1
|
Nachmany I, Nevo S, Edelheit S, Sarusi-Portuguez A, Friedlander G, Salame TM, Pavlov V, Yakubovsky O, Pencovich N. Myeloid derived suppressor cells mediate hepatocyte proliferation and immune suppression during liver regeneration following resection. Genes Immun 2024:10.1038/s41435-024-00303-5. [PMID: 39488626 DOI: 10.1038/s41435-024-00303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Liver regeneration following resection is a complex process relying on coordinated pathways and cell types in the remnant organ. Myeloid-Derived Suppressor Cells (MDSCs) have a role in liver regeneration-related angiogenesis but other roles they may play in this process remain to be elucidated. In this study, we sought to examine the effect of G-MDSCs on hepatocytes proliferation and immune modulation during liver regeneration. Global gene expression profiling of regenerating hepatocytes in mice with CD11b+Ly6G+ MDSCs (G-MDSCs) depletion revealed disrupted transcriptional progression from day one to day two after major liver resection. Key genes and pathways related to hepatocyte proliferation and immune response were differentially expressed upon MDSC depletion. Hepatocytes cellularity increased when co-cultured with G-MDSCs, or treated with amphiregulin, which G-MDSCs upregulate during regeneration. Cytometry by time-of-flight (CyTOF) analysis of the intra-liver immune milieu upon MDSC depletion during regeneration demonstrated increased natural killer cell proportions, alongside changes in other immune cell populations. Taken together, these results provide evidence that MDSCs contribute to early liver regeneration by promoting hepatocyte proliferation and modulating the intra-liver immune response, and illuminate the multifaceted role of MDSCs in liver regeneration.
Collapse
Affiliation(s)
- Ido Nachmany
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shir Nevo
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarit Edelheit
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Avital Sarusi-Portuguez
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Vera Pavlov
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Oran Yakubovsky
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Niv Pencovich
- The Laboratory of Molecular Biology, Department of Surgery and Transplantation, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine and Medical Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Tomassetti C, Insinga G, Gimigliano F, Morrione A, Giordano A, Giurisato E. Insights into CSF-1R Expression in the Tumor Microenvironment. Biomedicines 2024; 12:2381. [PMID: 39457693 PMCID: PMC11504891 DOI: 10.3390/biomedicines12102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The colony-stimulating factor 1 receptor (CSF-1R) plays a pivotal role in orchestrating cellular interactions within the tumor microenvironment (TME). Although the CSF-1R has been extensively studied in myeloid cells, the expression of this receptor and its emerging role in other cell types in the TME need to be further analyzed. This review explores the multifaceted functions of the CSF-1R across various TME cellular populations, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs). The activation of the CSF-1R by its ligands, colony-stimulating factor 1 (CSF-1) and Interleukin-34 (IL-34), regulates TAM polarization towards an immunosuppressive M2 phenotype, promoting tumor progression and immune evasion. Similarly, CSF-1R signaling influences MDSCs to exert immunosuppressive functions, hindering anti-tumor immunity. In DCs, the CSF-1R alters antigen-presenting capabilities, compromising immune surveillance against cancer cells. CSF-1R expression in CAFs and ECs regulates immune modulation, angiogenesis, and immune cell trafficking within the TME, fostering a pro-tumorigenic milieu. Notably, the CSF-1R in CSCs contributes to tumor aggressiveness and therapeutic resistance through interactions with TAMs and the modulation of stemness features. Understanding the diverse roles of the CSF-1R in the TME underscores its potential as a therapeutic target for cancer treatment, aiming at disrupting pro-tumorigenic cellular crosstalk and enhancing anti-tumor immune responses.
Collapse
Affiliation(s)
- Caterina Tomassetti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Gaia Insinga
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
3
|
Cornillon P, Bouleftour W, Reynaud T, Pigne G, Maillet D, Hamizi S, Beguinot M. Immunogenicity of radiotherapy on bone metastases from prostate adenocarcinoma: What is the future for the combination with radiotherapy/immunotherapy? TUMORI JOURNAL 2024; 110:319-326. [PMID: 38745528 DOI: 10.1177/03008916241249366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bone metastatic prostate cancers (PCa) are resistant to usual immunotherapies such as checkpoint inhibitors. The main hypothesis related to this immunoresistance is the lack of antigens to stimulate anti-tumor immunity. External radiation is a potential inducer antigens presentation and thus to immunotherapy proprieties. The aim of this review is to describe the tumor microenvironment specificities, especially in bone metastasis and the immune modifications after radiation therapy on a metastatic castration-resistant PCa population. PCa microenvironment is immunosuppressive because of many tumor factors. The complex interplay between PCa cells and bone microenvironment leads to a 'vicious circle' promoting bone metastasis. Furthermore, the immune and bone systems, are connected through an osteoclastogenic cytokine: the Receptor Activator Nuclear Factor Kappa B ligand. Adapted doses of ionizing radiation play a dual role on the tumor. Indeed, radiotherapy leads to immunogenicity by inducing damage associated with molecular patterns. However, it also induces an immunosuppressive effect by increasing the number of immunosuppressive cells. Interestingly, the abscopal effect could be used to optimize immunotherapy potential, especially on bone metastasis. Radiotherapy and immunotherapy combination is a promising strategy, however further studies are necessary to determine the more efficient types of radiation and to control the abscopal effect.
Collapse
Affiliation(s)
- Pierre Cornillon
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Wafa Bouleftour
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Thomas Reynaud
- Department of Radiotherapy, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Gregoire Pigne
- Department of Radiotherapy, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Denis Maillet
- Department of Medical Oncology, IMMUCARE, Centre Hospitalier Lyon Sud, Institut de Cancérologie des Hospices de Lyon, Pierre-Bénite, France
| | - Salima Hamizi
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Marie Beguinot
- Department of Medical Oncology, Medipole Lyon Villeurbanne Mutualist Clinic, Lyon, France
| |
Collapse
|
4
|
Pedroza-Torres A, Romero-Córdoba SL, Montaño S, Peralta-Zaragoza O, Vélez-Uriza DE, Arriaga-Canon C, Guajardo-Barreto X, Bautista-Sánchez D, Sosa-León R, Hernández-González O, Díaz-Chávez J, Alvarez-Gómez RM, Herrera LA. Radio-miRs: a comprehensive view of radioresistance-related microRNAs. Genetics 2024; 227:iyae097. [PMID: 38963803 PMCID: PMC11304977 DOI: 10.1093/genetics/iyae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Radiotherapy is a key treatment option for a wide variety of human tumors, employed either alone or alongside with other therapeutic interventions. Radiotherapy uses high-energy particles to destroy tumor cells, blocking their ability to divide and proliferate. The effectiveness of radiotherapy is due to genetic and epigenetic factors that determine how tumor cells respond to ionizing radiation. These factors contribute to the establishment of resistance to radiotherapy, which increases the risk of poor clinical prognosis of patients. Although the mechanisms by which tumor cells induce radioresistance are unclear, evidence points out several contributing factors including the overexpression of DNA repair systems, increased levels of reactive oxygen species, alterations in the tumor microenvironment, and enrichment of cancer stem cell populations. In this context, dysregulation of microRNAs or miRNAs, critical regulators of gene expression, may influence how tumors respond to radiation. There is increasing evidence that miRNAs may act as sensitizers or enhancers of radioresistance, regulating key processes such as the DNA damage response and the cell death signaling pathway. Furthermore, expression and activity of miRNAs have shown informative value in overcoming radiotherapy and long-term radiotoxicity, revealing their potential as biomarkers. In this review, we will discuss the molecular mechanisms associated with the response to radiotherapy and highlight the central role of miRNAs in regulating the molecular mechanisms responsible for cellular radioresistance. We will also review radio-miRs, radiotherapy-related miRNAs, either as sensitizers or enhancers of radioresistance that hold promise as biomarkers or pharmacological targets to sensitize radioresistant cells.
Collapse
Affiliation(s)
- Abraham Pedroza-Torres
- Programa Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Mexico City C.P. 03940, Mexico
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City C.P. 14080, Mexico
| | - Sandra L Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City C.P. 04510, Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City C.P. 14080, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa (FCQB-UAS), Culiacán Rosales, Sinaloa C.P. 80030, Mexico
| | - Oscar Peralta-Zaragoza
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos C.P. 62100, Mexico
| | - Dora Emma Vélez-Uriza
- Laboratorio de Traducción y Cáncer, Instituto Nacional de Cancerología, Mexico City C.P. 14080, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León C.P. 64710, Mexico
| | - Xiadani Guajardo-Barreto
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 14080, Mexico
| | - Diana Bautista-Sánchez
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rodrigo Sosa-León
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City C.P. 14080, Mexico
| | - Olivia Hernández-González
- Laboratorio de Microscopia Electrónica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarraa Ibarra”, Mexico City C.P. 14389, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 14080, Mexico
| | - Rosa María Alvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City C.P. 14080, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León C.P. 64710, Mexico
| |
Collapse
|
5
|
Kaufmann J, Haist M, Kur IM, Zimmer S, Hagemann J, Matthias C, Grabbe S, Schmidberger H, Weigert A, Mayer A. Tumor-stroma contact ratio - a novel predictive factor for tumor response to chemoradiotherapy in locally advanced oropharyngeal cancer. Transl Oncol 2024; 46:102019. [PMID: 38833784 PMCID: PMC11190748 DOI: 10.1016/j.tranon.2024.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
The growth pattern of oropharyngeal squamous cell carcinomas (OPSCC) varies from compact tumor cell aggregates to diffusely infiltrating tumor cell-clusters. The influence of the growth pattern on local tumor control and survival has been studied mainly for surgically treated oral cavity carcinomas on a visual basis. In this study, we used multiplex immunofluorescence staining (mIF) to examine the antigens pan-cytokeratin, p16INK4a, Ki67, CD271, PD-L1, and CD8 in pretherapeutic biopsies from 86 OPSCC. We introduce Tumor-stroma contact ratio (TSC), a novel parameter, to quantify the relationship between tumor cells in contact with the stromal surface and the total number of epithelial tumor cells. mIF tumor cores were analyzed at the single-cell level, and tumor-stromal contact area was quantified using the R package "Spatstat". TSC was correlated with the visually assessed invasion pattern by two independent investigators. Furthermore, TSC was analyzed in relation to clinical parameters and patient survival data to evaluate its potential prognostic significance. Higher TSC correlated with poor response to (chemo-)radiotherapy (r = 0.3, p < 0.01), and shorter overall (OS) and progression-free (PFS) survival (median OS: 13 vs 136 months, p < 0.0001; median PFS: 5 vs 85 months, p < 0.0001). Visual categorization of growth pattern according to established criteria of tumor aggressiveness showed interobserver variability increasing with more nuanced categories (2 categories: k = 0.7, 95 %-CI: 0.55 - 0.85; 4 categories k = 0.48, 95 %-CI: 0.35 - 0.61). In conclusion, TSC is an objective and reproducible computer-based parameter to quantify tumor-stroma contact area. We demonstrate its relevance for the response of oropharyngeal carcinomas to primary (chemo-)radiotherapy.
Collapse
Affiliation(s)
- Justus Kaufmann
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany.
| | - Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ivan-Maximiliano Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Jan Hagemann
- Department of Otorhinolaryngology, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Christoph Matthias
- Department of Otorhinolaryngology, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Arnulf Mayer
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
6
|
Li K, Wang J, Xie Y, Lu Z, Sun W, Wang K, Liang J, Chen X. Reactive oxygen species/glutathione dual sensitive nanoparticles with encapsulation of miR155 and curcumin for synergized cancer immunotherapy. J Nanobiotechnology 2024; 22:400. [PMID: 38972995 PMCID: PMC11229347 DOI: 10.1186/s12951-024-02575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
Considerable attention has been directed towards exploring the potential efficacy of miR-155 in the realm of cancer immunotherapy. Elevated levels of miR-155 in dendritic cells (DCs) have been shown to enhance their maturation, migration, cytokine secretion, and their ability to promote T cell activation. In addition, overexpression of mir155 in M2 macrophages boost the polarization towards the M1 phenotype. Conversely, miR-155 has the propensity to induce the accumulation of immunosuppressive cells like regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the tumor tissue. To account for this discrepancy, it is imperative to get help from a drug that could deal with immunosuppressive effect. Curcumin (CUR) exhibits the capacity to prompt Tregs converse into T helper 1 cells, fostering the polarization of M2 tumor-associated macrophage towards the M1 phenotype, and impeding the recruitment and aggregation of MDSCs within the tumor microenvironment. Nonetheless, CUR is known to exert an immunosuppressive impact on DCs by hindering the expression of maturation markers, cytokines, and chemokines, thereby prevent DCs response to immunostimulatory agents. Hence, a reactive oxygen species/glutathione dual responsive drug conveyance platform (CUR/miR155@DssD-Hb NPs) was devised to co-deliver CUR and miR155, with the aim of exploring their synergistic potential in bolstering a sustained and robust anti-tumor immune response. In vitro and in vivo results have suggested that CUR/miR155@DssD-Hb NPs can effectively inhibit the viability of 4T1 and B16F10 tumor cells, trigger the release of damage associated molecular patterns, stimulate DCs maturation, subsequent activation of CD8+ T cells, diminish immunosuppressive cell populations (MDSCs, Tregs, M2 TAMs and exhausted T cells), promote the formation of long-term immunity and lessen the formation of metastatic nodules in the lungs. In summary, the co-delivery system integrating CUR and miR155 (CUR/miR155@DssD-Hb NPs) demonstrates promise as a promising strategy for the immunotherapy of melanoma and triple negative breast cancer.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Juan Wang
- Pharmacy Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ziyao Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen Sun
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kaixuan Wang
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinxin Liang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Li MY, Ye W, Luo KW. Immunotherapies Targeting Tumor-Associated Macrophages (TAMs) in Cancer. Pharmaceutics 2024; 16:865. [PMID: 39065562 PMCID: PMC11280177 DOI: 10.3390/pharmaceutics16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most plentiful immune compositions in the tumor microenvironment, which are further divided into anti-tumor M1 subtype and pro-tumor M2 subtype. Recent findings found that TAMs play a vital function in the regulation and progression of tumorigenesis. Moreover, TAMs promote tumor vascularization, and support the survival of tumor cells, causing an impact on tumor growth and patient prognosis. Numerous studies show that reducing the density of TAMs, or modulating the polarization of TAMs, can inhibit tumor growth, indicating that TAMs are a promising target for tumor immunotherapy. Recently, clinical trials have found that treatments targeting TAMs have achieved encouraging results, and the U.S. Food and Drug Administration has approved a number of drugs for use in cancer treatment. In this review, we summarize the origin, polarization, and function of TAMs, and emphasize the therapeutic strategies targeting TAMs in cancer treatment in clinical studies and scientific research, which demonstrate a broad prospect of TAMs-targeted therapies in tumor immunotherapy.
Collapse
Affiliation(s)
- Mei-Ye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Ke-Wang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
- People’s Hospital of Longhua, The affiliated hospital of Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
8
|
Mahanti K, Saha J, Sarkar D, Pramanik A, Roy Chattopadhyay N, Bhattacharyya S. Alteration of functionality and differentiation directed by changing gene expression patterns in myeloid-derived suppressor cells (MDSCs) in tumor microenvironment and bone marrow through early to terminal phase of tumor progression. J Leukoc Biol 2024; 115:958-984. [PMID: 38236200 DOI: 10.1093/jleuko/qiae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Myeloid-derived suppressor cells are heterogenous immature myeloid lineage cells that can differentiate into neutrophils, monocytes, and dendritic cells as well. These cells have been characterized to have potent immunosuppressive capacity in neoplasia and a neoplastic chronic inflammatory microenvironment. Increased accumulation of myeloid-derived suppressor cells was reported with poor clinical outcomes in patients. They support neoplastic progression by abrogating antitumor immunity through inhibition of lymphocyte functions and directly by facilitating tumor development. Yet the shifting genetic signatures of this myeloid lineage cell toward immunosuppressive functionality in progressive tumor development remain elusive. We have attempted to identify the gene expression profile using lineage-specific markers of these unique myeloid lineage cells in a tumor microenvironment and bone marrow using a liquid transplantable mice tumor model to trace the changing influence of the tumor microenvironment on myeloid-derived suppressor cells. We analyzed the phenotype, functional shift, suppressive activity, differentiation status, and microarray-based gene expression profile of CD11b+Gr1+ lineage-specific cells isolated from the tumor microenvironment and bone marrow of 4 stages of tumor-bearing mice and compared them with control counterparts. Our analysis of differentially expressed genes of myeloid-derived suppressor cells isolated from bone marrow and the tumor microenvironment reveals unique gene expression patterns in the bone marrow and tumor microenvironment-derived myeloid-derived suppressor cells. It also suggests T-cell suppressive activity of myeloid-derived suppressor cells progressively increases toward the mid-to-late phase of the tumor and a significant differentiation bias of tumor site myeloid-derived suppressor cells toward macrophages, even in the presence of differentiating agents, indicating potential molecular characteristics of myeloid-derived suppressor cells in different stages of the tumor that can emerge as an intervention target.
Collapse
Affiliation(s)
- Krishna Mahanti
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| | - Jayasree Saha
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
- Currently, DST-SERB NPDF, School of Bioscience, IIT Kharagpur, Paschim Medinipur, West Bengal 721302, India
| | - Debanjan Sarkar
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| | - Anik Pramanik
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| | - Nabanita Roy Chattopadhyay
- Department of Biotechnology, Siksha Bhaban, Visva Bharati, Shantiniketan, Birbhum, West Bengal 731235, India
- Currently, Department of Biotechnology, Haldia Institute of Technology, ICARE Complex, Haldia, West Bengal 721657, India
| | - Sankar Bhattacharyya
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| |
Collapse
|
9
|
Ontiveros CO, Murray CE, Crossland G, Curiel TJ. Considerations and Approaches for Cancer Immunotherapy in the Aging Host. Cancer Immunol Res 2023; 11:1449-1461. [PMID: 37769157 PMCID: PMC11287796 DOI: 10.1158/2326-6066.cir-23-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Advances in cancer immunotherapy are improving treatment successes in many distinct cancer types. Nonetheless, most tumors fail to respond. Age is the biggest risk for most cancers, and the median population age is rising worldwide. Advancing age is associated with manifold alterations in immune cell types, abundance, and functions, rather than simple declines in these metrics, the consequences of which remain incompletely defined. Our understanding of the effects of host age on immunotherapy mechanisms, efficacy, and adverse events remains incomplete. A deeper understanding of age effects in all these areas is required. Most cancer immunotherapy preclinical studies examine young subjects and fail to assess age contributions, a remarkable deficit given the known importance of age effects on immune cells and factors mediating cancer immune surveillance and immunotherapy efficacy. Notably, some cancer immunotherapies are more effective in aged versus young hosts, while others fail despite efficacy in the young. Here, we review our current understanding of age effects on immunity and associated nonimmune cells, the tumor microenvironment, cancer immunotherapy, and related adverse effects. We highlight important knowledge gaps and suggest areas for deeper enquiries, including in cancer immune surveillance, treatment response, adverse event outcomes, and their mitigation.
Collapse
Affiliation(s)
- Carlos O. Ontiveros
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Clare E. Murray
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Grace Crossland
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Tyler J. Curiel
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Dartmouth Health and Dartmouth Cancer Center, Lebanon, NH 03756
| |
Collapse
|
10
|
Nabi N, Singh S, Saffeullah P. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. PHYTOCHEMISTRY 2023; 214:113798. [PMID: 37517615 DOI: 10.1016/j.phytochem.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Plant-based drugs have been used for centuries for treating different ailments. Malaria, one of the prevalent threats in many parts of the world, is treated mainly by artemisinin-based drugs derived from plants of genus Artemisia. However, the distribution of artemisinin is restricted to a few species of the genus; besides, its yield depends on ontogeny and the plant's geographical location. Here, we review the studies focusing on biosynthesis and distributional pattern of artemisinin production in species of the genus Artemisia. We also discussed various agronomic and in vitro methods and molecular approaches to increase the yield of artemisinin. We have summarized different mechanisms of artemisinin involved in its anti-malarial, anti-cancer, anti-inflammatory and anti-viral activities (like against Covid-19). Overall the current review provides a synopsis of a global view of the distribution of artemisinin, its biosynthesis, and pharmacological potential in treating various diseases like malaria, cancer, and coronavirus, which may provoke future research efforts in drug development. Nevertheless, long-term trials and molecular approaches, like CRISPR-Cas, are required for in-depth research.
Collapse
Affiliation(s)
- Neelofer Nabi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Seema Singh
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Peer Saffeullah
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
11
|
Astore S, Baciarello G, Cerbone L, Calabrò F. Primary and acquired resistance to first-line therapy for clear cell renal cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:517-546. [PMID: 37842234 PMCID: PMC10571064 DOI: 10.20517/cdr.2023.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 10/17/2023]
Abstract
The introduction of first-line combinations had improved the outcomes for metastatic renal cell carcinoma (mRCC) compared to sunitinib. However, some patients either have inherent resistance or develop resistance as a result of the treatment. Depending on the kind of therapy employed, many factors underlie resistance to systemic therapy. Angiogenesis and the tumor immune microenvironment (TIME), nevertheless, are inextricably linked. Although angiogenesis and the manipulation of the tumor microenvironment are linked to hypoxia, which emerges as a hallmark of renal cell carcinoma (RCC) pathogenesis, it is only one of the potential elements involved in the distinctive intra- and inter-tumor heterogeneity of RCC that is still dynamic. We may be able to more correctly predict therapy response and comprehend the mechanisms underlying primary or acquired resistance by integrating tumor genetic and immunological markers. In order to provide tools for patient selection and to generate hypotheses for the development of new strategies to overcome resistance, we reviewed the most recent research on the mechanisms of primary and acquired resistance to immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) that target the vascular endothelial growth factor receptor (VEGFR).We can choose patients' treatments and cancer preventive strategies using an evolutionary approach thanks to the few evolutionary trajectories that characterize ccRCC.
Collapse
Affiliation(s)
- Serena Astore
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
| | | | - Linda Cerbone
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
| | - Fabio Calabrò
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
- Medical Oncology, IRCSS, National Cancer Institute Regina Elena, Rome 00128, Italy
| |
Collapse
|
12
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
13
|
Wang Y, Yang W, Wang Q, Zhou Y. Mechanisms of esophageal cancer metastasis and treatment progress. Front Immunol 2023; 14:1206504. [PMID: 37359527 PMCID: PMC10285156 DOI: 10.3389/fimmu.2023.1206504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Esophageal cancer is a prevalent tumor of the digestive tract worldwide. The detection rate of early-stage esophageal cancer is very low, and most patients are diagnosed with metastasis. Metastasis of esophageal cancer mainly includes direct diffusion metastasis, hematogenous metastasis, and lymphatic metastasis. This article reviews the metabolic process of esophageal cancer metastasis and the mechanisms by which M2 macrophages, CAF, regulatory T cells, and their released cytokines, including chemokines, interleukins, and growth factors, form an immune barrier to the anti-tumor immune response mediated by CD8+ T cells, impeding their ability to kill tumor cells during tumor immune escape. The effect of Ferroptosis on the metastasis of esophageal cancer is briefly mentioned. Moreover, the paper also summarizes common drugs and research directions in chemotherapy, immunotherapy, and targeted therapy for advanced metastatic esophageal cancer. This review aims to serve as a foundation for further investigations into the mechanism and management of esophageal cancer metastasis.
Collapse
Affiliation(s)
- Yusheng Wang
- Department of Thoracic Surgery, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Wei Yang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Qianyun Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Yong Zhou
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| |
Collapse
|
14
|
Magagnoli J, Narendran S, Pereira F, Cummings TH, Hardin JW, Sutton SS, Ambati J. Association between Fluoxetine Use and Overall Survival among Patients with Cancer Treated with PD-1/L1 Immunotherapy. Pharmaceuticals (Basel) 2023; 16:ph16050640. [PMID: 37242422 DOI: 10.3390/ph16050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Checkpoint inhibitors can be a highly effective antitumor therapy but only to a subset of patients, presumably due to immunotherapy resistance. Fluoxetine was recently revealed to inhibit the NLRP3 inflammasome, and NLRP3 inhibition could serve as a target for immunotherapy resistance. Therefore, we evaluated the overall survival (OS) in patients with cancer receiving checkpoint inhibitors combined with fluoxetine. A cohort study was conducted among patients diagnosed with lung, throat (pharynx or larynx), skin, or kidney/urinary cancer treated with checkpoint inhibitor therapy. Utilizing the Veterans Affairs Informatics and Computing Infrastructure, patients were retrospectively evaluated during the period from October 2015 to June 2021. The primary outcome was overall survival (OS). Patients were followed until death or the end of the study period. There were 2316 patients evaluated, including 34 patients who were exposed to checkpoint inhibitors and fluoxetine. Propensity score weighted Cox proportional hazards demonstrated a better OS in fluoxetine-exposed patients than unexposed (HR: 0.59, 95% CI 0.371-0.936). This cohort study among cancer patients treated with checkpoint inhibitor therapy showed a significant improvement in the OS when fluoxetine was used. Because of this study's potential for selection bias, randomized trials are needed to assess the efficacy of the association of fluoxetine or another anti-NLRP3 drug to checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Tammy H Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - James W Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC 29208, USA
| | - S Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC 29209, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
15
|
Buonaiuto R, Neola G, Cecere SC, Caltavituro A, Cefaliello A, Pietroluongo E, De Placido P, Giuliano M, Arpino G, De Angelis C. Glucocorticoid Receptor and Ovarian Cancer: From Biology to Therapeutic Intervention. Biomolecules 2023; 13:biom13040653. [PMID: 37189400 DOI: 10.3390/biom13040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian cancer (OC) is the leading cause of death from gynecological malignancies worldwide. Fortunately, recent advances in OC biology and the discovery of novel therapeutic targets have led to the development of novel therapeutic agents that may improve the outcome of OC patients. The glucocorticoid receptor (GR) is a ligand-dependent transcriptional factor known for its role in body stress reactions, energy homeostasis and immune regulation. Notably, evidence suggests that GR may play a relevant role in tumor progression and may affect treatment response. In cell culture models, administration of low levels of glucocorticoids (GCs) suppresses OC growth and metastasis. Conversely, high GR expression has been associated with poor prognostic features and long-term outcomes in patients with OC. Moreover, both preclinical and clinical data have shown that GR activation impairs the effectiveness of chemotherapy by inducing the apoptotic pathways and cell differentiation. In this narrative review, we summarize data related to the function and role of GR in OC. To this aim, we reorganized the controversial and fragmented data regarding GR activity in OC and herein describe its potential use as a prognostic and predictive biomarker. Moreover, we explored the interplay between GR and BRCA expression and reviewed the latest therapeutic strategies such as non-selective GR antagonists and selective GR modulators to enhance chemotherapy sensitivity, and to finally provide new treatment options in OC patients.
Collapse
Affiliation(s)
- Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Neola
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sabrina Chiara Cecere
- Oncologia Clinica Sperimentale Uro-Ginecologica, Istituto Nazionale Tumori IRCCS Fondazione G Pascale, 80131 Naples, Italy
| | - Aldo Caltavituro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Amedeo Cefaliello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
16
|
Sun Y, Mo Y, Jiang S, Shang C, Feng Y, Zeng X. CXC chemokine ligand-10 promotes the accumulation of monocyte-like myeloid-derived suppressor cells by activating p38 MAPK signaling under tumor conditions. Cancer Sci 2022; 114:142-151. [PMID: 36168841 PMCID: PMC9807505 DOI: 10.1111/cas.15598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
CXC chemokine ligand-10 (CXCL10) is a small (10 kDa) secretory protein in the CXC subfamily of cytokines. CXCL10 has been reported to play an important role in antitumor immunity as a chemotactic factor. Tumor development is always accompanied by the formation of an immunosuppressive tumor microenvironment, and the role of CXCL10 in tumor immunosuppression remains unclear. Here, we reported that CXCL10 expression was significantly upregulated in mice with melanoma, and tumor cells secreted large amounts of CXCL10. Myeloid-derived suppressor cells (MDSCs) are an important part of the immunosuppressive tumor microenvironment. Our results showed that CXCL10 promoted the proliferation of monocyte-like (mo)-MDSCs by activating the p38 MAPK signaling pathway through CXCR3, which led to the abnormal accumulation of mo-MDSCs under tumor conditions. This finding provides a new understanding of the mechanism by which a tumor-induced immunosuppressive microenvironment forms and suggests that CXCL10 could be a potential intervention target for slowing tumor progression.
Collapse
Affiliation(s)
- Yingying Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Yan Mo
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Shu Jiang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Yunpeng Feng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| |
Collapse
|
17
|
Najafi A, Keykhaee M, Khorramdelazad H, Karimi MY, Nejatbakhsh Samimi L, Aghamohamadi N, Karimi M, Falak R, Khoobi M. Catalase application in cancer therapy: Simultaneous focusing on hypoxia attenuation and macrophage reprogramming. Biomed Pharmacother 2022; 153:113483. [DOI: 10.1016/j.biopha.2022.113483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
|
18
|
Ramezani-Ali Akbari K, Khaki-Bakhtiarvand V, Mahmoudian J, Asgarian-Omran H, Shokri F, Hojjat-Farsangi M, Jeddi-Tehrani M, Shabani M. Cloning, expression and characterization of a peptibody to deplete myeloid derived suppressor cells in a murine mammary carcinoma model. Protein Expr Purif 2022; 200:106153. [PMID: 35995320 DOI: 10.1016/j.pep.2022.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Myeloid derived suppressor cells (MDSCs) are an immature heterogeneous population of myeloid lineage that attenuate the anti-tumor immune responses. Depletion of MDSCs has been shown to improve efficacy of cancer immunotherapeutic approaches. Here, we expressed and characterized a peptibody which had previously been defined by phage display technique capable of recognizing and depleting murine MDSCs. MATERIALS AND METHODS Using splicing by overlap extension (SOE) PCR, the coding sequence of the MDSC binding peptide and linker were synthesized and then ligated into a home-made expression plasmid containing mouse IgG2a Fc. The peptibody construct was transfected into CHO-K1 cells by lipofectamine 3000 reagent and the resulting fusion protein was purified with protein G column and subsequently characterized by ELISA, SDS-PAGE and immunoblotting. The binding profile of the peptibody to splenic MDSCs and its MDSC depletion ability were then tested by flow cytometry. RESULTS The purified peptibody appeared as a 70 KDa band in Western blot. It could bind to 98.8% of splenic CD11b+/Gr-1+ MDSCs. In addition, the intratumoral MDSCs were significantly depleted after peptibody treatment compared to their PBS-treated negative control counterparts (P < 0.05). CONCLUSION In this study, a peptibody capable of depleting intratumoral MDSCs, was successfully expressed and purified. Our results imply that it could be considered as a potential tool for research on cancer immunotherapy.
Collapse
Affiliation(s)
| | - Vahid Khaki-Bakhtiarvand
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, 17164, Stockholm, Sweden
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Stem Cells in the Tumor Immune Microenvironment -Part of the Cure or Part of the Disease? Ontogeny and Dichotomy of Stem and Immune Cells has Led to better Understanding. Stem Cell Rev Rep 2022; 18:2549-2565. [PMID: 35841518 DOI: 10.1007/s12015-022-10428-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Stem cells are at the basis of tissue homeostasis, hematopoiesis and various regenerative processes. Epigenetic changes in their somatically imprinted genes, prolonged exposure to mutagens/carcinogens or alteration of their niche can lead to the development of an enabling environment for tumor growth and progression. The involvement of stem cells in both health and disease becomes even more compelling with ontogeny as embryonic and extraembryonic stem cells which persist into adulthood in well established and specific niche may have distinct implications in tumorigenesis. Immune surveillance plays an important role in this interplay since the response of immune cells toward the oncogenic process can range from reactivity to placidity and even complicity, being orchestrated by intercellular molecular dialogues with the other key players of the tumor microenvironment. With the current understanding that every developing and adult tissue contains inherent stem and progenitor cells, in this manuscript we review the most relevant interactions carried out between the stem cells, tumor cells and immune cells in a bottom-up incursion through the tumor microenvironment beginning from the perivascular niche and going through the tumoral parenchyma and the related stroma. With the exploitation of various factors that influence the behavior of immune effectors toward stem cells and other resting cells in their niche, new therapeutic strategies to tackle the polarization of immune effectors toward a more immunogenic phenotype may arise.
Collapse
|
20
|
Eren T. Prognostic significance of the preoperative lymphocyte to C-reactive protein ratio in patients with stage III colorectal cancer. ANZ J Surg 2022; 92:2585-2594. [PMID: 35779019 DOI: 10.1111/ans.17896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Stage III colorectal cancer (CRC), which accounts for approximately one third of all CRC cases, is associated with worsened prognosis. The aim of this study was to compare the preoperatively measured systemic inflammatory markers and to define the most significant marker in terms of its prognostic value in stage III CRC. METHODS Surgically treated stage III CRC patients were included. Demographics, preoperatively measured Glasgow prognostic score (GPS), neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), lymphocyte/C-reactive protein ratio (LCR) and C-reactive protein/albumin ratio (CAR) values, clinicopathological features, surgical, oncological and survival outcomes were recorded and statistically analysed. RESULTS The study group of 102 patients consisted of 65 (63.7%) men and 37 (36.3%) women with a median age of 64 (range: 26-89). The mean follow-up period was 42.8 ± 30.5 (range: 6-107) months. Overall survival (OS) and disease-free survival (DFS) rates were 71.6%, and 67.7%, respectively. Elevated CRP, GPS 2, LCR ≤ 0.530, CAR ≥ 0.080, higher numbers of metastatic lymph nodes and N2b nodal status were detected to impair DFS (P = 0.001, P = 0.015, P = 0.001, P = 0.001, P = 0.001 and P = 0.043, respectively). Variables including GPS 2, PLR≥190.83, CAR≥0.045, LCR≤0.684, surgical site infection and longer hospital stay decreased OS (P = 0.004, P = 0.002, P = 0.005, P = 0.001, P = 0.001 and P = 0.001, respectively). According to multivariate analysis; PLR ≥ 190.83 was associated with three times [HR: 2.892 (95% CI: 1.100-7.602), P = 0.031], and LCR ≤ 0.684 was associated with four times [HR: 3.919 (95% CI: 1.130-13.592), P = 0.031] greater risk of cancer-related mortality. CONCLUSION As an independent prognostic factor, LCR had the highest impact on predicting survival after curative resection for stage III CRC.
Collapse
Affiliation(s)
- Tunc Eren
- Department of General Surgery, Faculty of Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| |
Collapse
|
21
|
Lagou MK, Anastasiadou DP, Karagiannis GS. A Proposed Link Between Acute Thymic Involution and Late Adverse Effects of Chemotherapy. Front Immunol 2022; 13:933547. [PMID: 35844592 PMCID: PMC9283860 DOI: 10.3389/fimmu.2022.933547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
Collapse
Affiliation(s)
- Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - Dimitra P. Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
22
|
Sun Q, Xiao L, Cui Z, Yang Y, Ma J, Huang Z, Zhang J, Chen J. 3,3'-Diindolylmethane improves antitumor immune responses of PD-1 blockade via inhibiting myeloid-derived suppressor cells. Chin Med 2022; 17:81. [PMID: 35773674 PMCID: PMC9245307 DOI: 10.1186/s13020-022-00638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background Immune checkpoint inhibitors that target programmed cell death protein 1 (PD-1) have obtained encouraging results, but a fraction of tumor patients failed to respond to anti-PD-1 treatment due to the existence of multiple immune suppressive elements such as myeloid-derived suppressor cells (MDSCs). Traditional Chinese medicine or natural products from medicinal plants could enhance immunity and may be helpful for cancer immunotherapy. As a digestive metabolite from cruciferous plants, 3,3′-diindolylmethane (DIM) has been widely used in chemotherapy, but its influence on cancer immunotherapy remains unclear. Here we investigate the function of DIM on MDSCs and examine the therapeutic effects of DIM in conjunction with PD-1 antibody against mouse tumors. Methods Flow cytometry analysis, Western blot analysis and qRT-PCR assay were used to examine the inhibitory effects and mechanisms of DIM on MDSCs in vitro and in vivo. The therapeutic effects of DIM on cancer immunotherapy by PD-1 antibody were evaluated in mouse models of breast cancer and melanoma tumor. Results DIM exerted the inhibitory effect on MDSCs via downregulating miR-21 level and subsequently activating PTEN/PIAS3-STAT3 pathways. Adoptive transfer of MDSCs impaired the therapeutic effects of DIM, indicating that the antitumor activity of DIM might be due to the suppression of MDSCs. Furthermore, in mouse models of breast cancer and melanoma tumor, the addition of DIM can enhance the therapeutic effect of PD-1 antibody through promoting T cells responses, and thereby inhibiting tumor growth. Conclusions Overall, the strategy based on the combination treatment of anti-PD-1 antibody and DIM may provide a new approach for cancer immunotherapy. Cruciferae plants-rich diet which contains high amount of DIM precursor may be beneficial for cancer patients that undergo the anti-PD-1 treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00638-z.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Lin Xiao
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Zhiying Cui
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Yaping Yang
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Junting Ma
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China. .,Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China.
| | - Zhen Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| | - Junfeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
23
|
Kadiyala P, Elhossiny AM, Carpenter ES. Using Single Cell Transcriptomics to Elucidate the Myeloid Compartment in Pancreatic Cancer. Front Oncol 2022; 12:881871. [PMID: 35664793 PMCID: PMC9161632 DOI: 10.3389/fonc.2022.881871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a 5-year survival rate of 10%. A hallmark feature of this disease is its abundant microenvironment which creates a highly immunosuppressive milieu. This is, in large part, mediated by an abundant infiltration of myeloid cells in the PDAC tumor microenvironment. Consequently, therapies that modulate myeloid function may augment the efficacy of standard of care for PDAC. Unfortunately, there is limited understanding about the various subsets of myeloid cells in PDAC, particularly in human studies. This review highlights the application of single-cell RNA sequencing to define the myeloid compartment in human PDAC and elucidate the crosstalk between myeloid cells and the other components of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Padma Kadiyala
- Department of Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Eileen S. Carpenter
- Department of Intenal Medicine, Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Eileen S. Carpenter,
| |
Collapse
|
24
|
Alvear-Arias JJ, Carrillo C, Villar JP, Garcia-Betancourt R, Peña-Pichicoi A, Fernandez A, Fernandez M, Carmona EM, Pupo A, Neely A, Alvarez O, Garate J, Barajas-Martinez H, Larsson HP, Lopez-Rodriguez A, Latorre R, Gonzalez C. Expression of H v1 proton channels in myeloid-derived suppressor cells (MDSC) and its potential role in T cell regulation. Proc Natl Acad Sci U S A 2022; 119:e2104453119. [PMID: 35377790 PMCID: PMC9169626 DOI: 10.1073/pnas.2104453119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 02/14/2022] [Indexed: 12/07/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population with high immunosuppressive activity that proliferates in infections, inflammation, and tumor microenvironments. In tumors, MDSC exert immunosuppression mainly by producing reactive oxygen species (ROS), a process triggered by the NADPH oxidase 2 (NOX2) activity. NOX2 is functionally coupled with the Hv1 proton channel in certain immune cells to support sustained free-radical production. However, a functional expression of the Hv1 channel in MDSC has not yet been reported. Here, we demonstrate that mouse MDSC express functional Hv1 proton channel by immunofluorescence microscopy, flow cytometry, and Western blot, besides performing a biophysical characterization of its macroscopic currents via patch-clamp technique. Our results show that the immunosuppression by MDSC is conditional to their ability to decrease the proton concentration elevated by the NOX2 activity, rendering Hv1 a potential drug target for cancer treatment.
Collapse
Affiliation(s)
- Juan J. Alvear-Arias
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Christian Carrillo
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Javiera Paz Villar
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Richard Garcia-Betancourt
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Antonio Peña-Pichicoi
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Audry Fernandez
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Miguel Fernandez
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Emerson M. Carmona
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Amaury Pupo
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Alan Neely
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Osvaldo Alvarez
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jose Garate
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | | | - H. Peter Larsson
- Department of Physiology & Biophysics, University of Miami, Coral Gables, FL 33101
| | | | - Ramon Latorre
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
| | - Carlos Gonzalez
- Millenium Institute Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 236 0102, Chile
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad de Valparaíso, Valparaíso 236 0102, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| |
Collapse
|
25
|
Kotze LA, van der Spuy G, Leonard B, Penn-Nicholson A, Musvosvi M, McAnda S, Malherbe ST, Erasmus M, Scriba T, Koegelenberg CFN, Allwood BW, Walzl G, du Plessis N. Targeted Gene Expression Profiling of Human Myeloid Cells From Blood and Lung Compartments of Patients With Tuberculosis and Other Lung Diseases. Front Immunol 2022; 13:839747. [PMID: 35356003 PMCID: PMC8959218 DOI: 10.3389/fimmu.2022.839747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) have been identified in the peripheral blood and granulomas of patients with active TB disease, but their phenotype-, function-, and immunosuppressive mechanism- spectrum remains unclear. Importantly, the frequency and signaling pathways of MDSC at the site of disease is unknown with no indication how this compares to MDSC identified in peripheral blood or to those of related myeloid counterparts such as alveolar macrophages and monocytes. Most phenotypic and functional markers have been described in oncological studies but have not yet been validated in TB. Using a panel of 43 genes selected from pathways previously shown to contribute to tumor-derived MDSC, we set out to evaluate if the expression of these additional functional markers and properties may also be relevant to TB-derived MDSC. Differential expression was investigated between MDSC, alveolar macrophages and monocytes enriched from bronchoalveolar lavage fluid and peripheral blood of patients with active TB, patients with other lung diseases (OLD). Results demonstrated that anatomical compartments may drive compartment-specific immunological responses and subsequent MDSC immunosuppressive functions, demonstrated by the observation that MDSC and/or monocytes from PB alone can discriminate, via hierarchical clustering, between patients with active TB disease and OLD. Our data show that the gene expression patterns of MDSC in peripheral blood and bronchoalveolar lavage fluid do not cluster according to disease states (TB vs OLD). This suggests that MDSC from TB patients may display similar gene expression profiles to those found for MDSC in cancer, but this needs to be validated in a larger cohort. These are important observations for TB research and may provide direction for future studies aimed at repurposing and validating cancer immunotherapies for use in TB.
Collapse
Affiliation(s)
- Leigh Ann Kotze
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gian van der Spuy
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bryan Leonard
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shirley McAnda
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T. Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas Scriba
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Coenraad F. N. Koegelenberg
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Brian W. Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
26
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
27
|
Blitz SE, Kappel AD, Gessler FA, Klinger NV, Arnaout O, Lu Y, Peruzzi PP, Smith TR, Chiocca EA, Friedman GK, Bernstock JD. Tumor-Associated Macrophages/Microglia in Glioblastoma Oncolytic Virotherapy: A Double-Edged Sword. Int J Mol Sci 2022; 23:1808. [PMID: 35163730 PMCID: PMC8836356 DOI: 10.3390/ijms23031808] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy is a rapidly progressing field that uses oncolytic viruses (OVs) to selectively infect malignant cells and cause an antitumor response through direct oncolysis and stimulation of the immune system. Despite demonstrated pre-clinical efficacy of OVs in many cancer types and some favorable clinical results in glioblastoma (GBM) trials, durable increases in overall survival have remained elusive. Recent evidence has emerged that tumor-associated macrophage/microglia (TAM) involvement is likely an important factor contributing to OV treatment failure. It is prudent to note that the relationship between TAMs and OV therapy failures is complex. Canonically activated TAMs (i.e., M1) drive an antitumor response while also inhibiting OV replication and spread. Meanwhile, M2 activated TAMs facilitate an immunosuppressive microenvironment thereby indirectly promoting tumor growth. In this focused review, we discuss the complicated interplay between TAMs and OV therapies in GBM. We review past studies that aimed to maximize effectiveness through immune system modulation-both immunostimulatory and immunosuppressant-and suggest future directions to maximize OV efficacy.
Collapse
Affiliation(s)
- Sarah E. Blitz
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
| | - Ari D. Kappel
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Florian A. Gessler
- Department of Neurosurgery, University Medicine Rostock, 18057 Rostock, Germany;
| | - Neil V. Klinger
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Omar Arnaout
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pier Paolo Peruzzi
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Timothy R. Smith
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ennio A. Chiocca
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Joshua D. Bernstock
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
28
|
Murad LD, Silva TDQ, Schilithz AOC, Fernandes PV, Monteiro M, Murad LB, Fialho E. Low body mass index is associated with reduced intratumoral CD4+ T-lymphocyte infiltration in laryngeal squamous cell carcinoma patients. Nutr Res 2022; 102:1-12. [DOI: 10.1016/j.nutres.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
29
|
Dai S, Liu T, Liu YY, He Y, Liu T, Xu Z, Wang ZW, Luo F. Long Non-Coding RNAs in Lung Cancer: The Role in Tumor Microenvironment. Front Cell Dev Biol 2022; 9:795874. [PMID: 35047506 PMCID: PMC8762058 DOI: 10.3389/fcell.2021.795874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
The development of various therapeutic interventions, particularly immune checkpoint inhibitor therapy, have effectively induced tumor remission for patients with advanced lung cancer. However, few cancer patients can obtain significant and long-lasting therapeutic effects for the limitation of immunological nonresponse and resistance. For this case, it’s urgent to identify new biomarkers and develop therapeutic targets for future immunotherapy. Over the past decades, tumor microenvironment (TME)-related long non-coding RNAs (lncRNAs) have gradually become well known to us. A large number of existing studies have indicated that TME-related lncRNAs are one of the major factors to realize precise diagnosis and treatment of lung cancer. Herein, this paper discusses the roles of lncRNAs in TME, and the potential application of lncRNAs as biomarkers or therapeutic targets for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Yang Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingying He
- Oncology Department, People's Hospital of Deyang City, Deyang, China
| | - Tao Liu
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Wu Wang
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Lee EJ, Jang GY, Lee SE, Lee JW, Han HD, Park YM, Kang TH. A novel form of immunotherapy using antigen peptides conjugated on PD-L1 antibody. Immunol Lett 2021; 240:137-148. [PMID: 34710507 DOI: 10.1016/j.imlet.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 12/11/2022]
Abstract
Immune checkpoint inhibitors (ICIs), including programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 have shown promising cancer clinical outcomes. However, IC therapy has low patient response rates (10%-15%). Thus, ICIs and sufficient antigen combinations into the tumor microenvironment (TME) is important to produce strong tumor-specific adaptive immune responses. Mice were treated with cisplatin, and human cancer cells were exposed to inflammatory cytokines, to confirm increased PD-L1 and major histocompatibility complex (MHC) I expression by tumor cells or dendritic cells. TC-1, CT26, B16-F1, or B16-F10 tumor cells, and bone marrow-derived dendritic cells, were treated with interferon (IFN)-β, IFN-γ, or tumor necrosis factor-α to identify the molecular mechanisms underlying tumor PD-L1 and MHC I upregulation, and to examine MHC I, CD40, CD80, CD86, or PD-L1 levels, respectively. For synergistic combination therapy, αPD-L1 monoclonal antibody (mAb) covalently linked to the long E7 peptide was generated. Chemotherapy shifted the TME to express high PD-L1 and MHC I, resulting in targeted ICI cargo delivery and enhanced generation and activation of tumor antigen-specific T cells. Synergistic effects of vaccination and IC blockade in the TME were demonstrated using an anti-PD-L1 mAb covalently conjugated to the E7 long peptide.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero, Chungju-si Chungcheongbuk-do 27478, Republic of Korea
| | - Gun-Young Jang
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero, Chungju-si Chungcheongbuk-do 27478, Republic of Korea
| | - Sung Eun Lee
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero, Chungju-si Chungcheongbuk-do 27478, Republic of Korea
| | - Ji Won Lee
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero, Chungju-si Chungcheongbuk-do 27478, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero, Chungju-si Chungcheongbuk-do 27478, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology, College of Medicine, Konkuk University, 268 Chungwon-daero, Chungju-si Chungcheongbuk-do 27478, Republic of Korea
| | - Tae Heung Kang
- Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
31
|
Calì B, Agnellini AHR, Cioccarelli C, Sanchez-Rodriguez R, Predonzani A, Toffolo GI, Viola A, Bronte V, Arrigoni G, Zonta F, Albertoni L, Mescoli C, Marigo I, Molon B. GM-CSF Nitration Is a New Driver of Myeloid Suppressor Cell Activity in Tumors. Front Immunol 2021; 12:718098. [PMID: 34675917 PMCID: PMC8523982 DOI: 10.3389/fimmu.2021.718098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species, including RNS, contribute to the control of multiple immune cell functions within the tumor microenvironment (TME). Tumor-infiltrating myeloid cells (TIMs) represent the archetype of tolerogenic cells that actively contribute to dismantle effective immunity against cancer. TIMs inhibit T cell functions and promote tumor progression by several mechanisms including the amplification of the oxidative/nitrosative stress within the TME. In tumors, TIM expansion and differentiation is regulated by the granulocyte-macrophage colony-stimulating factor (GM-CSF), which is produced by cancer and immune cells. Nevertheless, the role of GM-CSF in tumors has not yet been fully elucidated. In this study, we show that GM-CSF activity is significantly affected by RNS-triggered post-translational modifications. The nitration of a single tryptophan residue in the sequence of GM-CSF nourishes the expansion of highly immunosuppressive myeloid subsets in tumor-bearing hosts. Importantly, tumors from colorectal cancer patients express higher levels of nitrated tryptophan compared to non-neoplastic tissues. Collectively, our data identify a novel and selective target that can be exploited to remodel the TME and foster protective immunity against cancer.
Collapse
Affiliation(s)
- Bianca Calì
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Andrielly H R Agnellini
- Department of Biomedical Science, University of Padua, Padua, Italy.,Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Cioccarelli
- Department of Biomedical Science, University of Padua, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| | - Ricardo Sanchez-Rodriguez
- Department of Biomedical Science, University of Padua, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| | | | | | - Antonella Viola
- Department of Biomedical Science, University of Padua, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| | - Vincenzo Bronte
- Verona University Hospital, Department of Medicine, Verona, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Laura Albertoni
- Department of Medicine, Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Claudia Mescoli
- Department of Medicine, Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Ilaria Marigo
- Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Science, University of Padua, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| |
Collapse
|
32
|
Liu J, Li S, Fei X, Nan X, Shen Y, Xiu H, Cormier SA, Lu C, Guo C, Wang S, Cai Z, Wang P. Increased alveolar epithelial TRAF6 via autophagy-dependent TRIM37 degradation mediates particulate matter-induced lung metastasis. Autophagy 2021; 18:971-989. [PMID: 34524943 DOI: 10.1080/15548627.2021.1965421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epidemiological and clinical studies have shown that exposure to particulate matter (PM) is associated with an increased incidence of lung cancer and metastasis. However, the underlying mechanism remains unclear. Here, we demonstrated the central role of PM-induced neutrophil recruitment in promoting lung cancer metastasis. We found that reactive oxygen species (ROS)-mediated alveolar epithelial macroautophagy/autophagy was essential for initiating neutrophil chemotaxis and pre-metastatic niche formation in the lungs in response to PM exposure. During PM-induced autophagy, the E3 ubiquitin ligase TRIM37 was degraded and protected TRAF6 from proteasomal degradation in lung epithelial cells, which promoted the NFKB-dependent production of chemokines to recruit neutrophils. Importantly, ROS blockade, autophagy inhibition or TRAF6 knockdown abolished PM-induced neutrophil recruitment and lung metastasis enhancement. Our study indicates that host lung epithelial cells and neutrophils coordinate to promote cancer metastasis to the lungs in response to PM exposure and provides ideal therapeutic targets for metastatic progression.Abbreviations: ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ATII: alveolar type II; Cho-Traf6 siRNA: 5'-cholesterol-Traf6 siRNA; EMT: epithelial-mesenchymal transition; HBE: human bronchial epithelial; HCQ: hydroxychloroquine; MAPK: mitogen-activated protein kinase; NAC: N-acetyl-L-cysteine; NFKB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NS: normal saline; PM: particulate matter; ROS: reactive oxygen species; TRAF6: TNF receptor-associated factor 6; TRIM37: tripartite motif-containing 37.
Collapse
Affiliation(s)
- Jiajun Liu
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuefeng Fei
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Nan
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqing Xiu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Stephania A Cormier
- Pennington Biomedical Researcher Center and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chaojie Lu
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Shibo Wang
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pingli Wang
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Fresno M, Gironès N. Myeloid-Derived Suppressor Cells in Trypanosoma cruzi Infection. Front Cell Infect Microbiol 2021; 11:737364. [PMID: 34513737 PMCID: PMC8430253 DOI: 10.3389/fcimb.2021.737364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature heterogeneous myeloid cells that expand in pathologic conditions as cancer, trauma, and infection. Although characterization of MDSCs is continuously revisited, the best feature is their suppressor activity. There are many markers for MDSC identification, it is distinctive that they express inducible nitric oxide synthase (iNOS) and arginase 1, which can mediate immune suppression. MDSCs can have a medullary origin as a result of emergency myelopoiesis, but also can have an extramedullary origin. Early studies on Trypanosoma cruzi infection showed severe immunosuppression, and several mechanisms involving parasite antigens and host cell mediators were described as inhibition of IL-2 and IL-2R. Another mechanism of immunosuppression involving tumor necrosis factor/interferon γ-dependent nitric oxide production by inducible nitric oxide synthase was also described. Moreover, other studies showed that nitric oxide was produced by CD11b+ Gr-1+ MDSCs in the spleen, and later iNOS and arginase 1 expressed in CD11b+Ly6C+Ly6Glo monocytic MDSC were found in spleen and heart of T. cruzi infected mice that suppressed T cell proliferation. Uncontrolled expansion of monocytic MDSCs leads to L-arginine depletion which hinders nitric oxide production leading to death. Supplement of L-arginine partially reverts L-arginine depletion and survival, suggesting that L-arginine could be administered along with anti-parasitical drugs. On the other hand, pharmacological inhibition of MDSCs leads to death in mice, suggesting that some expansion of MDSCs is needed for an efficient immune response. The role of signaling molecules mediating immune suppression as reactive oxygen species, reactive nitrogen species, as well as prostaglandin E2, characteristics of MDSCs, in T. cruzi infection is not fully understood. We review and discuss the role of these reactive species mediators produced by MDSCs. Finally, we discuss the latest results that link the SLAMF1 immune receptor with reactive oxygen species. Interaction of the parasite with the SLAMF1 modulates parasite virulence through myeloid cell infectivity and reactive oxygen species production. We discuss the possible strategies for targeting MDSCs and SLAMF1 receptor in acute Trypanosoma cruzi infection in mice, to evaluate a possible translational application in human acute infections.
Collapse
Affiliation(s)
- Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Group 12, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Group 12, Madrid, Spain
| |
Collapse
|
34
|
Xu L, Cai P, Li X, Wu X, Gao J, Liu W, Yang J, Xu Q, Guo W, Gu Y. Inhibition of NLRP3 inflammasome activation in myeloid-derived suppressor cells by andrographolide sulfonate contributes to 5-FU sensitization in mice. Toxicol Appl Pharmacol 2021; 428:115672. [PMID: 34391754 DOI: 10.1016/j.taap.2021.115672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
5-Fluorouracil (5-FU)-based chemotherapy is the first-line recommended regimen in colorectal cancer (CRC), but resistance limits its clinical application. Andrographolide sulfonate, a traditional Chinese medicine, is mainly used to treat infectious diseases. In the present study, we reported that andrographolide sulfonate could significantly inhibit the growth of transplanted CT26 colon cancer in mice and improve survival when combined with 5-FU. Furthermore, TUNEL assay and immunohistochemistry analysis of proliferating cell nuclear antigen, Ki-67 and p-STAT3 confirmed that co-treatment could inhibit tumor proliferation and promote apoptosis. In tumor tissues of groups that received 5-FU and andrographolide sulfonate, CD4+ and CD8+ T cell infiltration was increased, and the expression of IFN-γ and Granzyme B detected by immunohistochemistry and qPCR was upregulated, reflecting improved antitumor immunity. Finally, we verified that 5-FU significantly activated the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in myeloid-derived suppressor cells (MDSCs) and that andrographolide sulfonate reversed this process to sensitize cells to 5-FU. In summary, andrographolide sulfonate synergistically enhanced antitumor effects and improved antitumor immunity by inhibiting 5-FU-induced NLRP3 activation in MDSCs. These findings provide a novel strategy to address 5-FU resistance in the treatment of CRC.
Collapse
Affiliation(s)
- Lingyan Xu
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 2100029, China
| | - Peifen Cai
- The Jiangning Affiliated Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Xiaofei Li
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 2100029, China
| | - Xiaohan Wu
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 2100029, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiashu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Yanhong Gu
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 2100029, China.
| |
Collapse
|
35
|
Wu CC, Hsu YT, Chang CL. Hyperthermic intraperitoneal chemotherapy enhances antitumor effects on ovarian cancer through immune-mediated cancer stem cell targeting. Int J Hyperthermia 2021; 38:1013-1022. [PMID: 34192990 DOI: 10.1080/02656736.2021.1945688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
PURPOSE We aimed to determine the effects and possible mechanisms of hyperthermic intraperitoneal chemotherapy (HIPEC) in targeting ovarian cancer stem-like cells (CSCs). METHODS Murine ovarian cancer cell lines presenting CSC surface markers were grown intraperitoneally in both immunocompetent and immunodeficient mice, which were then treated by intraperitoneal hyperthermia with the chemotherapeutic agents: paclitaxel and cisplatin. Tumor growth was measured by non-invasive luminescent imaging. Intraperitoneal immune cells, such as CD4+, CD8+ T cells, macrophages, and dendritic cells, were evaluated through flow cytometry analysis. RESULTS Combined hyperthermia and chemotherapy exhibited an efficient therapeutic effect in the immunocompetent mice. However, a similar effect was not observed in the immunodeficient mice. Intraperitoneal hyperthermia increased the number of Intraperitoneal macrophages and dendritic cells that were lost due to chemotherapy. Compared with ovarian cancer bulk cells, CSCs were more susceptible to phagocytosis by macrophages. CONCLUSION We demonstrated that the superior therapeutic efficacy and reduced proportion of CSCs associated with intraperitoneal hyperthermic chemotherapy were immune-related. Hyperthermia recruits the phagocytes that target surviving CSCs after chemotherapy. These results provide a novel mechanism for the efficacy of HIPEC in treating ovarian cancer.
Collapse
Affiliation(s)
- Chao-Chih Wu
- Departmental of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Yun-Ting Hsu
- Departmental of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Chih-Long Chang
- Departmental of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan.,Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
36
|
Zhu J, Inomata T, Fujimoto K, Uchida K, Fujio K, Nagino K, Miura M, Negishi N, Okumura Y, Akasaki Y, Hirosawa K, Kuwahara M, Eguchi A, Shokirova H, Yanagawa A, Midorikawa-Inomata A, Murakami A. Ex Vivo-Induced Bone Marrow-Derived Myeloid Suppressor Cells Prevent Corneal Allograft Rejection in Mice. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 34061951 PMCID: PMC8185403 DOI: 10.1167/iovs.62.7.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the effects of ex vivo-induced bone marrow myeloid-derived suppressor cells (BM-MDSCs) on allogeneic immune responses in corneal transplantation. Methods Bone marrow cells from C57BL/6J (B6) mice were cultured with IL-6 and GM-CSF for four days. The ex vivo induction of the BM-MDSCs was assessed using flow cytometry, inducible nitric oxide synthase (iNOS) mRNA expression using reverse transcription-quantitative polymerase chain reaction, and nitric oxide (NO) production in allogeneic stimulation. T-cell proliferation and regulatory T-cell (Treg) expansion were investigated on allogeneic stimulation in the presence of ex vivo-induced BM-MDSCs. IFN-γ, IL-2, IL-10, and TGF-β1 protein levels were measured using enzyme-linked immunosorbent assays. After subconjunctival injection of ex vivo-induced BM-MDSCs, the migration of the BM-MDSCs into corneal grafts, allogeneic corneal graft survival, neovascularization, and lymphangiogenesis were assessed using flow cytometry, slit-lamp microscopy, and immunohistochemistry. Results The combination of GM-CSF and IL-6 significantly induced BM-MDSCs with increased iNos mRNA expression. The ex vivo-induced BM-MDSCs promoted NO release in allogeneic stimulation in vitro. The ex vivo-induced BM-MDSCs inhibited T-cell proliferation and promoted Treg expansion. Decreased IFN-γ and increased IL-2, IL-10, and TGF-β1 production was observed in coculture of ex vivo-induced BM-MDSCs. Injected ex vivo-induced BM-MDSCs were confirmed to migrate into the grafts. The injected BM-MDSCs also prolonged corneal graft survival and prevented angiogenesis and lymphangiogenesis. Conclusions The ex vivo-induced BM-MDSCs have suppressive effects on allogeneic immune responses and prolong corneal allograft survival via the iNOS pathway, indicating that they may be a potential therapeutic tool for corneal transplantation.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Subei People's Hospital Affiliated to Yangzhou University, Jiangsu Province, China
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichiro Uchida
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoko Negishi
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Indoor Environment Neurophysiology Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Baghbani E, Noorolyai S, Duijf PHG, Silvestris N, Kolahian S, Hashemzadeh S, Baghbanzadeh Kojabad A, FallahVazirabad A, Baradaran B. The impact of microRNAs on myeloid-derived suppressor cells in cancer. Hum Immunol 2021; 82:668-678. [PMID: 34020831 DOI: 10.1016/j.humimm.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023]
Abstract
Inflammation promotes cancer development. To a large extent, this can be attributed to the recruitment of myeloid-derived suppressor cells (MDSCs) to tumors. These cells are known for establishing an immunosuppressive tumor microenvironment by suppressing T cell activities. However, MDSCs also promote metastasis and angiogenesis. Critically, as small non-coding RNAs that regulate gene expression, microRNAs (miRNAs) control MDSC activities. In this review, we discuss how miRNA networks regulate key MDSC signaling pathways, how they shape MDSC development, differentiation and activation, and how this impacts tumor development. By targeting the expression of miRNAs in MDSCs, we can alter their main signaling pathways. In turn, this can compromise their ability to promote multiple hallmarks of cancer. Therefore, this may represent a new powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Nicola Silvestris
- IRCCS Bari, Italy. Medical Oncology Unit-IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy, Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany; Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Shahryar Hashemzadeh
- General and Vascular Surgery Department, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Zhang Y, Zhang G, Wang G, Wu L, Monteiro-Riviere NA, Li Y. The synergistic strategies for the immuno-oncotherapy with photothermal nanoagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1717. [PMID: 33825343 DOI: 10.1002/wnan.1717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Immuno-oncotherapy has shown great promise for the cure of late-stage and metastatic cancer. Great efforts have tried to improve the overall response rate (ORR) and to reduce the immune-related adverse events (irAEs). Antigen presentation, T cell activation and killing are interlocking and distinct steps to initiate effective anti-tumor immune responses. Aiming to overcome the tumor immune evasion whose mechanisms include limited release of neoantigen, suppressed infiltration of antigen-presenting cells (APCs) and T cells, and the expression of immune checkpoints (ICPs), combinational therapeutic strategies have shown great potential by activating the anti-tumor immune responses together with deactivating immunosuppressive conditions simultaneously. In this direction, photothermal therapy (PTT) has attracted attention due to the efficient ablation of tumor cells, of which the released immunogenic tumor debris can activate host immune responses. The combination of immunoadjuvants and/or ICP inhibitors can boost the anti-tumor immune responses, realizing PTT-synergized immuno-oncotherapy. In this regard, numerous multifunctional nanomaterials have been designed with integration of photothermal and immuno-oncotherapeutic agents into one package via well-designed surface modification and functionalization. This review summarizes the recent studies on the synergistic strategies for the immuno-oncotherapy based on photothermal nanoagents and the mechanisms that trigger the systemic anti-tumor immune responses and PTT-synergized immuno-oncotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yuqian Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guocheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas, USA
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
39
|
Oweida AJ, Mueller AC, Piper M, Milner D, Van Court B, Bhatia S, Phan A, Bickett T, Jordan K, Proia T, Schulick R, Messersmith WA, Del Chiaro M, Clambey E, Gough MJ, Williams J, Hansen K, Goodman K, Karam SD. Response to radiotherapy in pancreatic ductal adenocarcinoma is enhanced by inhibition of myeloid-derived suppressor cells using STAT3 anti-sense oligonucleotide. Cancer Immunol Immunother 2021; 70:989-1000. [PMID: 33097963 PMCID: PMC10991244 DOI: 10.1007/s00262-020-02701-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous tumor microenvironment (TME) comprised of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, neutrophils, regulatory T cells, and myofibroblasts. The precise mechanisms that regulate the composition of the TME and how they contribute to radiotherapy (RT) response remain poorly understood. In this study, we analyze changes in immune cell populations and circulating chemokines in patient samples and animal models of pancreatic cancer to characterize the immune response to radiotherapy. Further, we identify STAT3 as a key mediator of immunosuppression post-RT. We found granulocytic MDSCs (G-MDSCs) and neutrophils to be increased in response to RT in murine and human PDAC samples. We also found that RT-induced STAT3 phosphorylation correlated with increased MDSC infiltration and proliferation. Targeting STAT3 using an anti-sense oligonucleotide in combination with RT circumvented RT-induced MDSC infiltration, enhanced the proportion of effector T cells, and improved response to RT. In addition, STAT3 inhibition contributed to the remodeling of the PDAC extracellular matrix when combined with RT, resulting in decreased collagen deposition and fibrotic tissue formation. Collectively, our data provide evidence that targeting STAT3 in combination with RT can mitigate the pro-tumorigenic effects of RT and improve tumor response.
Collapse
Affiliation(s)
- Ayman J Oweida
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Canada
| | - Adam C Mueller
- Thomas Jefferson University, Bodine Center for Cancer Treatment, 1665 Aurora Court Suite 1032, Philadelphia, PA, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Dallin Milner
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Andy Phan
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Thomas Bickett
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Kimberly Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa Proia
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Richard Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Medical Center, Portland, OR, USA
| | - Jason Williams
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk Hansen
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karyn Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sana D Karam
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Canada.
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA.
| |
Collapse
|
40
|
Bourhis M, Palle J, Galy-Fauroux I, Terme M. Direct and Indirect Modulation of T Cells by VEGF-A Counteracted by Anti-Angiogenic Treatment. Front Immunol 2021; 12:616837. [PMID: 33854498 PMCID: PMC8039365 DOI: 10.3389/fimmu.2021.616837] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/04/2021] [Indexed: 12/29/2022] Open
Abstract
Vascular endothelial growth factor A is known to play a central role in tumor angiogenesis. Several studies showed that VEGF-A is also an immunosuppressive factor. In tumor-bearing hosts, VEGF-A can modulate immune cells (DC, MDSC, TAM) to induce the accumulation of regulatory T-cells while simultaneously inhibiting T-cell functions. Furthermore, VEGFR-2 expression on activated T-cells and FoxP3high regulatory T-cells also allow a direct effect of VEGF-A. Anti-angiogenic agents targeting VEGF-A/VEGFR contribute to limit tumor-induced immunosuppression. Based on interesting preclinical studies, many clinical trials have been conducted to investigate the efficacy of anti-VEGF-A/VEGFR treatments combined with immune checkpoint blockade leading to the approvement of these associations in different tumor locations. In this review, we focus on the impact of VEGF-A on immune cells especially regulatory and effector T-cells and different therapeutic strategies to restore an antitumor immunity.
Collapse
Affiliation(s)
| | - Juliette Palle
- Université de Paris, PARCC, INSERM, Paris, France.,Department of GI Oncology, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | | | - Magali Terme
- Université de Paris, PARCC, INSERM, Paris, France
| |
Collapse
|
41
|
Gonzalez-Junca A, Reiners O, Borrero-Garcia LD, Beckford-Vera D, Lazar AA, Chou W, Braunstein S, VanBrocklin H, Franc BL, Barcellos-Hoff MH. Positron Emission Tomography Imaging of Functional Transforming Growth Factor β (TGFβ) Activity and Benefit of TGFβ Inhibition in Irradiated Intracranial Tumors. Int J Radiat Oncol Biol Phys 2021; 109:527-539. [PMID: 33007434 PMCID: PMC7856163 DOI: 10.1016/j.ijrobp.2020.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Transforming growth factor β (TGFβ) promotes cell survival by endorsing DNA damage repair and mediates an immunosuppressive tumor microenvironment. Thus, TGFβ activation in response to radiation therapy is potentially targetable because it opposes therapeutic control. Strategies to assess this potential in the clinic are needed. METHODS AND MATERIALS We evaluated positron emission tomography (PET) to image 89Zr -fresolimumab, a humanized TGFβ neutralizing monoclonal antibody, as a means to detect TGFβ activation in intracranial tumor models. Pathway activity of TGFβ was validated by immunodetection of phosphorylated SMAD2 and the TGFβ target, tenascin. The contribution of TGFβ to radiation response was assessed by Kaplan-Meier survival analysis of mice bearing intracranial murine tumor models GL261 and SB28 glioblastoma and brain-adapted 4T1 breast cancer (4T1-BrA) treated with TGFβ neutralizing monoclonal antibody, 1D11, and/or focal radiation (10 Gy). RESULTS 89Zr-fresolimumab PET imaging detected engineered, physiological, and radiation-induced TGFβ activation, which was confirmed by immunostaining of biological markers. GL261 glioblastoma tumors had a greater PET signal compared with similar-sized SB28 glioblastoma tumors, whereas the widespread PET signal of 4T1-BrA intracranial tumors was consistent with their highly dispersed histologic distribution. Survival of mice bearing intracranial tumors treated with 1D11 neutralizing antibody alone was similar to that of mice treated with control antibody, whereas 1D11 improved survival when given in combination with focal radiation. The extent of survival benefit of a combination of radiation and 1D11 was associated with the degree of TGFβ activity detected by PET. CONCLUSIONS This study demonstrates that 89Zr-fresolimumab PET imaging detects radiation-induced TGFβ activation in tumors. Functional imaging indicated a range of TGFβ activity in intracranial tumors, but TGFβ blockade provided survival benefit only in the context of radiation treatment. This study provides further evidence that radiation-induced TGFβ activity opposes therapeutic response to radiation.
Collapse
Affiliation(s)
- Alba Gonzalez-Junca
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Oliver Reiners
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Luis D. Borrero-Garcia
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Denis Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ann A. Lazar
- Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of Oral Epidemiology, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
- Division of Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - William Chou
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steve Braunstein
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin L. Franc
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Current address: Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
Guth AM, Hafeman SD, Dow SW. Depletion of phagocytic myeloid cells triggers spontaneous T cell- and NK cell-dependent antitumor activity. Oncoimmunology 2021; 1:1248-1257. [PMID: 23243588 PMCID: PMC3518497 DOI: 10.4161/onci.21317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Depletion of tumor associated macrophages and inhibition of tumor angiogenesis have been invoked as the principle mechanisms underlying the antitumor activity of liposomal clodronate (LC). However, previous studies have not examined the effects of LC on systemic antitumor immunity. Here, we used mouse tumor models to elucidate the role of T and NK cells in the antitumor activity elicited by the systemic administration of LC. Strikingly, we found that the antitumor activity of LC is completely abolished in immunodeficient Rag1−/− mice. Moreover, both Cd4−/− and Cd8−/− mice as well as mice depleted of NK cells manifested a significant impaired ability to control tumor growth following LC administration. Treatment with LC did not result in an overall increase in T- or NK-cell numbers in tumors or lymphoid organs, nor was tumor infiltration with T or NK cells altered. However, T and NK cells isolated from the spleen of LC-treated mice exhibited significant increased tumor-specific secretion of interferon γ and interleukin 17 and greater cytolytic activity. We concluded that the antitumor effects of LC are largely dependent on the generation of systemic T-cell and NK- cell activity, most likely owing to the depletion of immune suppressive myeloid cell populations in lymphoid tissues. These findings suggest that the systemic administration of LC may constitute an effective means for non-specifically augmenting the antitumor activity of T and NK cells.
Collapse
Affiliation(s)
- Amanda M Guth
- Animal Cancer Center; Dept of Clinical Sciences; Colorado State University; Ft. Collins, CO USA
| | | | | |
Collapse
|
43
|
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2021; 1:1323-1343. [PMID: 23243596 PMCID: PMC3518505 DOI: 10.4161/onci.22009] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Orsay, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Danilin S, Merkel AR, Johnson JR, Johnson RW, Edwards JR, Sterling JA. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology 2021; 1:1484-1494. [PMID: 23264895 PMCID: PMC3525604 DOI: 10.4161/onci.21990] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), identified as Gr1+CD11b+ cells in mice, expand during cancer and promote tumor growth, recurrence and burden. However, little is known about their role in bone metastases. We hypothesized that MDSCs may contribute to tumor-induced bone disease, and inoculated breast cancer cells into the left cardiac ventricle of nude mice. Disease progression was monitored weekly by X-ray and fluorescence imaging and MDSCs expansion by fluorescence-activated cell sorting. To explore the contribution of MDSCs to bone metastasis, we co-injected mice with tumor cells or PBS into the left cardiac ventricle and Gr1+CD11b+ cells isolated from healthy or tumor-bearing mice into the left tibia. MDSCs didn’t induce bone resorption in normal mice, but increased resorption and tumor burden significantly in tumor-bearing mice. In vitro experiments showed that Gr1+CD11b+ cells isolated from normal and tumor-bearing mice differentiate into osteoclasts when cultured with RANK ligand and macrophage colony-stimulating factor, and that MDSCs from tumor-bearing mice upregulate parathyroid hormone-related protein (PTHrP) mRNA levels in cancer cells. PTHrP upregulation is likely due to the 2-fold increase in transforming growth factor β expression that we observed in MDSCs isolated from tumor-bearing mice. Importantly, using MDSCs isolated from GFP-expressing animals, we found that MDSCs differentiate into osteoclast-like cells in tumor-bearing mice as evidenced by the presence of GFP+TRAP+ cells. These results demonstrate that MDSCs expand in breast cancer bone metastases and induce bone destruction. Furthermore, our data strongly suggest that MDSCs are able to differentiate into osteoclasts in vivo and that this is stimulated in the presence of tumors.
Collapse
Affiliation(s)
- Sabrina Danilin
- Division of Clinical Pharmacology; Department of Medicine; Vanderbilt Center for Bone Biology; Nashville, TN USA ; INSERM U682; Section of Renal Cancer and Renal Physiopathology; University of Strasbourg; School of Medicine; Strasbourg, France
| | | | | | | | | | | |
Collapse
|
45
|
A Hepatitis B Virus-Derived Peptide Exerts an Anticancer Effect via TNF/iNOS-producing Dendritic Cells in Tumor-Bearing Mouse Model. Cancers (Basel) 2021; 13:cancers13030407. [PMID: 33499256 PMCID: PMC7865762 DOI: 10.3390/cancers13030407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, we reported a 6-mer hepatitis B virus (HBV)-derived peptide, Poly6, that exerts antiviral effects against human immunodeficiency virus type 1 (HIV-1). Here, we explored the immunotherapeutic potential of Poly6 via its administration into dendritic cells (DCs) in a mouse model. Our data revealed that Poly6 treatment led to enhanced production of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS)-producing DCs (Tip-DCs) in a type 1 interferon (IFN-I)-dependent manner via the induction of mitochondrial stress. Poly6 treatment in mice implanted with MC38 cells, a murine colon adenocarcinoma line, led to attenuated tumor formation, primarily due to direct cell death induced by Tip-DC mediated nitric oxide (NO) production and indirect killing by Tip-DC mediated cluster of differentiation 8 (CD8) cytotoxic T lymphocyte (CTL) activation via CD40 activation. Moreover, Poly6 treatment demonstrated an enhanced anticancer effect with one of the checkpoint inhibitors, the anti PD-L1 antibody. In conclusion, our data reveal that Poly6 treatment elicits an antitumor immune response in mice, possibly through NO-mediated oncolytic activity via Tip-DC activation and Tip-DC mediated CTL activation. This suggests that Poly6 represents a potential adjuvant for cancer immunotherapy by enhancing the anticancer effects of immune checkpoint inhibitors.
Collapse
|
46
|
CCL25 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:99-111. [PMID: 34286444 DOI: 10.1007/978-3-030-62658-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple checkpoint mechanisms are overridden by cancer cells in order to develop into a tumor. Neoplastic cells, while constantly changing during the course of cancer progression, also craft their surroundings to meet their growing needs. This crafting involves changing cell surface receptors, affecting response to extracellular signals and secretion of signals that affect the nearby cells and extracellular matrix architecture. This chapter briefly comprehends the non-cancer cells facilitating the cancer growth and elaborates on the notable role of the CCR9-CCL25 chemokine axis in shaping the tumor microenvironment (TME), directly and via immune cells. Association of increased CCR9 and CCL25 levels in various tumors has demonstrated the significance of this axis as a tool commonly used by cancer to flourish. It is involved in attracting immune cells in the tumor and determining their fate via various direct and indirect mechanisms and, leaning the TME toward immunosuppressive state. Besides, elevated CCR9-CCL25 signaling allows survival and rapid proliferation of cancer cells in an otherwise repressive environment. It modulates the intra- and extracellular protein matrix to instigate tumor dissemination and creates a supportive metastatic niche at the secondary sites. Lastly, this chapter abridges the latest research efforts and challenges in using the CCR9-CCL25 axis as a cancer-specific target.
Collapse
|
47
|
Gaissmaier L, Christopoulos P. Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration 2020; 99:1-27. [PMID: 33291116 DOI: 10.1159/000510385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy represents the most dynamic field of biomedical research currently, with thoracic immuno-oncology as a forerunner. PD-(L)1 inhibitors are already part of standard first-line treatment for both non-small-cell and small-cell lung cancer, while unprecedented 5-year survival rates of 15-25% have been achieved in pretreated patients with metastatic disease. Evolving strategies are mainly aiming for improvement of T-cell function, increase of immune activation in the tumor microenvironment (TME), and supply of tumor-reactive lymphocytes. Several novel therapeutics have demonstrated preclinical efficacy and are increasingly used in rational combinations within clinical trials. Two overarching trends dominate: extension of immunotherapy to earlier disease stages, mainly as neoadjuvant treatment, and a shift of focus towards multivalent, individualized, mutatome-based antigen-specific modalities, mainly adoptive cell therapies and cancer vaccines. The former ensures ample availability of treated and untreated patient samples, the latter facilitates deeper mechanistic insights, and both in combination build an overwhelming force that is accelerating progress and driving the greatest revolution cancer medicine has seen so far. Today, immune modulation represents the most potent therapeutic modality in oncology, the most important topic in clinical and translational cancer research, and arguably our greatest, meanwhile justified hope for achieving cure of pulmonary neoplasms and other malignancies in the next future.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany,
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany,
| |
Collapse
|
48
|
HOX Genes Family and Cancer: A Novel Role for Homeobox B9 in the Resistance to Anti-Angiogenic Therapies. Cancers (Basel) 2020; 12:cancers12113299. [PMID: 33171691 PMCID: PMC7695342 DOI: 10.3390/cancers12113299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The inhibition of angiogenesis, relying on the use of drugs targeting the VEGF signaling pathway, has become one of the main strategies for cancer treatment. However, the intrinsic and acquired resistance to this type of therapy limit its efficacy. Thus, the identification of novel therapeutic targets is urgently needed. The resistance to anti-angiogenic treatment often occurs through the activation of alternative VEGF independent signaling pathways and recruitment of bone marrow-derived pro-angiogenic cells in the tumor microenvironment. HOX genes are key regulators of embryonic development, also involved in angiogenesis and in cancer progression. HOXB9 upregulation occurs in many types of cancer and it has been identified as a critical transcription factor involved in tumour resistance to anti-angiogenic drugs. Indeed, HOXB9 modulates the expression of alternative pro-angiogenic secreted factors in the tumour microenvironment leading tumor escape from the anti-angiogenic treatments. Hence, HOXB9 could serves as a novel therapeutic target to overcome the resistance to anti-angiogenic therapies. Abstract Angiogenesis is one of the hallmarks of cancer, and the inhibition of pro-angiogenic factors and or their receptors has become a primary strategy for cancer therapy. However, despite promising results in preclinical studies, the majority of patients either do not respond to these treatments or, after an initial period of response, they develop resistance to anti-angiogenic agents. Thus, the identification of a novel therapeutic target is urgently needed. Multiple mechanisms of resistance to anti-angiogenic therapy have been identified, including the upregulation of alternative angiogenic pathways and the recruitment of pro-angiogenic myeloid cells in the tumor microenvironment. Homeobox containing (HOX) genes are master regulators of embryonic development playing a pivotal role during both embryonic vasculogenesis and pathological angiogenesis in adults. The importance of HOX genes during cancer progression has been reported in many studies. In this review we will give a brief description of the HOX genes and their involvement in angiogenesis and cancer, with particular emphasis on HOXB9 as a possible novel target for anti-angiogenic therapy. HOXB9 upregulation has been reported in many types of cancers and it has been identified as a critical transcription factor involved in resistance to anti-angiogenic drugs.
Collapse
|
49
|
Colton M, Cheadle EJ, Honeychurch J, Illidge TM. Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiat Oncol 2020; 15:254. [PMID: 33148287 PMCID: PMC7640712 DOI: 10.1186/s13014-020-01678-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a highly effective anti-cancer therapy delivered to around 50-60% of patients. It is part of therapy for around 40% of cancer patients who are cured of their disease. Until recently, the focus of this anti-tumour efficacy has been on the direct tumour cytotoxicity and RT-induced DNA damage. Recently, the immunomodulatory effects of RT on the tumour microenvironment have increasingly been recognized. There is now intense interest in potentially using RT to induce an anti-tumour immune response, which has led to rethinking into how the efficacy of RT could be further enhanced. Following the breakthrough of immune check point inhibitors (ICIs), a new era of immuno-oncology (IO) agents has emerged and established immunotherapy as a routine part of cancer treatment. Despite ICI improving outcomes in many cancer types, overall durable responses occur in only a minority of patients. The immunostimulatory effects of RT make combinations with ICI attractive to potentially amplify anti-tumour immunity resulting in increased tumour responses and improved outcomes. In contrast, tumours with profoundly immunosuppressive tumour microenvironments, dominated by myeloid-derived cell populations, remain a greater clinical challenge and RT may potentially further enhance the immunosuppression. To harness the full potential of RT and IO agent combinations, further insights are required to enhance our understanding of the role these immunosuppressive myeloid populations play, how RT influences these populations and how they may be therapeutically manipulated in combination with RT to improve outcomes further. These are exciting times with increasing numbers of IO targets being discovered and IO agents undergoing clinical evaluation. Multidisciplinary research collaborations will be required to establish the optimal parameters for delivering RT (target volume, dose and fractionation) in combination with IO agents, including scheduling to achieve maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Madyson Colton
- Division of Cancer Sciences, Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, University of Manchester, Manchester, UK
| | - Eleanor J Cheadle
- Division of Cancer Sciences, Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, University of Manchester, Manchester, UK
| | - Jamie Honeychurch
- Division of Cancer Sciences, Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, University of Manchester, Manchester, UK
| | - Tim M Illidge
- Division of Cancer Sciences, Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, University of Manchester, Manchester, UK.
- The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
50
|
Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N, Baradaran B. MicroRNAs and lncRNAs-A New Layer of Myeloid-Derived Suppressor Cells Regulation. Front Immunol 2020; 11:572323. [PMID: 33133086 PMCID: PMC7562789 DOI: 10.3389/fimmu.2020.572323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute an important component in regulating immune responses in several abnormal physiological conditions such as cancer. Recently, novel regulatory tumor MDSC biology modulating mechanisms, including differentiation, expansion and function, were defined. There is growing evidence that miRNAs and long non-coding RNAs (lncRNA) are involved in modulating transcriptional factors to become complex regulatory networks that regulate the MDSCs in the tumor microenvironment. It is possible that aberrant expression of miRNAs and lncRNA contributes to MDSC biological characteristics under pathophysiological conditions. This review provides an overview on miRNAs and lncRNAs epiregulation of MDSCs development and immunosuppressive functions in cancer.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Francesco Giovannelli
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Department of Internal Medicine and Oncology (DIMO)-University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|