1
|
Moreira ET, Lourenço MP, Cunha-Fernandes T, Silva TI, Siqueira LD, Castro-Faria-Neto HC, Reis PA. Minocycline inhibits microglial activation in the CA1 hippocampal region and prevents long-term cognitive sequel after experimental cerebral malaria. J Neuroimmunol 2024; 397:578480. [PMID: 39504755 DOI: 10.1016/j.jneuroim.2024.578480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Cerebral malaria is the worst complication of malaria infection, has a high mortality rate, and may cause different neurodysfunctions, including cognitive decline. Neuroinflammation is an important cause of cognitive damage in neurodegenerative diseases, and microglial cells can be activated in a disease-associated profile leading to tissue damage and neuronal death. Here, we demonstrated that treatment with minocycline reduced blood-brain barrier breakdown and modulated ICAM1 mRNA expression; reduced proinflammatory cytokines, such as TNF-α, IL-1β, IFN-γ, and IL-6; and prevented long-term cognitive decline in contextual and aversive memory tasks. Taken together, our data suggest that microglial cells are activated during experimental cerebral malaria, leading to neuroinflammatory events that end up in cognitive damage. In addition, pharmacological modulation of microglial activation, by drugs such as minocycline may be an important therapeutic strategy in the prevention of long-term memory impairment.
Collapse
Affiliation(s)
- E T Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Universidade Cruzeiro do Sul, Brazil; Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - M P Lourenço
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - T Cunha-Fernandes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - T I Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - L D Siqueira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - H C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - P A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Chen C, Zhang D, Ye M, You Y, Song Y, Chen X. Effects of various exercise types on inflammatory response in individuals with overweight and obesity: a systematic review and network meta-analysis of randomized controlled trials. Int J Obes (Lond) 2024:10.1038/s41366-024-01649-6. [PMID: 39420086 DOI: 10.1038/s41366-024-01649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To explore effective exercise types for reducing chronic inflammation in individuals with overweight and obesity (IOO) while accounting for confounders. METHODS A systematic search for RCTs in English between January 2000 and August 2023 was conducted to evaluating exercise effects on inflammatory biomarkers in IOO. A network meta-analysis conducted. RESULTS A total of 123 RCTs were analyzed. Different exercise type yielded distinct effects on various inflammatory biomarkers. Specifically, aerobic exercise combined with resistance training (COM) and aerobic exercise (AE) were the most effective for improving leptin levels. AE exhibited the greatest effectiveness in reducing CRP and increasing adiponectin. High-intensity interval training (HIIT) was identified as the most effective exercise modality for ameliorating IL-6, TNF-α, and IL-10. Resistance training (RT) had the least effect compared to other exercise types. Meta regression and subgroup analyses revealed that high-intensity AE demonstrated a greater effect size compared to moderate-intensity AE. The impact of AE on IL-10 was positively associated with both the training period and the age of participants. Positive correlations were observed between reductions in body fat and the effect sizes of CRP, TNF-α, and IL-10. Gender influenced AE effects on IL-6 and TNF-α, with females responding better. CONCLUSION This study highlights the potential of exercise in alleviating the inflammatory status in IOO, with different exercise types showing various effects on specific inflammatory biomarkers. The intensity and duration of exercise had a dose-response relationship with intervention effectiveness. Changes in body composition correlated with the effectiveness of the intervention. COM, AE, and HIIT are recommended exercise approaches.
Collapse
Affiliation(s)
- Chaofan Chen
- Department of Physical Education, Tsinghua University, 100084, Beijing, China
| | - Dong Zhang
- Institute of Sports Artificial Intelligence, Capital University of Physical Education and Sports, 100084, Beijing, China
| | - Mingyi Ye
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yanwei You
- Department of Physical Education, Tsinghua University, 100084, Beijing, China
| | - Yiling Song
- Department of Physical Education, Tsinghua University, 100084, Beijing, China
| | - Xiaoke Chen
- Department of Physical Education, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
3
|
David-Vieira C, Carpinter BA, Bezerra-Bellei J, Machado L, Raimundo FO, Rodolphi CM, Renhe DC, Guedes IR, Gonçalves FMM, Pereira LPC, Ferreira MV, Nascimento HLDS, Neto AF, Gomes FR, Rocha VN, Castro JMA, Scopel KKG. Lung Damage Induced by Plasmodium berghei ANKA in Murine Model of Malarial Infection is Mitigated by Dietary Supplementation with DHA-Rich Omega-3. ACS Infect Dis 2024; 10:3607-3617. [PMID: 39303151 PMCID: PMC11474944 DOI: 10.1021/acsinfecdis.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe complications that can occur in infections caused by any Plasmodium species. Due to the high lethality rate and the lack of specific treatment for ALI/ARDS, studies aimed at understanding and searching for treatment strategies for such complications have been fundamental. Here, we investigated the protective role of dietary supplementation with DHA-rich fish oil against lung damage induced by Plasmodium berghei ANKA in a murine model. Our results demonstrated that alveolar vascular damage, lung edema, and histopathological alterations were significantly reduced in mice that received dietary supplementation compared to those that did not receive the supplementation. Furthermore, a significant reduction in the number of CD8+ T lymphocytes, in addition to reduced infiltration of inflammatory cells in the bronchoalveolar lavage fluid was also observed. High levels of IL-10, but not of TNF-α and IFN-γ, were also observed in infected mice that received the supplementation, along with a reduction in local oxidative stress. Together, the data suggest that dietary supplementation with DHA-rich fish oil in malarial endemic areas may help reduce lung damage resulting from the infection, thus preventing worsening of the condition.
Collapse
Affiliation(s)
- Carolina David-Vieira
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Barbara Albuquerque Carpinter
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Jéssica
Correia Bezerra-Bellei
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Letícia
Ferreira Machado
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Felipe Oliveira Raimundo
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Cinthia Magalhães Rodolphi
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Daniela Chaves Renhe
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Isabella Rodrigues
Nogueira Guedes
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Fernanda Mikaela Moreira Gonçalves
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Ludmila Ponce
Monken Custódio Pereira
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | | | - Haroldo Lobo dos Santos Nascimento
- Research
Centre of Pathology and Veterinary Histology, Department of Veterinary
Medicine, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Adolfo Firmino Neto
- Research
Centre of Pathology and Veterinary Histology, Department of Veterinary
Medicine, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | | | - Vinicius Novaes Rocha
- Research
Centre of Pathology and Veterinary Histology, Department of Veterinary
Medicine, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Juciane Maria
de Andrade Castro
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Kézia Katiani Gorza Scopel
- Research
Centre of Parasitology, Department of Parasitology, Microbiology and
Immunology and Post-Graduate Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| |
Collapse
|
4
|
Su B, Mao Q, Li D, Wu Y, Wang B, Wang X. Mechanism of Fuzheng Qudu prescription in the treatment of lung cancer based on network pharmacology and experimental validation. Heliyon 2024; 10:e37546. [PMID: 39309919 PMCID: PMC11416244 DOI: 10.1016/j.heliyon.2024.e37546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Objective This research utilized network pharmacology to investigate the potential of Fuzheng Qudu prescription (FZQDP) in treating lung cancer (LC). Methods The components and their targets of FZQDP were analyzed for their relationship with LC-related targets using bioinformatics tools. Mouse Lewis lung carcinoma (LLC) cells were cultured in vitro and treated with FZQDP or cisplatin (DDP) before applying the MTT assay to determine FZQDP concentrations, and the IC50 value. According to the IC50 value, the effect of FZQDP on apoptosis and cell cycle was detected by flow cytometry. Mouse tumor growth was recorded using live animal imaging, and measurements of tumor and spleen weight were used to calculate the tumor inhibition rate and spleen index. The effects on mouse liver and kidneys were observed by analyzing levels of AST, ALT, BUN, and CRE in blood and hematoxylin and eosin (H & E) stained sections. Additionally, levels of IL-2, IL-10, IL-6, and IFN-γ in serum, along with the frequencies of CD4+ and CD8+ T cells in the spleen, were measured using Mouse multiple Cytokine Assay and flow cytometry, respectively. Results SRC, STAT3, MAPK3, and MAPK1 could be crucial targets of FZQDP in the treatment of LC. FZQDP demonstrated inhibition of LC cell proliferation and tumor growth, as well as enhancement of apoptosis and induction of G2 phase cell cycle arrest. Furthermore, FZQDP led to elevated levels of IL-2 and IFN-γ, increased frequencies of CD4+ T cells and decreased levels of IL-6 and IL-10. Importantly, FZQDP did not exhibit any noticeable hepatotoxic or nephrotoxic effects in mice. Conclusion FZQDP may target multiple signaling pathways to treat LC. In a LC mouse model, FZQDP was found to inhibit tumor growth and improve immune function.
Collapse
Affiliation(s)
- Binjie Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Qiyuan Mao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Daorui Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yingyi Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Bo Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
- Experimental Animal Center, Xinjiang Medical University, Urumqi, 830017, Xinjiang China
| | - Xueqian Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
5
|
Bratosiewicz-Wąsik J, Wąsik TJ. Genetic variants of IL-10 promoter influence susceptibility to HIV-1 infection and disease progression in the Polish population: IL-10 polymorphisms and HIV-1. Hum Immunol 2024; 85:111086. [PMID: 39153369 DOI: 10.1016/j.humimm.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
The risk of HIV-1 infection and the rate of disease progression vary considerably among individuals and the genetic makeup of the host may be one of the possible reasons for this. We aimed to determine association of functional single nucleotide polymorphism (SNPs), -1082A/G (rs1800896), -819C/T (rs1800871), and -592C/A (rs1800872) in IL-10 gene, with the susceptibility to HIV-1 infection and clinical parameters expressed as a baseline CD4+ T cell count, CD8+ T cell count, and viral load. Therapy naïve HIV-1 infected individuals and HIV-1 seronegative controls from Poland were recruited for this study. Genotyping results revealed significantly higher frequency of -1082G/G genotype (28.1 % vs 16.1 %; p = 0.0019, OR=0.49) and -1082G allele (47.6 % vs 38.8 %; p = 0.0028, OR = 0.70) as well as lower frequency of -592 and -819 heterozygosity (45.0 % vs 34.4 %; p = 0.0266, OR = 1.47) in controls compared to seropositive subjects. High producing haplotype GCC was associated with increased risk of HIV-1 infection (p = 0.0018, OR = 1.52). Individuals possessing -592 and -819 minor allele had significantly higher CD8+ T cell count compared to the wild type allele carriers (p = 0.0303). Moreover, presence of -1082G allele was related with lower viral load as well as CD4+ and CD8+ T cells counts among patients infected with R5 HIV-1 variant. Thus, IL-10 gene promoter variants may be a risk factor for HIV-1 transmission and may modulate disease progression in the Polish population.
Collapse
Affiliation(s)
- Jolanta Bratosiewicz-Wąsik
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, ul. Jagiellońska 4, Poland.
| | - Tomasz J Wąsik
- Department of Medical Microbiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, ul. Medyków 18, Poland.
| |
Collapse
|
6
|
Liu Y, Wenren M, Cheng W, Zhou X, Xu D, Chi C, Lü Z, Liu H. Identification, functional characterization and immune response profiles of interleukin-10 in Nibea albiflora. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109654. [PMID: 38810711 DOI: 10.1016/j.fsi.2024.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Interleukin-10 (IL-10) is an immunosuppressive cytokine, which plays a vital role in regulating inflammation for inhibiting the generation and function of pro-inflammatory cytokines in vivo or in vitro. In the present study, the full length cDNA of IL-10 was characterized from Nibea albiflora (named as NaIL-10) of 1238 base pairs (bp), containing a 5'-UTR (untranslated region) of 350 bp, a 3'-UTR of 333 bp and an open reading frame (ORF) of 555 bp (Fig. 1A) to encode 184 amino acid residues with a signal peptide at the N-terminus. The sequence analysis showed that NaIL-10 possessed the typical IL-10 family symbolic motif and conversed cysteine residues, similar to its teleost orthologues. Real-time PCR indicated that NaIL-10 had wide distribution in different healthy tissues, with a relatively high expression in immune-related tissues (head kidney, spleen, kidney, liver and gill). Significantly, up-regulations of NaIL-10 after infection against Vibrio parahaemolyticus, Vibrio alginolyticus and Poly I:C were also observed. Subcellular localization manifested that NaIL-10 mainly distributed in the cytoplasm unevenly and aggregately, and there was also a small amount on the cell membrane, indicating that NaIL-10 was secreted to the extracellular space as the known IL-10 homologous molecules. It could co-locate with IL-10 Rα on the membrane of HEK293T cells for their potential interaction, and GST pull-down and Co-IP studies certified the specific and direct interaction between NaIL-10 and NaIL-10 Rα, confirming that an IL-10 ligand-receptor system existed in N.albiflora. The expression of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1β, were dramatically inhibited in LPS-stimulated RAW264.7 macrophages pre-incubated with recombinant NaIL-10 protein, demonstrating its anti-inflammatory roles. Taken together, the results demonstrated the existence of IL-10 ligand-receptor system in N.albiflora for the first time, and indicated the suppressive function of NaIL-10 on pro-inflammatory cytokine expression in inflammatory response, which would be conducive to better comprehending the role of IL-10 in the immunomodulatory mechanisms of teleost.
Collapse
Affiliation(s)
- Yue Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Mingming Wenren
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Wei Cheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Dongdong Xu
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang province, Zhoushan, 316100, China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhenming Lü
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
7
|
Jebbawi F, Chemnitzer A, Dietrich M, Pantelyushin S, Lam J, Rhiner T, Keller G, Waldern N, Canonica F, Fettelschoss-Gabriel A. Cytokines and chemokines skin gene expression in correlation with immune cells in blood and severity in equine insect bite hypersensitivity. Front Immunol 2024; 15:1414891. [PMID: 39076967 PMCID: PMC11284025 DOI: 10.3389/fimmu.2024.1414891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Background Insect bite hypersensitivity (IBH) is the most frequent skin allergy of horses and is highly debilitating, especially in the chronic phase. IBH is caused by IgE-mediated hypersensitivity reactions to culicoides midge bites and an imbalanced immune response that reduces the welfare of affected horses. Objective In the present study, we investigated the pathological mechanisms of IBH, aiming to understand the immune cell modulation in acute allergic skin lesions of IBH horses with the goal of finding possible biomarkers for a diagnostic approach to monitor treatment success. Methods By qPCR, we quantified the gene expression of cytokines, chemokines, and immune receptors in skin punch biopsies of IBH with different severity levels and healthy horses simultaneously in tandem with the analysis of immune cell counts in the blood. Results Our data show an increase in blood eosinophils, monocytes, and basophils with a concomitant, significant increase in associated cytokine, chemokine, and immune cell receptor mRNA expression levels in the lesional skin of IBH horses. Moreover, IL-5Ra, CCR5, IFN-γ, and IL-31Ra were strongly associated with IBH severity, while IL-31 and IL-33 were rather associated with a milder form of IBH. In addition, our data show a strong correlation of basophil cell count in blood with IL-31Ra, IL-5, IL-5Ra, IFN-γ, HRH2, HRH4, CCR3, CCR5, IL-12b, IL-10, IL-1β, and CCL26 mRNA expression in skin punch biopsies of IBH horses. Conclusion In summary, several cytokines and chemokines have been found to be associated with disease severity, hence contributing to IBH pathology. These molecules can be used as potential biomarkers to monitor the onset and progression of the disease or even to evaluate and monitor the efficacy of new therapeutic treatments for IBH skin allergy. To our knowledge, this is the first study that investigated immune cells together with a large set of genes related to their biological function, including correlation to disease severity, in a large cohort of healthy and IBH horses.
Collapse
Affiliation(s)
- Fadi Jebbawi
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Alex Chemnitzer
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Macsmeila Dietrich
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Stanislav Pantelyushin
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Juwela Lam
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Tanya Rhiner
- Evax AG, Guntershausen, Switzerland
- Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Giulia Keller
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | | | - Fabia Canonica
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| | - Antonia Fettelschoss-Gabriel
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Evax AG, Guntershausen, Switzerland
| |
Collapse
|
8
|
Long F, Zou S, Dong Y. Associations between life's essential 8 and sarcopenia in US adults: a cross-sectional analysis. Sci Rep 2024; 14:9071. [PMID: 38643195 PMCID: PMC11032333 DOI: 10.1038/s41598-024-59421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Cardiovascular disease (CVD) is closely associated with sarcopenia. We aimed to examine the relationship between Life's Essential 8 (LE8) and the incidence of sarcopenia among adults in the United States. In this study, a cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey from 2013 to 2018 and included 5999 adult participants. LE8 score was categorized into low (< 49), moderate (49-79), and high CVH (≥ 79) groups and consisted of health behavior score and health factor score based on American Heart Association definitions. Sarcopenia was defined according to The Foundation for the National Institutes of Health Sarcopenia Project. Multivariate logistic regressions, restricted cubic spline regressions, and subgroup analyses were used to assess the association between LE8 and sarcopenia. LE8 and its subscales score were negatively associated with the incidence of sarcopenia in US adults.
Collapse
Affiliation(s)
- Feng Long
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Su Zou
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Youhai Dong
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Ringleb M, Javelle F, Haunhorst S, Bloch W, Fennen L, Baumgart S, Drube S, Reuken PA, Pletz MW, Wagner H, Gabriel HHW, Puta C. Beyond muscles: Investigating immunoregulatory myokines in acute resistance exercise - A systematic review and meta-analysis. FASEB J 2024; 38:e23596. [PMID: 38597350 DOI: 10.1096/fj.202301619r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Myokines, released from the muscle, enable communication between the working muscles and other tissues. Their release during physical exercise is assumed to depend on immune-hormonal-metabolic interactions concerning mode (endurance or resistance exercise), duration, and intensity. This meta-analysis aims to examine the acute changes of circulating myokines inducing immunoregulatory effects caused by a bout of resistance exercise and to consider potential moderators of the results. Based on this selection strategy, a systematic literature search was conducted for resistance exercise intervention studies measuring interleukin (IL-) 6, IL-10, IL-1ra, tumor necrosis factor (TNF-) α, IL-15, IL-7, transforming growth factor (TGF-) β1, and fractalkines (FKN) before and immediately after resistance exercise in healthy individuals. Random-effects meta-analysis was performed for each myokine. We identified a moderate positive effect of resistance exercise for IL-6 and IL-1ra. Regarding IL-15 and TNF-α, small to moderate effects were found. For IL-10, no significant effect was observed. Due to no data, meta-analyses for IL-7, TGF-β1, and FKN could not be performed. No moderators (training status, type of exercise, risk of bias, age, sex, time of day, exercise volume, exercise intensity, exercise dose) of the results were detected for all tested myokines. Taken together, this systematic review and meta-analysis showed immediate positive effects of an acute resistance exercise session on IL-6, IL-1ra, TNF-α, and IL-15 levels.
Collapse
Affiliation(s)
- Miriam Ringleb
- Department of Movement Science, University of Münster, Münster, Germany
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
| | - Florian Javelle
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Lena Fennen
- Department of Movement Science, University of Münster, Münster, Germany
| | - Sabine Baumgart
- Institute for Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sebastian Drube
- Institute for Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Philipp A Reuken
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Mathias W Pletz
- Institute for Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Heiko Wagner
- Department of Movement Science, University of Münster, Münster, Germany
| | - Holger H W Gabriel
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
10
|
Merlano MC, Paccagnella M, Denaro N, Abbona A, Galizia D, Sangiolo D, Gammaitoni L, Fiorino E, Minei S, Bossi P, Licitra L, Garrone O. Baseline Values of Circulating IL-6 and TGF-β Might Identify Patients with HNSCC Who Do Not Benefit from Nivolumab Treatment. Cancers (Basel) 2023; 15:5257. [PMID: 37958430 PMCID: PMC10649732 DOI: 10.3390/cancers15215257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The immunotherapy of head and neck cancer induces a limited rate of long-term survivors at the cost of treating many patients exposed to toxicity without benefit, regardless of PD-L1 expression. The identification of better biomarkers is warranted. We analyzed a panel of cytokines, chemokines and growth factors, hereinafter all referred to as 'cytokines', as potential biomarkers in patients with head and neck cancer treated with nivolumab. MATERIALS AND METHODS A total of 18 circulating cytokines were analyzed. Samples were gathered at baseline (T0) and after 3 courses of nivolumab (T1) in patients with relapsed/metastatic disease. The data extracted at T0 were linked to survival; the comparison of T0-T1 explored the effect of immunotherapy. RESULTS A total of 22 patients were accrued: 64% current heavy smokers, 36% female and 14% had PS = 2. At T0, ROC analysis showed that IL-6, IL-8, IL-10 and TGF-β were higher in patients with poor survival. Cox analysis demonstrated that only patients with the IL-6 and TGF-β discriminate had good or poor survival, respectively. Longitudinal increments of CCL-4, IL-15, IL-2 and CXCL-10 were observed in all patients during nivolumab treatment. CONCLUSION In this small population with poor clinical characteristics, this study highlights the prognostic role of IL-6 and TGF-β. Nivolumab treatment is associated with a positive modulation of some Th1 cytokines, but it does not correlate with the outcome.
Collapse
Affiliation(s)
- Marco Carlo Merlano
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy; (M.C.M.); (D.G.); (L.G.)
| | | | - Nerina Denaro
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (O.G.)
| | - Andrea Abbona
- Translational Oncology ARCO Foundation, 12100 Cuneo, Italy;
| | - Danilo Galizia
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy; (M.C.M.); (D.G.); (L.G.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10060 Torino, Italy; (D.S.); (E.F.)
| | - Loretta Gammaitoni
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy; (M.C.M.); (D.G.); (L.G.)
| | - Erika Fiorino
- Department of Oncology, University of Turin, 10060 Torino, Italy; (D.S.); (E.F.)
| | - Silvia Minei
- Post-Graduate School of Specialization Medical Oncology, University of Bari “A. Moro”, 70120 Bari, Italy;
- Medical Oncology, A.U.O. Consorziale Policlinico di Bari, 70120 Bari, Italy
| | - Paolo Bossi
- Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences, Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale dei Tumori, University of Milan, 20133 Milan, Italy;
| | - Ornella Garrone
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (O.G.)
| |
Collapse
|
11
|
Razi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem 2023; 478:1533-1559. [PMID: 36411399 PMCID: PMC9684932 DOI: 10.1007/s11010-022-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Ana Maria Teixeira
- Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
12
|
Tembo D, Harawa V, Tran TC, Afran L, Molyneux ME, Taylor TE, Seydel KB, Nyirenda T, Russell DG, Mandala W. The ability of Interleukin-10 to negate haemozoin-related pro-inflammatory effects has the potential to restore impaired macrophage function associated with malaria infection. Malar J 2023; 22:125. [PMID: 37060041 PMCID: PMC10103463 DOI: 10.1186/s12936-023-04539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Although pro-inflammatory cytokines are involved in the clearance of Plasmodium falciparum during the early stages of the infection, increased levels of these cytokines have been implicated in the pathogenesis of severe malaria. Amongst various parasite-derived inducers of inflammation, the malarial pigment haemozoin (Hz), which accumulates in monocytes, macrophages and other immune cells during infection, has been shown to significantly contribute to dysregulation of the normal inflammatory cascades. METHODS The direct effect of Hz-loading on cytokine production by monocytes and the indirect effect of Hz on cytokine production by myeloid cells was investigated during acute malaria and convalescence using archived plasma samples from studies investigating P. falciparum malaria pathogenesis in Malawian subjects. Further, the possible inhibitory effect of IL-10 on Hz-loaded cells was examined, and the proportion of cytokine-producing T-cells and monocytes during acute malaria and in convalescence was characterized. RESULTS Hz contributed towards an increase in the production of inflammatory cytokines, such as Interferon Gamma (IFN-γ), Tumor Necrosis Factor (TNF) and Interleukin 2 (IL-2) by various cells. In contrast, the cytokine IL-10 was observed to have a dose-dependent suppressive effect on the production of TNF among other cytokines. Cerebral malaria (CM) was characterized by impaired monocyte functions, which normalized in convalescence. CM was also characterized by reduced levels of IFN-γ-producing T cell subsets, and reduced expression of immune recognition receptors HLA-DR and CD 86, which also normalized in convalescence. However, CM and other clinical malaria groups were characterized by significantly higher plasma levels of pro-inflammatory cytokines than healthy controls, implicating anti-inflammatory cytokines in balancing the immune response. CONCLUSIONS Acute CM was characterized by elevated plasma levels of pro-inflammatory cytokines and chemokines but lower proportions of cytokine-producing T-cells and monocytes that normalize during convalescence. IL-10 is also shown to have the potential to indirectly prevent excessive inflammation. Cytokine production dysregulated by the accumulation of Hz appears to impair the balance of the immune response to malaria and exacerbates pathology.
Collapse
Affiliation(s)
- Dumizulu Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.
| | - Visopo Harawa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Tam C Tran
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Louise Afran
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- University of Liverpool, Liverpool, UK
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Malcolm E Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- University of Liverpool, Liverpool, UK
| | - Terrie E Taylor
- Blantyre Malaria Project, Blantyre, Malawi
- Michigan State University, Michigan, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Blantyre, Malawi
- Michigan State University, Michigan, USA
| | | | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Wilson Mandala
- Acadamey of Medical Sciences, Malawi University of Science and Technology, Blantyre, Malawi.
| |
Collapse
|
13
|
Zhu ZZ, Chen XH, Wei SR, Xu J, Wang YH, Wu WJ, Liu H, Mo HY. Role of CD19 + CD5 + CD1d + Bregs in maintaining the Th17/Treg balance in mice with systemic lupus erythematosus complicated with atherosclerosis. Int J Rheum Dis 2023. [PMID: 37012219 DOI: 10.1111/1756-185x.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 03/19/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVE In this study, we aimed to investigate Bregs, their regulatory effects on Th17/Treg cell balance, and the release of downstream inflammatory factors in a mouse model of low-density lipoprotein receptor (LDLr)-/- + Pristane. METHODS After the establishment of the mouse model of systemic lupus erythematosus (SLE) complicated with atherosclerosis (AS), 8-week-old LDLr-/- + Pristane mice (n = 10) were included in the SLE + AS group. Furthermore, 8-week-old MRL/lpr and C57 mice were used as the SLE and normal control groups, respectively (n = 10 per group). After feeding the mice a high-fat diet for 14 weeks, peripheral blood and spleen of mice were collected, and Bregs, Th17, and Treg cells and related inflammatory factors were detected by flow cytometry, enzyme-linked immunosorbent assay, and reverse-transcription polymerase chain reaction. RESULTS The number of Bregs and Tregs in spleen lymphocytes of SLE + AS mice significantly decreased compared with the C57 group (p < .05), whereas the number of Th17 cells significantly increased (p = .000). Furthermore, the proportion of Bregs showed a negative correlation with the Th17/Treg ratio (p = .03). Mice in the SLE + AS group showed higher serum interleukin (IL)-10, IL-17, and tumor necrosis factor-α levels than those in the SLE and C57 groups (p < .05). Furthermore, IL-35 and transforming growth factor (TGF)-β expression was reduced in the SLE + AS group compared with the C57 group (p < .05). CONCLUSIONS The proportion of Breg decreases was negatively associated with increased Th17/Treg which was increased in SLE + AS mice, indicating that Bregs may regulate Th17/Treg cell homeostasis and cytokine release via IL-35 and TGF-β production.
Collapse
Affiliation(s)
- Zhen-Zhen Zhu
- Department of Rheumatology, Guilin Medical University, Guilin, Guangxi, China
| | - Xiao-Huan Chen
- Department of Endocrinology and Rheumatology, The First People's Hospital of Linping District, Hangzhou, China
| | - Si-Ru Wei
- Department of Rheumatology, Guilin Medical University, Guilin, Guangxi, China
| | - Jia Xu
- Department of Rheumatology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ya-Hui Wang
- Department of Rheumatology, Guilin Medical University, Guilin, Guangxi, China
| | - Wen-Jue Wu
- Department of Rheumatology, Guilin Medical University, Guilin, Guangxi, China
| | - Hong Liu
- Department of Rheumatology, Guilin Medical University, Guilin, Guangxi, China
| | - Han-You Mo
- Department of Rheumatology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9:e15055. [PMID: 37082641 PMCID: PMC10112040 DOI: 10.1016/j.heliyon.2023.e15055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
HIV infection progressively weakens the immune system by infecting and destroying cells involved in host defense. Viral infection symptoms are generated and aggravated as immunosuppression progresses, triggered by the presence of opportunistic infections: among these is leishmaniasis, a disease caused by the intracellular parasite Leishmania. The incidence of this co-infection is growing progressively due to the geographic distribution overlap. Both pathogens infect monocytes/macrophages and dendritic cells, although they can also modulate the activity of other cells without co-infecting, such as T and B lymphocytes. Leishmania/HIV co-infection could be described as a system comprising modulations of cell surface molecule expression, production of soluble factors, and intracellular death activities, leading ultimately to the potentiation of infectivity, replication, and spread of both pathogens. This review describes the cytokine/chemokine response in Leishmania/HIV infection and co-infection, discussing how these molecules modulate the course of the disease and analyzing the therapeutic potential of targeting this network.
Collapse
|
15
|
Hsieh TH, Hsu CY, Wu CW, Wang SH, Yeh CH, Cheng KH, Tsai EM. Vorinostat decrease M2 macrophage polarization through ARID1A 6488delG/HDAC6/IL-10 signaling pathway in endometriosis-associated ovarian carcinoma. Biomed Pharmacother 2023; 161:114500. [PMID: 36958195 DOI: 10.1016/j.biopha.2023.114500] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Endometriosis is a common disease in women and may be one of the factors that induces malignant epithelial ovarian tumors. Previous studies suggested that endometriosis is related to ARID1A mutation mediating the expression of HDAC6, but the detailed pathogenic mechanism is still unclear. First, we collected endometriosis-associated ovarian carcinoma (EAOC) clinical samples and examined the expression of HDAC6. Our results found that the high HDAC6 expression group was positively correlated with EAOC histology (P = 0.015), stage (P < 0.000), and tumor size (P < 0.000) and inversely correlated with survival (P < 0.000). We also found that ARID1A6488delG/HDAC6 induced M2 polarization of macrophages through IL-10. In addition, the HDAC inhibitor (HDACi) vorinostat inhibited cell growth and blocked the effect of HDAC6. Tomographic microscopy was used to monitor the live cell morphology of these treated cells, and we found that vorinostat treatment resulted in substantial cell apoptosis by 3 h 42 min. Next, we established a transgenic mouse model of EAOC and found that vorinostat significantly reduced the size of ovarian tumors by inhibiting M2 macrophage polarization in mice. Together, these data demonstrate that the signaling pathway of E4F1/ARID1A6488delG/HDAC6/GATA3 mediates macrophage polarization and provides a novel immune cell-associated therapeutic strategy targeting IL-10 in EAOC.
Collapse
Affiliation(s)
- Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Shih-Ho Wang
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Cheng-Hsi Yeh
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
16
|
Kong Y, Tang L, You Y, Li Q, Zhu X. Analysis of causes for poor persistence of CAR-T cell therapy in vivo. Front Immunol 2023; 14:1063454. [PMID: 36761742 PMCID: PMC9905114 DOI: 10.3389/fimmu.2023.1063454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T-cell) therapy has been well researched to date because of its ability to target malignant tumor cells. The most common CAR-T cells are CD19 CAR-T cells, which play a large role in B-cell leukemia treatment. However, most CAR-T cells are associated with relapse after clinical treatment, so the quality and persistence of CAR-T cells need to be improved. With continuous optimization, there have been four generations of CARs and each generation of CARs has better quality and durability than the previous generation. In addition, it is important to increase the proportion of memory cells in CAR-T cells. Studies have shown that an immunosuppressive tumor microenvironment (TME) can lead to dysfunction of CAR-T cells, resulting in decreased cell proliferation and poor persistence. Thus, overcoming the challenges of immunosuppressive molecules and targeting cytokines in the TME can also improve CAR-T cell persistence. In this paper, we explored how to improve the durability of CAR-T cell therapy by improving the structure of CARs, increasing the proportion of memory CAR-T cells and improving the TME.
Collapse
Affiliation(s)
- Yingjie Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Eimeria tenella 14-kDa phosphohistidine phosphatase stimulates maturation of chicken dendritic cells and mediates DC-induced T cell priming in a Th1 cytokine interface. Res Vet Sci 2022; 152:61-71. [DOI: 10.1016/j.rvsc.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/15/2022]
|
18
|
Xu W, Zhang Z, Lu Y, Li M, Li J, Tao W. Traditional Chinese medicine Tongxie Yaofang treating irritable bowel syndrome with diarrhea and type 2 diabetes mellitus in rats with liver-depression and spleen-deficiency: A preliminary study. Front Nutr 2022; 9:968930. [PMID: 36438735 PMCID: PMC9686328 DOI: 10.3389/fnut.2022.968930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/10/2022] [Indexed: 10/05/2023] Open
Abstract
Tongxie Yaofang (TXYF), a Traditional Chinese Medicine (TCM) with four components as follows: Rhizoma Atractylodis Macrocephalae (baizhu), Radix Paeoniae Alba (baishao), Pericarpium Citri Reticulatae (chenpi) and Radix Saposhnikovia Divaricata (fangfeng), benefits irritable bowel syndrome (IBS). Nonetheless, proofs of this formula ameliorating D-IBS and T2DM are required. This research aimed at investigating the efficacy of TXYF in treating inflammation in rats with D-IBS and T2DM using animal models. In this study, gavage with high-fat diet, fasciculation, and senna was given to develop rat models with target diseases. To determine intestinal inflammations, major inflammatory factors, and intestinal permeability proteins, H&E staining, ELISA, and immunohistochemistry methods were employed, respectively. This study also utilized Western blot to discover potential inflammatory targets. Results of this research illustrates that TXYF treatment reduced the level of TNF-α, IL-1β, and IL-6, and raised the IL-10 concentration in liver-depressed spleende ficient rats with D-IBS and T2DM, indicating controlled inflammatory reactions. Staining analysis also showed improved disease states of animal models. Furthermore, efficient rebounds of claudin-1, an intestinal permeability-associated protein, were detected. Moreover, TXYF may treat D-IBS and T2DM in rats via the rage pathway.
Collapse
Affiliation(s)
- Weidong Xu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhiyi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ye Lu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Mengxi Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jiayao Li
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
New Insights into the Mechanism of Immune-Mediated Tissue Injury in Yellow Fever: The Role of Immunopathological and Endothelial Alterations in the Human Lung Parenchyma. Viruses 2022; 14:v14112379. [PMID: 36366477 PMCID: PMC9698388 DOI: 10.3390/v14112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 01/31/2023] Open
Abstract
Yellow fever (YF) may cause lesions in different organs. There are no studies regarding the in situ immune response in the human lung and investigating immunopathological aspects in fatal cases can help to better understand the evolution of the infection. Lung tissue samples were collected from 10 fatal cases of human yellow fever and three flavivirus-negative controls who died of other causes and whose lung parenchymal architecture was preserved. In YFV-positive fatal cases, the main histopathological changes included the massive presence of diffuse alveolar inflammatory infiltrate, in addition to congestion and severe hemorrhage. The immunohistochemical analysis of tissues in the lung parenchyma showed significantly higher expression of E-selectin, P-selectin, ICAM-1, VCAM-1 in addition to cytokines such as IL-4, IL-10, IL-13, TNF- α, IFN-γ and TGF-β compared to the negative control. The increase in immunoglobulins ICAM-1 and VCAM-1 results in strengthening of tissue transmigration signaling. E-selectin and P-selectin actively participate in this process of cell migration and formation of the inflammatory infiltrate. IFN-γ and TNF-α participate in the process of cell injury and viral clearance. The cytokines IL-4 and TGF-β, acting in synergism, participate in the process of tissue regeneration and breakdown. The anti-inflammatory cytokines IL-4, IL-10 and IL-13 also act in the reduction of inflammation and tissue repair. Our study indicates that the activation of the endothelium aggravates the inflammatory response by inducing the expression of adhesion molecules and cytokines that contribute to the rolling, recruitment, migration and eliciting of the inflammatory process in the lung parenchyma, contributing to the fatal outcome of the disease.
Collapse
|
20
|
Co-Expression of Pig IL-2 and Fusion Bovine Cathelicidin Gene by Recombinant Plasmids in Yeast and Their Promotion of Mouse Antibacterial Defense. BIOLOGY 2022; 11:biology11101491. [PMID: 36290395 PMCID: PMC9598770 DOI: 10.3390/biology11101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
In order to develop an effective and safe immunomodulator to enhance the antimicrobial bioactivity and immunity of animals against infectious bacterial diseases, a recombinant plasmid pGAPZαA-IL2-B co-expressing pig interleukin-2 (PIL-2) and fused bovine cathelicidin (FBC) genes were constructed using the 2A self-cleavage technique. After being expressed in Pichia pastoris strain SMD1168, the recombinant yeast was administered orally to 5-week-old female ICR mice. The control mice were similarly dosed with P. pastoris with a blank plasmid or FBC recombinant plasmid alone. At 28 days post-treatment, the mice were challenged intraperitoneally with virulent strains of either E. coli or S. aureus. Compared with the control groups, the mice that received recombinant yeast co-expressing PIL-2/FBC manifested significant increases in the number of leukocytes, CD4+ and CD8+ T cells, IgG, and the gene expressions of TLRs(TLR1,4,6,9), antimicrobial peptides(CRP4 and CRAMP) and cytokines (IL-2, 4, 6, 7, 12, 15, 23, IFN-γ, and TNF-α) in the blood. Furthermore, the treated mice displayed significantly higher survival than the other two control groups after the challenge. These results suggest that the antimicrobial activity and immunity of animals can be effectively enhanced by the in vivo co-expression of IL-2 and the FBS gene, which can facilitate the development of new immunopotentiation molecules to overcome the infection of antibiotic-resistant bacteria.
Collapse
|
21
|
Golimbet V, Lezheiko T, Mikhailova V, Korovaitseva G, Kolesina N, Plakunova V, Kostyuk G. A study of the association between polymorphisms in the genes for interleukins IL-6 and IL-10 and negative symptoms subdomains in schizophrenia. Indian J Psychiatry 2022; 64:484-488. [PMID: 36458089 PMCID: PMC9707661 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_212_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Schizophrenia is a severe mental illness manifested by various symptoms. Negative symptoms (NS) are associated with disability and poor function of patients. The study of NS neurobiology is complicated by their heterogeneity. Factor analysis revealed two distinct NS subdomains with different pathophysiological mechanisms: volitional pathology, including avolition and apathy (AA), and diminished expression (DE). Inflammation is one mechanism that may underlie NS, including their heterogeneity. AIMS To search for the association between genes for interleukins (IL-6 -174 G/C, IL-10 -592 C/A, and IL-10 -1082 G/A) and NS subdomains. MATERIALS AND METHODS The study included 275 patients with schizophrenia. NS factors were calculated based on the Positive and Negative Syndromes Scale. RESULTS There was a significant main effect of IL-10 polymorphisms on the AA, but not the DE subdomain. Mean score on the AA subdomain was higher in the IL-10 -592 AA compared to the CC genotype. Differences between IL-10 -1082 G/A genotypes were dose dependent. The lowest score was observed for the IL-10 -1082 GG genotype. The association between the IL-6 -174 G/C polymorphism and AA scores was close to the level of significance. Patients with the IL-6 -174 GG genotype had higher score compared to the AA genotype. CONCLUSION The results provide further neurobiological evidence for the validity of the NS factor categorization. An imbalance between pro-inflammatory and anti-inflammatory cytokines because of genetic variations is associated with the AA NS subdomain that is supposed to be a more severe aspect of psychopathology compared to the DE.
Collapse
Affiliation(s)
- Vera Golimbet
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Tatyana Lezheiko
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Vera Mikhailova
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Galina Korovaitseva
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Nadezhda Kolesina
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Victoria Plakunova
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Georgy Kostyuk
- Moscow Healthcare Department, Clinical Research Center, Mental-Health Clinic No. 1 Named After N.A. Alexeev, Moscow, Russia
| |
Collapse
|
22
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Razi O, Tartibian B, Laher I, Govindasamy K, Zamani N, Rocha-Rodrigues S, Suzuki K, Zouhal H. Multimodal Benefits of Exercise in Patients With Multiple Sclerosis and COVID-19. Front Physiol 2022; 13:783251. [PMID: 35492581 PMCID: PMC9048028 DOI: 10.3389/fphys.2022.783251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by plaque formation and neuroinflammation. The plaques can present in various locations, causing a variety of clinical symptoms in patients with MS. Coronavirus disease-2019 (COVID-19) is also associated with systemic inflammation and a cytokine storm which can cause plaque formation in several areas of the brain. These concurring events could exacerbate the disease burden of MS. We review the neuro-invasive properties of SARS-CoV-2 and the possible pathways for the entry of the virus into the central nervous system (CNS). Complications due to this viral infection are similar to those occurring in patients with MS. Conditions related to MS which make patients more susceptible to viral infection include inflammatory status, blood-brain barrier (BBB) permeability, function of CNS cells, and plaque formation. There are also psychoneurological and mood disorders associated with both MS and COVID-19 infections. Finally, we discuss the effects of exercise on peripheral and central inflammation, BBB integrity, glia and neural cells, and remyelination. We conclude that moderate exercise training prior or after infection with SARS-CoV-2 can produce health benefits in patients with MS patients, including reduced mortality and improved physical and mental health of patients with MS.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Sports Injuries, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, India
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Silvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), Quinta de Prados, Edifício Ciências de Desporto, Vila Real, Portugal
- Tumor & Microenvironment Interactions Group, i3S, Porto, Portugal
| | | | - Hassane Zouhal
- Laboratoire Mouvement, Sport, Santé, University of Rennes, Rennes, France
- Institut International des Sciences du Sport (2I2S), Irodouer, France
| |
Collapse
|
24
|
Borghi SM, Domiciano TP, Rasquel-Oliveira FS, Ferraz CR, Bussmann AJC, Vignoli JA, Camilios-Neto D, Ambrósio SR, Arakawa NS, Casagrande R, Verri WA. Sphagneticola trilobata (L.) Pruski-derived kaurenoic acid prevents ovalbumin-induced asthma in mice: Effect on Th2 cytokines, STAT6/GATA-3 signaling, NFκB/Nrf2 redox sensitive pathways, and regulatory T cell phenotype markers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114708. [PMID: 34619320 DOI: 10.1016/j.jep.2021.114708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sphagneticola trilobata (L.) Pruski is used in traditional medicine in Brazil for inflammatory diseases treatment including asthma. The diterpene kaurenoic acid (KA) is one of its active compounds, but whether KA activity could explain the traditional use of S. trilobata in asthma is unknown. AIM Investigate KA effect and mechanisms in asthma. METHODS Experimental asthma was induced by ovalbumin immunization and challenge in male Swiss mice. KA (0.1-10 mg/kg, gavage) was administered 1 h before the ovalbumin challenge. Total leukocytes, eosinophil, and mast cell were counted in bronchoalveolar lavage fluid (BALF), and lung histopathology was performed. Lung mRNA expression of Th2 and regulatory T cells markers, and BALF type 2 cytokine production were quantitated. NFκB activation and oxidative stress-related components in pulmonary tissue were measured. RESULTS KA inhibited the migration of total leukocytes and eosinophils to BALF, reduced lung histopathology (inflammatory cells and mast cells), mRNA expression of IL-33/ST2, STAT6/GATA-3 and NFκB activation in the lung, and reduced IL-33, IL-4, IL-5 production in the BALF. KA also reduced the mRNA expression of iNOS and gp91phox, and superoxide anion production accompanied by the induction of Nrf2, HO-1 and NQO1 mRNA expression, thus, exerting an antioxidant effect. Finally, KA induced nTreg-like and Tr1-like, but not Th3-like markers of suppressive T cell phenotypes in the lung tissue. CONCLUSION KA prevents antigen-induced asthma by down-regulating Th2 and NFκB/cytokine-related pathways, and up-regulating Nrf2 and regulatory T cells' markers. Thus, explaining the ethnopharmacological use of S. trilobata for the treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil; Centro de Pesquisa em Ciências da Saúde, Universidade Norte do Paraná - Unopar, Rua Marselha, 591, Jardim Piza, 86.041-140, Londrina, Paraná, Brazil.
| | - Talita P Domiciano
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Fernanda S Rasquel-Oliveira
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Camila R Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Allan J C Bussmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Josiane A Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Sergio R Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca - Unifran, Avenida Dr. Armando de Sáles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil.
| | - Nilton S Arakawa
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Avenida Robert Koch, 60, Universidade Estadual de Londrina, 86039-440, Londrina, Paraná, Brazil; Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Avenida Robert Koch, 60, Universidade Estadual de Londrina, 86039-440, Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod Celso Garcia Cid KM480 PR445, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
25
|
Palano MT, Gallazzi M, Cucchiara M, Dehò F, Capogrosso P, Bruno A, Mortara L. The tumor innate immune microenvironment in prostate cancer: an overview of soluble factors and cellular effectors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:694-718. [PMID: 36338516 PMCID: PMC9630328 DOI: 10.37349/etat.2022.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023] Open
Abstract
Prostate cancer (PCa) accounts as the most common non-cutaneous disease affecting males, and as the first cancer, for incidence, in male. With the introduction of the concept of immunoscore, PCa has been classified as a cold tumor, thus driving the attention in the development of strategies aimed at blocking the infiltration/activation of immunosuppressive cells, while favoring the infiltration/activation of anti-tumor immune cells. Even if immunotherapy has revolutionized the approaches to cancer therapy, there is still a window failure, due to the immune cell plasticity within PCa, that can acquire pro-tumor features, subsequent to the tumor microenvironment (TME) capability to polarize them. This review discussed selected relevant soluble factors [transforming growth factor-beta (TGFβ), interleukin-6 (IL-6), IL-10, IL-23] and cellular components of the innate immunity, as drivers of tumor progression, immunosuppression, and angiogenesis within the PCa-TME.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Federico Dehò
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Paolo Capogrosso
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Correspondence: Antonino Bruno,
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Lorenzo Mortara, . Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
26
|
Immune Responses in Pregnant Sows Induced by Recombinant Lactobacillus johnsonii Expressing the COE Protein of Porcine Epidemic Diarrhea Virus Provide Protection for Piglets against PEDV Infection. Viruses 2021; 14:v14010007. [PMID: 35062210 PMCID: PMC8779658 DOI: 10.3390/v14010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea (PED) induced by porcine epidemic diarrhea virus (PEDV) is an intestinal infectious disease in pigs that causes serious economic losses to the pig industry. To develop an effective oral vaccine against PEDV infection, we used a swine-origin Lactobacillus johnsonii (L. johnsonii) as an antigen delivery carrier. A recombinant strain pPG-T7g10-COE/L. johnsonii (L. johnsonii-COE) expressing COE protein (a neutralizing epitope of the viral spike protein) was generated. The immunomodulatory effect on dendritic cell in vitro and immunogenicity in pregnant sows was evaluated following oral administration. L. johnsonii-COE could activate monocyte-derived dendritic cell (MoDC) maturation and triggered cell immune responses. After oral vaccination with L. johnsonii-COE, levels of anti-PEDV-specific serum IgG, IgA, and IgM antibodies as well as mucosal secretory immunoglobulin A (SIgA) antibody were induced in pregnant sows. High levels of PEDV-specific SIgA and IgG antibodies were detected in the maternal milk, which provide effective protection for the piglets against PEDV infection. In summary, oral L. johnsonii-COE was able to efficiently activate anti-PEDV humoral and cellular immune responses, demonstrating potential as a vaccine for use in sows to provide protection of their piglets against PEDV.
Collapse
|
27
|
Yoo TJ. Anti-Inflammatory Gene Therapy Improves Spatial Memory Performance in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 85:1001-1008. [PMID: 34897091 PMCID: PMC8925118 DOI: 10.3233/jad-215270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immune system plays a critical role in neurodegenerative processes involved in Alzheimer’s disease (AD). In this study, a gene-based immunotherapeutic method examined the effects of anti-inflammatory cellular immune response elements (CIREs) in the amyloid-β protein precursor (AβPP) mouse model. Bi-monthly intramuscular administration, beginning at either 4 or 6 months, and examined at 7.5 through 16 months, with plasmids encoding Interleukin (IL)-10, IL-4, TGF-β polynucleotides, or a combination thereof, into AβPP mice improved spatial memory performance. This work demonstrates an efficient gene therapy strategy to downregulate neuroinflammation, and possibly prevent or delay cognitive decline in AD.
Collapse
Affiliation(s)
- Tai June Yoo
- Korea Allergy Clinic, KangNam Gu, Seoul, South Korea.,University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
28
|
Li C, Niu J, Liu Y, Li F, Liu L. The effects of oregano essential oil on production performance and intestinal barrier function in growing Hyla rabbits. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.2005471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chenyang Li
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Jinling Niu
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Yongxu Liu
- Qingdao Kangda Food Co., Ltd., Huangdao, China
| | - Fuchang Li
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Lei Liu
- Department of Animal Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
29
|
Ghosh S, Roy K, Rajalingam R, Martin S, Pal C. Cytokines in the generation and function of regulatory T cell subsets in leishmaniasis. Cytokine 2021; 147:155266. [DOI: 10.1016/j.cyto.2020.155266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 01/12/2023]
|
30
|
Wajda A, Sivitskaya L, Paradowska-Gorycka A. Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases. J Clin Med 2021; 10:3334. [PMID: 34362117 PMCID: PMC8348854 DOI: 10.3390/jcm10153334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
NGS technologies have transformed clinical diagnostics and broadly used from neonatal emergencies to adult conditions where the diagnosis cannot be made based on clinical symptoms. Autoimmune diseases reveal complicate molecular background and traditional methods could not fully capture them. Certainly, NGS technologies meet the needs of modern exploratory research, diagnostic and pharmacotherapy. Therefore, the main purpose of this review was to briefly present the application of NGS technology used in recent years in the understanding of autoimmune diseases paying particular attention to autoimmune connective tissue diseases. The main issues are presented in four parts: (a) panels, whole-genome and -exome sequencing (WGS and WES) in diagnostic, (b) Human leukocyte antigens (HLA) as a diagnostic tool, (c) RNAseq, (d) microRNA and (f) microbiome. Although all these areas of research are extensive, it seems that epigenetic impact on the development of systemic autoimmune diseases will set trends for future studies on this area.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Larysa Sivitskaya
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
31
|
Von Held R, Castilho T, Antunes LAA, Tavares JDS, Pivetta Petinati MF, Winckler C, Neto ZCO, Scariot R, Küchler EC, Brancher JA, Antunes LS. Interleukin 1 alpha genetic polymorphisms as potential biomarkers for oral health-related quality of life in Para athletes. SPECIAL CARE IN DENTISTRY 2021; 41:679-687. [PMID: 34245174 DOI: 10.1111/scd.12627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
AIMS To assess the impact of dental caries on OHRQoL in Para athletes and to evaluate whether interleukin 1 alpha (IL1A) (rs17561, rs1304037), interleukin 10 (IL10) (rs1800871), and interleukin 1 receptor antagonist (IL1RN) (rs9005) genes are potential biomarkers for OHRQoL in Para athletes. MATERIALS AND METHODS A cross-sectional study consisting of 264 Para athletes (athletics, 143; powerlifting, 61; and swimming, 60) aged between 14 and 79 years was conducted. The decayed-missing-filled teeth index was used for the clinical evaluation. The Brazilian version of the Oral Health Impact Profile (OHIP-14) was used to measure the OHRQoL. Genomic DNA was extracted from the saliva. Genetic polymorphisms were analyzed by real-time polymerase chain reaction. Descriptive and bivariate analyses were performed. RESULTS The overall mean OHIP-14 score observed was 6.24 (standard deviation, 7.05) and 10.03 (standard deviation, 8.11) in Para athletes with no caries experience and with caries experience, respectively (p = .002). Para athletes with the A allele in the IL1A gene (rs17561), in a dominant model, had a significantly higher risk of poor psychological discomfort than those with the other allele (p = .03). CONCLUSION Dental caries affected the OHRQoL in Para athletes. IL1A genetic polymorphisms were the potential biomarkers for OHRQoL in Para athletes.
Collapse
Affiliation(s)
- Rodrigo Von Held
- Postgraduate Program in Dentistry of Niterói, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Thuanny Castilho
- Postgraduate Program in Dentistry of Niterói, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lívia Azeredo Alves Antunes
- Postgraduate Program in Dentistry of Niterói, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,Postgraduate Program in Dentistry of Nova Friburgo, School of Dentistry, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil.,Department of Specific Formation of the Health Institute of Nova Friburgo (FFE-ISNF), Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | | | | | - Ciro Winckler
- Human Movement Sciences Department, São Paulo Federal University, Santos, Brazil.,CPB, Brazilian Paralympic Committee, Brasília, DF, Brazil
| | | | - Rafaela Scariot
- School of Health Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | - Leonardo Santos Antunes
- Postgraduate Program in Dentistry of Niterói, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,Postgraduate Program in Dentistry of Nova Friburgo, School of Dentistry, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil.,Department of Specific Formation of the Health Institute of Nova Friburgo (FFE-ISNF), Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil.,Clinical Research Unit, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Influence of immunomodulatory drugs on the gut microbiota. Transl Res 2021; 233:144-161. [PMID: 33515779 PMCID: PMC8184576 DOI: 10.1016/j.trsl.2021.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Immunomodulatory medications are a mainstay of treatment for autoimmune diseases and malignancies. In addition to their direct effects on immune cells, these medications also impact the gut microbiota. Drug-induced shifts in commensal microbes can lead to indirect but important changes in the immune response. We performed a comprehensive literature search focusing on immunotherapy/microbe interactions. Immunotherapies were categorized into 5 subtypes based on their mechanisms of action: cell trafficking inhibitors, immune checkpoint inhibitors, immunomodulators, antiproliferative drugs, and inflammatory cytokine inhibitors. Although no consistent relationships were observed between types of immunotherapy and microbiota, most immunotherapies were associated with shifts in specific colonizing bacterial taxa. The relationships between colonizing microbes and drug efficacy were not well-studied for autoimmune diseases. In contrast, the efficacy of immune checkpoint inhibitors for cancer was tied to the baseline composition of the gut microbiota. There was a paucity of high-quality data; existing data were generated using heterogeneous sampling and analytic techniques, and most studies involved small numbers of participants. Further work is needed to elucidate the extent and clinical significance of immunotherapy effects on the human microbiome.
Collapse
|
33
|
Joeris T, Gomez-Casado C, Holmkvist P, Tavernier SJ, Silva-Sanchez A, Klotz L, Randall TD, Mowat AM, Kotarsky K, Malissen B, Agace WW. Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3 +CD8 + T regs. Sci Immunol 2021; 6:6/60/eabd3774. [PMID: 34088744 DOI: 10.1126/sciimmunol.abd3774] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Although CD8+ T cell tolerance to tissue-specific antigen (TSA) is essential for host homeostasis, the mechanisms underlying peripheral cross-tolerance and whether they may differ between tissue sites remain to be fully elucidated. Here, we demonstrate that peripheral cross-tolerance to intestinal epithelial cell (IEC)-derived antigen involves the generation and suppressive function of FoxP3+CD8+ T cells. FoxP3+CD8+ Treg generation was dependent on intestinal cDC1, whose absence led to a break of tolerance and epithelial destruction. Mechanistically, intestinal cDC1-derived PD-L1, TGFβ, and retinoic acid contributed to the generation of gut-tropic CCR9+CD103+FoxP3+CD8+ Tregs Last, CD103-deficient CD8+ T cells lacked tolerogenic activity in vivo, indicating a role for CD103 in FoxP3+CD8+ Treg function. Our results describe a role for FoxP3+CD8+ Tregs in cross-tolerance in the intestine for which development requires intestinal cDC1.
Collapse
Affiliation(s)
- Thorsten Joeris
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, Kgs. Lyngby 2800, Denmark, Denmark.,Immunology Section, Lund University, Lund 221 84, Sweden
| | | | | | - Simon J Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent 9000, Belgium.,VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, 9000 Ghent, Belgium
| | - Aaron Silva-Sanchez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luisa Klotz
- University Hospital Münster, Department of Neurology with Institute of Translational Neurology, Münster 48149, Germany
| | - Troy D Randall
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Allan M Mowat
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland
| | - Knut Kotarsky
- Immunology Section, Lund University, Lund 221 84, Sweden
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - William W Agace
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, Kgs. Lyngby 2800, Denmark, Denmark. .,Immunology Section, Lund University, Lund 221 84, Sweden
| |
Collapse
|
34
|
Zheng D, Wang Z, Sui L, Xu Y, Wang L, Qiao X, Cui W, Jiang Y, Zhou H, Tang L, Li Y. Lactobacillus johnsonii activates porcine monocyte derived dendritic cells maturation to modulate Th cellular immune response. Cytokine 2021; 144:155581. [PMID: 34029942 DOI: 10.1016/j.cyto.2021.155581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/02/2023]
Abstract
Lactobacilli are abundant in the intestinal tract where they constantly regulate immune system via interacting with a great diversity of immune cells, such as dendritic cells (DCs). Notably, DCs are powerful antigen-presenting cells and they are capable of initiating primary immune responses. In this study, we studied the effects of Lactobacillus johnsonii (L. johnsonii) and Lactobacillus johnsonii cell-free supernatant (L. johnsonii-CFS) on the activation of porcine monocyte-derived dendritic cells (MoDCs) and their regulation of Th cellular immune responses in vitro. The MoDCs generated from porcine peripheral blood monocytes were stimulated by L. johnsonii and L. johnsonii-CFS, respectively. Pre-incubation with L. johnsonii increased expression of CD172a, CD80, major histocompatibility complex class II (MHCII) in MoDCs, and enhanced the ability of MoDCs to induce the proliferation of CD4+ T cell, while pre-incubation with L. johnsonii-CFS merely upregulated the expression of MHCII. Analysis of the cytokines showed that L. johnsonii stimulated up-regulation of Th1-type cytokines (IL-12p40, IFN-γ, TNF-α), pro-inflammatory cytokine IL-1β, chemokine CCL20, and Treg-type / anti-inflammatory cytokines IL-10 in MoDCs. Notably, a high production of IL-10 was observed in the MoDCs treated with L. johnsonii-CFS, indicating L. johnsonii-CFS exerted anti-inflammatory effects. Furthermore, L. johnsonii induced up-regulation of TLR2 and TLR6, but L. johnsonii-CFS not. Moreover, MoDCs stimulated by L. johnsonii mainly promoted T cell differentiate into Th1/Th2/Treg cells and plays an important role in improving the balance between Th1/Th2/Treg-type cells, whereas MoDCs stimulated by L. johnsonii-CFS mainly directed T cell to Th2/Treg subset polarization. In conclusion, L. johnsonii and L. johnsonii-CFS exhibited the ability of modulating innate immunity by regulating immunological functions of MoDCs in vitro, suggesting their potential ability to use as microecological preparations and medicines.
Collapse
Affiliation(s)
- Dianzhong Zheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhaorui Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ling Sui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Han Zhou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| |
Collapse
|
35
|
Zuo Z, Zou Y, Li Q, Guo Y, Zhang T, Wu J, He C, Eko FO. Intranasal immunization with inactivated chlamydial elementary bodies formulated in VCG-chitosan nanoparticles induces robust immunity against intranasal Chlamydia psittaci challenge. Sci Rep 2021; 11:10389. [PMID: 34001988 PMCID: PMC8129140 DOI: 10.1038/s41598-021-89940-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Vaccines based on live attenuated Chlamydia elementary bodies (EBs) can cause disease in vaccinated animals and the comparably safer inactivated whole EBs are only marginally protective. Recent studies show that a vaccine formulation comprising UV-inactivated EBs (EB) and appropriate mucosal delivery systems and/or adjuvants induced significant protective immunity. We tested the hypothesis that intranasal delivery of UV-inactivated C. psittaci EB formulated in Vibrio cholerae ghosts (VCG)-chitosan nanoparticles will induce protective immunity against intranasal challenge in SPF chickens. We first compared the impact of VCG and CpG adjuvants on protective immunity following IN mucosal and IM systemic delivery of EB formulated in chitosan hydrogel/microspheres. Immunologic analysis revealed that IN immunization in the presence of VCG induced higher levels of IFN-γ response than IM delivery or the CpG adjuvanted groups. Also, vaccine efficacy evaluation showed enhanced pharyngeal bacterial clearance and protection against lung lesions with the VCG adjuvanted vaccine formulation, thereby establishing the superior adjuvanticity of VCG over CpG. We next evaluated the impact of different concentrations of VCG on protective immunity following IN mucosal immunization. Interestingly, the adjuvanticity of VCG was concentration-dependent, since protective immunity induced following IN mucosal immunization showed dose-dependent immune responses and protection. These studies reveal that formulation of inactivated chlamydial antigens with adjuvants, such as VCG and chitosan increases their ability to induce protective immune responses against challenge.
Collapse
Affiliation(s)
- Zonghui Zuo
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Yongjuan Zou
- grid.9227.e0000000119573309Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Qiang Li
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Yongxia Guo
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Tianyuan Zhang
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Jie Wu
- grid.9227.e0000000119573309Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Cheng He
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Francis O. Eko
- grid.9001.80000 0001 2228 775XDepartment of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310 USA
| |
Collapse
|
36
|
Niranjan R, Kishor S, Kumar A. Matrix metalloproteinases in the pathogenesis of dengue viral disease: Involvement of immune system and newer therapeutic strategies. J Med Virol 2021; 93:4629-4637. [PMID: 33634515 DOI: 10.1002/jmv.26903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Globally, the burden due to dengue infection is increasing with a recent estimate of 96 million progressing to the disease every year. Dengue pathogenesis and the factors influencing it are not completely known. It is now widely speculated that there is an important role of matrix metalloproteinases (MMPs) in the initiation and progression of dengue pathogenesis; however, their exact roles are not fully understood. Overactivation of matrix metalloproteinases may contribute to the severity of dengue pathogenesis. Cytokines and various other mediators of inflammation interact with the vascular endothelium and matrix metalloproteinases may be one of the components among them. Extensive plasma leakage into tissue spaces may result in a shock. It is evident in the literature that MMP2 and MMP9 increase in dengue patients is correlated with the severity of the disease; however, the underlying mechanism is still unknown. Activation of innate cells and adaptive immune cells which include, B and T cells, macrophages or monocytes and dendritic cells also contribute to the dengue pathology. Newer therapeutic strategies include microRNAs, such as miR-134 (targets MMP3 and MMP1) and MicroRNA-320d, (targets MMP/TIMP proteolytic system). The use of antibodies-based therapeutics like (Andecaliximab; anti-matrix metalloproteinase-9 antibody) is also suggested against MMPs in dengue. In this review, we summarize some recent developments associated with the involvement of immune cells and their mediators associated with the matrix metalloproteinases mediated dengue pathogenesis. We highlight that, there is still very little knowledge about the MMPs in dengue pathogenesis which needs attention and extensive investigations.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| | - Sumitha Kishor
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| | - Ashwani Kumar
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| |
Collapse
|
37
|
Preisser TM, da Cunha VP, Santana MP, Pereira VB, Cara DC, Souza BM, Miyoshi A. Recombinant Lactococcus lactis Carrying IL-4 and IL-10 Coding Vectors Protects against Type 1 Diabetes in NOD Mice and Attenuates Insulitis in the STZ-Induced Model. J Diabetes Res 2021; 2021:6697319. [PMID: 33604389 PMCID: PMC7872750 DOI: 10.1155/2021/6697319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that culminates in beta cell destruction in the pancreas and, subsequently, deficiency in insulin production. Cytokines play a crucial role in the development of diabetes, orchestrating the recruitment and action of immune cells, to not only destroy insulin-producing cells but also preserve them. Therefore, the aim of this study was to investigate the effect of orally administered Lactococcus lactis MG1363 FnBPA+ strains carrying plasmids encoding IL-4 and IL-10 in the streptozotocin- (STZ-) induced diabetes model and in nonobese diabetic (NOD) mice. The STZ-induced mice that were treated with combined bacterial strains carrying plasmids encoding IL-4 and IL-10 showed lower incidence of diabetes and more preserved pancreatic islets than the mice that received the individual bacterial strains. Combined administration of L. lactis MG1363 FnBPA+ (pValac::dts::IL-4) and L. lactis MG1363 FnBPA+ (pValac::IL-10) resulted in protection against diabetes in NOD mice. It was shown that the combined treatment with recombinant bacterial by oral route prevented hyperglycemia and reduced the pancreatic islets-destruction in NOD mice. In addition, increased levels of IL-4 and IL-10 in serum and pancreatic tissue revealed a systemic effect of the treatment and also favored an anti-inflammatory microenvironment. Reduced concentrations of IL-12 in pancreas were essential to the regulation of inflammation, resulting in no incidence of diabetes in treated NOD mice. Normal levels of intestinal sIgA after long-term treatment with the L. lactis strains carrying plasmids encoding IL-4 and IL-10 indicate the development of oral tolerance and corroborate the use of this potent tool of mucosal delivery. For the first time, L. lactis MG1363 FnBPA+ strains carrying eukaryotic expression vectors encoding IL-4 and IL-10 are tested in STZ-induced and NOD mouse models. Therefore, our study demonstrates this innovative strategy provides immunomodulatory potential for further investigations in T1D and other autoimmune diseases.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Colon/immunology
- Colon/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Genetic Therapy
- Genetic Vectors
- Immunoglobulin A, Secretory/metabolism
- Insulin/blood
- Interleukin-10/biosynthesis
- Interleukin-10/blood
- Interleukin-10/genetics
- Interleukin-4/biosynthesis
- Interleukin-4/blood
- Interleukin-4/genetics
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Lactococcus lactis/genetics
- Lactococcus lactis/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice
Collapse
Affiliation(s)
- Tatiane M. Preisser
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Vanessa P. da Cunha
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Mariana P. Santana
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Vanessa B. Pereira
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Denise C. Cara
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Bianca M. Souza
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Anderson Miyoshi
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| |
Collapse
|
38
|
Pasvenskaite A, Liutkeviciene R, Gedvilaite G, Vilkeviciute A, Liutkevicius V, Uloza V. Impact of IL-10 Promoter Polymorphisms and IL-10 Serum Levels on Advanced Laryngeal Squamous Cell Carcinoma and Survival Rate. Cancer Genomics Proteomics 2021; 18:53-65. [PMID: 33419896 DOI: 10.21873/cgp.20241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/AIM Prognosis of advanced stages of laryngeal squamous cell carcinoma (LSCC) remains poor. To clarify therapeutic targets and improve survival rate, identification of new specific and prognostic biomarkers of LSCC is required. The study aimed to evaluate the impact of IL-10:rs1800871, rs1800872, rs1800896 single nucleotide polymorphisms (SNPs), and IL-10 serum levels on LSCC development and determine associations of selected SNPs with patient survival rate. PATIENTS AND METHODS A total of 300 LSCC patients and 533 controls were included in the study. Genotyping was carried out using RT-PCR; IL-10 serum levels were analyzed by ELISA. RESULTS Significant associations were identified between IL-10 rs1800871 variants and advanced stage of LSCC patient group in the codominant, recessive and additive models (OR=0.473, p=0.027; OR=0.510, p=0.040; and OR=0.733; p=0.037). Significant variants of IL-10 rs1800872 were determined in the codominant, recessive and additive models (OR=0.473, p=0.027; OR=0.510, p=0.040; and OR=0.733, p=0.037). The distribution of IL-10 SNPs genotypes did not impact LSCC patient survival rate (respectively, p=0.952; p=0.952; p=0.991). CONCLUSION IL-10:rs1800871 and rs1800872 SNPs are associated with advanced stage of LSCC. The genotypic distribution of IL-10 SNPs does not influence the survival rate of LSCC patients.
Collapse
Affiliation(s)
- Agne Pasvenskaite
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
39
|
Maneechotesuwan K, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Role of autophagy in regulating interleukin-10 and the responses to corticosteroids and statins in asthma. Clin Exp Allergy 2021; 51:1553-1565. [PMID: 33423318 DOI: 10.1111/cea.13825] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Interleukin (IL)-10 is a key anti-inflammatory cytokine that may be reduced in asthma but is enhanced by corticosteroids, especially when combined with a statin, although the mechanisms of these effects are uncertain. OBJECTIVE To study the role of autophagy in macrophages in promoting inflammation in asthma through reducing IL-10 secretion and how corticosteroids and statins may reverse this process. METHODS We conducted a randomised double-blind placebo-controlled study in moderate to severe asthmatic patients (n = 44) to investigate the effect of an inhaled corticosteroid (budesonide 400 μg/day) and the combination of budesonide with an oral statin (simvastatin 10 mg/day) given for 8 weeks on autophagy protein expression in sputum cells by using immunocytochemistry and measurement of IL-10 release. In in vitro experiments, we studied cross-regulation between autophagy and IL-10 release by measuring the expression of autophagy proteins in M2-like macrophages and the effects of budesonide and simvastatin on these mechanisms. RESULTS In asthmatic patients, inhaled budesonide inhibited airway macrophage autophagy (beclin-1, LC3) as well as autophagic flux (p62), which was enhanced by simvastatin and was correlated with increased sputum IL-10 and reduced IL-4 concentrations. In macrophages in vitro, budesonide and simvastatin inhibited rapamycin-induced autophagy as well as autophagic flux, with reduced expression of beclin-1 and LC3, but enhanced the accumulation of p62 and increased expression of IL-10, which itself further inhibited autophagy in macrophages. With siRNA-mediated silencing, LC3-deficient macrophages also showed a maximal induction of IL-10 transcription. Neutralisation of IL-10 with recombinant specific blocking antibody and silencing IL-10 transcription reversed the inhibitory effects of budesonide and simvastatin on macrophage autophagy. CONCLUSION AND CLINICAL RELEVANCE Inhibition by corticosteroids and a statin of macrophage autophagy enhances IL-10 production, resulting in the control of asthmatic inflammation.
Collapse
Affiliation(s)
- Kittipong Maneechotesuwan
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanda Kasetsinsombat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
40
|
Esteves M, Monteiro MP, Duarte JA. Role of Regular Physical Exercise in Tumor Vasculature: Favorable Modulator of Tumor Milieu. Int J Sports Med 2020; 42:389-406. [PMID: 33307553 DOI: 10.1055/a-1308-3476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tumor vessel network has been investigated as a precursor of an inhospitable tumor microenvironment, including its repercussions in tumor perfusion, oxygenation, interstitial fluid pressure, pH, and immune response. Dysfunctional tumor vasculature leads to the extravasation of blood to the interstitial space, hindering proper perfusion and causing interstitial hypertension. Consequently, the inadequate delivery of oxygen and clearance of by-products of metabolism promote the development of intratumoral hypoxia and acidification, hampering the action of immune cells and resulting in more aggressive tumors. Thus, pharmacological strategies targeting tumor vasculature were developed, but the overall outcome was not satisfactory due to its transient nature and the higher risk of hypoxia and metastasis. Therefore, physical exercise emerged as a potential favorable modulator of tumor vasculature, improving intratumoral vascularization and perfusion. Indeed, it seems that regular exercise practice is associated with lasting tumor vascular maturity, reduced vascular resistance, and increased vascular conductance. Higher vascular conductance reduces intratumoral hypoxia and increases the accessibility of circulating immune cells to the tumor milieu, inhibiting tumor development and improving cancer treatment. The present paper describes the implications of abnormal vasculature on the tumor microenvironment and the underlying mechanisms promoted by regular physical exercise for the re-establishment of more physiological tumor vasculature.
Collapse
Affiliation(s)
- Mário Esteves
- Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal.,Department of Physical Medicine and Rehabilitation, Hospital-Escola, Fernando Pessoa University, Gondomar, Portugal
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Jose Alberto Duarte
- CIAFEL - Faculty of Sport, University of Porto, Porto, Portugal.,Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| |
Collapse
|
41
|
Özgül Özdemir RB, Özdemir AT, Kırmaz C, Eker Sarıboyacı A, Karaöz E, Erman G, Vatansever HS, Mete Gökmen N. Age-related changes in the immunomodulatory effects of human dental pulp derived mesenchymal stem cells on the CD4 + T cell subsets. Cytokine 2020; 138:155367. [PMID: 33223447 DOI: 10.1016/j.cyto.2020.155367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are powerful immunomodulatory cells. The effects of the aging on these abilities of MSCs have not been adequately clarified. In this study, alterations in immunomodulatory abilities of MSCs caused by aging were investigated. For this, dental pulp (DP) MSCs and peripheral blood mononuclear cells (PBMCs) of elderly and young donors were co-cultured age-matched and cross. We detected that the effects of DP-MSCs on Th1 and Th2 cells and their specific cytokines IFN-γ and IL-4 are not affected by aging. However, we observed that young and elderly DP-MSCs have different effects on Th17 and Treg cells. Th17 frequencies of young and elderly PBMCs were significantly increased only by young DP-MSCs, in contrast, Treg frequencies were significantly increased by elderly DP-MSCs. IL-6, IL-17a and HGF levels of both young and elderly PBMCs showed a significant increase only by young DP-MSCs, but TGF-β levels were significantly increased only by elderly DP-MSCs. The oral cavity is home to a rich microflora. The interactions of dental tissues with this microflora can lead them to acquire different epigenetic modifications. Aging can affect the microflora composition of the oral cavity and change this process in different directions. According to our findings, DP-MSCs are effective cells in the regulation of CD4+ T cells, and their effects on Th1 and Th2 cells were not affected by aging. However, pleiotropic molecules IL-6 and HGF expressions, which are important in dental and bone tissue regeneration, decreased significantly in elderly DP-MSCs. This situation may have indirectly made a difference in the modulation effects of young and elderly DP-MSCs on the Th17 and Treg cells.
Collapse
Affiliation(s)
| | - Alper Tunga Özdemir
- Merkezefendi State Hospital, Department of Medical Biochemistry, Manisa, Turkey.
| | - Cengiz Kırmaz
- Manisa Celal Bayar University, Medical School, Department of Internal Medicine, Division of Allergy and Clinical Immunology, Manisa, Turkey
| | - Ayla Eker Sarıboyacı
- Eskisehir Osmangazi University, Cellular Therapy and Stem Cell Production Application and Research Center, Eskisehir, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center of Regenerative Medicine and Stem Cell Research, Istanbul, Turkey; Istinye University, Medical School, Department of Histology and Embryology, Istanbul, Turkey
| | - Gülay Erman
- Sakarya University, Medical School, Department of Medical Biology, Sakarya, Turkey
| | - H Seda Vatansever
- Manisa Celal Bayar University, Medical School, Department of Histology and Embryology, Manisa, Turkey; Near East University, Experimental Health Science Research Center, Nicosia, North Cyprus, Turkey
| | - Nihal Mete Gökmen
- Ege University, Medical School, Department of Internal Medicine, Division of Immunology, Izmir, Turkey
| |
Collapse
|
42
|
Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. T-cell dysregulation in COVID-19. Biochem Biophys Res Commun 2020; 538:204-210. [PMID: 33220925 PMCID: PMC7648511 DOI: 10.1016/j.bbrc.2020.10.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
T-cells play key roles in immunity to COVID-19 as well as the development of severe disease. T-cell immunity to COVID-19 is mediated through differentiated CD4+ T-cells and cytotoxic CD8+ T-cells, although their differentiation is often atypical and ambiguous in COVID-19 and single cell dynamics of key genes need to be characterized. Notably, T-cells are dysregulated in severe COVID-19 patients, although their molecular features are still yet to be fully revealed. Importantly, it is not clear which T-cell activities are beneficial and protective and which ones can contribute to the development of severe COVID-19. In this article, we examine the latest evidence and discuss the key features of T-cell responses in COVID-19, showing how T-cells are dysregulated in severe COVID-19 patients. Particularly, we highlight the impairment of FOXP3 induction in CD4+ T-cells and how the impaired FOXP3 expression can lead to the differentiation of abnormally activated (hyperactivated) T-cells and the dysregulated T-cell responses in severe patients. Furthermore, we characterise the feature of hyperactivated T-cells, showing their potential contribution to T-cell dysregulation and immune-mediated tissue destruction (immunopathology) in COVID-19.
Collapse
Affiliation(s)
| | - José Almeida-Santos
- Department of Life Sciences, Imperial College London, UK; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, UK; International Research Center for Medical Sciences, Kumamoto University, Japan.
| |
Collapse
|
43
|
Mechanism by which the combination of SjCL3 and SjGAPDH protects against Schistosoma japonicum infection. Parasitol Res 2020; 120:173-185. [PMID: 33079271 DOI: 10.1007/s00436-020-06916-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
A vaccine is an important method to control schistosomiasis. Molecules related to lung-stage schistosomulum are considered potential vaccine candidates. We previously showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and cathepsin L3 (CL3) displayed differential expression in the lung-stage schistosomula of Schistosoma japonicum cocultured with host cells. In the present study, we prepared the two proteins and detected the protective effects of SjGAPDH by immunizing mice with this protein alone and in combination with SjCL3 with or without Freund's adjuvant. Then, we investigated the possible mechanisms underlying S. japonicum infection. The results showed that vaccination of adjuvanted SjGAPDH decreased the worm burden (37.8%) and egg load (38.1%), and the combination of adjuvanted SjGAPDH and SjCL3 further decreased the worm burden (65.6%) and egg load (70.9%) during Schistosoma japonicum infection. However, the immunization of a combination of adjuvant-free SjGAPDH and SjCL3 displayed a lower protective effect (< 15%) than those of the adjuvanted SjCL3, the adjuvanted SjGAPDH, and a combination of adjuvanted SjGAPDH and SjCL3. Flow cytometric results showed that the frequency of regulatory T cells (Tregs) was lower (P < 0.05) in the group with adjuvanted SjGAPDH and SjCL3 (2.61%) than the remaining groups. The enzyme-linked immunosorbent assay (ELISA) results indicated that except for the uninfected and infected control groups, the remaining groups displayed a Th1-type shift in immune responses. These results showed the immunization of SjGAPDH resulted in partial protection (approximately 38%); inoculation with a combination of SjCL3 and SjGAPDH in Freund's adjuvant resulted in a high immunoprotective effect (> 65%) against Schistosoma japonicum infection in mice, which was possibly caused by the reduced percentage of Tregs and a Th1-type shift in immune responses; and SjCL3 has no adjuvant-like effect, dissimilar to SmCL3.
Collapse
|
44
|
Dietary Supplementation with Spray-Dried Porcine Plasma Attenuates Colon Inflammation in a Genetic Mouse Model of Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21186760. [PMID: 32942624 PMCID: PMC7555992 DOI: 10.3390/ijms21186760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary supplementation with spray-dried porcine plasma (SDP) can modulate the immune response of gut-associated lymphoid tissue. SDP supplementation reduces acute mucosal inflammation, as well as chronic inflammation associated with aging. The aim of this study was to analyze if SDP supplementation could ameliorate colitis in a genetic mouse model of inflammatory bowel disease (IBD). Wild-type mice and Mdr1a knockout (KO) mice were administered a control diet or an SDP-supplemented diet from day 21 (weaning) until day 56. The histopathological index, epithelial barrier, and intestinal immune system were analyzed in the colonic mucosa. KO mice had higher epithelial permeability, increased Muc1 and Muc4 expression, and lower abundance of E-cadherin and Muc2 (all p < 0.001). SDP prevented these effects (all p < 0.05) and decreased the colonic inflammation observed in KO mice, reducing neutrophil and monocyte infiltration and activation and the percentage of activated T helper lymphocytes in the colonic mucosa (all p < 0.05). SDP also diminished proinflammatory cytokine expression and increased the anti-inflammatory IL-10 concentration in the colonic mucosa (all p < 0.05). In conclusion, dietary supplementation with SDP enhances colon barrier function and reduces mucosal inflammation in a mouse model of IBD.
Collapse
|
45
|
Rodas L, Martinez S, Aguilo A, Tauler P. Caffeine supplementation induces higher IL-6 and IL-10 plasma levels in response to a treadmill exercise test. J Int Soc Sports Nutr 2020; 17:47. [PMID: 32907591 PMCID: PMC7487741 DOI: 10.1186/s12970-020-00375-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An acute bout of exercise induces an inflammatory response characterized by increases in several cytokines. Caffeine ingestion could modify this inflammatory response. The aim of this study was to determine the effects of caffeine supplementation on plasma levels of cytokines, mainly IL-10 and IL-6, in response to exercise. METHODS In a randomized, crossover, double-blinded study design, thirteen healthy, well-trained recreational male athletes performed, on two different occasions, a treadmill exercise test (60 min at 70% VO2max) after ingesting 6 mg/kg body mass of caffeine or placebo. Blood samples were taken before exercising, immediately after finishing and 2 h after finishing the exercise. Plasma concentrations of IL-10, IL-6, IL-1β, IL-1ra, IL-4, IL-8, IL-12 and IFN-γ, adrenaline, cortisol and cyclic adenosine monophosphate (cAMP) were determined. The capacity of whole blood cultures to produce cytokines in response to endotoxin (LPS) was also determined. Changes in blood variables were analyzed using a time (pre-exercise, post-exercise, recovery) x condition (caffeine, placebo) within-between subjects ANOVA with repeated measures. RESULTS Caffeine supplementation induced higher adrenaline levels in the supplemented participants after exercise (257.3 ± 53.2 vs. 134.0 ± 25.7 pg·mL- 1, p = 0.03) and higher cortisol levels after recovery (46.4 ± 8.5 vs. 32.3 ± 5.6 pg·mL- 1, p = 0.007), but it did not influence plasma cAMP levels (p = 0.327). The exercise test induced significant increases in IL-10, IL-6, IL-1ra, IL-4, IL-8, IL-12 and IFN-γ plasma levels, with IL-6 and IL-10 levels remaining high after recovery. Caffeine supplementation influenced only IL-6 (3.04 ± 0.40 vs. 3.89 ± 0.62 pg·mL- 1, p = 0.003) and IL-10 (2.42 ± 0.54 vs. 3.47 ± 0.72 pg·mL- 1, p = 0.01) levels, with higher concentrations after exercise in the supplemented condition. No effect of caffeine was observed on the in vitro stimulated cytokine production. CONCLUSIONS The results of the present study indicate a significant influence of caffeine supplementation increasing the response to exercise of two essential cytokines such as IL-6 and IL-10. However, caffeine did not influence changes in the plasma levels of other cytokines measured and the in vitro-stimulated cytokine production.
Collapse
Affiliation(s)
- Lluis Rodas
- Research Group on Evidence, Lifestyles & Health, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS). University of the Balearic Islands, Crta de Valldemossa, Km 7.5, E-07122, Palma, Spain
| | - Sonia Martinez
- Research Group on Evidence, Lifestyles & Health, Department of Nursing and Physiotherapy, Research Institute on Health Sciences (IUNICS). University of the Balearic Islands, Crta de Valldemossa, Km 7.5, E-07122, Palma, Spain. .,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Antoni Aguilo
- Research Group on Evidence, Lifestyles & Health, Department of Nursing and Physiotherapy, Research Institute on Health Sciences (IUNICS). University of the Balearic Islands, Crta de Valldemossa, Km 7.5, E-07122, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Pedro Tauler
- Research Group on Evidence, Lifestyles & Health, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS). University of the Balearic Islands, Crta de Valldemossa, Km 7.5, E-07122, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
46
|
Han EJ, Fernando IPS, Kim HS, Jeon YJ, Madusanka DMD, Dias MKHM, Jee Y, Ahn G. Oral Administration of Sargassum horneri Improves the HDM/DNCB-Induced Atopic Dermatitis in NC/Nga Mice. Nutrients 2020; 12:E2482. [PMID: 32824648 PMCID: PMC7468899 DOI: 10.3390/nu12082482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the protective effects of Sargassum horneri (S. horneri) ethanol extract (SHE) against atopic dermatitis (AD), known as an abnormal immune response in house dust mite (HDM)/2,4-dinitrochlorobenzene (DNCB)-stimulated NC/Nga mice. The oral administration of SHE attenuated the AD symptoms, including the skin dermatitis severity, transepidermal water loss (TEWL), and ear edema in HDM/DNCB-stimulated mice. Moreover, the histological analysis revealed that SHE improved epidermal hyperplasia and hyperkeratosis, and reduced the dermal infiltrations of mast cells and eosinophils. Moreover, SHE downregulated the expression levels of cytokines (interleukin (IL)-6, IL-10, and interferon (IFN)-γ) and chemokines (Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES), Eotaxin, and Thymus and activation-regulated chemokine (TARC)) by decreasing the expression levels of atopic initiators (IL-25 and IL-33) in HDM/DNCB-stimulated skin. The oral administration of SHE decreased the spleen size, reducing expression levels of AD-related cytokines (IL-4, IL-5, IL-6, IL-10, IL-13, IFN-γ, and TARC) by regulating the expressions of Tbx21 (T-bet), GATA Binding Protein 3 (GATA-3), and Signal transducer and activator of transcription 3 (STAT3). Moreover, SHE significantly attenuated the serum immunoglobulin (Ig)G1 and IgG2a levels in HDM/DNCB-stimulated mice. Collectively, these results suggest that S. horneri could be an ingredient of functional food against abnormal immune response.
Collapse
Affiliation(s)
- Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (E.J.H.); (D.M.D.M.); (M.K.H.M.D.)
| | | | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | | | | | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (E.J.H.); (D.M.D.M.); (M.K.H.M.D.)
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
| |
Collapse
|
47
|
Serum Vitamin D Level and Body Mass Index in Children with Vernal Keratoconjunctivitis. BEYOGLU EYE JOURNAL 2020; 5:102-107. [PMID: 35098071 PMCID: PMC8784476 DOI: 10.14744/bej.2020.75047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/23/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the body mass index (BMI) value and serum 25-hydroxyvitamin D [25(OH)D3] level in children with vernal keratoconjunctivitis (VKC). METHODS A total of 40 healthy, non-atopic children (control group) and 46 children with VKC (study group) were included in the study. The serum vitamin D [25(OH)D3] levels and BMI values were measured and compared between the 2 groups. RESULTS The mean vitamin D level measured in the healthy children (mean: 19.01±5.66 ng/mL, range: 9-33.09 ng/mL) was significantly different from the mean vitamin D level in the VKC-affected children (mean: 14.06±5.02 ng/mL, range 4.37-31 ng/mL) (p<0.001). The mean BMI in the VKC group (17.1±2.5 kg/m2) was significantly higher than the mean BMI of the healthy children (mean: 16.5±2.3 kg/m2; p=0.046). A negative correlation (Spearman's rho=-0.275; p=0.01) was observed between the vitamin D level and the BMI value. CONCLUSION The results indicated that children with VKC had a lower serum vitamin D level and a higher BMI value compared with healthy, age- and sex-matched children.
Collapse
|
48
|
Yui K, Inoue SI. Host-pathogen interaction in the tissue environment during Plasmodium blood-stage infection. Parasite Immunol 2020; 43:e12763. [PMID: 32497249 DOI: 10.1111/pim.12763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
Human malarial infection occurs after an infectious Anopheles mosquito bites. Following the initial liver-stage infection, parasites transform into merozoites, infecting red blood cells (RBCs). Repeated RBC infection then occurs during the blood-stage infection, while patients experience various malarial symptoms. Protective immune responses are elicited by this systemic infection, but excessive responses are sometimes harmful for hosts. As parasites infect only RBCs and their immediate precursors during this stage, direct parasite-host interactions occur primarily in the environment surrounded by endothelial lining of blood vessels. The spleen is the major organ where the immune system encounters infected RBCs, causing immunological responses. Its tissue structure is markedly altered during malarial infection in mice and humans. Plasmodium falciparum parasites inside RBCs express proteins, such as PfEMP-1 and RIFIN, transported to the RBC surfaces in order to evade immunological attack by sequestering themselves in the peripheral vasculature avoiding spleen or by direct immune cell inhibition through inhibitory receptors. Host cell production of regulatory cytokines IL-10 and IL-27 limits excessive immune responses, avoiding tissue damage. The regulation of the protective and inhibitory immune responses through host-parasite interactions allows chronic Plasmodium infection. In this review, we discuss underlying interaction mechanisms relevant for developing effective strategies against malaria.
Collapse
Affiliation(s)
- Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
49
|
Poor Clinical Outcomes and Immunoevasive Contexture in Intratumoral IL-10-Producing Macrophages Enriched Gastric Cancer Patients. Ann Surg 2020; 275:e626-e635. [PMID: 32541216 DOI: 10.1097/sla.0000000000004037] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the clinical significance of IL-10 tumor-associated macrophages (TAMs) in gastric cancer. BACKGROUND Due to the plasticity and diversity of TAMs, it is necessary to phenotypically and functionally classify subsets of TAMs to better understand the critical role of TAMs in cancer progression. TAMs expressing interleukin-10 (IL-10) have been found to facilitate immune evasion in many malignancies, but the role of IL-10 TAMs in gastric cancer remains obscure. METHODS Four hundred and sixty-eight tumor tissue microarray specimens, 52 fresh tumor tissue samples of gastric cancer patients from Zhongshan Hospital, and data of 298 gastric cancer patients from the Cancer Genome Atlas (TCGA) were analyzed. IL-10 TAM level and immune contexture were examined by CIBERSORT, immunohistochemistry, and flow cytometry. Clinical outcomes were analyzed by Kaplan-Meier curves and Cox model. RESULTS Gastric cancer patients with high IL-10 TAM infiltration exhibited poor prognosis and inferior therapeutic responsiveness to fluorouracil-based adjuvant chemotherapy. IL-10 TAM infiltration yielded an immunoevasive tumor microenvironment featured by regulatory T cell infiltration and CD8 T cell dysfunction. The combinational analysis of IL-10 TAM and CD8 T cell infiltration stratified patients into distinct risk groups with different clinical outcomes. Moreover, IL-10 TAM infiltration was correlated with tumor-intrinsic characteristics including EBV status, PD-L1 expression, and genome stability in gastric cancer. CONCLUSIONS This study revealed that IL-10 TAMs might drive an immunoevasive microenvironment and determine poor prognosis and inferior therapeutic responsiveness to fluorouracil-based adjuvant chemotherapy, indicating IL-10 TAMs could be applied as a potential target for immunotherapeutic approach in gastric cancer.
Collapse
|
50
|
Lo JHT, U KP, Yiu T, Ong MTY, Lee WYW. Sarcopenia: Current treatments and new regenerative therapeutic approaches. J Orthop Translat 2020; 23:38-52. [PMID: 32489859 PMCID: PMC7256062 DOI: 10.1016/j.jot.2020.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia is characterized by loss of muscle and reduction in muscle strength that contributes to higher mortality rate and increased incidence of fall and hospitalization in the elderly. Mitochondria dysfunction and age-associated inflammation in muscle are two of the main attributors to sarcopenia progression. Recent clinical trials on sarcopenia therapies such as physical exercise, nutraceutical, and pharmaceutical interventions have revealed that exercise is the only effective strategy shown to alleviate sarcopenia. Unlike nutraceutical and pharmaceutical interventions that showed controversial results in sarcopenia alleviation, exercise was found to restore mitochondria homeostasis and dampen inflammatory responses via a complex exchange of myokines and osteokines signalling between muscle and bone. However, as exercise have limited benefit to immobile patients, the use of stem cells and their secretome are being suggested to be novel therapeutics that can be catered to a larger patient population owing to their mitochondria restoration effects and immune modulatory abilities. As such, we reviewed the potential pros and cons associated with various stem cell types/secretome in sarcopenia treatment and the regulatory and production barriers that need to be overcome to translate such novel therapeutic agents into bedside application. Translational potential: This review summarizes the causes underlying sarcopenia from the perspective of mitochondria dysfunction and age-associated inflammation, and the progress of clinical trials for the treatment of sarcopenia. We also propose therapeutic potential of stem cell therapy and bioactive secretome for sarcopenia.
Collapse
Affiliation(s)
- Jessica Hiu-Tung Lo
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Kin Pong U
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Tszlam Yiu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Michael Tim-Yun Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| |
Collapse
|