1
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
2
|
Nüssing S, Sutton VR, Trapani JA, Parish IA. Beyond target cell death - Granzyme serine proteases in health and disease. Mol Aspects Med 2022; 88:101152. [PMID: 36368281 DOI: 10.1016/j.mam.2022.101152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/06/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Vivien R Sutton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia; John Curtin School of Medical Research, ANU, ACT, Australia.
| |
Collapse
|
3
|
Teppert K, Wang X, Anders K, Evaristo C, Lock D, Künkele A. Joining Forces for Cancer Treatment: From "TCR versus CAR" to "TCR and CAR". Int J Mol Sci 2022; 23:14563. [PMID: 36498890 PMCID: PMC9739809 DOI: 10.3390/ijms232314563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
T cell-based immunotherapy has demonstrated great therapeutic potential in recent decades, on the one hand, by using tumor-infiltrating lymphocytes (TILs) and, on the other hand, by engineering T cells to obtain anti-tumor specificities through the introduction of either engineered T cell receptors (TCRs) or chimeric antigen receptors (CARs). Given the distinct design of both receptors and the type of antigen that is encountered, the requirements for proper antigen engagement and downstream signal transduction by TCRs and CARs differ. Synapse formation and signal transduction of CAR T cells, despite further refinement of CAR T cell designs, still do not fully recapitulate that of TCR T cells and might limit CAR T cell persistence and functionality. Thus, deep knowledge about the molecular differences in CAR and TCR T cell signaling would greatly advance the further optimization of CAR designs and elucidate under which circumstances a combination of both receptors would improve the functionality of T cells for cancer treatment. Herein, we provide a comprehensive review about similarities and differences by directly comparing the architecture, synapse formation and signaling of TCRs and CARs, highlighting the knowns and unknowns. In the second part of the review, we discuss the current status of combining CAR and TCR technologies, encouraging a change in perspective from "TCR versus CAR" to "TCR and CAR".
Collapse
Affiliation(s)
- Karin Teppert
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Xueting Wang
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Kathleen Anders
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - César Evaristo
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Dominik Lock
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Annette Künkele
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|
4
|
Store-Operated Ca2+ Entry Is Up-Regulated in Tumour-Infiltrating Lymphocytes from Metastatic Colorectal Cancer Patients. Cancers (Basel) 2022; 14:cancers14143312. [PMID: 35884372 PMCID: PMC9315763 DOI: 10.3390/cancers14143312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Store-operated Ca2+ entry (SOCE) has long been known to regulate the differentiation and effector functions of T cells as well as to be instrumental to the ability of cytotoxic T lymphocytes to target cancer cells. Currently, no information is available regarding the expression and function of SOCE in tumour-infiltrating lymphocytes (TILs) that have been expanded in vitro for adoptive cell therapy (ACT). This study provides the first evidence that SOCE is up-regulated in ex vivo-expanded TILs from metastatic colorectal cancer (mCRC) patients. The up-regulation of SOCE mainly depends on diacylglycerol kinase (DGK), which prevents the protein kinase C-dependent inhibition of Ca2+ entry in normal T cells. Of note, the pharmacological blockade of SOCE with the selective inhibitor, BTP-2, during target cell killing significantly increases cytotoxic activity at low TIL density, i.e., when TILs-mediated cancer cell death is rarer. This study, albeit preliminary, could lay the foundation to propose an alternative strategy to effect ACT. It has been shown that ex vivo-expanded TILs did not improve the disease-free survival rate in mCRC patients. Our results strongly suggest that pre-treating autologous TILs with a SOCE or DGK inhibitor before being infused into the patient could improve their cytotoxic activity against cancer cells. Abstract (1) Background: Store-operated Ca2+ entry (SOCE) drives the cytotoxic activity of cytotoxic T lymphocytes (CTLs) against cancer cells. However, SOCE can be enhanced in cancer cells due to an increase in the expression and/or function of its underlying molecular components, i.e., STIM1 and Orai1. Herein, we evaluated the SOCE expression and function in tumour-infiltrating lymphocytes (TILs) from metastatic colorectal cancer (mCRC) patients. (2) Methods: Functional studies were conducted in TILs expanded ex vivo from CRC liver metastases. Peripheral blood T cells from healthy donors (hPBTs) and mCRC patients (cPBTs) were used as controls. (3) Results: SOCE amplitude is enhanced in TILs compared to hPBTs and cPBTs, but the STIM1 protein is only up-regulated in TILs. Pharmacological manipulation showed that the increase in SOCE mainly depends on tonic modulation by diacylglycerol kinase, which prevents the protein kinase C-dependent inhibition of SOCE activity. The larger SOCE caused a stronger Ca2+ response to T-cell receptor stimulation by autologous mCRC cells. Reducing Ca2+ influx with BTP-2 during target cell killing significantly increases cytotoxic activity at low target:effector ratios. (4) Conclusions: SOCE is enhanced in ex vivo-expanded TILs deriving from mCRC patients but decreasing Ca2+ influx with BTP-2 increases cytotoxic activity at a low TIL density.
Collapse
|
5
|
LPA suppresses T cell function by altering the cytoskeleton and disrupting immune synapse formation. Proc Natl Acad Sci U S A 2022; 119:e2118816119. [PMID: 35394866 PMCID: PMC9169816 DOI: 10.1073/pnas.2118816119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization. LPA not only inhibited IP3R1 from reaching the IS but also altered T cell receptor (TCR)–induced localization of RhoA and mDia1 impairing F-actin accumulation and altering the tubulin code. Consequently, LPA impeded calcium store release and IS-directed cytokine secretion. Thus, targeting LPA signaling in chronic inflammatory conditions may rescue T cell function and promote antiviral and antitumor immunity.
Collapse
|
6
|
Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, Sharma A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022; 11:cells11061017. [PMID: 35326467 PMCID: PMC8947539 DOI: 10.3390/cells11061017] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the greatest risk factor for nearly all major chronic diseases, including cardiovascular diseases, cancer, Alzheimer’s and other neurodegenerative diseases of aging. Age-related impairment of immune function (immunosenescence) is one important cause of age-related morbidity and mortality, which may extend beyond its role in infectious disease. One aspect of immunosenescence that has received less attention is age-related natural killer (NK) cell dysfunction, characterized by reduced cytokine secretion and decreased target cell cytotoxicity, accompanied by and despite an increase in NK cell numbers with age. Moreover, recent studies have revealed that NK cells are the central actors in the immunosurveillance of senescent cells, whose age-related accumulation is itself a probable contributor to the chronic sterile low-grade inflammation developed with aging (“inflammaging”). NK cell dysfunction is therefore implicated in the increasing burden of infection, malignancy, inflammatory disorders, and senescent cells with age. This review will focus on recent advances and open questions in understanding the interplay between systemic inflammation, senescence burden, and NK cell dysfunction in the context of aging. Understanding the factors driving and enforcing NK cell aging may potentially lead to therapies countering age-related diseases and underlying drivers of the biological aging process itself.
Collapse
Affiliation(s)
- Ashley Brauning
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Gina Zhu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Elena Fulton
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Tesfahun Dessale Admasu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence: (A.S.); (A.S.)
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
7
|
Wen T, Barham W, Li Y, Zhang H, Gicobi JK, Hirdler JB, Liu X, Ham H, Peterson Martinez KE, Lucien F, Lavoie RR, Li H, Correia C, Monie DD, An Z, Harrington SM, Wu X, Guo R, Dronca RS, Mansfield AS, Yan Y, Markovic SN, Park SS, Sun J, Qin H, Liu MC, Vasmatzis G, Billadeau DD, Dong H. NKG7 Is a T-cell-Intrinsic Therapeutic Target for Improving Antitumor Cytotoxicity and Cancer Immunotherapy. Cancer Immunol Res 2022; 10:162-181. [PMID: 34911739 PMCID: PMC8816890 DOI: 10.1158/2326-6066.cir-21-0539] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023]
Abstract
Cytotoxic CD8+ T cells (CTL) are a crucial component of the immune system notable for their ability to eliminate rapidly proliferating malignant cells. However, the T-cell intrinsic factors required for human CTLs to accomplish highly efficient antitumor cytotoxicity are not well defined. By evaluating human CD8+ T cells from responders versus nonresponders to treatment with immune checkpoint inhibitors, we sought to identify key factors associated with effective CTL function. Single-cell RNA-sequencing analysis of peripheral CD8+ T cells from patients treated with anti-PD-1 therapy showed that cells from nonresponders exhibited decreased expression of the cytolytic granule-associated molecule natural killer cell granule protein-7 (NKG7). Functional assays revealed that reduced NKG7 expression altered cytolytic granule number, trafficking, and calcium release, resulting in decreased CD8+ T-cell-mediated killing of tumor cells. Transfection of T cells with NKG7 mRNA was sufficient to improve the tumor-cell killing ability of human T cells isolated from nonresponders and increase their response to anti-PD-1 or anti-PD-L1 therapy in vitro. NKG7 mRNA therapy also improved the antitumor activity of murine tumor antigen-specific CD8+ T cells in an in vivo model of adoptive cell therapy. Finally, we showed that the transcription factor ETS1 played a role in regulating NKG7 expression. Together, our results identify NKG7 as a necessary component for the cytotoxic function of CD8+ T cells and establish NKG7 as a T-cell-intrinsic therapeutic target for enhancing cancer immunotherapy.See related article by Li et al., p. 154.
Collapse
Affiliation(s)
- Ti Wen
- Department of Urology, Mayo Clinic, Rochester, MN
| | - Whitney Barham
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Ying Li
- Division of Computational Biology, Mayo Clinic, Rochester, MN
| | - Henan Zhang
- Department of Urology, Mayo Clinic, Rochester, MN
| | - Joanina K. Gicobi
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | | | - Xin Liu
- Department of Urology, Mayo Clinic, Rochester, MN
| | - Hyoungjun Ham
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | | | | | | | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Cristina Correia
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Dileep D. Monie
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Zesheng An
- Department of Urology, Mayo Clinic, Rochester, MN
| | | | - Xiaosheng Wu
- Division of Hematology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN
| | | | | | - Yiyi Yan
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | - Sean S. Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Jie Sun
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN.,Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Hong Qin
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL
| | - Minetta C. Liu
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN.,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN.,Corresponding Author: Haidong Dong, M.D., Ph.D., 200 First Street SW, Rochester, MN 55905; Phone: 507-284-5482;
| |
Collapse
|
8
|
Li Y, Yu M, Yin J, Yan H, Wang X. Enhanced Calcium Signal Induces NK Cell Degranulation but Inhibits Its Cytotoxic Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:347-357. [PMID: 34911773 DOI: 10.4049/jimmunol.2001141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Although the mechanism of NK cell activation is still unclear, the strict calcium dependence remains the hallmark for lytic granule secretion. A plethora of studies claiming that impaired Ca2+ signaling leads to severely defective cytotoxic granule exocytosis accompanied by weak target cell lysis has been published. However, there has been little discussion about the effect of induced calcium signal on NK cell cytotoxicity. In our study, we observed that small-molecule inhibitor UNC1999, which suppresses global H3K27 trimethylation (H3K27me3) of human NK cells, induced a PKD2-dependent calcium signal. Enhanced calcium entry led to unbalanced vesicle release, which resulted into fewer target cells acquiring lytic granules and subsequently being killed. Further analyses revealed that the ability of conjugate formation, lytic synapse formation, and granule polarization were normal in NK cells treated with UNC1999. Cumulatively, these data indicated that induced calcium signal exclusively enhances unbalanced degranulation that further inhibits their cytotoxic activity in human NK cells.
Collapse
Affiliation(s)
- Yang Li
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China;
| | - Minghang Yu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Immunology, Department of Oncology, Capital Medical University, Beijing, China
| | - Jie Yin
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China; and
| | - Han Yan
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China;
- Department of Immunology, Department of Oncology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
β-Glucan: A dual regulator of apoptosis and cell proliferation. Int J Biol Macromol 2021; 182:1229-1237. [PMID: 33991557 DOI: 10.1016/j.ijbiomac.2021.05.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
β-Glucans are polysaccharides generally obtained from the cell wall of bacteria, fungi, yeasts, and aleurone layer of cereals. β-Glucans are polymers, with β-1,3 glucose as core linear structure, but they differ in their main branch length, linkages and branching patterns, giving rise to high and low-molecular-weight β-glucans. They are well-known cell response modifiers with immune-modulating, nutraceutical and health beneficial effects, including anticancer and pro-apoptotic properties. β-Glucan extracts have shown positive responses in controlling tumor cell proliferation and activation of the immune system. The immunomodulatory action of β-glucans enhances the host's antitumor defense against cancer. In consonance with the above, many studies have shown that β-glucan treatment leads to the induction of apoptotic death of cancer cells. The ability of β-glucans to stimulate apoptotic pathways or the proteins involved in apoptosis prompting a new domain in cancer therapy. β-glucan can be a potential therapeutic agent for the treatment of cancer. However, there is a need to legitimize the β-glucan type, as most of the studies include β-glucan from different sources having different physicochemical properties. The body of literature presented here focuses on the effects of β-glucan on immunomodulation, proliferation, cell death and the possible mechanisms and pathways involved in these processes.
Collapse
|
10
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Mathew D, Torres RM. Lysophosphatidic Acid Is an Inflammatory Lipid Exploited by Cancers for Immune Evasion via Mechanisms Similar and Distinct From CTLA-4 and PD-1. Front Immunol 2021; 11:531910. [PMID: 33584637 PMCID: PMC7873449 DOI: 10.3389/fimmu.2020.531910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Immunological tolerance has evolved to curtail immune responses against self-antigens and prevent autoimmunity. One mechanism that contributes to immunological tolerance is the expression of inhibitory receptors by lymphocytes that signal to dampen immune responses during the course of an infection and to prevent immune-mediated collateral damage to the host. The understanding that tumors exploit these physiological mechanisms to avoid elimination has led to remarkable, but limited, success in the treatment of cancer through the use of biologics that interfere with the ability of cancers to suppress immune function. This therapy, based on the understanding of how T lymphocytes are normally activated and suppressed, has led to the development of therapeutic blocking antibodies, referred to as immune checkpoint blockade, which either directly or indirectly promote the activation of CD8 T cells to eradicate cancer. Here, we highlight the distinct signaling mechanisms, timing and location of inhibition used by the CTLA-4 and PD-1 inhibitory receptors compared to a novel inhibitory signaling axis comprised of the bioactive lipid, lysophosphatidic acid (LPA), signaling via the LPA5 receptor expressed by CD8 T cells. Importantly, abundant evidence indicates that an LPA-LPA5 signaling axis is also exploited by diverse cancers to suppress T cell activation and function. Clearly, a thorough molecular and biochemical understanding of how diverse T cell inhibitory receptors signal to suppress T cell antigen receptor signaling and function will be important to inform the choice of which complimentary checkpoint blockade modalities might be used for a given cancer.
Collapse
Affiliation(s)
| | - Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
12
|
A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. Semin Cell Dev Biol 2020; 115:10-18. [PMID: 33358089 DOI: 10.1016/j.semcdb.2020.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells are required for host defense. They destroy malignant target cells like cancer cells. Among metal cations, Ca2+ plays a prescinded role for CTL and NK cytotoxicity as it is the only cation used as ubiquitous second messenger. Measuring intracellular Ca2+ concentrations [Ca2+]int in single cells has greatly changed our understanding of Ca2+ signaling. Yet, comparing the role of Ca2+ in the pre-[Ca2+]int and [Ca2+]int measurement era reveals that even in the pre-[Ca2+]int measurement era (before 1980), the functions of Ca2+ and some other metal cations for the cytotoxic immune response were well established. It was even shown that Ca2+ influx across the plasma membrane but not Ca2+ release from intracellular sources is relevant for lymphocyte cytotoxicity and that very little Ca2+ is needed for efficient lymphocyte cytotoxicity against cancer cells. In the [Ca2+]int measurement era after 1980, many of the important findings were better and more quantitatively refined and in addition the molecules important for Ca2+ transport were defined. The unexpected finding that there is a Ca2+ optimum of CTL and NK cell cytotoxicity deserves some attention and may be important for anti-cancer therapy.
Collapse
|
13
|
Ambler R, Edmunds GL, Tan SL, Cirillo S, Pernes JI, Ruan X, Huete-Carrasco J, Wong CCW, Lu J, Ward J, Toti G, Hedges AJ, Dovedi SJ, Murphy RF, Morgan DJ, Wülfing C. PD-1 suppresses the maintenance of cell couples between cytotoxic T cells and target tumor cells within the tumor. Sci Signal 2020; 13:13/649/eaau4518. [PMID: 32934075 DOI: 10.1126/scisignal.aau4518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The killing of tumor cells by CD8+ T cells is suppressed by the tumor microenvironment, and increased expression of inhibitory receptors, including programmed cell death protein-1 (PD-1), is associated with tumor-mediated suppression of T cells. To find cellular defects triggered by tumor exposure and associated PD-1 signaling, we established an ex vivo imaging approach to investigate the response of antigen-specific, activated effector CD8+ tumor-infiltrating lymphocytes (TILs) after interaction with target tumor cells. Although TIL-tumor cell couples readily formed, couple stability deteriorated within minutes. This was associated with impaired F-actin clearing from the center of the cellular interface, reduced Ca2+ signaling, increased TIL locomotion, and impaired tumor cell killing. The interaction of CD8+ T lymphocytes with tumor cell spheroids in vitro induced a similar phenotype, supporting a critical role of direct T cell-tumor cell contact. Diminished engagement of PD-1 within the tumor, but not acute ex vivo blockade, partially restored cell couple maintenance and killing. PD-1 thus contributes to the suppression of TIL function by inducing a state of impaired subcellular organization.
Collapse
Affiliation(s)
- Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Grace L Edmunds
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Sin Lih Tan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jane I Pernes
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Xiongtao Ruan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jorge Huete-Carrasco
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Carissa C W Wong
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jiahe Lu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Juma Ward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Giulia Toti
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Alan J Hedges
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Simon J Dovedi
- R&D Oncology, AstraZeneca, Granta Park, Cambridge CB21 6GH, UK
| | - Robert F Murphy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Departments of Biological Sciences, Biomedical Engineering and Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Freiburg Institute for Advanced Studies and Faculty of Biology, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - David J Morgan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
14
|
Gudipati V, Rydzek J, Doel-Perez I, Gonçalves VDR, Scharf L, Königsberger S, Lobner E, Kunert R, Einsele H, Stockinger H, Hudecek M, Huppa JB. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat Immunol 2020; 21:848-856. [PMID: 32632291 DOI: 10.1038/s41590-020-0719-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
Rational design of chimeric antigen receptors (CARs) with optimized anticancer performance mandates detailed knowledge of how CARs engage tumor antigens and how antigen engagement triggers activation. We analyzed CAR-mediated antigen recognition via quantitative, single-molecule, live-cell imaging and found the sensitivity of CAR T cells toward antigen approximately 1,000-times reduced as compared to T cell antigen-receptor-mediated recognition of nominal peptide-major histocompatibility complexes. While CARs outperformed T cell antigen receptors with regard to antigen binding within the immunological synapse, proximal signaling was significantly attenuated due to inefficient recruitment of the tyrosine-protein kinase ZAP-70 to ligated CARs and its reduced concomitant activation and subsequent release. Our study exposes signaling deficiencies of state-of-the-art CAR designs, which presently limit the efficacy of CAR T cell therapies to target tumors with diminished antigen expression.
Collapse
Affiliation(s)
- Venugopal Gudipati
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Julian Rydzek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Iago Doel-Perez
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Lydia Scharf
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sebastian Königsberger
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria.,Roche Diagnostics GmbH, Penzberg, Germany
| | - Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hannes Stockinger
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany.
| | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Abstract
Metals are essential components in all forms of life required for the function of nearly half of all enzymes and are critically involved in virtually all fundamental biological processes. Especially, the transition metals iron (Fe), zinc (Zn), manganese (Mn), nickel (Ni), copper (Cu) and cobalt (Co) are crucial micronutrients known to play vital roles in metabolism as well due to their unique redox properties. Metals carry out three major functions within metalloproteins: to provide structural support, to serve as enzymatic cofactors, and to mediate electron transportation. Metal ions are also involved in the immune system from metal allergies to nutritional immunity. Within the past decade, much attention has been drawn to the roles of metal ions in the immune system, since increasing evidence has mounted to suggest that metals are critically implicated in regulating both the innate immune sensing of and the host defense against invading pathogens. The importance of ions in immunity is also evidenced by the identification of various immunodeficiencies in patients with mutations in ion channels and transporters. In addition, cancer immunotherapy has recently been conclusively demonstrated to be effective and important for future tumor treatment, although only a small percentage of cancer patients respond to immunotherapy because of inadequate immune activation. Importantly, metal ion-activated immunotherapy is becoming an effective and potential way in tumor therapy for better clinical application. Nevertheless, we are still in a primary stage of discovering the diverse immunological functions of ions and mechanistically understanding the roles of these ions in immune regulation. This review summarizes recent advances in the understanding of metal-controlled immunity. Particular emphasis is put on the mechanisms of innate immune stimulation and T cell activation by the essential metal ions like calcium (Ca2+), zinc (Zn2+), manganese (Mn2+), iron (Fe2+/Fe3+), and potassium (K+), followed by a few unessential metals, in order to draw a general diagram of metalloimmunology.
Collapse
Affiliation(s)
- Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
16
|
Mathew D, Kremer KN, Strauch P, Tigyi G, Pelanda R, Torres RM. LPA 5 Is an Inhibitory Receptor That Suppresses CD8 T-Cell Cytotoxic Function via Disruption of Early TCR Signaling. Front Immunol 2019; 10:1159. [PMID: 31231367 PMCID: PMC6558414 DOI: 10.3389/fimmu.2019.01159] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Persistent T cell antigen receptor (TCR) signaling by CD8 T cells is a feature of cancer and chronic infections and results in the sustained expression of, and signaling by, inhibitory receptors, which ultimately impair cytotoxic activity via poorly characterized mechanisms. We have previously determined that the LPA5 GPCR expressed by CD8 T cells, upon engaging the lysophosphatidic acid (LPA) bioactive serum lipid, functions as an inhibitory receptor able to negatively regulate TCR signaling. Notably, the levels of LPA and autotaxin (ATX), the phospholipase D enzyme that produces LPA, are often increased in chronic inflammatory disorders such as chronic infections, autoimmune diseases, obesity, and cancer. In this report, we demonstrate that LPA engagement selectively by LPA5 on human and mouse CD8 T cells leads to the inhibition of several early TCR signaling events including intracellular calcium mobilization and ERK activation. We further show that, as a consequence of LPA5 suppression of TCR signaling, the exocytosis of perforin-containing granules is significantly impaired and reflected by repressed in vitro and in vivo CD8 T cell cytolytic activity. Thus, these data not only document LPA5 as a novel inhibitory receptor but also determine the molecular and biochemical mechanisms by which a naturally occurring serum lipid that is elevated under settings of chronic inflammation signals to suppress CD8 T cell killing activity in both human and murine cells. As diverse tumors have repeatedly been shown to aberrantly produce LPA that acts in an autocrine manner to promote tumorigenesis, our findings further implicate LPA in activating a novel inhibitory receptor whose signaling may be therapeutically silenced to promote CD8 T cell immunity.
Collapse
Affiliation(s)
- Divij Mathew
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kimberly N. Kremer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Pamela Strauch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Raul M. Torres
| |
Collapse
|
17
|
Lunz V, Romanin C, Frischauf I. STIM1 activation of Orai1. Cell Calcium 2019; 77:29-38. [PMID: 30530091 DOI: 10.1016/j.ceca.2018.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 11/23/2022]
Abstract
A primary calcium (Ca2+) entry pathway into non-excitable cells is through the store-operated Ca2+ release activated Ca2+ (CRAC) channel. Ca2+ entry into cells is responsible for the initiation of diverse signalling cascades that affect essential cellular processes like gene regulation, cell growth and death, secretion and gene transcription. Upon depletion of intracellular Ca2+ stores within the endoplasmic reticulum (ER), the CRAC channel opens to refill depleted stores. The two key limiting molecular players of the CRAC channel are the stromal interaction molecule (STIM1) embedded in the ER-membrane and Orai1, residing in the plasma membrane (PM), respectively. Together, they form a highly Ca2+ selective ion channel complex. STIM1 senses the Ca2+ content of the ER and confers Ca2+ store-depletion into the opening of Orai1 channels in the PM for triggering Ca2+-dependent gene transcription, T-cell activation or mast cell degranulation. The interplay of Orai and STIM proteins in the CRAC channel signalling cascade has been the main focus of research for more than twelve years. This chapter focuses on current knowledge and main experimental advances in the understanding of Orai1 activation by STIM1, thereby portraying key mechanistic steps in the CRAC channel signalling cascade.
Collapse
Affiliation(s)
- Victoria Lunz
- Institute of Biophysics, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, A-4020, Linz, Austria.
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, A-4020, Linz, Austria.
| |
Collapse
|
18
|
Vaeth M, Feske S. Ion channelopathies of the immune system. Curr Opin Immunol 2018; 52:39-50. [PMID: 29635109 PMCID: PMC6004246 DOI: 10.1016/j.coi.2018.03.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/25/2023]
Abstract
Ion channels and transporters move ions across membrane barriers and are essential for a host of cell functions in many organs. They conduct K+, Na+ and Cl-, which are essential for regulating the membrane potential, H+ to control intracellular and extracellular pH and divalent cations such as Ca2+, Mg2+ and Zn2+, which function as second messengers and cofactors for many proteins. Inherited channelopathies due to mutations in ion channels or their accessory proteins cause a variety of diseases in the nervous, cardiovascular and other tissues, but channelopathies that affect immune function are not as well studied. Mutations in ORAI1 and STIM1 genes that encode the Ca2+ release-activated Ca2+ (CRAC) channel in immune cells, the Mg2+ transporter MAGT1 and the Cl- channel LRRC8A all cause immunodeficiency with increased susceptibility to infection. Mutations in the Zn2+ transporters SLC39A4 (ZIP4) and SLC30A2 (ZnT2) result in nutritional Zn2+ deficiency and immune dysfunction. These channels, however, only represent a fraction of ion channels that regulate immunity as demonstrated by immune dysregulation in channel knockout mice. The immune system itself can cause acquired channelopathies that are associated with a variety of diseases of nervous, cardiovascular and endocrine systems resulting from autoantibodies binding to ion channels. These autoantibodies highlight the therapeutic potential of functional anti-ion channel antibodies that are being developed for the treatment of autoimmune, inflammatory and other diseases.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
19
|
Kim KD, Bae S, Capece T, Nedelkovska H, de Rubio RG, Smrcka AV, Jun CD, Jung W, Park B, Kim TI, Kim M. Targeted calcium influx boosts cytotoxic T lymphocyte function in the tumour microenvironment. Nat Commun 2017; 8:15365. [PMID: 28504276 PMCID: PMC5440668 DOI: 10.1038/ncomms15365] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Adoptive cell transfer utilizing tumour-targeting cytotoxic T lymphocytes (CTLs) is one of the most effective immunotherapies against haematological malignancies, but significant clinical success has not yet been achieved in solid tumours due in part to the strong immunosuppressive tumour microenvironment. Here, we show that suppression of CTL killing by CD4+CD25+Foxp3+ regulatory T cell (Treg) is in part mediated by TGFβ-induced inhibition of inositol trisphosphate (IP3) production, leading to a decrease in T cell receptor (TCR)-dependent intracellular Ca2+ response. Highly selective optical control of Ca2+ signalling in adoptively transferred CTLs enhances T cell activation and IFN-γ production in vitro, leading to a significant reduction in tumour growth in mice. Altogether, our findings indicate that the targeted optogenetic stimulation of intracellular Ca2+ signal allows for the remote control of cytotoxic effector functions of adoptively transferred T cells with outstanding spatial resolution by boosting T cell immune responses at the tumour sites.
Collapse
MESH Headings
- Animals
- Calcium/immunology
- Calcium/metabolism
- Cell Line, Tumor
- HEK293 Cells
- Humans
- Immunotherapy, Adoptive/methods
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/transplantation
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Burden/genetics
- Tumor Burden/immunology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Kyun-Do Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | - Seyeon Bae
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | - Tara Capece
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | - Hristina Nedelkovska
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | - Rafael G. de Rubio
- Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, USA
| | - Alan V. Smrcka
- Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, USA
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Tae-il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
20
|
Simultaneous Membrane Capacitance Measurements and TIRF Microscopy to Study Granule Trafficking at Immune Synapses. Methods Mol Biol 2017; 1584:157-169. [PMID: 28255702 DOI: 10.1007/978-1-4939-6881-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Whole-cell capacitance measurements allow the direct measurement of exocytosis with high temporal resolution. An added benefit of the whole-cell configuration is the possibility to control the cytosolic free calcium concentration allowing examination of the role of intracellular calcium in a variety of processes. We have coupled this method with imaging of cytotoxic granule release using total internal reflection fluorescence microscopy (TIRFM) to identify the capacitance steps associated with cytotoxic granule release identified by TIRFM. This requires the use of fluorescent granule markers to identify cytotoxic granules and allows characterization of cytotoxic granule fusion and of the behavior of cytotoxic granules at the immune synapse prior to fusion. Combination of these methods enables the study of a number of processes relevant to the function of the immune synapse.
Collapse
|
21
|
Chacko A, Staines DR, Johnston SC, Marshall-Gradisnik SM. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:85-93. [PMID: 27594784 PMCID: PMC5003121 DOI: 10.4137/grsb.s40036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND The etiology and pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) are unknown. However, natural killer (NK) cell dysfunction, in particular reduced NK cytotoxic activity, is a consistent finding in CFS/ME patients. Previous research has reported significant changes in intracellular mitogen-activated protein kinase pathways from isolated NK cells. The purpose of this present investigation was to examine whether protein kinase genes have a role in abnormal NK cell intracellular signaling in CFS/ME. METHOD Messenger RNA (mRNA) expression of 528 protein kinase genes in isolated NK cells was analyzed (nCounter GX Human Kinase Kit v2 (XT); NanoString Technologies) from moderate (n = 11; age, 54.9 ± 10.3 years) and severe (n = 12; age, 47.5 ± 8.0 years) CFS/ME patients (classified by the 2011 International Consensus Criteria) and nonfatigued controls (n = 11; age, 50.0 ± 12.3 years). RESULTS The expression of 92 protein kinase genes was significantly different in the severe CFS/ME group compared with nonfatigued controls. Among these, 37 genes were significantly upregulated and 55 genes were significantly downregulated in severe CFS/ME patients compared with nonfatigued controls. CONCLUSIONS In severe CFS/ME patients, dysfunction in protein kinase genes may contribute to impairments in NK cell intracellular signaling and effector function. Similar changes in protein kinase genes may be present in other cells, potentially contributing to the pathomechanism of this illness.
Collapse
Affiliation(s)
- Anu Chacko
- School of Medical Science, Griffith University, QLD, Australia.; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, QLD, Australia
| | - Donald R Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, QLD, Australia
| | - Samantha C Johnston
- School of Medical Science, Griffith University, QLD, Australia.; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, QLD, Australia
| | - Sonya M Marshall-Gradisnik
- School of Medical Science, Griffith University, QLD, Australia.; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, QLD, Australia
| |
Collapse
|
22
|
Wabnitz GH, Balta E, Schindler S, Kirchgessner H, Jahraus B, Meuer S, Samstag Y. The pro-oxidative drug WF-10 inhibits serial killing by primary human cytotoxic T-cells. Cell Death Discov 2016; 2:16057. [PMID: 27551545 PMCID: PMC4979520 DOI: 10.1038/cddiscovery.2016.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022] Open
Abstract
Cytotoxic T-cells (CTLs) play an important role in many immune-mediated inflammatory diseases. Targeting cytotoxicity of CTLs would allow to interfere with immune-mediated tissue destruction. Here we demonstrate that WF-10, a pro-oxidative compound, inhibits CTL-mediated cytotoxicity. WF-10 did not influence early steps of target-cell killing, but impaired the ability of CTLs to detach from the initial target cell and to move to a second target cell. This reduced serial killing was accompanied by stronger enrichment of the adhesion molecule LFA-1 in the cytolytic immune synapse. LFA-1 clustering requires activation of the actin-bundling protein L-plastin and was accordingly diminished in L-plastin knockdown cells. Interestingly, WF-10 likely acts through regulating L-plastin: (I) It induced L-plastin activation through phosphorylation leading to enhanced LFA-1-mediated cell adhesion, and, importantly, (II) WF-10 lost its influence on target-cell killing in L-plastin knockdown cells. Finally, we demonstrate that WF-10 can improve immunosuppression by conventional drugs. Thus, while cyclosporine A alone had no significant effect on cytotoxicity of CTLs, a combination of cyclosporine A and WF-10 blocked target-cell killing synergistically. Together, our findings suggest that WF-10 – either alone or in combination with conventional immunosuppressive drugs – may be efficient to control progression of diseases, in which CTLs are crucially involved.
Collapse
Affiliation(s)
- G H Wabnitz
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - E Balta
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - S Schindler
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - H Kirchgessner
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - B Jahraus
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - S Meuer
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - Y Samstag
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| |
Collapse
|
23
|
Hartzell CA, Jankowska KI, Burkhardt JK, Lewis RS. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse. eLife 2016; 5. [PMID: 27440222 PMCID: PMC4956410 DOI: 10.7554/elife.14850] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/13/2016] [Indexed: 11/21/2022] Open
Abstract
T cell receptor (TCR) engagement opens Ca2+ release-activated Ca2+ (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca2+ influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca2+-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca2+ as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca2+ influx may modulate TCR signaling. DOI:http://dx.doi.org/10.7554/eLife.14850.001 An effective immune response requires the immune system to rapidly recognize and respond to foreign invaders. Immune cells known as T cells recognize infection through a protein on their surface known as the T cell receptor. The T cell receptor binds to foreign proteins displayed on the surface of other cells. This interaction initiates a chain of events, including the opening of calcium channels embedded in the T cell membrane known as CRAC channels, which allows calcium ions to flow into the cell. These events ultimately lead to the activation of the T cell, enabling it to mount an immune response against the foreign invader. As part of the activation process, the T cell spreads over the surface of the cell that is displaying foreign proteins to form an extensive interface known as an immune synapse. The movement of the T cell's internal skeleton (the cytoskeleton) is crucial for the formation and function of the synapse. Actin filaments, a key component of the cytoskeleton, flow from the edge of the synapse toward the center; these rearrangements of the actin cytoskeleton help to transport clusters of T cell receptors to the center of the synapse and enable the T cell receptors to transmit signals that lead to the T cell being activated. It is not entirely clear how the binding of T cell receptors to foreign proteins drives the actin rearrangements, but there is indirect evidence suggesting that calcium ions may be involved. Hartzell et al. have now investigated the interactions between calcium and the actin cytoskeleton at the immune synapse in human T cells. T cells were placed on glass so that they formed immune synapse-like connections with the surface, and actin movements at the synapse were visualized using a specialized type of fluorescence microscopy. When calcium ions were prevented from entering the T cell, the movement of actin stopped almost entirely. Thus, the flow of calcium ions into the T cell through CRAC channels is essential for driving the actin movements that underlie immune synapse development and T cell activation. In further experiments, Hartzell et al. tracked the movements of CRAC channels and actin at the synapse and found that actin filaments create a constricting “corral” that concentrates CRAC channels in the center of the synapse. Thus, by driving cytoskeleton movement, calcium ions also help to organize calcium channels at the immune synapse. Future work will focus on identifying the actin remodeling proteins that enable calcium ions to control this process. DOI:http://dx.doi.org/10.7554/eLife.14850.002
Collapse
Affiliation(s)
- Catherine A Hartzell
- Immunology Program, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Katarzyna I Jankowska
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Richard S Lewis
- Immunology Program, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| |
Collapse
|
24
|
Maccari I, Zhao R, Peglow M, Schwarz K, Hornak I, Pasche M, Quintana A, Hoth M, Qu B, Rieger H. Cytoskeleton rotation relocates mitochondria to the immunological synapse and increases calcium signals. Cell Calcium 2016; 60:309-321. [PMID: 27451384 DOI: 10.1016/j.ceca.2016.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022]
Abstract
Ca2+ microdomains and spatially resolved Ca2+ signals are highly relevant for cell function. In T cells, local Ca2+ signaling at the immunological synapse (IS) is required for downstream effector functions. We present experimental evidence that the relocation of the MTOC towards the IS during polarization drags mitochondria along with the microtubule network. From time-lapse fluorescence microscopy we conclude that mitochondria rotate together with the cytoskeleton towards the IS. We hypothesize that this movement of mitochondria towards the IS together with their functionality of absorption and spatial redistribution of Ca2+ is sufficient to significantly increase the cytosolic Ca2+ concentration. To test this hypothesis we developed a whole cell model for Ca2+ homoeostasis involving specific geometries for mitochondria and use the model to calculate the spatial distribution of Ca2+ concentrations within the cell body as a function of the rotation angle and the distance from the IS. We find that an inhomogeneous distribution of PMCA pumps on the cell membrane, in particular an accumulation of PMCA at the IS, increases the global Ca2+ concentration and decreases the local Ca2+ concentration at the IS with decreasing distance of the MTOC from the IS. Unexpectedly, a change of CRAC/Orai activity is not required to explain the observed Ca2+ changes. We conclude that rotation-driven relocation of the MTOC towards the IS together with an accumulation of PMCA pumps at the IS are sufficient to control the observed Ca2+ dynamics in T-cells during polarization.
Collapse
Affiliation(s)
- Ilaria Maccari
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Martin Peglow
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Karsten Schwarz
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Ivan Hornak
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Mathias Pasche
- Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Ariel Quintana
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany.
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Heiko Rieger
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany.
| |
Collapse
|
25
|
Zhao Z, deMayo JA, West AM, Balunas MJ, Zweifach A. Development of an Enhanced Phenotypic Screen of Cytotoxic T-Lymphocyte Lytic Granule Exocytosis Suitable for Use with Synthetic Compound and Natural Product Collections. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:556-66. [PMID: 27048485 DOI: 10.1177/1087057116643260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
We previously developed an assay of cytotoxic T-lymphocyte lytic granule exocytosis based on externalization of LAMP-1/CD107A using nonphysiological stimuli to generate maximal levels of exocytosis. Here, we used polystyrene beads coated with anti-CD3 antibodies to stimulate cells. Light scatter let us distinguish cells that contacted beads from cells that had not, allowing comparison of signaling events and exocytosis from stimulated and unstimulated cells in one sample. Bead stimulation resulted in submaximal exocytosis, making it possible to detect compounds that either augment or inhibit lytic granule exocytosis. Coupled with the assay's ability to distinguish responses in cells that have and have not contacted a stimulatory bead, it is possible to detect three kinds of compounds: inhibitors, stimulators, which cause exocytosis, and augmenters, which enhance receptor-stimulated exocytosis. To validate the assay, we screened a set of synthetic compounds identified using our previous assay and a library of 320 extracts prepared from tunicate-associated bacteria. One of the extracts augmented exocytosis threefold. Activity-guided fractionation and structure elucidation revealed that this compound is the known PKC activator teleocidin A-1. We conclude that our modified assay is suitable for screening synthetic compound plates and natural product collections, and will be useful for identifying immunologically active small molecules.
Collapse
Affiliation(s)
- Ziyan Zhao
- Department of Molecular and Cell Biology, University of Connecticut at Storrs, Storrs, CT, USA
| | - James A deMayo
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Ashley M West
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Adam Zweifach
- Department of Molecular and Cell Biology, University of Connecticut at Storrs, Storrs, CT, USA
| |
Collapse
|
26
|
Dura B, Servos MM, Barry RM, Ploegh HL, Dougan SK, Voldman J. Longitudinal multiparameter assay of lymphocyte interactions from onset by microfluidic cell pairing and culture. Proc Natl Acad Sci U S A 2016; 113:E3599-608. [PMID: 27303033 PMCID: PMC4932925 DOI: 10.1073/pnas.1515364113] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Resolving how the early signaling events initiated by cell-cell interactions are transduced into diverse functional outcomes necessitates correlated measurements at various stages. Typical approaches that rely on bulk cocultures and population-wide correlations, however, only reveal these relationships broadly at the population level, not within each individual cell. Here, we present a microfluidics-based cell-cell interaction assay that enables longitudinal investigation of lymphocyte interactions at the single-cell level through microfluidic cell pairing, on-chip culture, and multiparameter assays, and allows recovery of desired cell pairs by micromanipulation for off-chip culture and analyses. Well-defined initiation of interactions enables probing cellular responses from the very onset, permitting single-cell correlation analyses between early signaling dynamics and later-stage functional outcomes within same cells. We demonstrate the utility of this microfluidic assay with natural killer cells interacting with tumor cells, and our findings suggest a possible role for the strength of early calcium signaling in selective coordination of subsequent cytotoxicity and IFN-gamma production. Collectively, our experiments demonstrate that this new approach is well-suited for resolving the relationships between complex immune responses within each individual cell.
Collapse
Affiliation(s)
- Burak Dura
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139; Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139; Microsystems Technology Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - Mariah M Servos
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Rachel M Barry
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Stephanie K Dougan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142; Division of Immunology, Harvard Medical School, Boston, MA 02115
| | - Joel Voldman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139; Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139; Microsystems Technology Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
27
|
Marshall-Gradisnik S, Huth T, Chacko A, Johnston S, Smith P, Staines D. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. APPLICATION OF CLINICAL GENETICS 2016; 9:39-47. [PMID: 27099524 PMCID: PMC4821384 DOI: 10.2147/tacg.s99405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM The aim of this paper was to determine natural killer (NK) cytotoxic activity and if single nucleotide polymorphisms (SNPs) and genotypes in transient receptor potential (TRP) ion channels and acetylcholine receptors (AChRs) were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients. SUBJECTS AND METHODS A total of 39 ME/CFS patients (51.69±2 years old) and 30 unfatigued controls (47.60±2.39 years old) were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software. RESULTS ME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68%) compared with the unfatigued control group (31%±6.78%). Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05). Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05). There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5), TRPM8 (n=2), TRPC4 (n=3), TRPC2 (n=1), CHRNE (n=1), CHRNA2 (n=2), CHRNA3 (n=1), and CHRNB4 (n=1) (P<0.05). CONCLUSION We identified a number of SNPs and genotypes for TRP ion channels and AChRs from isolated NK cells in patients with ME/CFS, suggesting these SNPs and genotypes may be involved in changes in NK cell function and the development of ME/CFS pathology. These anomalies suggest a role for dysregulation of Ca(2+) in AChR and TRP ion channel signaling in the pathomechanism of ME/CFS.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Teilah Huth
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Anu Chacko
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Samantha Johnston
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Pete Smith
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
28
|
Frischauf I, Fahrner M, Jardín I, Romanin C. The STIM1: Orai Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:25-46. [PMID: 27161223 DOI: 10.1007/978-3-319-26974-0_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ca(2+) influx via store-operated Ca(2+) release activated Ca(2+) (CRAC) channels represents a main signalling pathway for a variety of cell functions, including T-cell activation as well as mast-cell degranulation. Depletion of [Ca(2+)]ER results in activation of Ca(2+) channels within the plasmamembrane that mediate sustained Ca(2+) influx which is required for refilling Ca(2+) stores and down-stream Ca(2+) signalling. The CRAC channel is the best characterized store-operated channel (SOC) with well-defined electrophysiological properties. In recent years, the molecular components of the CRAC channel have been defined. The ER - located Ca(2+)-sensor, STIM1 and the Ca(2+)-selective ion pore, Orai1 in the membrane are sufficient to fully reconstitute CRAC currents. Stromal interaction molecule (STIM) 1 is localized in the ER, senses [Ca(2+)]ER and activates the CRAC channel upon store depletion by direct binding to Orai1 in the plasmamembrane. The identification of STIM1 and Orai1 and recently the structural resolution of both proteins by X-ray crystallography and nuclear magnetic resonance substantiated many findings from structure-function studies which has substantially improved the understanding of CRAC channel activation. Within this review, we summarize the functional and structural mechanisms of CRAC channel regulation, present a detailed overview of the STIM1/Orai1 signalling pathway where we focus on the critical domains mediating interactions and on the ion permeation pathway. We portray a mechanistic view of the steps in the dynamics of CRAC channel signalling ranging from STIM1 oligomerization over STIM1-Orai1 coupling to CRAC channel activation and permeation.
Collapse
Affiliation(s)
| | - Marc Fahrner
- Institute of Biophysics, University of Linz, Linz, Austria
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | |
Collapse
|
29
|
Tuosto L, Capuano C, Muscolini M, Santoni A, Galandrini R. The multifaceted role of PIP2 in leukocyte biology. Cell Mol Life Sci 2015; 72:4461-74. [PMID: 26265181 PMCID: PMC11113228 DOI: 10.1007/s00018-015-2013-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) represents about 1 % of plasma membrane phospholipids and behaves as a pleiotropic regulator of a striking number of fundamental cellular processes. In recent years, an increasing body of literature has highlighted an essential role of PIP2 in multiple aspects of leukocyte biology. In this emerging picture, PIP2 is envisaged as a signalling intermediate itself and as a membrane-bound regulator and a scaffold of proteins with specific PIP2 binding domains. Indeed PIP2 plays a key role in several functions. These include directional migration in neutrophils, integrin-dependent adhesion in T lymphocytes, phagocytosis in macrophages, lysosomes secretion and trafficking at immune synapse in cytolytic effectors and secretory cells, calcium signals and gene transcription in B lymphocytes, natural killer cells and mast cells. The coordination of these different aspects relies on the spatio-temporal organisation of distinct PIP2 pools, generated by the main PIP2 generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K). Three different isoforms of PIP5K, named α, β and γ, and different splice variants have been described in leukocyte populations. The isoform-specific coupling of specific isoforms of PIP5K to different families of activating receptors, including integrins, Fc receptors, toll-like receptors and chemokine receptors, is starting to be reported. Furthermore, PIP2 is turned over by multiple metabolising enzymes including phospholipase C (PLC) γ and phosphatidylinositol 3-kinase (PI3K) which, along with Rho family small G proteins, is widely involved in strategic functions within the immune system. The interplay between PIP2, lipid-modifying enzymes and small G protein-regulated signals is also discussed.
Collapse
Affiliation(s)
- Loretta Tuosto
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Via dei Sardi 70, 00185, Rome, Italy.
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00185, Rome, Italy
| | - Michela Muscolini
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Via dei Sardi 70, 00185, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Viale Regina Elena 291, 00185, Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00185, Rome, Italy.
| |
Collapse
|
30
|
Ming M, Schirra C, Becherer U, Stevens DR, Rettig J. Behavior and Properties of Mature Lytic Granules at the Immunological Synapse of Human Cytotoxic T Lymphocytes. PLoS One 2015; 10:e0135994. [PMID: 26296096 PMCID: PMC4546685 DOI: 10.1371/journal.pone.0135994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
Killing of virally infected cells or tumor cells by cytotoxic T lymphocytes requires targeting of lytic granules to the junction between the CTL and its target. We used whole-cell patch clamp to measure the cell capacitance at fixed intracellular [Ca2+] to study fusion of lytic granules in human CTLs. Expression of a fluorescently labeled human granzyme B construct allowed identification of lytic granule fusion using total internal reflection fluorescence microscopy. In this way capacitance steps due to lytic granule fusion were identified. Our goal was to determine the size of fusing lytic granules and to describe their behavior at the plasma membrane. On average, 5.02 ± 3.09 (mean ± s.d.) lytic granules were released per CTL. The amplitude of lytic granule fusion events was ~ 3.3 fF consistent with a diameter of about 325 nm. Fusion latency was biphasic with time constants of 15.9 and 106 seconds. The dwell time of fusing lytic granules was exponentially distributed with a mean dwell time of 28.5 seconds. Fusion ended in spite of the continued presence of granules at the immune synapse. The mobility of fusing granules at the membrane was indistinguishable from that of lytic granules which failed to fuse. While dwelling at the plasma membrane lytic granules exhibit mobility consistent with docking interspersed with short periods of greater mobility. The failure of lytic granules to fuse when visible in TIRF at the membrane may indicate that a membrane-confined reaction is rate limiting.
Collapse
Affiliation(s)
- Min Ming
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Claudia Schirra
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Ute Becherer
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - David R. Stevens
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Jens Rettig
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Medical Faculty, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
31
|
Christo SN, Diener KR, Hayball JD. The functional contribution of calcium ion flux heterogeneity in T cells. Immunol Cell Biol 2015; 93:694-704. [PMID: 25823995 DOI: 10.1038/icb.2015.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 12/30/2022]
Abstract
The role of intracellular calcium ion oscillations in T-cell physiology is being increasingly appreciated by studies that describe how unique temporal and spatial calcium ion signatures can control different signalling pathways. Within this review, we provide detailed mechanisms of calcium ion oscillations, and emphasise the pivotal role that calcium signalling plays in directing crucial events pertaining to T-cell functionality. We also describe methods of calcium ion quantification, and take the opportunity to discuss how a deeper understanding of calcium signalling combined with new detection and quantification methodologies can be used to better design immunotherapies targeting T-cell responses.
Collapse
Affiliation(s)
- Susan N Christo
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Zhao Z, Haynes MK, Ursu O, Edwards BS, Sklar LA, Zweifach A. A high-throughput phenotypic screen of cytotoxic T lymphocyte lytic granule exocytosis reveals candidate immunosuppressants. ACTA ACUST UNITED AC 2014; 20:359-71. [PMID: 25381253 DOI: 10.1177/1087057114557620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We screened the National Institutes of Health's Molecular Libraries Small Molecule Repository for inhibitors of cytotoxic T lymphocyte (CTL) lytic granule exocytosis by measuring binding of an antibody in the extracellular solution to a lysosomal membrane protein (LAMP-1) that is transferred to the plasma membrane by exocytosis. We used TALL-104 human leukemic CTLs stimulated with soluble chemicals. Using high-throughput cluster cytometry to screen 364,202 compounds in a 1536-well plate format, we identified 2404 initial hits: 161 were confirmed on retesting, and dose-response measurements were performed. Seventy-five of those compounds were obtained, and 48 were confirmed active. Experiments were conducted to determine the molecular mechanism of action (MMOA) of the active compounds. Fifteen blocked increases in intracellular calcium >50%. Seven blocked phosphorylation of extracellular signal-regulated kinase (ERK) by upstream mitogen-activated protein kinase kinases >50%. One completely blocked the activity of the calcium-dependent phosphatase calcineurin. None blocked ERK catalytic activity. Eight blocked more than one pathway. For 8 compounds, we were unable to determine an MMOA. The activity of 1 of these compounds was confirmed from powder resupply. We conclude that a screen based on antibody binding to CTLs is a good means of identifying novel candidate immunosuppressants with either known or unknown MMOAs.
Collapse
Affiliation(s)
- Ziyan Zhao
- Department of Molecular and Cell Biology, University of Connecticut at Storrs, Storrs, CT, USA
| | - Mark K Haynes
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Oleg Ursu
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Bruce S Edwards
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Larry A Sklar
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Adam Zweifach
- Department of Molecular and Cell Biology, University of Connecticut at Storrs, Storrs, CT, USA
| |
Collapse
|
33
|
Shaw PJ, Weidinger C, Vaeth M, Luethy K, Kaech SM, Feske S. CD4⁺ and CD8⁺ T cell-dependent antiviral immunity requires STIM1 and STIM2. J Clin Invest 2014; 124:4549-63. [PMID: 25157823 DOI: 10.1172/jci76602] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/10/2014] [Indexed: 02/03/2023] Open
Abstract
Calcium signaling is critical for lymphocyte function, and intracellular Ca2+ concentrations are regulated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels. In patients, loss-of-function mutations in CRAC channel components ORAI1 and STIM1 abolish SOCE and are associated with recurrent and chronic viral infections. Here, using mice with conditional deletion of Stim1 and its homolog Stim2 in T cells, we determined that both components are required for the maintenance of virus-specific memory CD8+ T cells and recall responses following secondary infection. In the absence of STIM1 and STIM2, acute viral infections became chronic. Early during infection, STIM1 and STIM2 were required for the differentiation of naive CD8+ T cells into fully functional cytolytic effector cells and mediated the production of cytokines and prevented cellular exhaustion in viral-specific CD8+ effector T cells. Importantly, memory and recall responses by CD8+ T cells required expression of STIM1 and STIM2 in CD4+ T cells. CD4+ T cells lacking STIM1 and STIM2 were unable to provide "help" to CD8+ T cells due to aberrant regulation of CD40L expression. Together, our data indicate that STIM1, STIM2, and CRAC channel function play distinct but synergistic roles in CD4+ and CD8+ T cells during antiviral immunity.
Collapse
|
34
|
Abstract
CD8αβ plays crucial roles in the thymic selection, differentiation, and activation of some, but not all, CD8(+) T cells, whereas CD8αα does not. To investigate these roles, we produced mice that expressed transgene P14 T-cell receptor β (TCRβ) chain and CD8β or did not (WT and KO mice, respectively). The primary CD8(+) T-cell response to acute lymphocytic choriomeningitis virus (LCMV) infection was predominantly D(b)/GP33 specific and CD8 independent in KO mice and was mostly CD8 dependent in WT mice. Cytotoxic T lymphocytes (CTL) from KO mice failed to mobilize intracellular Ca(2+) and to kill via perforin/granzyme. Their strong Fas/FasL-mediated cytotoxicity and IFN-γ response were signaled via a Ca(2+)-independent, PI3K-dependent pathway. This was also true for 15-20% of CD8-independent CTL found in WT mice. Conversely, the perforin/granzyme-mediated killing and IFN-γ response of CD8-dependent CTL were signaled via a Ca(2+), p56(lck), and nuclear factor of activated T cells-dependent pathway. Deep sequencing of millions of TCRα chain transcripts revealed that the TCR repertoires of preimmune CD8(+) T cells were highly diverse, but those of LCMV D(b)/GP33-specific CTL, especially from KO mice, were narrow. The immune repertoires exhibited biased use of Vα segments that encoded different complementary-determining region 1α (CDR1α) and CDR2α sequences. We suggest that TCR from WT CD8-independent T cells may engage MHC-peptide complexes in a manner unfavorable for efficient CD8 engagement and Ca(2+) signaling but permissive for Ca(2+)-independent, PI3K-dependent signaling. This duality of the CD8 compartment may provide organisms with broader protective immunity.
Collapse
|
35
|
Panyi G, Beeton C, Felipe A. Ion channels and anti-cancer immunity. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130106. [PMID: 24493754 DOI: 10.1098/rstb.2013.0106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The outcome of a malignant disease depends on the efficacy of the immune system to destroy cancer cells. Key steps in this process, for example the generation of a proper Ca(2+) signal induced by recognition of a specific antigen, are regulated by various ion channel including voltage-gated Kv1.3 and Ca(2+)-activated KCa3.1 K(+) channels, and the interplay between Orai and STIM to produce the Ca(2+)-release-activated Ca(2+) (CRAC) current required for T-cell proliferation and function. Understanding the immune cell subset-specific expression of ion channels along with their particular function in a given cell type, and the role of cancer tissue-dependent factors in the regulation of operation of these ion channels are emerging questions to be addressed in the fight against cancer disease. Answering these questions might lead to a better understanding of the immunosuppression phenomenon in cancer tissue and the development of drugs aimed at skewing the distribution of immune cell types towards killing of the tumour cells.
Collapse
Affiliation(s)
- Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, , Egyetem ter 1, Life Science Building, Room 2.301, Debrecen, Hungary
| | | | | |
Collapse
|
36
|
Zhang Y, Tang W, Zhang H, Niu X, Xu Y, Zhang J, Gao K, Pan W, Boggon TJ, Toomre D, Min W, Wu D. A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle exocytosis in neutrophils. Dev Cell 2014; 27:215-226. [PMID: 24176643 DOI: 10.1016/j.devcel.2013.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/14/2013] [Accepted: 09/22/2013] [Indexed: 12/15/2022]
Abstract
Neutrophil degranulation plays an important role in acute innate immune responses and is tightly regulated because the granule contents can cause tissue damage. However, this regulation remains poorly understood. Here, we identify the complex of STK24 and CCM3 as being an important regulator of neutrophil degranulation. Lack of either STK24 or CCM3 increases the release of a specific granule pool without affecting other neutrophil functions. STK24 appears to suppress exocytosis by interacting and competing with UNC13D C2B domain for lipid binding, whereas CCM3 has dual roles in exocytosis regulation. Although CCM3 stabilizes STK24, it counteracts STK24-mediated inhibition of exocytosis by recruiting STK24 away from the C2B domain through its Ca(2+)-sensitive interaction with UNC13D C2A domain. This STK24/CCM3-regulated exocytosis plays an important role in the protection of kidneys from ischemia-reperfusion injury. Together, these findings reveal a function of the STK24 and CCM3 complex in the regulation of ligand-stimulated exocytosis.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wenwen Tang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Haifeng Zhang
- Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaofeng Niu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yingke Xu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun Gao
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Weijun Pan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wang Min
- Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Immunosuppression by N-methyl-D-aspartate receptor antagonists is mediated through inhibition of Kv1.3 and KCa3.1 channels in T cells. Mol Cell Biol 2013; 34:820-31. [PMID: 24344200 DOI: 10.1128/mcb.01273-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that play an important role in neuronal development, plasticity, and excitotoxicity. NMDAR antagonists are neuroprotective in animal models of neuronal diseases, and the NMDAR open-channel blocker memantine is used to treat Alzheimer's disease. In view of the clinical application of these pharmaceuticals and the reported expression of NMDARs in immune cells, we analyzed the drug's effects on T-cell function. NMDAR antagonists inhibited antigen-specific T-cell proliferation and cytotoxicity of T cells and the migration of the cells toward chemokines. These activities correlated with a reduction in T-cell receptor (TCR)-induced Ca(2+) mobilization and nuclear localization of NFATc1, and they attenuated the activation of Erk1/2 and Akt. In the presence of antagonists, Th1 effector cells produced less interleukin-2 (IL-2) and gamma interferon (IFN-γ), whereas Th2 cells produced more IL-10 and IL-13. However, in NMDAR knockout mice, the presumptive expression of functional NMDARs in wild-type T cells was inconclusive. Instead, inhibition of NMDAR antagonists on the conductivity of Kv1.3 and KCa3.1 potassium channels was found. Hence, NMDAR antagonists are potent immunosuppressants with therapeutic potential in the treatment of immune diseases, but their effects on T cells have to be considered in that Kv1.3 and KCa3.1 channels are their major effectors.
Collapse
|
38
|
Galandrini R, Capuano C, Santoni A. Activation of Lymphocyte Cytolytic Machinery: Where are We? Front Immunol 2013; 4:390. [PMID: 24312097 PMCID: PMC3832890 DOI: 10.3389/fimmu.2013.00390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/06/2013] [Indexed: 11/13/2022] Open
Abstract
Target cell recognition by cytotoxic lymphocytes implies the simultaneous engagement and clustering of adhesion and activating receptors followed by the activation of an array of signal transduction pathways. The cytotoxic immune synapse represents the highly specialized dynamic interface formed between the cytolytic effector and its target that allows temporal and spatial integration of signals responsible for a defined sequence of processes culminating with the polarized secretion of lytic granules. Over the last decades, much attention has been given to the molecular signals coupling receptor ligation to the activation of cytolytic machinery. Moreover, in the last 10 years the discovery of genetic defects affecting cytotoxic responses greatly boosted our knowledge on the molecular effectors involved in the regulation of discrete phases of cytotoxic process at post-receptor levels. More recently, the use of super resolution and total internal reflection fluorescence imaging technologies added new insights on the dynamic reorganization of receptor and signaling molecules at lytic synapse as well as on the relationship between granule dynamics and cytoskeleton remodeling. To date we have a solid knowledge of the molecular mechanisms governing granule movement and secretion, being not yet fully unraveled the machinery that couples early receptor signaling to the late stage of synapse remodeling and granule dynamics. Here we highlight recent advances in our understanding of the molecular mechanisms acting in the activation of cytolytic machinery, also discussing similarities and differences between Natural killer cells and cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Ricciarda Galandrini
- Department of Experimental Medicine, Istituto Pasteur-Fondazione Cenci-Bolognetti, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University , Rome , Italy
| | | | | |
Collapse
|
39
|
Weidinger C, Shaw PJ, Feske S. STIM1 and STIM2-mediated Ca(2+) influx regulates antitumour immunity by CD8(+) T cells. EMBO Mol Med 2013; 5:1311-21. [PMID: 23922331 PMCID: PMC3799488 DOI: 10.1002/emmm.201302989] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/11/2013] [Accepted: 06/28/2013] [Indexed: 02/03/2023] Open
Abstract
Store-operated calcium entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels regulates the function of many immune cells. Patients with loss-of-function mutations in the CRAC channel genes ORAI1 or STIM1 are immunodeficient and are prone to develop virus-associated tumours. This and the reported role of Ca2+ signals in cytotoxic lymphocyte function suggest that SOCE may be critical for tumour immune surveillance. Using conditional knock out mice lacking STIM1 and its homologue STIM2, we find that SOCE in CD8+ T cells is required to prevent the engraftment of melanoma and colon carcinoma cells and to control tumour growth. SOCE is essential for the cytotoxic function of CTLs both in vivo and in vitro by regulating the degranulation of CTLs, their expression of Fas ligand and production of TNF-α and IFN-γ. Our results emphasize an important role of SOCE in antitumour immunity, which is significant given recent reports arguing in favour of CRAC channel inhibition for cancer therapy.
Collapse
Affiliation(s)
- Carl Weidinger
- Department of Pathology and Cancer Institute, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
40
|
Lopez JA, Jenkins MR, Rudd-Schmidt JA, Brennan AJ, Danne JC, Mannering SI, Trapani JA, Voskoboinik I. Rapid and unidirectional perforin pore delivery at the cytotoxic immune synapse. THE JOURNAL OF IMMUNOLOGY 2013; 191:2328-34. [PMID: 23885110 DOI: 10.4049/jimmunol.1301205] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effective engagement of cytotoxic lymphocytes (CLs) with their target cells is essential for the removal of virus-infected and malignant cells from the body. The spatiotemporal properties that define CL engagement and killing of target cells remain largely uncharacterized due to a lack of biological reporters. We have used a novel live cell microscopy technique to visualize the engagement of primary human and mouse CL with their targets and the subsequent delivery of the lethal hit. Extensive quantitative real-time analysis of individual effector-target cell conjugates demonstrated that a single effector calcium flux event was sufficient for the degranulation of human CLs, resulting in the breach of the target cell membrane by perforin within 65-100 s. In contrast, mouse CLs demonstrated distinct calcium signaling profiles leading to degranulation: whereas mouse NKs required a single calcium flux event, CD8(+) T cells typically required several calcium flux events before perforin delivery. Irrespective of their signaling profile, every target cell that was damaged by perforin died by apoptosis. To our knowledge, we demonstrate for the first time that perforin pore delivery is unidirectional, occurring exclusively on the target cell membrane, but sparing the killer cell. Despite this, the CTL membrane was not intrinsically perforin resistant, as intact CTLs presented as targets to effector CTLs were capable of being killed by perforin-dependent mechanisms. Our results highlight the remarkable efficiency and specificity of perforin pore delivery by CLs.
Collapse
Affiliation(s)
- Jamie A Lopez
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Joseph N, Reicher B, Barda-Saad M. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:557-68. [PMID: 23860253 DOI: 10.1016/j.bbamem.2013.07.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
42
|
Abstract
Natural killer (NK) cells are innate lymphocytes endowed with the capacity to survey and eliminate infected and transformed cells. Like T cells and B cells, NK cells fulfill their task by responding to soluble factors and to signals exchanged during cell-cell contacts. In this respect, cellular interactions established by NK cells are critical at every stage of their life. They regulate their survival and tune their responsiveness in the periphery. They are also important during their activation and for the targeted delivery of their cytotoxic granules. With the help of two-photon imaging, the occurrence and dynamics of these interactions as they occur in vivo are being uncovered. Interestingly, several of these initial observations were not predicted by in vitro studies and revealed the transient nature of many NK cell interactions. We review here our recent understanding of NK cell interactions in vivo at steady state, during inflammation, and during tumor elimination, emphasizing the similarities and differences with T cells.
Collapse
Affiliation(s)
- Jacques Deguine
- Institut Pasteur, Dynamics of Immune Responses Unit, Paris, France
| | | |
Collapse
|
43
|
Davis LC, Galione A. Cytolytic granules supply Ca(2+) for their own exocytosis via NAADP and resident two-pore channels. Commun Integr Biol 2013; 6:e24175. [PMID: 23713141 PMCID: PMC3656026 DOI: 10.4161/cib.24175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/28/2013] [Indexed: 02/06/2023] Open
Abstract
When cytotoxic T-lymphocytes (CTLs) kill infected or cancerous cells they secrete cytolytic proteins (perforin and granzymes) into the target cell. These “death factors” are pre-stored in cytolytic granules within the CTL until an increase in the intracellular Ca2+ drives granule exocytosis. However, not all sources of Ca2+ stimulate exocytosis: we have recently demonstrated that it is the cytolytic granules themselves that are the source of the Ca2+ that most efficiently drives their own exocytosis; release of Ca2+ from the granules is only activated by the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) that acts upon target two-pore channels (TPCs) present on the granules. That NAADP is a unique stimulus of exocytosis may be of fundamental importance not only to immunology but to cell biology in general.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology; University of Oxford; Oxford, UK
| | | |
Collapse
|
44
|
Florian AE, Lepensky CK, Kwon O, Haynes MK, Sklar LA, Zweifach A. Flow cytometry enables a high-throughput homogeneous fluorescent antibody-binding assay for cytotoxic T cell lytic granule exocytosis. JOURNAL OF BIOMOLECULAR SCREENING 2013; 18:420-9. [PMID: 23160568 PMCID: PMC4043149 DOI: 10.1177/1087057112466697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed a homogeneous phenotypic fluorescence end-point assay for cytotoxic T lymphocyte lytic granule exocytosis. This flow cytometric assay measures binding of an antibody to a luminal epitope of a lysosomal membrane protein (LAMP-1) that is exposed by exocytosis to the extracellular solution. Washing to remove unbound antibody is not required. Confirming the assay's ability to detect novel active compounds, we screened at a concentration of 50 µM a synthetic diversity library of 91 compounds in a 96-well plate format, identifying 17 compounds that blocked by 90% or more. The actions of six structurally related tetracyano-hexahydroisoindole compounds that inhibited by ~90% at a concentration of 10 µM were investigated further. Four reduced elevations in intracellular Ca(2+); it is likely that depolarization of the cells' membrane potential underlies the effect for at least two of the compounds. Another compound was found to be a potent inhibitor of the activation of the mitogen-activated protein (MAP) kinase ERK. Finally, we transferred the assay to a 384-well format and screened the Prestwick Compound Library using high-throughput flow cytometry. Our results indicate that our assay will likely be a useful means of screening libraries for novel compounds with important biological activities.
Collapse
Affiliation(s)
- Amy E. Florian
- Department of Molecular and Cell Biology, University of Connecticut at Storrs, 91 N. Eagleville Rd. Unit 3125, Storrs CT 06269-3125
| | - Christopher K. Lepensky
- Department of Molecular and Cell Biology, University of Connecticut at Storrs, 91 N. Eagleville Rd. Unit 3125, Storrs CT 06269-3125
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569
| | - Mark K. Haynes
- University of New Mexico Center for Molecular Discovery, MSC07 4025, Albuquerque NM 87131-0001
| | - Larry A. Sklar
- University of New Mexico Center for Molecular Discovery, MSC07 4025, Albuquerque NM 87131-0001
| | - Adam Zweifach
- Department of Molecular and Cell Biology, University of Connecticut at Storrs, 91 N. Eagleville Rd. Unit 3125, Storrs CT 06269-3125
| |
Collapse
|
45
|
Bergmeier W, Weidinger C, Zee I, Feske S. Emerging roles of store-operated Ca²⁺ entry through STIM and ORAI proteins in immunity, hemostasis and cancer. Channels (Austin) 2013; 7:379-91. [PMID: 23511024 DOI: 10.4161/chan.24302] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is an important Ca(2+) influx pathway, which is defined by the fact that depletion of intracellular Ca(2+) stores, mainly the endoplasmic reticulum (ER), triggers the opening of Ca(2+) channels in the plasma membrane. The best characterized SOC channel is the Ca(2+) release-activated Ca(2+) (CRAC) channel, which was first described in cells of the immune system but has since been reported in many different cell types. CRAC channels are multimers of ORAI family proteins, of which ORAI1 is the best characterized. They are activated by stromal interaction molecules (STIM) 1 and 2, which respond to the depletion of intracellular Ca(2+) stores with oligomerization and binding to ORAI proteins. The resulting SOCE is critical for the physiological function of many cell types including immune cells and platelets. Recent studies using cell lines, animal models and primary cells from human patients with defects in SOCE have highlighted the importance of this Ca(2+) entry mechanism in a variety of pathophysiological processes. This review focuses on the role of SOCE in immunity to infection, allergy, hemostasis and cancer.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and Biophysics; McAllister Heart Institute; University of North Carolina; Chapel Hill, NC USA
| | - Carl Weidinger
- Department of Pathology; New York University Langone Medical Center; New York, NY USA
| | - Isabelle Zee
- Department of Pathology; New York University Langone Medical Center; New York, NY USA
| | - Stefan Feske
- Department of Pathology; New York University Langone Medical Center; New York, NY USA
| |
Collapse
|
46
|
Schwarz EC, Qu B, Hoth M. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1603-11. [PMID: 23220009 DOI: 10.1016/j.bbamcr.2012.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 01/13/2023]
Abstract
Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Eva C Schwarz
- Department of Biophysics, Saarland University, Homburg, Germany
| | | | | |
Collapse
|
47
|
Davis LC, Morgan AJ, Chen JL, Snead CM, Bloor-Young D, Shenderov E, Stanton-Humphreys MN, Conway SJ, Churchill GC, Parrington J, Cerundolo V, Galione A. NAADP activates two-pore channels on T cell cytolytic granules to stimulate exocytosis and killing. Curr Biol 2012. [PMID: 23177477 PMCID: PMC3525857 DOI: 10.1016/j.cub.2012.10.035] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A cytotoxic T lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. Although inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum activates the store-operated Ca2+-influx pathway that is necessary for exocytosis, it is not a sufficient stimulus [1–4]. Here we identify the Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and its recently identified molecular target, two-pore channels (TPCs) [5–7], as being important for T cell receptor signaling in CTLs. We demonstrate that cytolytic granules are not only reservoirs of cytolytic proteins but are also the acidic Ca2+ stores mobilized by NAADP via TPC channels on the granules themselves, so that TPCs migrate to the immunological synapse upon CTL activation. Moreover, NAADP activates TPCs to drive exocytosis in a way that is not mimicked by global Ca2+ signals induced by IP3 or ionomycin, suggesting that critical, local Ca2+ nanodomains around TPCs stimulate granule exocytosis. Hence, by virtue of the NAADP/TPC pathway, cytolytic granules generate Ca2+ signals that lead to their own exocytosis and to cell killing. This study highlights a selective role for NAADP in stimulating exocytosis crucial for immune cell function and may impact on stimulus-secretion coupling in wider cellular contexts.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shaw PJ, Qu B, Hoth M, Feske S. Molecular regulation of CRAC channels and their role in lymphocyte function. Cell Mol Life Sci 2012; 70:2637-56. [PMID: 23052215 DOI: 10.1007/s00018-012-1175-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 12/12/2022]
Abstract
Calcium (Ca(2+)) influx is required for the activation and function of all cells in the immune system. It is mediated mainly by store-operated Ca(2+) entry (SOCE) through Ca(2+) release-activated Ca(2+) (CRAC) channels located in the plasma membrane. CRAC channels are composed of ORAI proteins that form the channel pore and are activated by stromal interaction molecules (STIM) 1 and 2. Located in the membrane of the endoplasmic reticulum, STIM1 and STIM2 have the dual function of sensing the intraluminal Ca(2+) concentration in the ER and to activate CRAC channels. A decrease in the ER's Ca(2+) concentration induces STIM multimerization and translocation into puncta close to the plasma membrane where they bind to and activate ORAI channels. Since the identification of ORAI and STIM genes as the principal mediators of CRAC channel function, substantial advances have been achieved in understanding the molecular regulation and physiological role of CRAC channels in cells of the immune system and other organs. In this review, we discuss the mechanisms that regulate CRAC channel function and SOCE, the role of recently identified proteins and mechanisms that modulate the activation of ORAI/STIM proteins and the consequences of CRAC channel dysregulation for lymphocyte function and immunity.
Collapse
Affiliation(s)
- Patrick J Shaw
- Department of Pathology, New York University Medical Center, 550 First Avenue, SRB 316, New York, NY 10016, USA
| | | | | | | |
Collapse
|
49
|
Khalaf H, Bengtsson T. Altered T-cell responses by the periodontal pathogen Porphyromonas gingivalis. PLoS One 2012; 7:e45192. [PMID: 22984628 PMCID: PMC3440346 DOI: 10.1371/journal.pone.0045192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Several studies support an association between the chronic inflammatory diseases periodontitis and atherosclerosis with a crucial role for the periodontal pathogen Porphyromonas gingivalis. However, the interplay between this pathogen and the adaptive immune system, including T-cells, is sparsely investigated. Here we used Jurkat T-cells to determine the effects of P. gingivalis on T-cell-mediated adaptive immune responses. We show that viable P. gingivalis targets IL-2 expression at the protein level. Initial cellular events, including ROS production and [Ca(2+)](i), were elevated in response to P. gingivalis, but AP-1 and NF-κB activity dropped below basal levels and T-cells were unable to sustain stable IL-2 accumulation. IL-2 was partially restored by Leupeptin, but not by Cathepsin B Inhibitor, indicating an involvement of Rgp proteinases in the suppression of IL-2 accumulation. This was further confirmed by purified Rgp that caused a dose-dependent decrease in IL-2 levels. These results provide new insights of how this periodontal pathogen evades the host adaptive immune system by inhibiting IL-2 accumulation and thus attenuating T-cell proliferation and cellular communication.
Collapse
Affiliation(s)
- Hazem Khalaf
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | | |
Collapse
|
50
|
Becherer U, Medart MR, Schirra C, Krause E, Stevens D, Rettig J. Regulated exocytosis in chromaffin cells and cytotoxic T lymphocytes: How similar are they? Cell Calcium 2012; 52:303-12. [DOI: 10.1016/j.ceca.2012.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|