseases (CKD), including renal fibrosis. Although the relationship between AGEs and renal fibrosis has been well studied, the mechanisms of individual AGE-induced renal injury remain poorly understood. This study investigated the adverse effect of methylglyoxal-derived hydroimidazolone-1 (MG-H1), a methylglyoxal (MG)-derived AGE generated by the glycation of MG and arginine residues, on kidney damage. We aimed to elucidate the molecular mechanisms of MG-H1-mediated renal injury and fibrosis, focusing on the receptor for AGEs (RAGE) signaling and its effects on the Wnt/β-catenin pathway, MAPK pathway, and inflammatory responses. Our results suggest that the MG-H1/RAGE axis plays a significant role in the pathogenesis of CKD and its downstream events involving MAPK kinase-related factors and inflammatory factors. MG-H1 treatment modulated the expression of inflammatory cytokines (TNF-α, IL-6, and IL-1β) and MAPK proteins (ERK1/2, JNK, and p38).
Collapse
Affiliation(s)
- Gyuri Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ki Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hyeong Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Yadav JP, Verma A, Pathak P, Dwivedi AR, Singh AK, Kumar P, Khalilullah H, Jaremko M, Emwas AH, Patel DK. Phytoconstituents as modulators of NF-κB signalling: Investigating therapeutic potential for diabetic wound healing. Biomed Pharmacother 2024; 177:117058. [PMID: 38968797 DOI: 10.1016/j.biopha.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India; Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ashish R Dwivedi
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ankit Kumar Singh
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| |
Collapse
|
9
|
Li WZ, Liu XX, Shi YJ, Wang XR, Li L, Tai ML, Yi F. Unveiling the mechanism of high sugar diet induced advanced glycosylation end products damage skin structure via extracellular matrix-receptor interaction pathway. J Cosmet Dermatol 2024; 23:2496-2508. [PMID: 38501159 DOI: 10.1111/jocd.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND AGEs accumulate in the skin as a result of a high-sugar diet and play an important role in the skin aging process. OBJECTIVES The aim of this study was to characterize the mechanism underlying the effect of a high-sugar diet on skin aging damage at a holistic level. METHODS We established a high-sugar diet mouse model to compare and analyze differences in physiological indexes. The effect of a high-sugar diet on skin aging damage was analyzed by means of a transcriptome study and staining of pathological sections. Furthermore, the differences in the protein expression of AGEs and ECM components between the HSD and control groups were further verified by immunohistochemistry. RESULTS The skin in the HSD group mice tended toward a red, yellow, dark, and deep color. In addition, the epidermis was irregular with anomalous phenomena, the epidermis was thinned, and the dermis lost its normal structure and showed vacuolated changes. Transcriptomics results revealed significant downregulation of the ECM-receptor interaction pathway, significant upregulation of the expression of AGEs and significant downregulation of the expression levels of COLI, FN1, LM5, and TNC, among others ECM proteins and ECM receptors. CONCLUSIONS High-sugar diets cause skin aging damage by inducing the accumulation of AGEs, disrupting the expression of ECM proteins and their receptors, and downregulating the ECM-receptor interaction pathway, which affects cellular behavioral functions such as cell proliferation, migration, and adhesion, as well as normal skin tissue structure.
Collapse
Affiliation(s)
- Wan-Zhao Li
- R&D Center, Infinitus (China) Company Ltd, Guangzhou, China
| | - Xiao-Xing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yu-Jing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Rui Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Mei-Ling Tai
- R&D Center, Infinitus (China) Company Ltd, Guangzhou, China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
10
|
Liu X, Chen C, Lin Y, Liu Y, Cai S, Li D, Li L, Xiao P, Yi F. Withania somnifera root extract inhibits MGO-induced skin fibroblast cells dysfunction via ECM-integrin interaction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117699. [PMID: 38185262 DOI: 10.1016/j.jep.2023.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal, known as Ashwagandha, has long been used in traditional medicine in Ayurveda, India, a representative adaptogen. The main active constituents of W. somnifera are withanolides, and the root is often used as a medicine with a wide range of pharmacological activities, which can be used to treat insomnia, neurasthenia, diabetes mellitus and skin cancer. AIM OF THE STUDY Whole-component qualitative and quantitative analyses were performed on W. somnifera. We explored the ameliorative effect of the adaptogen representative plant W. somnifera on the senescence events of MGO-injured fibroblasts and its action mechanism and verified the hypotheses that WS can inhibit the accumulation of AGEs and regulate the dynamic balance among the components of the ECM by modulating the expression of integrin β1 receptor; as a result, WS maintains cellular behavioural and biological functions in a normal range and retards the aging of skin from the cellular level. MATERIALS AND METHODS In this study, the components of WS were first qualitatively and quantitatively analysed by HPLC fingerprinting and LC-MS detection. Second, a model of MGO-induced injury of CML-overexpressing fibroblasts was established. ELISA was used to detect CML expression and the synthesis of key extracellular matrix ECM protein components COL1, FN1, LM5 and TNC synthesis; CCK-8 was used to detect cell viability; EDU was used to detect cell proliferation capacity; fluorescence was used to detect cell adhesion capacity; and migration assay were used to detect cell migration capacity; qRT-PCR was used to detect the regulatory pathway TGF-β1 and MMP-2, MMP-9 in ECMs; immunofluorescence was used to detect the expression of ITGB1; and WB was used to detect the expression of COL1, FN1, LM5, Tnc, TGF-β1, MMP-2, MMP-9 and ITGB1. RESULTS In total, 27 active ingredients were analysed from WS, which mainly consisted of withanolide components, such as withaferin A and withanolide A. Based on the model of MGO-induced fibroblast senescence injury, WS significantly inhibited CML synthesis. By up-regulating the expression of integrin β1, it upregulated the expression of the TGF-β1 gene, which is closely related to the generation of ECMs, downregulated the expression of the MMP-2 and MMP-9 genes, which are closely related to the degradation of ECMs, maintained the dynamic balance of the four types of ECMs, and improved cell viability as well as proliferation, migration and adhesion abilities. CONCLUSIONS WS can prevent cellular behavioural dysfunction and delay skin ageing by reducing the accumulation of CML, upregulating the expression of the ITGB1 receptor, maintaining the normal function of ECM-integrin receptor interaction and preventing an imbalance between the production and degradation of protein components of ECMs. The findings reported in this study suggest that WS as a CML inhibitor can modulate ECM-integrin homeostasis and has great potential in the field of aging retardation.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Chunyu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Yingying Lin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Yanhong Liu
- Hua An Tang Biotech Group Co., Ltd., No.13, Liuwei Street, Hualong Town, Panyu District, Guangzhou, 511434, PR China
| | - Shaochun Cai
- Hua An Tang Biotech Group Co., Ltd., No.13, Liuwei Street, Hualong Town, Panyu District, Guangzhou, 511434, PR China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., No.13, Liuwei Street, Hualong Town, Panyu District, Guangzhou, 511434, PR China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193, PR China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China; Institute of cosmetic regulatory science, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, PR China.
| |
Collapse
|
11
|
Zhou P, Li Y, Zhang S, Chen DX, Gao R, Qin P, Yang C, Li Q. KRT17 From Keratinocytes With High Glucose Stimulation Inhibit Dermal Fibroblasts Migration Through Integrin α11. J Endocr Soc 2024; 8:bvad176. [PMID: 38205163 PMCID: PMC10776312 DOI: 10.1210/jendso/bvad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Indexed: 01/12/2024] Open
Abstract
Objective To investigate the effects of overexpressed keratin 17 (KRT17) on the biology of human dermal fibroblasts (HDFs) and to explore the mechanism of KRT17 in diabetic wound healing. Methods KRT17 expression was tested in diabetic keratinocytes, animal models, and patient skin tissues (Huazhong University of Science and Technology Ethics Committee, [2022] No. 3110). Subsequently, HDFs were stimulated with different concentrations of KRT17 in vitro. Changes in the proliferation and migration of HDFs were observed. Then, identification of KRT17-induced changes in dermal fibroblast of RNA sequencing-based transcriptome analysis was performed. Results KRT17 expression was upregulated under pathological conditions. In vitro stimulation of HDFs with different concentrations of KRT17 inhibited cell migration. RNA-seq data showed that enriched GO terms were extracellular matrix components and their regulation. KEGG analysis revealed that the highest number of enriched genes was PI3K-Akt, in which integrin alpha-11 (ITGA11) mRNA, a key molecule that regulates cell migration, was significantly downregulated. Decreased ITGA11 expression was observed after stimulation of HDFs with KRT17 in vitro. Conclusion Increased expression of KRT17 in diabetic pathological surroundings inhibits fibroblast migration by downregulating the expression of ITGA11. Thus, KRT17 may be a molecular target for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Shan Zhang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dian-Xi Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ruikang Gao
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
12
|
Yadav JP. Based on Clinical Research Matrix Metalloprotease (MMP) Inhibitors to Promote Diabetic Wound Healing. Horm Metab Res 2023; 55:752-757. [PMID: 37798905 DOI: 10.1055/a-2171-5879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Chronic inflammation is a common factor in obesity, diabetes mellitus, and the complications of diabetes, including diabetic wounds. These ulcers are characterized by persistent lesions that are challenging to heal, significantly decreasing patients' quality of life and imposing a substantial financial burden on society. MMP are zinc endopeptidases that play a role in wound healing in response to various stimuli, including diabetes mellitus. MMP levels fluctuate throughout the wound healing process in diabetic patients' serum, skin tissues, and wound fluid, indicating their potential as biomarkers for diabetic foot ulcers. Targeting MMP has emerged as a promising strategy for treating diabetic wounds, as these enzymes are involved in critical biological processes related to wound healing, including extracellular matrix secretion, angiogenesis, granulation tissue formation, collagen growth, re-epithelization, inflammatory response, and oxidative stress.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| |
Collapse
|
13
|
Wang X, Chen S, Wen F, Zeng Y, Zhang Y. RNA helicase DHX33 regulates HMGB family genes in human cancer cells. Cell Signal 2023; 110:110832. [PMID: 37543097 DOI: 10.1016/j.cellsig.2023.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
RNA helicase DHX33 has been shown to be aberrantly expressed in various human cancers, however, its role in tumorigenesis remains incompletely understood. In this report, we uncovered that a family of DNA architecture proteins, HMGBs, can be regulated by DHX33 in cancer cells but not in normal cells. Specifically, DHX33 knockdown caused the downregulation of HMGBs at the levels of both gene transcription and protein expression. Notably, in RAS driven lung tumorigenesis, nuclear HMGBs proteins can be induced via DHX33. When DHX33 was knocked out, HMGBs overexpression was debilitated. Mechanistically, DHX33 was found to bind to the promoters of HMGB family genes and regulated their transcription through demethylation on gene promoters. Our study reveals a novel mechanism for DHX33 to promote tumorigenesis and highlights its therapeutic value in human cancers.
Collapse
Affiliation(s)
- Xingshun Wang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653199, China
| | - Shiyun Chen
- Shenzhen KeYe Life Technologies, Co., Ltd, Shenzhen, Guangdong 518122, China; Southern University of Science and Technology, Shenzhen, China
| | - Fuyu Wen
- Shenzhen KeYe Life Technologies, Co., Ltd, Shenzhen, Guangdong 518122, China
| | - Yong Zeng
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653199, China.
| | - Yandong Zhang
- Shenzhen KeYe Life Technologies, Co., Ltd, Shenzhen, Guangdong 518122, China.
| |
Collapse
|
14
|
Raupbach J, Müller SK, Schnell V, Friedrich S, Hellwig A, Grune T, Henle T. The Effect of Free and Protein-Bound Maillard Reaction Products N-ε-Carboxymethyllysine, N-ε-Fructosyllysine, and Pyrraline on Nrf2 and NFκB in HCT 116 Cells. Mol Nutr Food Res 2023; 67:e2300137. [PMID: 37465844 DOI: 10.1002/mnfr.202300137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Indexed: 07/20/2023]
Abstract
SCOPE Maillard reaction products (MRPs) are believed to interact with the receptor for advanced glycation endproducts (RAGE) and lead to a pro-inflammatory cellular response. The structural basis for this interaction is scarcely understood. This study investigates the effect of individual lysine modifications in free form or bound to casein on human colon cancer cells. METHODS AND RESULTS Selectively glycated casein containing either protein-bound N-ε-carboxymethyllysine (CML), N-ε-fructosyllysine (FL), or pyrraline is prepared and up to 94%, 97%, and 61% of lysine modification could be attributed to CML, FL, or pyrraline, respectively. HCT 116 cells are treated with free CML, pyrraline, FL, or modified casein for 24 h. Native casein is used as control. Intracellular MRP content is analyzed by UPLC-MS/MS. Microscopic analysis of the transcription factors shows no activation of NFκB by free or protein-bound FL or CML, whereas casein containing protein-bound pyrraline activates Nrf2. RAGE expression is not influenced by free or casein-bound MRPs. Activation of Nrf2 by pyrraline-modified casein is confirmed by analyzing Nrf2 target proteins NAD(P)H dehydrogenase (quinone 1) (NQO1) and heme oxygenase-1 (HO-1). CONCLUSION Studies on the biological effects of glycated proteins require an individual consideration of defined structures. General statements on the effect of "AGEs" in biological systems are scientifically unsound.
Collapse
Affiliation(s)
- Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Stephan K Müller
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| | - Vanessa Schnell
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Suse Friedrich
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Anne Hellwig
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
15
|
Zhao SY, Zhao HH, Wang BH, Shao C, Pan WJ, Li SM. Rhein alleviates advanced glycation end products (AGEs)-induced inflammatory injury of diabetic cardiomyopathy in vitro and in vivo models. J Nat Med 2023; 77:898-915. [PMID: 37598111 DOI: 10.1007/s11418-023-01741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
In diabetic patients, diabetic cardiomyopathy (DCM) is one of the most common causes of death. The inflammatory response is essential in the pathogenesis of DCM. Rhein, an anthraquinone compound, is extracted from the herb rhubarb, demonstrating various biological activities. However, it is unclear whether rhein has an anti-inflammatory effect in treating DCM. In our research, we investigated the anti-inflammatory properties as well as its possible mechanism. According to the findings in vitro, rhein could to exert an anti-inflammatory effect by reducing the production of NO, TNF-α, PGE2, iNOS, and COX-2 in RAW264.7 cells that had been stimulated with advanced glycosylation end products (AGEs). In addition, rhein alleviated H9C2 cells inflammation injury stimulated by AGEs/macrophage conditioned medium (CM). In vivo have depicted that continuous gavage of rhein could improve cardiac function and pathological changes. Moreover, it could inhibit the accumulation of AGEs and infiltration of inflammatory factors inside the heart of rats having DCM. Mechanism study showed rhein could suppress IKKβ and IκB phosphorylation via down-regulating TRAF6 expression to inhibit NF-κB pathway in AGEs/CM-induced H9C2 cells. Moreover, the anti-inflammation effect of rhein was realized through down-regulation phosphorylation of JNK MAPK. Furthermore, we found JNK MAPK could crosstalk with NF-κB pathway by regulating IκB phosphorylation without affecting IKKβ activity. And hence, the protective mechanism of rhein may involve the inhibiting of the TRAF6-NF/κB pathway, the JNK MAPK pathway, and the crosstalk between the two pathways. These results suggested that rhein may be a promising drug candidate in anti-inflammation and inflammation-related DCM therapy.
Collapse
Affiliation(s)
- Shao-Yang Zhao
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| | - Huan-Huan Zhao
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Nutrition Department, LinYi People's Hospital, Linyi, 276000, Shandong, China
| | - Bao-Hua Wang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Cui Shao
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wen-Jun Pan
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Sai-Mei Li
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
16
|
Wimalawansa SJ. Controlling Chronic Diseases and Acute Infections with Vitamin D Sufficiency. Nutrients 2023; 15:3623. [PMID: 37630813 PMCID: PMC10459179 DOI: 10.3390/nu15163623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Apart from developmental disabilities, the prevalence of chronic diseases increases with age especially in those with co-morbidities: vitamin D deficiency plays a major role in it. Whether vitamin D deficiency initiates and/or aggravates chronic diseases or vice versa is unclear. It adversely affects all body systems but can be eliminated using proper doses of vitamin D supplementation and/or safe daily sun exposure. Maintaining the population serum 25(OH)D concentration above 40 ng/mL (i.e., sufficiency) ensures a sound immune system, minimizing symptomatic diseases and reducing infections and the prevalence of chronic diseases. This is the most cost-effective way to keep a population healthy and reduce healthcare costs. Vitamin D facilitates physiological functions, overcoming pathologies such as chronic inflammation and oxidative stress and maintaining broader immune functions. These are vital to overcoming chronic diseases and infections. Therefore, in addition to following essential public health and nutritional guidance, maintaining vitamin D sufficiency should be an integral part of better health, preventing acute and chronic diseases and minimize their complications. Those with severe vitamin D deficiency have the highest burdens of co-morbidities and are more vulnerable to developing complications and untimely deaths. Vitamin D adequacy improves innate and adaptive immune systems. It controls excessive inflammation and oxidative stress, generates antimicrobial peptides, and neutralizes antibodies via immune cells. Consequently, vitamin D sufficiency reduces infections and associated complications and deaths. Maintaining vitamin D sufficiency reduces chronic disease burden, illnesses, hospitalizations, and all-cause mortality. Vulnerable communities, such as ethnic minorities living in temperate countries, older people, those with co-morbidities, routine night workers, and institutionalized persons, have the highest prevalence of vitamin D deficiency-they would significantly benefit from vitamin D and targeted micronutrient supplementation. At least now, health departments, authorities, and health insurance companies should start assessing, prioritizing, and encouraging this economical, non-prescription, safe micronutrient to prevent and treat acute and chronic diseases. This approach will significantly reduce morbidity, mortality, and healthcare costs and ensure healthy aging.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Department of Medicine, CardioMetabolic & Endocrine Institute, North Brunswick, NJ 08902, USA
| |
Collapse
|
17
|
Tian Z, Chen S, Shi Y, Wang P, Wu Y, Li G. Dietary advanced glycation end products (dAGEs): An insight between modern diet and health. Food Chem 2023; 415:135735. [PMID: 36863235 DOI: 10.1016/j.foodchem.2023.135735] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Advanced glycation end products (AGEs) are formed by a series of chemical reactions of amino acids, peptides, proteins, and ketones at normal temperature or heated non-enzymatic conditions. A large amount of AGEs derived from Maillard Reaction (MR) during the process of food heat-processing. After oral intake, dietary AGEs are converted into biological AGEs through digestion and absorption, and accumulated in almost all organs. The safety and health risk of dietary AGEs have attracted wide attention. Increasing evidence have shown that uptake of dietary AGEs is closely related to the occurrence of many chronic diseases, such as diabetes, chronic kidney disease, osteoporosis, and Alzheimer's disease. This review summarized the most updated information of production, bio-transport in vivo, detection technologies, and physiological toxicity of dietary AGEs, and also discussed approaches to inhibit dietary AGEs generation. Impressively, the future opportunities and challenges on the detection, toxicity, and inhibition of dietary AGEs are raised.
Collapse
Affiliation(s)
- Zhaoqing Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shasha Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Panpan Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
18
|
Kim Y. Blood and Tissue Advanced Glycation End Products as Determinants of Cardiometabolic Disorders Focusing on Human Studies. Nutrients 2023; 15:nu15082002. [PMID: 37111220 PMCID: PMC10144557 DOI: 10.3390/nu15082002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiometabolic disorders are characterised by a cluster of interactive risk determinants such as increases in blood glucose, lipids and body weight, as well as elevated inflammation and oxidative stress and gut microbiome changes. These disorders are associated with onset of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). T2DM is strongly associated with CVD. Dietary advanced glycation end products (dAGEs) attributable from modern diets high in sugar and/or fat, highly processed foods and high heat-treated foods can contribute to metabolic etiologies of cardiometabolic disorders. This mini review aims to determine whether blood dAGEs levels and tissue dAGEs levels are determinants of the prevalence of cardiometabolic disorders through recent human studies. ELISA (enzyme-linked immunosorbent assay), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) for blood dAGEs measurement and skin auto fluorescence (SAF) for skin AGEs measurement can be used. Recent human studies support that a diet high in AGEs can negatively influence glucose control, body weight, blood lipid levels and vascular health through the elevated oxidative stress, inflammation, blood pressure and endothelial dysfunction compared with a diet low in AGEs. Limited human studies suggested a diet high in AGEs could negatively alter gut microbiota. SAF could be considered as one of the predictors affecting risks for cardiometabolic disorders. More intervention studies are needed to determine how dAGEs are associated with the prevalence of cardiometabolic disorders through gut microbiota changes. Further human studies are conducted to find the association between CVD events, CVD mortality and total mortality through SAF measurement, and a consensus on whether tissue dAGEs act as a predictor of CVD is required.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
19
|
Bhat SA, Hasan SK, Parray ZA, Siddiqui ZI, Ansari S, Anwer A, Khan S, Amir F, Mehmankhah M, Islam A, Minuchehr Z, Kazim SN. Potential antiviral activities of chrysin against hepatitis B virus. Gut Pathog 2023; 15:11. [PMID: 36895013 PMCID: PMC9995728 DOI: 10.1186/s13099-023-00531-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/26/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Interferon and nucleos(t)ide analogues are current therapeutic treatments for chronic Hepatitis B virus (HBV) infection with the limitations of a functional cure. Chrysin (5, 7-dihydroxyflavone) is a natural flavonoid, known for its antiviral and hepatoprotective activities. However, its anti-HBV activity is unexplored. METHODS In the present study, the anti-hepatitis B activity of chrysin was investigated using the in vitro experimental cell culture model, HepG2 cells. In silico studies were performed where chrysin and lamivudine (used here as a positive control) were docked with high mobility group box 1 protein (HMGB1). For the in vitro studies, wild type HBV genome construct (pHBV 1.3X) was transiently transfected in HepG2. In culture supernatant samples, HBV surface antigen (HBsAg) and Hepatitis B e antigen (HBeAg) were measured by enzyme-linked immunosorbent assay (ELISA). Secreted HBV DNA and intracellular covalently closed circular DNA (cccDNA) were measured by SYBR green real-time PCR. The 3D crystal structure of HMGB1 (1AAB) protein was developed and docked with the chrysin and lamivudine. In silico drug-likeness, Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties of finest ligands were performed by using SwissADME and admetSAR web servers. RESULTS Data showed that chrysin significantly decreases HBeAg, HBsAg secretion, supernatant HBV DNA and cccDNA, in a dose dependent manner. The docking studies demonstrated HMGB1 as an important target for chrysin as compared to lamivudine. Chrysin revealed high binding affinity and formed a firm kissing complex with HMGB1 (∆G = - 5.7 kcal/mol), as compared to lamivudine (∆G = - 4.3 kcal/mol), which might be responsible for its antiviral activity. CONCLUSIONS The outcome of our study establishes chrysin as a new antiviral against HBV infection. However, using chrysin to treat chronic HBV disease needs further endorsement and optimization by in vivo studies in animal models.
Collapse
Affiliation(s)
- Sajad Ahmad Bhat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Syed Kazim Hasan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zaheenul Islam Siddiqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shabnam Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Ayesha Anwer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saniya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Fatima Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mahboubeh Mehmankhah
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zarrin Minuchehr
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
20
|
Singh SK, Dwivedi SD, Yadav K, Shah K, Chauhan NS, Pradhan M, Singh MR, Singh D. Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing. Biomedicines 2023; 11:biomedicines11020613. [PMID: 36831151 PMCID: PMC9952895 DOI: 10.3390/biomedicines11020613] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Wound healing responses play a major role in chronic inflammation, which affects millions of people around the world. One of the daunting tasks of creating a wound-healing drug is finding equilibrium in the inflammatory cascade. In this study, the molecular and cellular mechanisms to regulate wound healing are explained, and recent research is addressed that demonstrates the molecular and cellular events during diabetic wound healing. Moreover, a range of factors or agents that facilitate wound healing have also been investigated as possible targets for successful treatment. It also summarises the various advances in research findings that have revealed promising molecular targets in the fields of therapy and diagnosis of cellular physiology and pathology of wound healing, such as neuropeptides, substance P, T cell immune response cDNA 7, miRNA, and treprostinil growth factors such as fibroblast growth factor, including thymosin beta 4, and immunomodulators as major therapeutic targets.
Collapse
Affiliation(s)
- Suraj Kumar Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Krishna Yadav
- Raipur Institute of Pharmaceutical Educations and Research, Sarona, Raipur 492010, Chhattisgarh, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | | | - Madhulika Pradhan
- Gracious College of Pharmacy Abhanpur Raipur, Village-Belbhata, Taluka, Abhanpur 493661, Chhattisgarh, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
- Correspondence:
| |
Collapse
|
21
|
Chen J, Qin S, Liu S, Zhong K, Jing Y, Wu X, Peng F, Li D, Peng C. Targeting matrix metalloproteases in diabetic wound healing. Front Immunol 2023; 14:1089001. [PMID: 36875064 PMCID: PMC9981633 DOI: 10.3389/fimmu.2023.1089001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Chronic inflammation participates in the progression of multiple chronic diseases, including obesity, diabetes mellitus (DM), and DM related complications. Diabetic ulcer, characterized by chronic wounds that are recalcitrant to healing, is a serious complication of DM tremendously affecting the quality of life of patients and imposing a costly medical burden on society. Matrix metalloproteases (MMPs) are a family of zinc endopeptidases with the capacity of degrading all the components of the extracellular matrix, which play a pivotal part in healing process under various conditions including DM. During diabetic wound healing, the dynamic changes of MMPs in the serum, skin tissues, and wound fluid of patients are in connection with the degree of wound recovery, suggesting that MMPs can function as essential biomarkers for the diagnosis of diabetic ulcer. MMPs participate in various biological processes relevant to diabetic ulcer, such as ECM secretion, granulation tissue configuration, angiogenesis, collagen growth, re-epithelization, inflammatory response, as well as oxidative stress, thus, seeking and developing agents targeting MMPs has emerged as a potential way to treat diabetic ulcer. Natural products especially flavonoids, polysaccharides, alkaloids, polypeptides, and estrogens extracted from herbs, vegetables, as well as animals that have been extensively illustrated to treat diabetic ulcer through targeting MMPs-mediated signaling pathways, are discussed in this review and may contribute to the development of functional foods or drug candidates for diabetic ulcer therapy. This review highlights the regulation of MMPs in diabetic wound healing, and the potential therapeutic ability of natural products for diabetic wound healing by targeting MMPs.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siqi Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengmeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kexin Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiqi Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Pharmacology, Sichuan University, Chengdu, China
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Zheng W, Li H, Go Y, Chan XH(F, Huang Q, Wu J. Research Advances on the Damage Mechanism of Skin Glycation and Related Inhibitors. Nutrients 2022; 14:4588. [PMID: 36364850 PMCID: PMC9655929 DOI: 10.3390/nu14214588] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Our skin is an organ with the largest contact area between the human body and the external environment. Skin aging is affected directly by both endogenous factors and exogenous factors (e.g., UV exposure). Skin saccharification, a non-enzymatic reaction between proteins, e.g., dermal collagen and naturally occurring reducing sugars, is one of the basic root causes of endogenous skin aging. During the reaction, a series of complicated glycation products produced at different reaction stages and pathways are usually collectively referred to as advanced glycation end products (AGEs). AGEs cause cellular dysfunction through the modification of intracellular molecules and accumulate in tissues with aging. AGEs are also associated with a variety of age-related diseases, such as diabetes, cardiovascular disease, renal failure (uremia), and Alzheimer's disease. AGEs accumulate in the skin with age and are amplified through exogenous factors, e.g., ultraviolet radiation, resulting in wrinkles, loss of elasticity, dull yellowing, and other skin problems. This article focuses on the damage mechanism of glucose and its glycation products on the skin by summarizing the biochemical characteristics, compositions, as well as processes of the production and elimination of AGEs. One of the important parts of this article would be to summarize the current AGEs inhibitors to gain insight into the anti-glycation mechanism of the skin and the development of promising natural products with anti-glycation effects.
Collapse
Affiliation(s)
- Wenge Zheng
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Huijuan Li
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Yuyo Go
- Royal Victoria Hospital, BT12 6BA Belfast, Northern Ireland, UK
| | | | - Qing Huang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Jianxin Wu
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
24
|
Zhao X, Xu M, Tang Y, Xie D, Deng L, Chen M, Wang Y. Decreased expression of miR-204-3p in peripheral blood and wound margin tissue associated with the onset and poor wound healing of diabetic foot ulcers. Int Wound J 2022; 20:413-429. [PMID: 35879811 PMCID: PMC9885452 DOI: 10.1111/iwj.13890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
To investigate the relationship between small non-coding RNA-204-3p (miR-204-3p) and the onset and wound healing of diabetic foot ulcers (DFU) and the underlying molecular mechanism, sixty four newly diagnosed patients with T2DM without DFU (T2DM group), 82 T2DM patients with DFU (DFU group), and 60 controls with normal glucose tolerance (NC group) were included. Quantitative real-time PCR (qRT-PCR) method was used to determine miR-204-3p expression levels in peripheral blood and wound margin tissue of subjects, and to analyse the relationship between the expression of miR-204-3p and wound healing. In vitro experiments were also performed to understand the effect of miR-204-3p on high glucose induced injury of HaCaT cells (human keratinocytes). The results showed that miR-204-3p expression level of peripheral blood in the T2DM group was marked lower than that in the NC group [2.38 (1.31-5.04) vs 3.27 (1.51-6.98)] (P < .05). Similarly, the miR-204-3p expression level of peripheral blood in the DFU group was significantly lower than the T2DM group [1.15 (0.78-2.89) vs 2.38 (1.31-5.04)] (P < .01). The expression level of miR-204-3p in peripheral blood and wound margin tissues of DFU patients was positively correlated with the healing rate of foot ulcers after 8 weeks (P < .05). Multifactorial logistic regression analysis showed that decreased expression of miR-204-3p in peripheral blood was an independent risk factor for DFU (OR = 2.95, P < .05). The results of in vitro experiments showed that miR-204-3p could improve the proliferation and migration of HKC cells and reduce the proportion of apoptosis of HKC cells by targeted regulation of zinc finger protein Kruppel like factor 6 (KLF6) in high glucose environment. Therefore, the decreased expression of miR-204-3p in peripheral blood and wound tissue of T2DM patients is closely related to the occurrence and poor wound healing of DFU. The down-regulated expression of miR-204-3p can reduce its ability to antagonise the functional damage of keratinocytes induced by high-glucose conditions. These results will provide potential targets for the treatment of DFU.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefei CityChina
| | - Murong Xu
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefei CityChina
| | - Ying Tang
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefei CityChina
| | - Dandan Xie
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefei CityChina
| | - Lili Deng
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefei CityChina
| | - Mingwei Chen
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefei CityChina
| | - Youmin Wang
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefei CityChina
| |
Collapse
|
25
|
Chen CY, Zhang JQ, Li L, Guo MM, He YF, Dong YM, Meng H, Yi F. Advanced Glycation End Products in the Skin: Molecular Mechanisms, Methods of Measurement, and Inhibitory Pathways. Front Med (Lausanne) 2022; 9:837222. [PMID: 35646963 PMCID: PMC9131003 DOI: 10.3389/fmed.2022.837222] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
Advanced glycation end products (AGEs) are a series of stable compounds produced under non-enzymatic conditions by the amino groups of biomacromolecules and the free carbonyl groups of glucose or other reducing sugars commonly produced by thermally processed foods. AGEs can cause various diseases, such as diabetes, atherosclerosis, neurodegeneration, and chronic kidney disease, by triggering the receptors of AGE (RAGEs) in the human body. There is evidence that AGEs can also affect the different structures and physiological functions of the skin. However, the mechanism is complicated and cumbersome and causes various harms to the skin. This article aims to identify and summarise the formation and characteristics of AGEs, focussing on the molecular mechanisms by which AGEs affect the composition and structure of normal skin substances at different skin layers and induce skin issues. We also discuss prevention and inhibition pathways, provide a systematic and comprehensive method for measuring the content of AGEs in human skin, and summarise and analyse their advantages and disadvantages. This work can help researchers acquire a deeper understanding of the relationship between AGEs and the skin and provides a basis for the development of effective ingredients that inhibit glycation.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Jia-Qi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Miao-Miao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Yi-Fan He
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Yin-Mao Dong
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Hong Meng
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| |
Collapse
|
26
|
Ahmad Bhat S, Islam Siddiqui Z, Ahmad Parray Z, Sultan A, Afroz M, Ali Azam S, Rahman Farooqui S, Naqui Kazim S. Naturally occurring HMGB1 inhibitor delineating the anti-hepatitis B virus mechanism of glycyrrhizin via in vitro and in silico studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Bayarsaikhan G, Bayarsaikhan D, Lee J, Lee B. Targeting Scavenger Receptors in Inflammatory Disorders and Oxidative Stress. Antioxidants (Basel) 2022; 11:936. [PMID: 35624800 PMCID: PMC9137717 DOI: 10.3390/antiox11050936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and inflammation cannot be considered as diseases themselves; however, they are major risk factors for the development and progression of the pathogenesis underlying many illnesses, such as cancer, neurological disorders (including Alzheimer's disease and Parkinson's disease), autoimmune and metabolic disorders, etc. According to the results obtained from extensive studies, oxidative stress-induced biomolecules, such as advanced oxidation protein products, advanced glycation end products, and advanced lipoxidation end products, are critical for an accelerated level of inflammation and oxidative stress-induced cellular damage, as reflected in their strong affinity to a wide range of scavenger receptors. Based on the limitations of antioxidative and anti-inflammatory molecules in practical applications, targeting such interactions between harmful molecules and their cellular receptors/signaling with advances in gene engineering technology, such as CRISPR or TALEN, may prove to be a safe and effective alternative. In this review, we summarize the findings of recent studies focused on the deletion of scavenger receptors under oxidative stress as a development in the therapeutic approaches against the diseases linked to inflammation and the contribution of advanced glycation end products (AGEs), advanced lipid peroxidation products (ALEs), and advanced oxidation protein products (AOPPs).
Collapse
Affiliation(s)
- Govigerel Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
| | - Delger Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
| | - Jaewon Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
| | - Bonghee Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Gachon University, Incheon 405-760, Korea
| |
Collapse
|
28
|
Zhu P, Chen C, Wu D, Chen G, Tan R, Ran J. AGEs-induced MMP-9 activation mediated by Notch1 signaling is involved in impaired wound healing in diabetic rats. Diabetes Res Clin Pract 2022; 186:109831. [PMID: 35306046 DOI: 10.1016/j.diabres.2022.109831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 11/03/2022]
Abstract
AIMS To elucidate the relationship between advanced glycation end products (AGEs), Notch1 signaling, nuclear factor-kappa B (NF-κB), and matrix metalloproteinase-9 (MMP-9) in diabetic wound healing in vitro and in vivo. METHODS We incubated primary keratinocytes with AGEs alone or AGEs along with γ-secretase inhibitor DAPT, and established diabetic rat wound model by intraperitoneal streptozotocin treatment. The Notch1 signaling components and MMP-9 expression were detected by qPCR, western blotting and gelatin zymography. RESULTS The exposure of primary keratinocytes to AGEs led to a significant increase in Notch intracellular domain (NICD), Delta-like 4 (Dll4), and Hes1; however, Notch1 expression was inhibited by the RAGE siRNA. Furthermore, MMP-9 activation was up-regulated, secondary to AGEs treatment. In contrast, increased MMP-9 expression by AGEs-stimulation was eliminated after treatment with DAPT. NF-κB activation participated in the Notch1-modulated MMP-9 expression. Notably, in the diabetic animal model, inhibition of the Notch signaling pathway with DAPT attenuated NICD and MMP-9 overexpression, improved collagen accumulation, and ultimately accelerated diabetic wound healing. CONCLUSIONS These findings identified that activation of the Notch1/NF-κB/MMP-9 pathway, in part, mediates the repressive effects of AGEs on diabetic wound healing and that targeting this pathway may be a potential strategy to improve impaired diabetic wound healing.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Chuping Chen
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Daoai Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Bengbu Medical College, Bengbu 233099, China
| | - Guangshu Chen
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Rongshao Tan
- Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Jianmin Ran
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China.
| |
Collapse
|
29
|
Ouyang M, Fang J, Wang M, Huang X, Lan J, Qu Y, Lai W, Xu Q. Advanced glycation end products alter the m 6A-modified RNA profiles in human dermal fibroblasts. Epigenomics 2022; 14:431-449. [PMID: 35285253 DOI: 10.2217/epi-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: To explore advanced glycation end products (AGEs)-induced m6A modification in fibroblasts and its potential role in photoaging. Methods: We studied m6A modification in AGEs-bovine serum albumin-treated fibroblasts with m6A-mRNA & lncRNA epitranscriptomic microarray and bioinformatics analysis. The m6A modification level was also investigated in skin samples. Results: m6A methylation microarray analysis revealed m6A modification profiles in AGEs-treated fibroblasts. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction and competing endogenous RNA network analysis indicated that the genes of differentially methylated mRNAs and lncRNAs were mainly related to inflammation processes. We also found that AGEs-bovine serum albumin dose-dependently increased the m6A level and METTL14 expression in both fibroblasts and sun-exposed skin. Conclusion: Our study provided novel information regarding alterations of m6A modifications in AGEs-induced dermal fibroblasts and potential targets for treatment of photoaging.
Collapse
Affiliation(s)
- Mengting Ouyang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiaqi Fang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mengyao Wang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yingying Qu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Lai
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
30
|
Jeong J, Cho S, Lee BS, Seo M, Jang Y, Lim S, Park S. Soluble RAGE attenuates Ang II-induced arterial calcification via inhibiting AT1R-HMGB1-RAGE axis. Atherosclerosis 2022; 346:53-62. [DOI: 10.1016/j.atherosclerosis.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
|
31
|
Dubey R, Prabhakar PK, Gupta J. Epigenetics: key to improve delayed wound healing in type 2 diabetes. Mol Cell Biochem 2022; 477:371-383. [PMID: 34739665 DOI: 10.1007/s11010-021-04285-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Diabetes-related delayed wound healing is a multifactorial, nuanced, and intertwined complication that causes substantial clinical morbidity. The etiology of diabetes and its related microvascular complications is affected by genes, diet, and lifestyle factors. Epigenetic modifications such as DNA methylation, histone modifications, and post-transcriptional RNA regulation (microRNAs) are subsequently recognized as key facilitators of the complicated interaction between genes and the environment. Current research suggests that diabetes-persuaded dysfunction of epigenetic pathways, which results in changed expression of genes in target cells and cause diabetes-related complications including cardiomyopathy, nephropathy, retinopathy, delayed wound healing, etc., which are foremost drivers to diabetes-related adverse outcomes. In this paper, we discuss the role of epigenetic mechanisms in controlling tissue repair, angiogenesis, and expression of growth factors, as well as recent findings that show the alteration of epigenetic events during diabetic wound healing.
Collapse
Affiliation(s)
- Rupal Dubey
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Physiotherapy and Paramedical Sciences, Lovely Professional University, 144411, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India.
| |
Collapse
|
32
|
A Dunaliella salina Extract Counteracts Skin Aging under Intense Solar Irradiation Thanks to Its Antiglycation and Anti-Inflammatory Properties. Mar Drugs 2022; 20:md20020104. [PMID: 35200634 PMCID: PMC8879334 DOI: 10.3390/md20020104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
Glycation, and the resulting buildup of advanced glycation end products (AGEs), is recognized as a key driver of cumulative skin damage and skin aging. Dunaliella salina is a halophile microalga adapted to intense solar radiation through the production of carotenoids. We present a natural supercritical CO2 extract of Dunaliella salina rich in the colorless carotenoids phytoene and phytofluene. The extract exhibited antiglycation and anti-inflammatory activities in ex vivo testing, showing strongly reduced formation of N-ε-carboxy-methyl-lysine with exposure to methylglyoxal, reduced AGE receptor levels, and significantly reduced interleukins 6 and 8. In a placebo-controlled clinical study under intense solar exposure, the extract significantly reduced the skin’s glycation scores and its sensitivity to histamine; key skin aging parameters were also significantly improved vs. placebo, including wrinkle counts and spots. These results demonstrate the value of this Dunaliella salina extract, rich in colorless carotenoids, as an antiglycative, anti-inflammatory, and antiaging active ingredient, including in high-irradiation contexts.
Collapse
|
33
|
Wang H, Mou H, Xu X, Liu C, Zhou G, Gao B. LncRNA KCNQ1OT1 (potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1) aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 (mitogen-activated protein kinase 1) axis in sepsis. Bioengineered 2021; 12:11353-11368. [PMID: 34783627 PMCID: PMC8810185 DOI: 10.1080/21655979.2021.2005987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common complication of sepsis, is characterized by a rapid loss of renal excretory function. A variety of etiologies and pathophysiological processes may contribute to AKI. Previously, mitogen-activated protein kinase 1 (MAPK1) was reported to regulate cellular processes in various sepsis-associated diseases. The current study aimed to further explore the biological function and regulatory mechanism of MAPK1 in sepsis-induced AKI. In our study, MAPK1 exhibited high expression in the serum of AKI patients. Functionally, knockdown of MAPK1 suppressed inflammatory response, cell apoptosis in response of lipopolysaccharide (LPS) induction in HK-2 cells. Moreover, MAPK1 deficiency alleviated renal inflammation, renal dysfunction, and renal injury in vivo. Mechanistically, MAPK1 could activate the downstream p38/NF-κB pathway. Moreover, long noncoding RNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) was identified to serve as a competing endogenous RNA for miR-212-3p to regulate MAPK1. Finally, rescue assays indicated that the inhibitory effect of KCNQ1OT1 knockdown on inflammatory response, cell apoptosis, and p38/NF-κB pathway was reversed by MAPK1 overexpression in HK-2 cells. In conclusion, KCNQ1OT1 aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 axis in sepsis. Therefore, KCNQ1OT may serve as a potential biomarker for the prognosis and diagnosis of AKI patients.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Hongbin Mou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Xiaolan Xu
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Changhua Liu
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Gang Zhou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Bo Gao
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| |
Collapse
|
34
|
Hsiao LW, Tsay GJ, Mong MC, Liu WH, Yin MC. Aqueous extract prepared from steamed red amaranth (Amaranthus gangeticus L.) leaves protected human lens cells against high glucose induced glycative and oxidative stress. J Food Sci 2021; 86:3686-3697. [PMID: 34250604 DOI: 10.1111/1750-3841.15822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
HLE-B3 cell line, a human lens epithelial cell line, was used to examine the anti-glycative and anti-oxidative protection of aqueous extract prepared from steamed red amaranth leaves against high glucose induced injury. Phytochemical profile of this aqueous extract was analyzed. HLE-B3 cells were pretreated by this aqueous extract at 0.25%, 0.5%, or 1%, and followed by high glucose treatment. Results showed that the content of phenolic acids, flavonoids, anthocyanins, carotenoids, and triterpenoids in this aqueous extract was in the range of 1,107-2,861 mg/100 g dry weight. High glucose decreased cells viability and suppressed Bcl-2 mRNA expression. This aqueous extract pretreatments raised 11-42% cell survival and upregulated 20-47% Bcl-2 mRNA expression. High glucose reduced Na+ -K+ ATPase activity and mitochondrial membrane potential (MMP). This aqueous extract raised 27-40% Na+ -K+ ATPase activity, and 18-51% MMP. High glucose stimulated the generation of total advanced glycative endproducts (AGEs), methylglyoxal, and reactive oxygen species (ROS). This aqueous extract pretreatments lowered total AGEs, methylglyoxal, and ROS levels in the range of 0.38-1.17 folds, 1.7-4.9 nmol/mg protein, and 0.35-1.06 relative fluorescence unit/mg protein. High glucose upregulated mRNA expression of aldose reductase, nuclear factor kappa B, and p38. This aqueous extract pretreatments decreased mRNA expression of these factors in the range of 75-159%, 57-151%, and 54-166%. High glucose downregulated mRNA expression of nuclear factor E2-related factor 2 (Nrf2). This aqueous extract pretreatments increased 12-38% Nrf2 mRNA expression. These results suggested that this aqueous extract might be a potent nutritional supplement to prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Li-Wei Hsiao
- Department of Internal Medicine, Chang Bing Show-Chwan Memorial Hospital, Changhua County, Taiwan
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chin Mong
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Wen-Hu Liu
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Chin Yin
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
Feng M, Zheng X, Wan J, Pan W, Xie X, Hu B, Wang Y, Wen H, Cai S. Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use. Food Funct 2021; 12:2814-2828. [PMID: 33666618 DOI: 10.1039/d0fo02921a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skin aging is characterized by the gradual loss of elasticity, the formation of wrinkles and various color spots, the degradation of extracellular matrix proteins, and the structural changes of the dermis. With the increasingly prominent problems of environmental pollution, social pressure, ozone layer thinning and food safety, skin problems have become more and more complex. The skin can reflect the overall health of the body. Skincare products for external use alone cannot fundamentally solve skin problems; it needs to improve the overall health of the body. Based on the literature review in recent 20 years, this paper systematically reviewed the potential delaying effect of tea and its active ingredients on skin aging by oral and external use. Tea is the second-largest health drink after water. It is rich in tea polyphenols, l-theanine, tea pigments, caffeine, tea saponins, tea polysaccharides and other secondary metabolites. Tea and its active substances have whitening, nourishing, anti-wrinkle, removing spots and other skincare effects. Its mechanism of action is ultraviolet absorption, antioxidant, anti-inflammatory, inhibition of extracellular matrix aging, inhibiting the accumulation of melanin and toxic oxidation products, balancing intestinal and skin microorganisms, and improving mood and sleep, among other effects. At present, tea elements skincare products are deeply loved by consumers. This paper provides a scientific theoretical basis for tea-assisted beauty and the high-end application of tea in skincare products.
Collapse
Affiliation(s)
- Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kwon B, Hong SY, Kim EY, Kim JH, Kim M, Park JH, Sohn Y, Jung HS. Effect of Cone of Pinus densiflora on DNCB-Induced Allergic Contact Dermatitis-Like Skin Lesion in Balb/c Mice. Nutrients 2021; 13:nu13030839. [PMID: 33806628 PMCID: PMC7998145 DOI: 10.3390/nu13030839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/25/2022] Open
Abstract
Cone of Pinus densiflora (CP), or Korean red pinecone, is a cluster of Pinus densiflora fruit. CP has also been verified in several studies to have anti-oxidation, anti-fungal, anti-bacterial, and anti-melanogenic effects. However, anti-inflammatory effects have not yet been confirmed in the inflammatory responses of pinecones to allergic contact dermatitis. The purpose of this study is to prove the anti-inflammatory effect of CP on allergic contact dermatitis (ACD) in vitro and in vivo. CP inhibited the expression of TSLP, TARC, MCP-1, TNF-α, and IL-6 in TNF-α/IFN-γ-stimulated HaCaT cells and MCP-1, GM-CSF, TNF-α, IL-6, and IL-8 in PMACI (phorbol-12-myristate-13-acetate plus A23187)-stimulated HMC-1 cells. CP inhibited the phosphorylation of mitogen-activated protein kinase (MAPKs), as well as the translocation of NF-κB on TNF-α/IFN-γ stimulated in HaCaT cells. In vivo, CP decreased major symptoms of ACD, levels of IL-6 in skin lesion, thickening of the epidermis and dermis, infiltration of eosinophils and mast cells, and the infiltration of CD4+ T cells and CD8+ T cells. This result suggests that CP represents a potential alternative medicine to ACD for diseases such as chronic skin inflammation.
Collapse
Affiliation(s)
- Boguen Kwon
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (B.K.); (S.Y.H.); (E.-Y.K.); (J.-H.K.); (M.K.)
| | - Soo Yeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (B.K.); (S.Y.H.); (E.-Y.K.); (J.-H.K.); (M.K.)
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (B.K.); (S.Y.H.); (E.-Y.K.); (J.-H.K.); (M.K.)
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (B.K.); (S.Y.H.); (E.-Y.K.); (J.-H.K.); (M.K.)
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (B.K.); (S.Y.H.); (E.-Y.K.); (J.-H.K.); (M.K.)
| | - Jae Ho Park
- Department of Pharmaceutical Science, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea;
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (B.K.); (S.Y.H.); (E.-Y.K.); (J.-H.K.); (M.K.)
- Correspondence: (Y.S.); (H.-S.J.); Tel.: +82-2-961-0327 (H.-S.J.); Fax: +82-2-961-9449 (H.-S.J.)
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (B.K.); (S.Y.H.); (E.-Y.K.); (J.-H.K.); (M.K.)
- Correspondence: (Y.S.); (H.-S.J.); Tel.: +82-2-961-0327 (H.-S.J.); Fax: +82-2-961-9449 (H.-S.J.)
| |
Collapse
|
37
|
Lee J, Jeong ET, Lim JM, Park SG. Development of the facial glycation imaging system for in situ human face skin glycation index measurement. J Cosmet Dermatol 2021; 20:2963-2968. [PMID: 33522691 PMCID: PMC8451778 DOI: 10.1111/jocd.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Background The accumulation of advanced glycation end products has been proposed as a causative agent of skin aging, but there are no conventional devices for quantifying advanced glycation end‐product accumulation in facial skin. Aims This study aimed to develop a convenient and accurate in situ advanced glycation end‐product measurement system for the human face. Methods We developed a facial glycation imaging system, which consisted of illumination (white light‐emitting diode, ultraviolet light‐emitting diode) and image acquisition modules to capture face images. Advanced glycation end product–related autofluorescence and total skin reflectance were calculated to obtain the skin glycation index using an image analysis algorithm. Correlations between the skin glycation index and facial skin elasticity and age were examined in 36 healthy Korean women. Results The facial glycation imaging system was validated against a volar forearm skin autofluorescence measurement device, that is, the AGE Reader mu, with forearm skin glycation index (R = 0.64, P < .01). Cheek elasticity was negatively correlated with cheek skin glycation index (R = −0.56, R = −0.57, and R = −0.61, P < .01 for R2, R5, and R7, respectively). Age was significantly correlated with forearm skin glycation index (R = 0.44, P < .01) and cheek skin glycation index (R = 0.48, P < .01). Conclusion We successfully developed a novel in situ facial skin glycation index measurement device. Our convenient and accurate system enables in situ skin glycation index monitoring for skin aging studies such as those on anti‐glycation cosmetics.
Collapse
Affiliation(s)
- Jinyong Lee
- LG Household & Health Care, LG Science Park, Seoul, Korea
| | - Eui Taek Jeong
- LG Household & Health Care, LG Science Park, Seoul, Korea
| | - Jun-Man Lim
- LG Household & Health Care, LG Science Park, Seoul, Korea
| | - Sun Gyoo Park
- LG Household & Health Care, LG Science Park, Seoul, Korea
| |
Collapse
|
38
|
Roig-Rosello E, Rousselle P. The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters. Biomolecules 2020; 10:E1607. [PMID: 33260936 PMCID: PMC7760980 DOI: 10.3390/biom10121607] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
One of the most important functions of skin is to act as a protective barrier. To fulfill this role, the structural integrity of the skin depends on the dermal-epidermal junction-a complex network of extracellular matrix macromolecules that connect the outer epidermal layer to the underlying dermis. This junction provides both a structural support to keratinocytes and a specific niche that mediates signals influencing their behavior. It displays a distinctive microarchitecture characterized by an undulating pattern, strengthening dermal-epidermal connectivity and crosstalk. The optimal stiffness arising from the overall molecular organization, together with characteristic anchoring complexes, keeps the dermis and epidermis layers extremely well connected and capable of proper epidermal renewal and regeneration. Due to intrinsic and extrinsic factors, a large number of structural and biological changes accompany skin aging. These changes progressively weaken the dermal-epidermal junction substructure and affect its functions, contributing to the gradual decline in overall skin physiology. Most changes involve reduced turnover or altered enzymatic or non-enzymatic post-translational modifications, compromising the mechanical properties of matrix components and cells. This review combines recent and older data on organization of the dermal-epidermal junction, its mechanical properties and role in mechanotransduction, its involvement in regeneration, and its fate during the aging process.
Collapse
Affiliation(s)
- Eva Roig-Rosello
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
- Roger Gallet SAS, 4 rue Euler, 75008 Paris, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
| |
Collapse
|
39
|
Methylglyoxal-derived advanced glycation end products induce matrix metalloproteinases through activation of ERK/JNK/NF-κB pathway in kidney proximal epithelial cells. Food Sci Biotechnol 2019; 29:675-682. [PMID: 32419966 DOI: 10.1007/s10068-019-00704-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/20/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023] Open
Abstract
The accumulation of reactive α-dicarbonyl leading to advanced glycation end products (AGEs) have been linked to pathophysiological diseases in many studies, such as atherosclerosis, cataract, cancer, and diabetic nephropathy. Glycation-generated AGEs increase the expression of inflammatory cytokines by transferring signals to the cell by binding them to the receptor for AGEs (RAGE) on their cell surface. The effect of methylglyoxal-derived AGEs (AGE-4) on the induction of matrix metalloproteinases (MMPs) in rat ordinary kidney cells (NRK-52E) was explored in this research, among other AGEs. The cell treated with 100 μg/mL AGE-4 for 24 h showed a substantial rise in MMP-2 and MMP-9 expression relative to BSA control only and other AGEs through ERK, JNK, and NF-B pathways. Our findings therefore suggest that AGE-4 expresses MMPs through the AGE-4-RAGE axis, activating MAPK signals that may contribute to dysfunction of the kidney cell.
Collapse
|
40
|
Endothelial cell-derived small extracellular vesicles suppress cutaneous wound healing through regulating fibroblasts autophagy. Clin Sci (Lond) 2019; 133:CS20190008. [PMID: 30988132 DOI: 10.1042/cs20190008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Diabetic foot ulcer is a life-threatening clinical problem in diabetic patients. Endothelial cell-derived small extracellular vesicles (sEVs) are important mediators of intercellular communication in the pathogenesis of several diseases. However, the exact mechanisms of wound healing mediated by endothelial cell-derived sEVs remain unclear. sEVs were isolated from human umbilical vein endothelial cells (HUVECs) pretreated with or without advanced glycation end products (AGEs). The roles of HUVEC-derived sEVs on the biological characteristics of skin fibroblasts were investigated both in vitro and in vivo We demonstrate that sEVs derived from AGEs-pretreated HUVECs (AGEs-sEVs) could inhibit collagen synthesis by activating autophagy of human skin fibroblasts. Additionally, treatment with AGEs-sEVs could delay the wound healing process in Sprague-Dawley (SD) rats. Further analysis indicated that miR-106b-5p was up-regulated in AGEs-sEVs and importantly, in exudate-derived sEVs from patients with diabetic foot ulcer. Consequently, sEV-mediated uptake of miR-106b-5p in recipient fibroblasts reduces expression of extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in fibroblasts autophagy activation and subsequent collagen degradation. Collectively, our data demonstrate that miR-106b-5p could be enriched in AGEs-sEVs, then decreases collagen synthesis and delays cutaneous wound healing by triggering fibroblasts autophagy through reducing ERK1/2 expression.
Collapse
|
41
|
den Dekker A, Davis FM, Kunkel SL, Gallagher KA. Targeting epigenetic mechanisms in diabetic wound healing. Transl Res 2019; 204:39-50. [PMID: 30392877 PMCID: PMC6331222 DOI: 10.1016/j.trsl.2018.10.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
Abstract
Impaired wound healing is a major secondary complication of type 2 diabetes that often results in limb loss and disability. Normal tissue repair progresses through discrete phases including hemostasis, inflammation, proliferation, and remodeling. In diabetes, normal progression through these phases is impaired resulting in a sustained inflammatory state and dysfunctional epithelialization in the wound. Due to their plasticity, macrophages play a critical role in the transition from the inflammation phase to the proliferation phase. Diabetes disrupts macrophage function by impairing monocyte recruitment to the wound, reducing phagocytosis, and prohibiting the transition of inflammatory macrophages to an anti-inflammatory state. Diabetes also impedes keratinocyte and fibroblast function during the later phases resulting in impaired epithelialization of the wound. Several recent studies suggest that altered epigenetic regulation of both immune and structural cells in wounds may influence cell phenotypes and healing, particularly in pathologic states, such as diabetes. Specifically, it has been shown that macrophage plasticity during wound repair is partly regulated epigenetically and that diabetes alters this epigenetic regulation and contributes to a sustained inflammatory state. Epigenetic regulation is also known to regulate keratinocyte and fibroblast function during wound repair. In this review, we provide an introduction to the epigenetic mechanisms that regulate tissue repair and highlight recent findings that demonstrate, how epigenetic events are altered during the course of diabetic wound healing.
Collapse
Affiliation(s)
- Aaron den Dekker
- Department of Surgery, University of Michigan, Ann Arbor, Michgan
| | - Frank M Davis
- Department of Surgery, University of Michigan, Ann Arbor, Michgan
| | - Steve L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
42
|
Visfatin Promotes Wound Healing through the Activation of ERK1/2 and JNK1/2 Pathway. Int J Mol Sci 2018; 19:ijms19113642. [PMID: 30463229 PMCID: PMC6274809 DOI: 10.3390/ijms19113642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/20/2023] Open
Abstract
Visfatin, a member of the adipokine family, plays an important role in many metabolic and stress responses. The mechanisms underlying the direct therapeutic effects of visfatin on wound healing have not been reported yet. In this study, we examined the effects of visfatin on wound healing in vitro and in vivo. Visfatin enhanced the proliferation and migration of human dermal fibroblasts (HDFs) and keratinocytes the expression of wound healing-related vascular endothelial growth factor (VEGF) in vitro and in vivo. Treatment of HDFs with visfatin induced activation of both extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases 1 and 2 (JNK1/2) in a time-dependent manner. Inhibition of ERK1/2 and JNK1/2 led to a significant decrease in visfatin-induced proliferation and migration of HDFs. Importantly, blocking VEGF with its neutralizing antibodies suppressed the visfatin-induced proliferation and migration of HDFs and human keratinocytes, indicating that visfatin induces the proliferation and migration of HDFs and human keratinocytes via increased VEGF expression. Moreover, visfatin effectively improved wound repair in vivo, which was comparable to the wound healing activity of epidermal growth factor (EGF). Taken together, we demonstrate that visfatin promotes the proliferation and migration of HDFs and human keratinocytes by inducing VEGF expression and can be used as a potential novel therapeutic agent for wound healing.
Collapse
|
43
|
Fournet M, Bonté F, Desmoulière A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis 2018; 9:880-900. [PMID: 30271665 PMCID: PMC6147582 DOI: 10.14336/ad.2017.1121] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
Glycation is both a physiological and pathological process which mainly affects proteins, nucleic acids and lipids. Exogenous and endogenous glycation produces deleterious reactions that take place principally in the extracellular matrix environment or within the cell cytosol and organelles. Advanced glycation end product (AGE) formation begins by the non-enzymatic glycation of free amino groups by sugars and aldehydes which leads to a succession of rearrangements of intermediate compounds and ultimately to irreversibly bound products known as AGEs. Epigenetic factors, oxidative stress, UV and nutrition are important causes of the accumulation of chemically and structurally different AGEs with various biological reactivities. Cross-linked proteins, deriving from the glycation process, present both an altered structure and function. Nucleotides and lipids are particularly vulnerable targets which can in turn favor DNA mutation or a decrease in cell membrane integrity and associated biological pathways respectively. In mitochondria, the consequences of glycation can alter bioenergy production. Under physiological conditions, anti-glycation defenses are sufficient, with proteasomes preventing accumulation of glycated proteins, while lipid turnover clears glycated products and nucleotide excision repair removes glycated nucleotides. If this does not occur, glycation damage accumulates, and pathologies may develop. Glycation-induced biological products are known to be mainly associated with aging, neurodegenerative disorders, diabetes and its complications, atherosclerosis, renal failure, immunological changes, retinopathy, skin photoaging, osteoporosis, and progression of some tumors.
Collapse
Affiliation(s)
- Maxime Fournet
- 1University of Limoges, Faculty of Pharmacy, Department of Physiology, EA 6309, F-87025 Limoges, France
| | | | - Alexis Desmoulière
- 3University of Limoges, Faculty of Pharmacy, Department of Physiology, EA 6309, F-87025 Limoges, France
| |
Collapse
|
44
|
Wang W, Yang C, Wang XY, Zhou LY, Lao GJ, Liu D, Wang C, Hu MD, Zeng TT, Yan L, Ren M. MicroRNA-129 and -335 Promote Diabetic Wound Healing by Inhibiting Sp1-Mediated MMP-9 Expression. Diabetes 2018; 67:1627-1638. [PMID: 29748291 DOI: 10.2337/db17-1238] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
Diabetic wounds are recalcitrant to healing. However, the mechanism causing this dysfunction is not fully understood. High expression of matrix metalloproteinase-9 (MMP-9) is indicative of poor wound healing. In this study, we show that specificity protein-1 (Sp1), a regulator of MMP-9, binds directly to its promoter and enhances its expression. Additionally, we demonstrated that Sp1 is the direct target of two microRNAs (miRNAs), miR-129 and -335, which are significantly downregulated in diabetic skin tissues. In vitro experiments confirmed that miR-129 or -335 overexpression inhibits MMP-9 promoter activity and protein expression by targeting Sp1, whereas the inhibition of these miRNAs has the opposite effect. The beneficial role of miR-129 or miR-335 in diabetic wound healing was confirmed by the topical administration of miRNA agomirs in diabetic animals. This treatment downregulated Sp1-mediated MMP-9 expression, increased keratinocyte migration, and recovered skin thickness and collagen content. The combined treatment with miR-129 and miR-335 induced a synergistic effect on Sp1 repression and MMP-9 downregulation both in vitro and in vivo. This study demonstrates the regulatory mechanism of Sp1-mediated MMP-9 expression in diabetic wound healing and highlights the potential therapeutic benefits of miR-129 and -335 in delayed wound healing in diabetes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| | - Xiao Yi Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Yan Zhou
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guo Juan Lao
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX
| | - Dan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| | - Chuan Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| | - Meng Die Hu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ting Ting Zeng
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| |
Collapse
|
45
|
Glynn KM, Anderson P, Fast DJ, Koedam J, Rebhun JF, Velliquette RA. Gromwell (Lithospermum erythrorhizon) root extract protects against glycation and related inflammatory and oxidative stress while offering UV absorption capability. Exp Dermatol 2018; 27:1043-1047. [PMID: 29906314 DOI: 10.1111/exd.13706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
Abstract
Glycation and advanced glycation end products (AGE) damage skin which is compounded by AGE-induced oxidative stress and inflammation. Lip and facial skin could be susceptible to glycation damage as they are chronically stressed. As Gromwell (Lithospermum erythrorhizon) root (GR) has an extensive traditional medicine history that includes providing multiple skin benefits, our objective was to determine whether GR extract and its base naphthoquinone, shikonin, might protect skin by inhibiting glycation, increasing oxidative defenses, suppressing inflammatory responses and offering ultraviolet (UV) absorptive potential in lip and facial cosmetic matrices. We show GR extract and shikonin dose-dependently inhibited glycation and enhanced oxidative defenses through nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element activation. Inflammatory targets, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and tumor necrosis factor alpha, were suppressed by GR extract and shikonin. Glyoxalase 1 (GLO1) and glutathione synthesis genes were significantly upregulated by GR extract and shikonin. GR extract boosted higher wavelength UV absorption in select cosmetic matrices. Rationale for the use of GR extract and shikonin are supported by our research. By inhibiting glycation, modulating oxidative stress, suppressing inflammation and UV-absorptive properties, GR extract and shikonin potentially offer multiple skin benefits.
Collapse
Affiliation(s)
- Kelly M Glynn
- Research & Development, Amway Corporation, Ada, Michigan
| | - Penny Anderson
- Research & Development, Amway Corporation, Ada, Michigan
| | - David J Fast
- Research & Development, Amway Corporation, Ada, Michigan
| | - James Koedam
- Research & Development, Amway Corporation, Ada, Michigan
| | - John F Rebhun
- Research & Development, Amway Corporation, Ada, Michigan
| | | |
Collapse
|
46
|
Peeters SA, Engelen L, Buijs J, Theilade S, Rossing P, Schalkwijk CG, Stehouwer CDA. Associations between advanced glycation endproducts and matrix metalloproteinases and its inhibitor in individuals with type 1 diabetes. J Diabetes Complications 2018; 32:325-329. [PMID: 29395841 DOI: 10.1016/j.jdiacomp.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
AIMS Advanced glycation endproducts (AGEs) and altered extracellular matrix remodeling by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) are associated with vascular complications in type 1 diabetes. Experimental studies have shown that AGEs regulate the production of MMPs and/or TIMP-1. Therefore, we investigated associations between specific AGEs and MMP-1, -2, -3, -9, and -10, and TIMP-1 in individuals with type 1 diabetes. METHODS In 670 type 1 diabetic individuals we determined serum levels of protein-bound AGEs Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL), 5-hydro-5-methylimidazolone (MG-H1) and pentosidine, and MMP-1, -2, -3, -9, and -10, and TIMP-1. We performed linear regression analyses to investigate associations between AGEs and markers of the MMP-TIMP system. Analyses were adjusted for age, sex, HbA1c and duration of diabetes, and additionally for other potential confounders and presence of vascular complication. RESULTS After full adjustment, levels of CML were positively associated with levels of MMP-2 and inversely with MMP-9. CEL was positively associated with MMP-3 and TIMP-1. MG-H1 was only associated with TIMP-1, whereas pentosidine was not associated with MMPs or TIMP-1. CONCLUSIONS We showed independent associations between several AGEs and markers of the MMP-TIMP system, which indicate specific AGE-MMP/TIMP-1 interactions potentially contributing to vascular complications in patients with type 1 diabetes.
Collapse
Affiliation(s)
- S A Peeters
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Internal Medicine, Zuyderland hospital, Heerlen, The Netherlands.
| | - L Engelen
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; Centraal Bureau voor de Statistiek, Heerlen, The Netherlands
| | - J Buijs
- Department of Internal Medicine, Zuyderland hospital, Heerlen, The Netherlands.
| | - S Theilade
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| | - P Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; University of Copenhagen, Copenhagen, Denmark.
| | - C G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - C D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
47
|
Lao G, Ren M, Wang X, Zhang J, Huang Y, Liu D, Luo H, Yang C, Yan L. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect. Exp Dermatol 2018; 28:528-535. [PMID: 28887854 DOI: 10.1111/exd.13442] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing.
Collapse
Affiliation(s)
- Guojuan Lao
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinglu Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanrui Huang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Liu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hengcong Luo
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Yokota M, Masaki H, Okano Y, Tokudome Y. Effect of glycation focusing on the process of epidermal lipid synthesis in a reconstructed skin model and membrane fluidity of stratum corneum lipids. DERMATO-ENDOCRINOLOGY 2017; 9:e1338992. [PMID: 29484088 PMCID: PMC5821160 DOI: 10.1080/19381980.2017.1338992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022]
Abstract
We previously reported that epidermal glycation causes an increase in saturated fatty acid (FA) content in a differentiated reconstructed skin model and HaCaT cells. However, the relationship between ceramides (CERs) and glycation and their effects on stratum corneum (SC) barrier function was not elucidated. In this study, we investigated the effect of glycation on lipid content in 6-day-old cultured reconstructed skin. We used the EPISKIN RHE 6D model and induced glycation using glyoxal. In addition to transepidermal water loss, content of CERs, cholesterol and FA in the reconstructed epidermal model were analyzed by high performance thin layer chromatography. Expression of genes related to ceramide metabolism was determined by real time RT-PCR. Membrane fluidity of stratum corneum lipid liposomes (SCLL) that mimic glycated epidermis was analyzed using an electron spin resonance technique. It was found that FA was significantly increased by glycation. CER[NS], [AP], and cholesterol were decreased in glycated epidermis. Expression of ceramide synthase 3 (CERS3) was significantly decreased while fatty acid elongase 3 was increased by glyoxal in a dose dependent manner. Membrane fluidity of SCLL mimicking the lipid composition of glycated epidermis was increased compared with controls. Therefore, disruption of CER and FA content in glycated epidermis may be regulated via CERS3 expression and contribute to abnormal membrane fluidity.
Collapse
Affiliation(s)
- Mami Yokota
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Yoshihiro Tokudome
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| |
Collapse
|
49
|
Amino Carbonylation of Epidermal Basement Membrane Inhibits Epidermal Cell Function and Is Suppressed by Methylparaben. COSMETICS 2017. [DOI: 10.3390/cosmetics4040038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
50
|
Yokota M, Sekita M, Okano Y, Masaki H, Takeuchi M, Tokudome Y. Glyceraldehyde-Derived Advanced Glycation End Products Accumulate Faster Than N ε-(Carboxymethyl) Lysine. Ann Dermatol 2017; 29:508-511. [PMID: 28761309 PMCID: PMC5500726 DOI: 10.5021/ad.2017.29.4.508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/08/2016] [Accepted: 08/13/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mami Yokota
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Marie Sekita
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Yoshihiro Tokudome
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| |
Collapse
|