1
|
Wang Y, Dong Q, Yuan M, Hu J, Lin P, Yan Y, Wang Y, Wang Y. Effects of metabolism upon immunity: Targeting myeloid-derived suppressor cells for the treatment of breast cancer is a promising area of study. Int Immunopharmacol 2025; 147:113892. [PMID: 39740506 DOI: 10.1016/j.intimp.2024.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Breast cancer (BC) ranks among the most prevalent malignancies affecting women, with advanced-stage patients facing an increased mortality risk. Myeloid-derived suppressor cells (MDSCs) contribute significantly to poor prognostic outcomes. Research has concentrated predominantly on the immunological mechanisms underlying MDSC functions, but a comprehensive investigation into the metabolic interactions between BC cells and MDSCs is lacking. In a hypoxic tumor microenvironment (TME), BC cells can enhance aerobic-glycolysis rates, upregulate expression of key lipid metabolism enzymes such as cluster of differentiation (CD) 36 and 5-lipoxygenase (5-LOX), accelerate glutamine (Gln) uptake, and elevate extracellular adenosine (eADO) levels, thereby fostering MDSC proliferation and amplifying immune suppression. Concurrently, alterations in the metabolic state of MDSCs also influence BC progression. To ensure adequate proliferative resources, MDSCs upregulate the pentose phosphate pathway and expedite glycolysis for energy supply while increasing the expression of fatty acid transport proteins (FATPs) such as CD36 and fatty acid transporter 2 (FATP2) to maintain intracellular lipid availability, thereby enhancing their adaptability within the TME. Furthermore, MDSCs undermine T-cell anti-tumor efficacy by depleting essential amino acids (AAs), such as arginine (Arg), tryptophan (Trp), and cysteine (Cys), required for T-cell function. This review elucidates how pharmacological agents such as metformin, liver X receptor (LXR) agonists, and 6-diazo-5-oxo-L-norleucine (DON) can augment anti-cancer treatment efficacy by targeting metabolic pathways in MDSCs. We systematically delineate the mechanisms governing interactions between BC cells and MDSCs from a metabolic standpoint while summarizing therapeutic strategies to modulate metabolism within MDSCs. Our review provides a framework for optimizing MDSC applications in BC immunotherapy.
Collapse
Affiliation(s)
- Yulin Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiutong Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Menghan Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxian Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanyan Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Li J, Zhang G, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Harnessing nanoparticles for reshaping tumor immune microenvironment of hepatocellular carcinoma. Discov Oncol 2025; 16:121. [PMID: 39909958 PMCID: PMC11799483 DOI: 10.1007/s12672-025-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers, characterized by high morbidity and mortality rates. Recently, immunotherapy has emerged as a crucial treatment modality for HCC, following surgery, locoregional therapies, and targeted therapies. This approach harnesses the body's immune system to target and eliminate cancer cells, potentially resulting in durable antitumor responses. However, acquired resistance and the tumor immunosuppressive microenvironment (TIME) significantly hinder its clinical application. Recently, advancements in nanotechnology, coupled with a deeper understanding of cancer biology and nano-biological interactions, have led to the development of various nanoparticles aimed at enhancing therapeutic efficacy through specific targeting of tumor tissues. These nanoparticles increase the accumulation of immunotherapeutic drugs within the tumor microenvironment, thereby transforming the TIME. In this review, we provide a concise overview of the fundamental principles governing the TIME landscape in HCC and discuss the rationale for and applications of nanoparticles in this context. Additionally, we highlight existing challenges and potential opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Karadima E, Chavakis T, Alexaki VI. Arginine metabolism in myeloid cells in health and disease. Semin Immunopathol 2025; 47:11. [PMID: 39863828 PMCID: PMC11762783 DOI: 10.1007/s00281-025-01038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses. Conversely, the arginase 1 (ARG1)-dependent switch between the branch of NO production and polyamine synthesis downregulates inflammation and promotes recovery of tissue homeostasis. Creatine metabolism is key for energy supply and proline metabolism is required for collagen synthesis. Myeloid ARG1 also regulates extracellular arginine availability and T cell responses in parasitic diseases and cancer. Cancer, surgery, sepsis and persistent inflammation in chronic inflammatory diseases, such as neuroinflammatory diseases or arthritis, are associated with dysregulation of arginine metabolism in myeloid cells. Here, we review current knowledge on arginine metabolism in different myeloid cell types, such as macrophages, neutrophils, microglia, osteoclasts, tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs). A deeper understanding of the function of arginine metabolism in myeloid cells will improve our knowledge on the pathology of several diseases and may set the platform for novel therapeutic applications.
Collapse
Affiliation(s)
- Eleftheria Karadima
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Freitas BFA, Verchere CB, Levings MK. Advances in Engineering Myeloid Cells for Cell Therapy Applications. ACS Synth Biol 2025; 14:10-20. [PMID: 39722478 DOI: 10.1021/acssynbio.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Myeloid cells, including macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, play crucial roles in the innate immune system, contributing to immune defense, tissue homeostasis, and organ development. They have tremendous potential as therapeutic tools for diseases such as cancer and autoimmune disorders, but harnessing cell engineering strategies to enhance potency and expand applications is challenging. Recent advancements in stem cell research have made it possible to differentiate human embryonic stem cells and induce pluripotent stem cells into various cell types, including myeloid cells, offering a promising new approach to generate myeloid cells for cell therapy. In this review, we explore the latest techniques for the genetic engineering of myeloid cells, discussing both established and emerging methodologies. We examine the challenges faced in this field and the therapeutic potential of engineered myeloid cells. We also describe examples of engineered macrophages, neutrophils, and dendritic cells in various disease contexts. By providing a detailed overview of the current state and future directions, we aim to highlight progress and ongoing efforts toward harnessing the full therapeutic potential of genetically engineered myeloid cells.
Collapse
Affiliation(s)
- Bruno F A Freitas
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - C Bruce Verchere
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| |
Collapse
|
5
|
Manole S, Nguyen DH, Min JJ, Zhou S, Forbes N. Setting "cold" tumors on fire: Cancer therapy with live tumor-targeting bacteria. MED 2025; 6:100549. [PMID: 39689707 DOI: 10.1016/j.medj.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/18/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Immunotherapy with checkpoint blockade has shown remarkable efficacy in many patients with a variety of different types of cancer. However, the majority of patients with cancer have yet to benefit from this revolutionary therapy. Studies have shown that checkpoint blockade works best against immune-inflamed tumors characterized by the presence of tumor-infiltrating lymphocytes (TILs). In this review, we summarize studies using live tumor-targeting bacteria to treat cancer and describe various strategies to engineer the tumor-targeting bacteria for maximized immunoregulatory effects. We propose that tumor-localized infections by such engineered bacteria can create an immune microenvironment in favor of a more effective antitumor immunity with or without other therapies, such as immune checkpoint blockade (ICB). Finally, we will briefly outline some exemplary oncology clinical trials involving ICB plus live therapeutic bacteria, with a focus on their ability to modulate antitumor immune responses.
Collapse
Affiliation(s)
- Simin Manole
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeonnam 58128, South Korea.
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Neil Forbes
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA; Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA; Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
6
|
Licata A, Seidita A, Como S, de Carlo G, Cammilleri M, Bonica R, Soresi M, Veronese N, Chianetta R, Citarrella R, Giannitrapani L, Barbagallo M. Herbal and Dietary Supplements as Adjunctive Treatment for Mild SARS-CoV-2 Infection in Italy. Nutrients 2025; 17:230. [PMID: 39861359 PMCID: PMC11767322 DOI: 10.3390/nu17020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
During the COVID-19 pandemic, several observational studies proved a certain efficacy of nutraceuticals, herbal products, and other dietary supplements as adjuvant therapies used alongside antiviral drugs. Although their use has not been widespread in Italy, according to preliminary evidence, many supplements with demonstrated immunomodulatory effects, such as vitamins C and D, herbal medicines and essential oils, might relieve the respiratory symptoms of COVID-19, since SARS-CoV-2 can activate inflammasome-mediated inflammatory signaling pathways. Other observational studies have shown that herbal treatments, such as Echinacea purpurea and ginseng, help alleviate respiratory symptoms and reduce serum levels of inflammatory cytokines, which are typically overexpressed in both adult and pediatric SARS-CoV-2 patients. Further, vitamins C and D can attenuate the immune response thanks to their cytokine suppression ability and to their known antimicrobial activity and potential to modulate T helper cell response. The strong immune response triggered by SARS-CoV-2 infection is responsible for the severity of the disease. Preliminary data have also shown that L-arginine, an endothelial-derived relaxing factor, is able to modulate endothelial damage, which appears to be one of the main targets of this systemic disease. Finally, some essential oils and their isolated compounds, such as eucalyptol, may be helpful in reducing many of the respiratory symptoms of COVID-19, although others, such as menthol, are not recommended, since it can lead to an undervaluation of the clinical status of a patient. In this narrative review, despite the lack of strong evidence in this field, we aimed to give an overview of the current available literature (mainly observational and cross-sectional studies) regarding herbal products and dietary supplements and their use in the treatment of mild disease from SARS-CoV-2 infection. Obviously, dietary supplements and herbal products do not constitute a standardized treatment for COVID-19 disease, but they could represent an adjunctive and useful treatment when used together with antivirals.
Collapse
Affiliation(s)
- Anna Licata
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, 90146 Palermo, Italy; (A.S.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Silvia Como
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Gabriele de Carlo
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, 90146 Palermo, Italy; (A.S.)
| | - Marcella Cammilleri
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberta Bonica
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Maurizio Soresi
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Nicola Veronese
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberta Chianetta
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Roberto Citarrella
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| | - Lydia Giannitrapani
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Mario Barbagallo
- Unit of Internal Medicine, AOU Policlinico “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90134 Palermo, Italy; (S.C.); (M.C.); (N.V.)
| |
Collapse
|
7
|
Clay R, Li K, Jin L. Metabolic Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:155. [PMID: 39796781 PMCID: PMC11719658 DOI: 10.3390/cancers17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation. In recent years, the focus of cancer metabolic research has shifted from the regulation and utilization of cancer cell-intrinsic pathways to studying how the metabolic landscape of the tumor affects the anti-tumor immune response. Recent discoveries point to the role that secreted metabolites within the TME play in crosstalk between tumor cell types to promote tumorigenesis and hinder the anti-tumor immune response. In this review, we will explore how crosstalk between metabolites of cancer cells, immune cells, and stromal cells drives tumorigenesis and what effects the competition for resources and metabolic crosstalk has on immune cell function.
Collapse
Affiliation(s)
| | | | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (R.C.); (K.L.)
| |
Collapse
|
8
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
9
|
Qin C, Yang G, Wei Q, Xin H, Ding J, Chen X. Multidimensional Role of Amino Acid Metabolism in Immune Regulation: From Molecular Mechanisms to Therapeutic Strategies. Chem Res Chin Univ 2024. [DOI: 10.1007/s40242-024-4180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/28/2024] [Indexed: 01/03/2025]
|
10
|
Bhardwaj JS, Paliwal S, Singhvi G, Taliyan R. Immunological challenges and opportunities in glioblastoma multiforme: A comprehensive view from immune system lens. Life Sci 2024; 357:123089. [PMID: 39362586 DOI: 10.1016/j.lfs.2024.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, is the most common and deadly brain tumour. It has a poor prognosis and a low survival rate. GBM cells' immunological escape mechanism helps them resist advanced multimodal therapy. In physiological homeostasis, brain astrocytes and microglia suppress infections and clear the potential pathogen from the system. However, in severe pathological conditions like cancer, the immune response fails to eliminate mutated and rapidly over-proliferating GBM cells. The malignant cells' interactions with immune cells and the neoplasm's immunosuppressive environment enable the avoidance and their clearance. Immunotherapy efficiently addresses these difficulties, as shown by sufficient evidence. This review discusses how GBM cells inhibit and elude the immune system. These include MHC molecule expression alteration and PD-L1 and CTLA-4 immune checkpoint overexpression. Without co-stimulation, these changes induce effector T-cell tolerance and anergy. The review also covers how MDSCs, TAMs, Herpes Virus Entry Mediators, and Human cytomegalovirus protein decrease the effector immune response against glioblastoma. The latter part discusses various therapies that are available in the market or under clinical trials which revolves around combating resistance against the available multimodal therapies. The recent trends indicate that there are various monoclonal antibodies and peptide-based vaccines that can be utilized to overcome the immune evasion technique harbored by GBM cells. A strategic development of Immunotherapy considering these hallmarks of immune evasion may help in designing a therapy that may prove to be effective in killing the GBM cells thereby, improving the overall survival of GBM-affected patients.
Collapse
Affiliation(s)
- Jayant Singh Bhardwaj
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Shivangi Paliwal
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
11
|
Wang J, He Y, Hu F, Hu C, Sun Y, Yang K, Yang S. Metabolic Reprogramming of Immune Cells in the Tumor Microenvironment. Int J Mol Sci 2024; 25:12223. [PMID: 39596288 PMCID: PMC11594648 DOI: 10.3390/ijms252212223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic reprogramming of immune cells within the tumor microenvironment (TME) plays a pivotal role in shaping tumor progression and responses to therapy. The intricate interplay between tumor cells and immune cells within this ecosystem influences their metabolic landscapes, thereby modulating the immune evasion tactics employed by tumors and the efficacy of immunotherapeutic interventions. This review delves into the metabolic reprogramming that occurs in tumor cells and a spectrum of immune cells, including T cells, macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSCs), within the TME. The metabolic shifts in these cell types span alterations in glucose, lipid, and amino acid metabolism. Such metabolic reconfigurations can profoundly influence immune cell function and the mechanisms by which tumors evade immune surveillance. Gaining a comprehensive understanding of the metabolic reprogramming of immune cells in the TME is essential for devising novel cancer therapeutic strategies. By targeting the metabolic states of immune cells, it is possible to augment their anti-tumor activities, presenting new opportunities for immunotherapeutic approaches. These strategies hold promise for enhancing treatment outcomes and circumventing the emergence of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| |
Collapse
|
12
|
Chen Y, Zheng Z, Wang J, Huang X, Xie L. Genetically predicted Caspase 8 levels mediates the causal association between CD4+ T cell and breast cancer. Front Immunol 2024; 15:1410994. [PMID: 39391306 PMCID: PMC11464308 DOI: 10.3389/fimmu.2024.1410994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Background Breast cancer (BC) remains a significant contributor to female mortality globally, with inflammation and the immune system implicated in its pathogenesis. To elucidate potential causal relationships, we evaluated the relationship among 731 immune cell phenotypes and BC be at risk by using Mendelian randomization (MR), while also exploring inflammatory proteins as mediators in this association. Methods We obtained immune cell genome-wide association study (GWAS) summary data and 91 inflammatory factors from the GWAS Catalog. BC GWAS data was obtained from the IEU Open GWAS project (ukb-b-16890 for discovery and GCST004988 for validation). We investigated the causal link between immune cells and BC risk by employing a two-sample MR method. Furthermore, we use a two-step MR to quantify the percentage of mediation of immune cell-BC causal effects mediated by inflammatory proteins. To make sure the causal findings were robust, a sensitivity analysis was done. Results In both discovery and validation GWAS, a critical inverse correlation between CD4+ T cells and BC risk was found using MR analysis (Discovery: OR, 0.996; P = 0.030. Validation: OR, 0.843; P = 4.09E-07) with Caspase 8 levels mediating 18.9% of the reduced BC risk associated with immune cells(Mediation proportion=a×b/c, Discovery:0.151×-0.005/-0.004 = 18.9%; Validation:0.151×-0.214/-0.171 = 18.9%). Conclusion Our study establishes a causal connection linking CD4+ T cells and BC, with Caspase 8 levels partially mediating this relationship. These findings enhance our genetic and molecular comprehension of BC, suggesting potential pathways for future BC immunotherapy drug development.
Collapse
Affiliation(s)
- Yanbin Chen
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zequn Zheng
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jinhong Wang
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xifeng Huang
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lei Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
13
|
Heidari-Foroozan M, Rezalotfi A, Rezaei N. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. Int Rev Immunol 2024; 43:419-440. [PMID: 39257319 DOI: 10.1080/08830185.2024.2401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Rannikko JH, Hollmén M. Clinical landscape of macrophage-reprogramming cancer immunotherapies. Br J Cancer 2024; 131:627-640. [PMID: 38831013 PMCID: PMC11333586 DOI: 10.1038/s41416-024-02715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Tumour-associated macrophages (TAMs) sustain a tumour-supporting and immunosuppressive milieu and therefore aggravate cancer prognosis. To modify TAM behaviour and unlock their anti-tumoural potential, novel TAM-reprogramming immunotherapies are being developed at an accelerating rate. At the same time, scientific discoveries have highlighted more sophisticated TAM phenotypes with complex biological functions and contradictory prognostic associations. To understand the evolving clinical landscape, we reviewed current and past clinically evaluated TAM-reprogramming cancer therapeutics and summarised almost 200 TAM-reprogramming agents investigated in more than 700 clinical trials. Observable overall trends include a high frequency of overlapping strategies against the same therapeutic targets, development of more complex strategies to improve previously ineffective approaches and reliance on combinatory strategies for efficacy. However, strong anti-tumour efficacy is uncommon, which encourages re-directing efforts on identifying biomarkers for eligible patient populations and comparing similar treatments earlier. Future endeavours will benefit from considering the shortcomings of past treatment strategies and accommodating the emerging complexity of TAM biology.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland.
- Faron Pharmaceuticals Ltd, Turku, Finland.
| |
Collapse
|
15
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
16
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
17
|
Zhang C, Wang H, Aji T, Li Z, Li Y, Ainiwaer A, Rousu Z, Li J, Wang M, Deng B, Duolikun A, Kang X, Zheng X, Yu Q, Shao Y, Zhang W, Vuitton DA, Tian Z, Sun H, Wen H. Targeting myeloid-derived suppressor cells promotes antiparasitic T-cell immunity and enhances the efficacy of PD-1 blockade (15 words). Nat Commun 2024; 15:6345. [PMID: 39068159 PMCID: PMC11283557 DOI: 10.1038/s41467-024-50754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Immune exhaustion corresponds to a loss of effector function of T cells that associates with cancer or chronic infection. Here, our objective was to decipher the mechanisms involved in the immune suppression of myeloid-derived suppressor cells (MDSCs) and to explore the potential to target these cells for immunotherapy to enhance checkpoint blockade efficacy in a chronic parasite infection. We demonstrated that programmed cell-death-1 (PD-1) expression was significantly upregulated and associated with T-cell dysfunction in advanced alveolar echinococcosis (AE) patients and in Echinococcus multilocularis-infected mice. PD-1 blockade ex vivo failed to reverse AE patients' peripheral blood T-cell dysfunction. PD-1/PD-L1 blockade or PD-1 deficiency had no significant effects on metacestode in mouse model. This was due to the inhibitory capacities of immunosuppressive granulocytic MDSCs (G-MDSCs), especially in the liver surrounding the parasite pseudotumor. MDSCs suppressed T-cell function in vitro in an indoleamine 2, 3 dioxygenase 1 (IDO1)-dependent manner. Although depleting MDSCs alone restored T-cell effector functions and led to some limitation of disease progression in E. multilocularis-infected mice, combination with PD-1 blockade was better to induce antiparasitic efficacy. Our findings provide preclinical evidence in support of targeting MDSC or combining such an approach with checkpoint blockade in patients with advanced AE. (200 words).
Collapse
Affiliation(s)
- Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
- Key Laboratory of High Incidence Disease Research in Xingjiang, Ministry of Education, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Key Laboratory of High Incidence Disease Research in Xingjiang, Ministry of Education, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, P. R. China
| | - Tuerganaili Aji
- Key Laboratory of High Incidence Disease Research in Xingjiang, Ministry of Education, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Zhide Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Yinshi Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Abidan Ainiwaer
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Zibigu Rousu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Maolin Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Bingqing Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Adilai Duolikun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Xuejiao Kang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Xuran Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Qian Yu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Yingmei Shao
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, P. R. China
| | - Dominique A Vuitton
- WHO-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Parasitology, University Bourgogne Franche-Comté (EA 3181) and University Hospital, Besançon, France
| | - Zhigang Tian
- Hefei National Research Center for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Haoyu Sun
- Hefei National Research Center for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China.
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P. R. China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
| |
Collapse
|
18
|
Campanelli R, Carolei A, Catarsi P, Abbà C, Boveri E, Paulli M, Gentile R, Morosini M, Albertini R, Mantovani S, Massa M, Barosi G, Rosti V. Circulating Polymorphonuclear Myeloid-Derived Suppressor Cells (PMN-MDSCs) Have a Biological Role in Patients with Primary Myelofibrosis. Cancers (Basel) 2024; 16:2556. [PMID: 39061196 PMCID: PMC11275082 DOI: 10.3390/cancers16142556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by a chronic inflammatory state that plays a relevant role in the disease pathogenesis (as proven by high levels of inflammatory cytokines with prognostic significance and by a persistent oxidative stress) and by extensive neoangiogenesis in bone marrow (BM) and spleen. Myeloid-derived suppressor cells (MDSCs) are immature cells that expand in patients with cancer, sepsis or chronic inflammation, favoring tumor onset and progression mainly through the decrease in immune surveillance and the promotion of neoangiogenesis. In this paper, we evaluated the presence of circulating MDSCs in PMF patients, the plasmatic factors involved in their mobilization/expansion and the correlations with laboratory, genetic and clinical parameters. The data indicated that MDSCs could have a relevant role in PMF as a new pathogenic mechanism contributing to explaining the phenotypic diversity observed during the clinical course of the disease, or a potential new target for personalized treatment.
Collapse
Affiliation(s)
- Rita Campanelli
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Adriana Carolei
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Carlotta Abbà
- General Medicine 2-Center for Systemic Amyloidosis and High-Complexity Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Emanuela Boveri
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Paulli
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, 27100 Pavia, Italy
| | - Raffaele Gentile
- Chemical and Clinics Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Monica Morosini
- Chemical and Clinics Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Riccardo Albertini
- Chemical and Clinics Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefania Mantovani
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Margherita Massa
- General Medicine 2-Center for Systemic Amyloidosis and High-Complexity Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| |
Collapse
|
19
|
Zhu Y, Zhou L, Mo L, Hong C, Pan L, Lin J, Qi Y, Tan S, Qian M, Hu T, Zhao Y, Qiu H, Lin P, Ma X, Yang Q. Plasmodium yoelii Infection Enhances the Expansion of Myeloid-Derived Suppressor Cells via JAK/STAT3 Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:170-186. [PMID: 38819229 DOI: 10.4049/jimmunol.2300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs), the negative immune regulators, have been demonstrated to be involved in immune responses to a variety of pathological conditions, such as tumors, chronic inflammation, and infectious diseases. However, the roles and mechanisms underlying the expansion of MDSCs in malaria remain unclear. In this study, the phenotypic and functional characteristics of splenic MDSCs during Plasmodium yoelii NSM infection are described. Furthermore, we provide compelling evidence that the sera from P. yoelii-infected C57BL/6 mice containing excess IL-6 and granulocyte-macrophage colony-stimulating factor promote the accumulation of MDSCs by inducing Bcl2 expression. Serum-induced MDSCs exert more potent suppressive effects on T cell responses than control MDSCs within both in vivo P. yoelii infection and in vitro serum-treated bone marrow cells experiments. Serum treatment increases the MDSC inhibitory effect, which is dependent on Arg1 expression. Moreover, mechanistic studies reveal that the serum effects are mediated by JAK/STAT3 signaling. By inhibiting STAT3 phosphorylation with the JAK inhibitor JSI-124, effects of serum on MDSCs are almost eliminated. In vivo depletion of MDSCs with anti-Gr-1 or 5-fluorouracil significantly reduces the parasitemia and promotes Th1 immune response in P. yoelii-infected C57BL/6 mice by upregulating IFN-γ expression. In summary, this study indicates that P. yoelii infection facilitates the accumulation and function of MDSCs by upregulating the expression of Bcl2 and Arg1 via JAK/STAT3 signaling pathway in vivo and in vitro. Manipulating the JAK/STAT3 signaling pathway or depleting MDSCs could be promising therapeutic interventions to treat malaria.
Collapse
Affiliation(s)
- Yiqiang Zhu
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Lu Zhou
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lengshan Mo
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Cansheng Hong
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lingxia Pan
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Simin Tan
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Manhongtian Qian
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tengfei Hu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhao
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Peibin Lin
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xiancai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Quan Yang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Jin Y, Jiang J, Mao W, Bai M, Chen Q, Zhu J. Treatment strategies and molecular mechanism of radiotherapy combined with immunotherapy in colorectal cancer. Cancer Lett 2024; 591:216858. [PMID: 38621460 DOI: 10.1016/j.canlet.2024.216858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Radiotherapy (RT) remodels the tumor immune microenvironment (TIME) and modulates the immune response to indirectly destroy tumor cells, in addition to directly killing tumor cells. RT combined with immunotherapy may significantly enhance the efficacy of RT in colorectal cancer by modulating the microenvironment. However, the molecular mechanisms by which RT acts as an immunomodulator to modulate the immune microenvironment remain unclear. Further, the optimal modalities of RT combined with immunotherapy for the treatment of colorectal cancer, such as the time point of combining RT and immunization, the fractionation pattern and dosage of radiotherapy, and other methods to improve the efficacy, are also being explored parallelly. To address these aspects, in this review, we summarized the mechanisms by which RT modulates TIME and concluded the progress of RT combined with immunization in preclinical and clinical trials. Finally, we discussed heavy ion radiation therapy and the efficacy of prediction markers and other immune combination therapies. Overall, combining RT with immunotherapy to enhance antitumor effects will have a significant clinical implication and will help to facilitate individualized treatment modalities.
Collapse
Affiliation(s)
- Yuzhao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, 31400, China
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| |
Collapse
|
21
|
Montoya M, Gallus M, Phyu S, Haegelin J, de Groot J, Okada H. A Roadmap of CAR-T-Cell Therapy in Glioblastoma: Challenges and Future Perspectives. Cells 2024; 13:726. [PMID: 38727262 PMCID: PMC11083543 DOI: 10.3390/cells13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Su Phyu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Jeffrey Haegelin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - John de Groot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
22
|
Siebert JN, Shah JV, Tan MC, Riman RE, Pierce MC, Lattime EC, Ganapathy V, Moghe PV. Early Detection of Myeloid-Derived Suppressor Cells in the Lung Pre-Metastatic Niche by Shortwave Infrared Nanoprobes. Pharmaceutics 2024; 16:549. [PMID: 38675210 PMCID: PMC11053826 DOI: 10.3390/pharmaceutics16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases. However, there is currently no technology capable of the in situ detection of MDSCs available in the clinic. Here, we propose the use of shortwave infrared-emitting nanoprobes for the tracking of MDSCs and identification of the PMN. Our rare-earth albumin nanocomposites (ReANCs) are engineered to bind the Gr-1 surface marker of murine MDSCs. When delivered intravenously in murine models of breast cancer with high rates of metastasis, the targeted ReANCs demonstrated an increase in localization to the lungs in comparison to control ReANCs. However, no difference was seen in the model with slower rates of metastasis. This highlights the potential utility of MDSC-targeted nanoprobes to assess PMN development and prognosticate disease progression.
Collapse
Affiliation(s)
- Jake N. Siebert
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd., Singapore 487372, Singapore
| | - Richard E. Riman
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mark C. Pierce
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Edmund C. Lattime
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Alex’s Lemonade Stand Foundation for Childhood Cancer, 333 E. Lancaster Ave., #414, Wynnewood, PA 19096, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
23
|
Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, Zhang B, Li Y, Liu B, Xia L, Huang W. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol 2024; 13:39. [PMID: 38609997 PMCID: PMC11010322 DOI: 10.1186/s40164-024-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Paradoxically, tumor development and progression can be inhibited and promoted by the immune system. After three stages of immune editing, namely, elimination, homeostasis and escape, tumor cells are no longer restricted by immune surveillance and thus develop into clinical tumors. The mechanisms of immune escape include abnormalities in antitumor-associated immune cells, selection for immune resistance to tumor cells, impaired transport of T cells, and the formation of an immunosuppressive tumor microenvironment. A population of distinct immature myeloid cells, myeloid-derived suppressor cells (MDSCs), mediate immune escape primarily by exerting immunosuppressive effects and participating in the constitution of an immunosuppressive microtumor environment. Clinical trials have found that the levels of MDSCs in the peripheral blood of cancer patients are strongly correlated with tumor stage, metastasis and prognosis. Moreover, animal experiments have confirmed that elimination of MDSCs inhibits tumor growth and metastasis to some extent. Therefore, MDSCs may become the target of immunotherapy for many cancers, and eliminating MDSCs can help improve the response rate to cancer treatment and patient survival. However, a clear definition of MDSCs and the specific mechanism involved in immune escape are lacking. In this paper, we review the role of the MDSCs population in tumor development and the mechanisms involved in immune escape in different tumor contexts. In addition, we discuss the use of these cells as targets for tumor immunotherapy. This review not only contributes to a systematic and comprehensive understanding of the essential role of MDSCs in immune system reactions against tumors but also provides information to guide the development of cancer therapies targeting MDSCs.
Collapse
Affiliation(s)
- Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
24
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
25
|
Yu T, Jiang W, Wang Y, Zhou Y, Jiao J, Wu M. Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review). Int J Oncol 2024; 64:40. [PMID: 38390935 PMCID: PMC10919759 DOI: 10.3892/ijo.2024.5628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Osteosarcoma (OS) is a frequently occurring primary bone tumor, mostly affecting children, adolescents and young adults. Before 1970, surgical resection was the main treatment method for OS, but the clinical results were not promising. Subsequently, the advent of chemotherapy has improved the prognosis of patients with OS. However, there is still a high incidence of metastasis or recurrence, and chemotherapy has several side effects, thus making the 5‑year survival rate markedly low. Recently, chimeric antigen receptor T (CAR‑T) cell therapy represents an alternative immunotherapy approach with significant potential for hematologic malignancies. Nevertheless, the application of CAR‑T cells in the treatment of OS faces numerous challenges. The present review focused on the advances in the development of CAR‑T cells to improve their clinical efficacy, and discussed ways to overcome the difficulties faced by CAR T‑cell therapy for OS.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Weibo Jiang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yang Wang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minfei Wu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
26
|
Pan X, Ni S, Hu K. Nanomedicines for reversing immunosuppressive microenvironment of hepatocellular carcinoma. Biomaterials 2024; 306:122481. [PMID: 38286109 DOI: 10.1016/j.biomaterials.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although immunotherapeutic strategies such as immune checkpoint inhibitors (ICIs) have gained promising advances, their limited efficacy and significant toxicity remain great challenges for hepatocellular carcinoma (HCC) immunotherapy. The tumor immunosuppressive microenvironment (TIME) with insufficient T-cell infiltration and low immunogenicity accounts for most HCC patients' poor response to ICIs. Worse still, the current immunotherapeutics without precise delivery may elicit enormous autoimmune side effects and systemic toxicity in the clinic. With a better understanding of the TIME in HCC, nanomedicines have emerged as an efficient strategy to achieve remodeling of the TIME and superadditive antitumor effects via targeted delivery of immunotherapeutics or multimodal synergistic therapy. Based on the typical characteristics of the TIME in HCC, this review summarizes the recent advancements in nanomedicine-based strategies for TIME-reversing HCC treatment. Additionally, perspectives on the awaiting challenges and opportunities of nanomedicines in modulating the TIME of HCC are presented. Acquisition of knowledge of nanomedicine-mediated TIME reversal will provide researchers with a better opportunity for clinical translation of HCC immunotherapy.
Collapse
Affiliation(s)
- Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
27
|
Riondino S, Rosenfeld R, Formica V, Morelli C, Parisi G, Torino F, Mariotti S, Roselli M. Effectiveness of Immunotherapy in Non-Small Cell Lung Cancer Patients with a Diagnosis of COPD: Is This a Hidden Prognosticator for Survival and a Risk Factor for Immune-Related Adverse Events? Cancers (Basel) 2024; 16:1251. [PMID: 38610929 PMCID: PMC11011072 DOI: 10.3390/cancers16071251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The interplay between the immune system and chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC) is complex and multifaceted. In COPD, chronic inflammation and oxidative stress can lead to immune dysfunction that can exacerbate lung damage, further worsening the respiratory symptoms. In NSCLC, immune cells can recognise and attack the cancer cells, which, however, can evade or suppress the immune response by various mechanisms, such as expressing immune checkpoint proteins or secreting immunosuppressive cytokines, thus creating an immunosuppressive tumour microenvironment that promotes cancer progression and metastasis. The interaction between COPD and NSCLC further complicates the immune response. In patients with both diseases, COPD can impair the immune response against cancer cells by reducing or suppressing the activity of immune cells, or altering their cytokine profile. Moreover, anti-cancer treatments can also affect the immune system and worsen COPD symptoms by causing lung inflammation and fibrosis. Immunotherapy itself can also cause immune-related adverse events that could worsen the respiratory symptoms in patients with COPD-compromised lungs. In the present review, we tried to understand the interplay between the two pathologies and how the efficacy of immunotherapy in NSCLC patients with COPD is affected in these patients.
Collapse
|
28
|
Giraudo MF, Jackson Z, Das I, Abiona OM, Wald DN. Chimeric Antigen Receptor (CAR)-T Cell Therapy for Non-Hodgkin's Lymphoma. Pathog Immun 2024; 9:1-17. [PMID: 38550613 PMCID: PMC10972674 DOI: 10.20411/pai.v9i1.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/28/2024] [Indexed: 04/15/2024] Open
Abstract
This review focuses on the use of chimeric antigen receptor (CAR)-T cell therapy to treat non-Hodgkin's lymphoma (NHL), a classification of heterogeneous malignant neoplasms of the lymphoid tissue. Despite various conventional and multidrug chemotherapies, the poor prognosis for NHL patients remains and has prompted the utilization of groundbreaking personalized therapies such as CAR-T cells. CAR-T cells are T cells engineered to express a CAR that enables T cells to specifically lyse tumor cells with extracellular expression of a tumor antigen of choice. A CAR is composed of an extracellular antibody fragment or target protein binding domain that is conjugated to activating intracellular signaling motifs common to T cells. In general, CAR-T cell therapies for NHL are designed to recognize cellular markers ubiquitously expressed on B cells such as CD19+, CD20+, and CD22+. Clinical trials using CAR-T cells such as ZUMA-7 and TRANSFORM demonstrated promising results compared to standard of care and ultimately led to FDA approval for the treatment of relapsed/refractory NHL. Despite the success of CAR-T therapy for NHL, challenges include adverse side effects as well as extrinsic and intrinsic mechanisms of tumor resistance that lead to suboptimal outcomes. Overall, CAR-T cell therapies have improved clinical outcomes in NHL patients and generated optimism around their future applications.
Collapse
Affiliation(s)
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Indrani Das
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
29
|
Omar MA, El Hawary R, Eldash A, Sadek KM, Soliman NA, Hanna MOF, Shawky SM. Neutrophilic Myeloid-Derived Suppressor Cells and Severity in SARS-CoV-2 Infection. Lab Med 2024; 55:153-161. [PMID: 37352143 DOI: 10.1093/labmed/lmad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND While we strive to live with SARS-CoV-2, defining the immune response that leads to recovery rather than severe disease remains highly important. COVID-19 has been associated with inflammation and a profoundly suppressed immune response. OBJECTIVE To study myeloid-derived suppressor cells (MDSCs), which are potent immunosuppressive cells, in SARS-CoV-2 infection. RESULTS Patients with severe and critical COVID-19 showed higher frequencies of neutrophilic (PMN)-MDSCs than patients with moderate illness and control individuals (P = .005). Severe disease in individuals older and younger than 60 years was associated with distinct PMN-MDSC frequencies, being predominantly higher in patients of 60 years of age and younger (P = .004). However, both age groups showed comparable inflammatory markers. In our analysis for the prediction of poor outcome during hospitalization, MDSCs were not associated with increased risk of death. Still, patients older than 60 years of age (odds ratio [OR] = 5.625; P = .02) with preexisting medical conditions (OR = 2.818; P = .003) showed more severe disease and worse outcome. Among the immunological parameters, increased C-reactive protein (OR = 1.015; P = .04) and lymphopenia (OR = 5.958; P = .04) strongly identified patients with poor prognosis. CONCLUSION PMN-MDSCs are associated with disease severity in COVID-19; however, MDSC levels do not predict increased risk of death during hospitalization.
Collapse
Affiliation(s)
- Mona A Omar
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| | - Rabab El Hawary
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| | - Alia Eldash
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| | - Khaled M Sadek
- Department of Internal Medicine and Nephrology, Cairo University, Cairo, Egypt
| | | | | | - Shereen M Shawky
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| |
Collapse
|
30
|
Sugiyama S, Yumimoto K, Fujinuma S, Nakayama KI. Identification of effective CCR2 inhibitors for cancer therapy using humanized mice. J Biochem 2024; 175:195-204. [PMID: 37947138 DOI: 10.1093/jb/mvad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
C-C chemokine receptor type 2 (CCR2) is the receptor for C-C motif chemokine 2 (CCL2) and is associated with various inflammatory diseases and cancer metastasis. Although many inhibitors for CCR2 have been developed, it remains unresolved which inhibitors are the most effective in the clinical setting. In the present study, we compared 10 existing human CCR2 antagonists in a calcium influx assay using human monocytic leukemia cells. Among them, MK0812 was found to be the most potent inhibitor of human CCR2. Furthermore, we generated a human CCR2B knock-in mouse model to test the efficacy of MK0812 against a lung metastasis model of breast cancer. Oral administration of MK0812 to humanized mice did indeed reduce the number of monocytic myeloid-derived suppressor cells and the rate of lung metastasis. These results suggest that MK0812 is the most promising candidate among the commercially available CCR2 inhibitors. We propose that combining these two screening methods may provide an excellent experimental method for identifying effective drugs that inhibit human CCR2.
Collapse
Affiliation(s)
- Shigeaki Sugiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Shun Fujinuma
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
31
|
Guo C, Liu J, Zhang Y. Current advances in bacteria-based cancer immunotherapy. Eur J Immunol 2024; 54:e2350778. [PMID: 38105295 DOI: 10.1002/eji.202350778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
As the understanding of the tumor microenvironment has deepened, immunotherapy has become a promising strategy for cancer treatment. In contrast to traditional therapies, immunotherapy is more precise and induces fewer adverse effects. In this field, some bacteria have attracted increased attention because of their natural ability to preferentially colonize and proliferate inside tumor sites and exert antitumor effects. Moreover, bacterial components may activate innate and adaptive immunity to resist tumor progression. However, the application of bacteria-based cancer immunotherapy is hampered by potential infection-associated toxicity and unpredictable behavior in vivo. Owing to modern developments in genetic engineering, bacteria can be modified to weaken their toxicity and enhance their ability to eliminate tumor cells or activate the antitumor immune response. This review summarizes the roles of bacteria in the tumor microenvironment, current strategies for bacterial engineering, and the synergistic efficiency of bacteria with other immunotherapies. In addition, the prospects and challenges of the clinical translation of engineered bacteria are summarized.
Collapse
Affiliation(s)
- Caijuan Guo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & and Treatment, Zhengzhou, Henan, China
| |
Collapse
|
32
|
Fujii Y, Mehla K. Measurement of Metabolic Alteration in Immune Cells Under Hypoxia. Methods Mol Biol 2024; 2755:201-212. [PMID: 38319580 DOI: 10.1007/978-1-0716-3633-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The hypoxic microenvironment in solid tumors affects the metabolism of tumor cells and infiltrating immune cells, which aids in robust tumor growth and expansion. Myeloid-derived suppressor cells (MDSCs) are heterogenous immature myeloid cells in the TME, which play an essential role in immune evasion by subverting T/NK cell-mediated killing. The immunosuppressive function of MDSCs is tightly regulated to the metabolic pathways, in which hypoxia plays a critical role. In this chapter, we describe the isolation of murine MDSCs from bone marrows and the measurement of the transcriptomic changes of essential metabolic enzymes under hypoxic conditions. This method can be applied to study MDSCs function, mimicking the hypoxic environment in vitro. This method can be utilized to investigate the critical metabolic alterations under a given tumor context and help evaluate the efficacy of metabolic-targeted therapies in the long run.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
33
|
Shao F, Pan J, Xie Y, Ding J, Sun X, Xia L, Zhu D, Wang S, Qi C. Sulforaphane Attenuates AOM/DSS-Induced Colorectal Tumorigenesis in Mice via Inhibition of Intestinal Inflammation. Nutr Cancer 2023; 76:137-148. [PMID: 37897077 DOI: 10.1080/01635581.2023.2274622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Sulforaphane (SFN) is a compound derived from cruciferous plants. It has received considerable attention in recent years due to its effectiveness in cancer prevention and anti-inflammatory properties. The purpose of this study was to evaluate the antitumor potential of sulforaphane on colitis-associated carcinogenesis (CAC) through the establishment of a mouse model with AOM/DSS. First, AOM/DSS and DSS-induced model were established and administered SFN for 10 wk, and then the severity of colitis-associated colon cancer was examined macroscopically and histologically. Subsequently, immune cells and cytokines in the tumor microenvironment (TME) were quantified. Finally, the influence of sulforaphane was also investigated using different colon cell lines. We found that sulforaphane treatment decreased tumor volume, myeloid-derived suppressor cells (MDSC) expansion, the expression of the proinflammatory cytokine IL-1β, and the level of IL-10 in serum. Also, it enhanced the antitumor activities of CD8+ T cells and significantly reduced tumorigenesis as induced by AOM/DSS. SFN also attenuated intestinal inflammation in DSS-induced chronic colitis by reshaping the inflammatory microenvironment. This work demonstrates that sulforaphane suppresses carcinogenesis-associated intestinal inflammation and prevents AOM/DSS-induced intestinal tumorigenesis and progression.
Collapse
Affiliation(s)
- Fang Shao
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Jie Pan
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Yewen Xie
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Jun Ding
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Xiao Sun
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Lei Xia
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Dawei Zhu
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Shizhong Wang
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Chunjian Qi
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| |
Collapse
|
34
|
Sturgeon R, Goel P, Singh RK. Tumor-associated neutrophils in pancreatic cancer progression and metastasis. Am J Cancer Res 2023; 13:6176-6189. [PMID: 38187037 PMCID: PMC10767342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Pancreatic cancer (PC) remains a challenge to modern-day cancer therapeutics, with a dismal five-year survival rate of 12%. Due to the pancreas's location and desmoplasia surrounding it, patients receive late diagnoses and fail to respond to chemotherapy regimens. Tumor-promoting inflammation, one of the emerging hallmarks of cancer, contributes to tumor cells' survival and proliferation. This inflammation often results from infiltrating leukocytes and pro-inflammatory cytokines released into the tumor microenvironment (TME). Neutrophils, one of our body's most prominent immune cells, are essential in sustaining the inflammation observed in the TME. Recent reports demonstrate that neutrophils are complicit in cancer progression and metastasis. Additionally, abundant data suggest that tumor-associated neutrophils (TANs) could be considered as one of the emerging targets for multiple cancer types, including PC. This review will focus on the most recent updates regarding neutrophil recruitments and functions in the cancer microenvironment and the potential development of neutrophils-targeted putative therapeutic strategies in PC.
Collapse
Affiliation(s)
- Reegan Sturgeon
- Department of Pathology and Microbiology, The University of Nebraska Medical Center985845 UNMC, Omaha, NE 68198-5845, USA
| | - Paran Goel
- The University of AlabamaBirmingham, AL 35294-1210, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, The University of Nebraska Medical Center985845 UNMC, Omaha, NE 68198-5845, USA
- Department of Pathology and Microbiology, The University of Nebraska Medical Center, 985900 Nebraska Medical CenterOmaha, NE 68198-5900, USA
| |
Collapse
|
35
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
36
|
Neamah WH, Rutkovsky A, Abdullah O, Wilson K, Bloomquist R, Nagarkatti P, Nagarkatti M. Resveratrol Attenuates 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Mediated Induction of Myeloid-Derived Suppressor Cells (MDSC) and Their Functions. Nutrients 2023; 15:4667. [PMID: 37960320 PMCID: PMC10650545 DOI: 10.3390/nu15214667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Previously, we showed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) ligand and a potent and persistent toxicant and carcinogenic agent, induces high levels of murine myeloid-derived suppressor cell (MDSC) when injected into mice. In the current study, we demonstrate that Resveratrol (3,4,5-trihydroxy-trans-stilbene; RSV), an AhR antagonist, reduces TCDD-mediated MDSC induction. RSV decreased the number of MDSCs induced by TCDD in mice but also mitigated the immunosuppressive function of TCDD-induced MDSCs. TCDD caused a decrease in F4/80+ macrophages and an increase in CD11C+ dendritic cells, while RSV reversed these effects. TCDD caused upregulation in CXCR2, a critical molecule involved in TCDD-mediated induction of MDSCs, and Arginase-1 (ARG-1), involved in the immunosuppressive functions of MDSCs, while RSV reversed this effect. Transcriptome analysis of Gr1+ MDSCs showed an increased gene expression profile involved in the metabolic pathways in mice exposed to TCDD while RSV-treated mice showed a decrease in such pathways. The bio-energetic profile of these cells showed that RSV treatment decreased the energetic demands induced by TCDD. Overall, the data demonstrated that RSV decreased TCDD-induced MDSC induction and function by altering the dynamics of various myeloid cell populations involving their numbers, phenotype, and immunosuppressive potency. Because MDSCs play a critical role in tumor growth and metastasis, our studies also support the potential use of RSV to attenuate the immunosuppressive properties of MDSC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29228, USA; (W.H.N.); (A.R.); (O.A.); (K.W.); (R.B.); (P.N.)
| |
Collapse
|
37
|
Wang L, Yi S, Teng Y, Li W, Cai J. Role of the tumor microenvironment in the lymphatic metastasis of cervical cancer (Review). Exp Ther Med 2023; 26:486. [PMID: 37753293 PMCID: PMC10518654 DOI: 10.3892/etm.2023.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023] Open
Abstract
Lymphatic metastasis is the primary type of cervical cancer metastasis and is associated with an extremely poor prognosis in patients. The tumor microenvironment primarily includes cancer-associated fibroblasts, tumor-associated macrophages, myeloid-derived suppressor cells, immune and inflammatory cells, and blood and lymphatic vascular networks, which can promote the establishment of lymphatic metastatic sites within immunosuppressive microenvironments or promote lymphatic metastasis by stimulating lymphangiogenesis and epithelial-mesenchymal transformation. As the most important feature of the tumor microenvironment, hypoxia plays an essential role in lymph node metastasis. In this review, the known mechanisms of hypoxia, and the involvement of stromal components and immune inflammatory cells in the tumor microenvironment of lymphatic metastasis of cervical cancer are discussed. Additionally, a summary of the clinical trials targeting the tumor microenvironment for the treatment of cervical cancer is provided, emphasizing the potential and challenges of immunotherapy.
Collapse
Affiliation(s)
- Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuyan Yi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yun Teng
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
38
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
Roy AM, George S. Emerging resistance vs. losing response to immune check point inhibitors in renal cell carcinoma: two differing phenomena. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:642-655. [PMID: 37842239 PMCID: PMC10571056 DOI: 10.20517/cdr.2023.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
The introduction of immune checkpoint inhibitor (ICI) has revolutionized the treatment of metastatic renal cell carcinoma (mRCC) and has dramatically improved the outcomes of patients. The use of monotherapy or combinations of ICIs targeting PD-1/PD-L1 and CTLA-4, as well as the addition of ICIs with tyrosine kinase inhibitors, has significantly enhanced the overall survival of mRCC patients. Despite these promising results, there remains a subset of patients who either do not respond to treatment (primary resistance) or develop resistance to therapy over time (acquired resistance). Understanding the mechanisms underlying the development of resistance to ICI treatment is crucial in the management of mRCC, as they can be used to identify new targets for innovative therapeutic strategies. Currently, there is an unmet need to develop new predictive and prognostic biomarkers that can aid in the development of personalized treatment options for mRCC patients. In this review, we summarize several mechanisms of ICI resistance in RCC, including alterations in tumor microenvironment, upregulation of alternative immune checkpoint pathways, and genetic and epigenetic changes. Additionally, we highlight potential strategies that can be used to overcome resistance, such as combination therapy, targeted therapy, and immune modulation.
Collapse
Affiliation(s)
| | - Saby George
- Division of Hematology and Oncology, Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| |
Collapse
|
40
|
Krumm J, Petrova E, Lechner S, Mergner J, Boehm HH, Prestipino A, Steinbrunn D, Deline ML, Koetzner L, Schindler C, Helming L, Fromme T, Klingenspor M, Hahne H, Pieck JC, Kuster B. High-Throughput Screening and Proteomic Characterization of Compounds Targeting Myeloid-Derived Suppressor Cells. Mol Cell Proteomics 2023; 22:100632. [PMID: 37586548 PMCID: PMC10518717 DOI: 10.1016/j.mcpro.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of ∼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.
Collapse
Affiliation(s)
- Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Elissaveta Petrova
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Hans-Henning Boehm
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Alessandro Prestipino
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Marshall L Deline
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Lisa Koetzner
- Global Research & Development, Discovery and Development Technologies, Global Medicinal Chemistry, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Christina Schindler
- Global Research & Development, Discovery Technologies, Computational Chemistry & Biologics, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Laura Helming
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Jan-Carsten Pieck
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
41
|
Schunke J, Mailänder V, Landfester K, Fichter M. Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy. Int J Mol Sci 2023; 24:12174. [PMID: 37569548 PMCID: PMC10419017 DOI: 10.3390/ijms241512174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Jenny Schunke
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
42
|
Sun Z, Chen A, Fang H, Sun D, Huang M, Cheng E, Luo M, Zhang X, Fang H, Qian G. B cell-derived IL-10 promotes the resolution of lipopolysaccharide-induced acute lung injury. Cell Death Dis 2023; 14:418. [PMID: 37443161 PMCID: PMC10345008 DOI: 10.1038/s41419-023-05954-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Inflammation resolution is critical for acute lung injury (ALI) recovery. Interleukin (IL)-10 is a potent anti-inflammatory factor. However, its role in ALI resolution remains unclear. We investigated the effects of IL-10 during the ALI resolution process in a murine lipopolysaccharide (LPS)-induced ALI model. Blockade of IL-10 signaling aggravates LPS-induced lung injury, as manifested by elevated pro-inflammatory factors production and increased neutrophils recruitment to the lung. Thereafter, we used IL-10 GFP reporter mice to discern the source cell of IL-10 during ALI. We found that IL-10 is predominantly generated by B cells during the ALI recovery process. Furthermore, we used IL-10-specific loss in B-cell mice to elucidate the effect of B-cell-derived IL-10 on the ALI resolution process. IL-10-specific loss in B cells leads to increased pro-inflammatory cytokine expression, persistent leukocyte infiltration, and prolonged alveolar barrier damage. Mechanistically, B cell-derived IL-10 inhibits the activation and recruitment of macrophages and downregulates the production of chemokine KC that recruits neutrophils to the lung. Moreover, we found that IL-10 deletion in B cells leads to alterations in the cGMP-PKG signaling pathway. In addition, an exogenous supply of IL-10 promotes recovery from LPS-induced ALI, and IL-10-secreting B cells are present in sepsis-related ARDS. This study highlights that B cell-derived IL-10 is critical for the resolution of LPS-induced ALI and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Zhun Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hongwei Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Donglin Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Meiying Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Erdeng Cheng
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Mengyuan Luo
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China.
| | - Guojun Qian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
43
|
Kučan D, Oršolić N, Odeh D, Ramić S, Jakopović B, Knežević J, Jazvinšćak Jembrek M. The Role of Hyperthermia in Potentiation of Anti-Angiogenic Effect of Cisplatin and Resveratrol in Mice Bearing Solid Form of Ehrlich Ascites Tumour. Int J Mol Sci 2023; 24:11073. [PMID: 37446252 DOI: 10.3390/ijms241311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to investigate the therapeutic potential of resveratrol in combination with cisplatin on the inhibition of tumour angiogenesis, growth, and macrophage polarization in mice bearing the solid form of an Ehrlich ascites tumour (EAT) that were exposed to whole-body hyperthermia treatment. In addition, we investigated whether a multimodal approach with hyperthermia and resveratrol could abolish cisplatin resistance in tumour cells through the modulation of histone deacetylase (HDAC) activity and levels of heat shock proteins (HSP70/HSP90) and contribute to the direct toxicity of cisplatin on tumour cells. The tumour was induced by injecting 1 × 106 EAT cells subcutaneously (sc) into the thighs of Balb/c mice. The mice were treated with resveratrol per os for five consecutive days beginning on day 2 after tumour injection and/or by injecting cisplatin intraperitoneally (ip) at a dose of 2.5 mg/kg on days 10 and 12 and at a dose of 5 mg/kg on day 15. Immediately thereafter, the mice were exposed to systemic hyperthermia for 15 min at a temperature of 41 °C. The obtained results showed that the administration of resveratrol did not significantly contribute to the antitumour effect of cisplatin and hyperthermia, but it partially contributed to the immunomodulatory effect and to the reduction of cisplatin toxicity and to a slight increase in animal survival. This treatment schedule did not affect microvessel density, but it inhibited tumour growth and modulated macrophage polarization to the M1 phenotype. Furthermore, it abolished the resistance of tumour cells to cisplatin by modulating HDAC activity and the concentration of HSP70 and HSP90 chaperones, contributing to the increased lifespan of mice. However, the precise mechanism of the interaction between resveratrol, cisplatin, and hyperthermia needs to be investigated further.
Collapse
Affiliation(s)
- Darko Kučan
- Division of Abdominal Surgery and Organ Transplantation, Department of Surgery, University Hospital Merkur, Zajčeva 19, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dyana Odeh
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Snježana Ramić
- Department of Pathology, University Cancer Hospital, Sestre Milosrdnice University Hospital Centre, Ilica 197, 10000 Zagreb, Croatia
| | - Boris Jakopović
- Dr Myko San-Health from Mushrooms Co., Miramarska Cesta 109, 10000 Zagreb, Croatia
| | - Jelena Knežević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
44
|
Pierozan P, Källsten L, Theodoropoulou E, Almamoun R, Karlsson O. Persistent immunosuppressive effects of dibutyl phthalate exposure in adult male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162741. [PMID: 36914131 DOI: 10.1016/j.scitotenv.2023.162741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 05/13/2023]
Abstract
Increased exposure to manmade chemicals may be linked to an increase in immune-related diseases in humans and immune system dysfunction in wildlife. Phthalates are a group of endocrine-disrupting chemicals (EDCs) suspected to influence the immune system. The aim of this study was to characterize the persistent effects on leukocytes in the blood and spleen, as well as plasma cytokine and growth factor levels, one week after the end of five weeks of oral treatment with dibutyl phthalate (DBP; 10 or 100 mg/kg/d) in adult male mice. Flow cytometry analysis of the blood revealed that DBP exposure decreased the total leukocyte count, classical monocyte and T helper (Th) populations, whereas it increased the non-classical monocyte population compared to the vehicle control (corn oil). Immunofluorescence analysis of the spleen showed increased CD11b+Ly6G+ (marker of polymorphonuclear myeloid-derived suppressor cells; PMN-MDSCs), and CD43+staining (marker of non-classical monocytes), whereas CD3+ (marker of total T cells) and CD4+ (marker of Th cells) staining decreased. To investigate the mechanisms of action, levels of plasma cytokines and chemokines were measured using multiplexed immunoassays and other key factors were analyzed using western blotting. The observed increase in M-CSF levels and the activation of STAT3 may promote PMN-MDSC expansion and activity. Increased ARG1, NOX2 (gp91phox), and protein nitrotyrosine levels, as well as GCN2 and phosphor-eIRFα, suggest that oxidative stress and lymphocyte arrest drive the lymphocyte suppression caused by PMN-MDSCs. The plasma levels of IL-21 (promotes the differentiation of Th cells) and MCP-1 (regulates migration and infiltration of monocytes/macrophages) also decreased. These findings show that adult DBP exposure can cause persistent immunosuppressive effects, which may increase susceptibility to infections, cancers, and immune diseases, and decrease vaccine efficacy.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Liselott Källsten
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Radwa Almamoun
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
45
|
Zhang H, Li QW, Li YY, Tang X, Gu L, Liu HM. Myeloid-derived suppressor cells and pulmonary hypertension. Front Immunol 2023; 14:1189195. [PMID: 37350962 PMCID: PMC10282836 DOI: 10.3389/fimmu.2023.1189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Pulmonary hypertension (PH) is a chronic pulmonary vascular disorder characterized by an increase in pulmonary vascular resistance and pulmonary arterial pressure. The detailed molecular mechanisms remain unclear. In recent decades, increasing evidence shows that altered immune microenvironment, comprised of immune cells, mesenchymal cells, extra-cellular matrix and signaling molecules, might induce the development of PH. Myeloid-derived suppressor cells (MDSCs) have been proposed over 30 years, and the functional importance of MDSCs in the immune system is appreciated recently. MDSCs are a heterogeneous group of cells that expand during cancer, chronic inflammation and infection, which have a remarkable ability to suppress T-cell responses and may exacerbate the development of diseases. Thus, targeting MDSCs has become a novel strategy to overcome immune evasion, especially in tumor immunotherapy. Nowadays, severe PH is accepted as a cancer-like disease, and MDSCs are closely related to the development and prognosis of PH. Here, we review the relationship between MDSCs and PH with respect to immune cells, cytokines, chemokines and metabolism, hoping that the key therapeutic targets of MDSCs can be identified in the treatment of PH, especially in severe PH.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qi-Wei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan-Yuan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Gu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Ding L, Sheriff S, Sontz RA, Merchant JL. Schlafen4 +-MDSC in Helicobacter-induced gastric metaplasia reveals role for GTPases. Front Immunol 2023; 14:1139391. [PMID: 37334372 PMCID: PMC10272601 DOI: 10.3389/fimmu.2023.1139391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction MDSCs express SCHLAFEN 4 (SLFN4) in Helicobacter-infected stomachs coincident with spasmolytic polypeptide-expressing metaplasia (SPEM), a precursor of gastric cancer. We aimed to characterize SLFN4+ cell identity and the role of Slfn4 in these cells. Methods Single-cell RNA sequencing was performed on immune cells sorted from PBMCs and stomachs prepared from uninfected and 6-month H. felis-infected mice. Knockdown of Slfn4 by siRNA or PDE5/6 inhibition by sildenafil were performed in vitro. Intracellular ATP/GTP levels and GTPase activity of immunoprecipitated Slfn4 complexes were measured using the GTPase-Glo assay kit. The intracellular level of ROS was quantified by the DCF-DA fluorescent staining, and apoptosis was determined by cleaved Caspase-3 and Annexin V expression. Gli1CreERT2 x Slfn4 fl/fl mice were generated and infected with H. felis. Sildenafil was administered twice over 2 weeks by gavaging H. felis infected mice ~4 months after inoculation once SPEM had developed. Results Slfn4 was highly induced in both monocytic and granulocytic MDSCs from infected stomachs. Both Slfn4 +-MDSC populations exhibited strong transcriptional signatures for type-I interferon responsive GTPases and exhibited T cell suppressor function. SLFN4-containing protein complexes immunoprecipitated from myeloid cell cultures treated with IFNa exhibited GTPase activity. Knocking down Slfn4 or PDE5/6 inhibition with sildenafil blocked IFNa induction of GTP, SLFN4 and NOS2. Moreover, IFNa induction of Slfn +-MDSC function was inhibited by inducing their reactive oxygen species (ROS) production and apoptosis through protein kinase G activation. Accordingly, in vivo disruption of Slfn4 in Gli1CreERT2 x Slfn4 fl/fl mice or pharmacologic inhibition by sildenafil after Helicobacter infection also suppressed SLFN4 and NOS2, reversed T cell suppression and mitigated SPEM development. Conclusion Taken together, SLFN4 regulates the activity of the GTPase pathway in MDSCs and precludes these cells from succumbing to the massive ROS generation when they acquire MDSC function.
Collapse
Affiliation(s)
| | | | | | - Juanita L. Merchant
- Department of Medicine-Gastroenterology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
47
|
Li TT, Lin CL, Chiang M, He JT, Hung CH, Hsieh CC. Cytokine-Induced Myeloid-Derived Suppressor Cells Demonstrate Their Immunoregulatory Functions to Prolong the Survival of Diabetic Mice. Cells 2023; 12:1507. [PMID: 37296628 PMCID: PMC10253032 DOI: 10.3390/cells12111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes is an inflammatory state. Myeloid-derived suppressive cells (MDSCs) originate from immature myeloid cells and quickly expand to control host immunity during infection, inflammation, trauma, and cancer. This study presents an ex vivo procedure to develop MDSCs from bone marrow cells propagated from granulocyte-macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-6, and IL-1β cytokines expressing immature morphology and high immunosuppression of T-cell proliferation. The adoptive transfer of cytokine-induced MDSCs (cMDSCs) improved the hyperglycemic state and prolonged the diabetes-free survival of nonobese diabetic (NOD) mice with severe combined immune deficiency (SCID) induced by reactive splenic T cells harvested from NOD mice. In addition, the application of cMDSCs reduced fibronectin production in the renal glomeruli and improved renal function and proteinuria in diabetic mice. Moreover, cMDSCs use mitigated pancreatic insulitis to restore insulin production and reduce the levels of HbA1c. In conclusion, administering cMDSCs propagated from GM-CSF, IL-6, and IL-1β cytokines provides an alternative immunotherapy protocol for treating diabetic pancreatic insulitis and renal nephropathy.
Collapse
Affiliation(s)
- Tung-Teng Li
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Meihua Chiang
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Jie-Teng He
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Chien-Hui Hung
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
- Division of Infectious Diseases, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
48
|
Mathew AA, Zakkariya ZT, Ashokan A, Manohar M, Keechilat P, Nair SV, Koyakutty M. 5-FU mediated depletion of myeloid suppressor cells enhances T-cell infiltration and anti-tumor response in immunotherapy-resistant lung tumor. Int Immunopharmacol 2023; 120:110129. [PMID: 37201402 DOI: 10.1016/j.intimp.2023.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Tumor microenvironment (TME) is a heterogeneous system consisting of both cellular and acellular components. The growth and progression of tumors rely greatly on the nature of TME, marking it as an important target in cancer immunotherapy. Lewis Lung Carcinoma (LLC) is an established murine lung cancer model representing immunologically 'cold' tumors characterized by very few infiltrated cytotoxic T-cells, high levels of Myeloid-Derived Suppressor Cells (MDSCs) and Tumor-Associated Macrophages (TAMs). Here, we report various strategies we applied to reverse the non-immunogenic character of this cold tumor by imparting: a) immunogenic cell death using Hypericin nanoparticle-based photodynamic therapy (PDT), b) repolarising TAM using a TLR7/8 agonist, resiquimod, c) immune checkpoint inhibition using anti-PD-L1 and d) depleting MDSCs using low-dose 5-fluorouracil (5-FU) chemotherapy. Interestingly, the nano-PDT, resiquimod or anti-PD-L1 treatment had no major impact on tumor growth, whereas low-dose 5-FU-mediated depletion of MDSCs showed significant anti-tumor effect, primarily caused by the increased infiltration of CD8+ cytotoxic T-cells (∼96%). Though we have tested combining PDT with resiquimod or 5-FU for any synergistic effect, low-dose 5-FU alone showed better response than combinations. In effect, we show that depletion of MDSCs using low-dose 5-FU was one of the best methods to augment infiltration of CD8+ cytotoxic T-cells into a cold tumor, which is resistant to conventional therapies including immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ambily Anna Mathew
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Zahara T Zakkariya
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Anusha Ashokan
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Maneesh Manohar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Pavithran Keechilat
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Shantikumar V Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India.
| |
Collapse
|
49
|
Schoen RE, Boardman LA, Cruz-Correa M, Bansal A, Kastenberg D, Hur C, Dzubinski L, Kaufman SF, Rodriguez LM, Richmond E, Umar A, Szabo E, Salazar A, McKolanis J, Beatty P, Pai RK, Singhi AD, Jacqueline CM, Bao R, Diergaarde B, McMurray RP, Strand C, Foster NR, Zahrieh DM, Limburg PJ, Finn OJ. Randomized, Double-Blind, Placebo-Controlled Trial of MUC1 Peptide Vaccine for Prevention of Recurrent Colorectal Adenoma. Clin Cancer Res 2023; 29:1678-1688. [PMID: 36892581 PMCID: PMC10159922 DOI: 10.1158/1078-0432.ccr-22-3168] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE To assess whether MUC1 peptide vaccine produces an immune response and prevents subsequent colon adenoma formation. PATIENTS AND METHODS Multicenter, double-blind, placebo-controlled randomized trial in individuals age 40 to 70 with diagnosis of an advanced adenoma ≤1 year from randomization. Vaccine was administered at 0, 2, and 10 weeks with a booster injection at week 53. Adenoma recurrence was assessed ≥1 year from randomization. The primary endpoint was vaccine immunogenicity at 12 weeks defined by anti-MUC1 ratio ≥2.0. RESULTS Fifty-three participants received the MUC1 vaccine and 50 placebo. Thirteen of 52 (25%) MUC1 vaccine recipients had a ≥2-fold increase in MUC1 IgG (range, 2.9-17.3) at week 12 versus 0/50 placebo recipients (one-sided Fisher exact P < 0.0001). Of 13 responders at week 12, 11 (84.6%) responded to a booster injection at week 52 with a ≥2-fold increase in MUC1 IgG measured at week 55. Recurrent adenoma was observed in 31 of 47 (66.0%) in the placebo group versus 27 of 48 (56.3%) in the MUC1 group [adjusted relative risk (aRR), 0.83; 95% confidence interval (CI), 0.60-1.14; P = 0.25]. Adenoma recurrence occurred in 3/11 (27.3%) immune responders at week 12 and week 55 (aRR, 0.41; 95% CI, 0.15-1.11; P = 0.08 compared with placebo). There was no difference in serious adverse events. CONCLUSIONS An immune response was observed only in vaccine recipients. Adenoma recurrence was not different than placebo, but a 38% absolute reduction in adenoma recurrence compared with placebo was observed in participants who had an immune response at week 12 and with the booster injection.
Collapse
Affiliation(s)
- Robert E. Schoen
- Division of Gastroenterology, Hepatology and Nutrition, and Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | - Chin Hur
- Massachusetts General Hospital, Boston, MA (now at Columbia University, NY)
| | - Lynda Dzubinski
- Division of Gastroenterology, Hepatology and Nutrition, and Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | | | - Luz M. Rodriguez
- Division of Cancer Prevention, National Cancer Institute, Bethesda MD
| | - Ellen Richmond
- Division of Cancer Prevention, National Cancer Institute, Bethesda MD
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, Bethesda MD
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesda MD
| | | | - John McKolanis
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Pamela Beatty
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Reetesh K. Pai
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Riuye Bao
- Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA
- UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Brenda Diergaarde
- UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | - Olivera J. Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
50
|
Gao B, Wang S, Li J, Han N, Ge H, Zhang G, Chang M. HMGB1, angel or devil, in ischemic stroke. Brain Behav 2023; 13:e2987. [PMID: 37062906 PMCID: PMC10176004 DOI: 10.1002/brb3.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION High-mobility group box 1 protein (HMGB1) is extensively involved in causing ischemic stroke, pathological damage of ischemic brain injury, and neural tissue repair after ischemic brain injury. However, the precise role of HMGB1 in ischemic stroke remains to be elucidated. METHODS Comprehensive literature search and narrative review to summarize the current field of HMGB1 in cerebral ischemic based on the basic structure, structural modification, and functional roles of HMGB1 described in the literature. RESULTS Studies have exhibited the crucial roles of HMGB1 in cell death, immunity and inflammation, thrombosis, and remodeling and repair. HMGB1 released after cerebral infarction is extensively involved in the pathological injury process in the early stage of cerebral infarction, whereas it is involved in the promotion of brain tissue repair and remodeling in the late stage of cerebral infarction. HMGB1 plays a neurotrophic role in acute white matter stroke, whereas it causes sustained activation of inflammation and plays a damaging role in chronic white matter ischemia. CONCLUSIONS HMGB1 plays a complex role in cerebral infarction, which is related to not only the modification of HMGB1 and bound receptors but also different stages and subtypes of cerebral infarction. future studies on HMGB1 should investigate the spatial and temporal dynamics of HMGB1 after cerebral infarction. Moreover, future studies on HMGB1 should attempt to integrate different stages and infarct subtypes of cerebral infarction.
Collapse
Affiliation(s)
- Bin Gao
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Shuwen Wang
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Jiangfeng Li
- Department of Neurosurgerythe First Hospital of Yu'linYu'linShaanxiChina
| | - Nannan Han
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Hanming Ge
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Gejuan Zhang
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Mingze Chang
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| |
Collapse
|