1
|
Mapindra MP, Castillo-Hernandez T, Clark H, Madsen J. Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention? Am J Physiol Lung Cell Mol Physiol 2025; 328:L179-L196. [PMID: 39662519 DOI: 10.1152/ajplung.00199.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response. What makes it more problematic is that RSV infection also tends to elicit a stronger Th2-biased immune response and drive an aberrant allergy-like inflammation. It is thus evident how RSV infections potentially pave the way for wheezing recurrences and childhood asthma later in life. Surfactant, the essential lung substance for normal breathing processes in mammals, has immunomodulatory properties including lung collectins such as Surfactant Protein-A (SP-A), which is the most abundant protein component of surfactant, and also Surfactant Protein-D (SP-D). Deficiency of SP-A and SP-D has been found to be associated with impaired pathogen clearance and exacerbated immune responses during infections. We therefore conducted a review of the literature to describe pathomechanisms of RSV infections during blunted neonatal immunity potentially facilitating allergy-like inflammatory events within the developing lungs and highlight the potential protective role of the humoral collectin SP-A to mitigate these in the "early in life" pulmonary immune system.
Collapse
Affiliation(s)
- Muhammad Pradhika Mapindra
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Tania Castillo-Hernandez
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Howard Clark
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Jens Madsen
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Mailhot-Larouche S, Celis-Preciado C, Heaney LG, Couillard S. Identifying super-responders: A review of the road to asthma remission. Ann Allergy Asthma Immunol 2025; 134:31-45. [PMID: 39383944 DOI: 10.1016/j.anai.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Asthma is a chronic respiratory disease marked by heterogeneity and variable clinical outcomes. Recent therapeutic advances have highlighted patients achieving optimal outcomes, termed "remission" or "super-response." This review evaluates the various definitions of these terms and explores how disease burden impedes the attainment of remission. We assessed multiple studies, including a recent systematic review and meta-analysis, on biologic treatments for asthma remission. Our review highlights that type 2 inflammation may be the strongest predictor of biologic response. Key comorbidities (eg, obesity and mood disorders) and behavioral factors (eg, poor adherence, improper inhalation technique, and smoking) were identified as dominant traits limiting remission. In addition, asthma burden and longer disease duration significantly restrict the potential for remission in patients with severe asthma under the current treatment paradigm. We review the potential for a "predict-and-prevent" approach, which focuses on early identification of high-risk patients with type 2 inflammation and aggressive treatment to improve long-term asthma outcomes. In conclusion, this scoping review highlights the following unmet needs in asthma remission: (1) a harmonized global definition, with better defined lung function parameters; (2) integration of nonbiologic therapies into remission strategies; and (3) a clinical trial of early biologic intervention in patients with remission-prone, very type 2-high, moderately severe asthma with clinical remission as a predefined primary end point.
Collapse
Affiliation(s)
- Samuel Mailhot-Larouche
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Carlos Celis-Preciado
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Liam G Heaney
- Centre for Experimental Medicine, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, United Kingdom
| | - Simon Couillard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Yu ZN, Fan YJ, Nguyen TV, Piao CH, Lee BH, Lee SY, Shin HS, Kim TG, Song CH, Chai OH. Undaria pinnatifida extract attenuates combined allergic rhinitis and asthma syndrome by the modulation of epithelial cell dysfunction and oxidative stress. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39719880 DOI: 10.3724/abbs.2024190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Undaria pinnatifida ( U. pinnatifida) has long been a part of the human diet and medicine. Although U. pinnatifida has been reported to have immunomodulatory, anti-inflammatory, anti-diabetic and antibacterial activities, its specific effect on patients with combined allergic rhinitis and asthma syndrome (CARAS) has not been clarified. In this study, the anti-allergic and anti-inflammatory effects of U. pinnatifida extract (UPE) are investigated in a mouse model of ovalbumin (OVA)-induced CARAS. The oral administration of UPE inhibits allergic responses by reducing OVA-specific immunoglobulin levels. As a result, the symptoms of early reactions are also improved. UPE inhibits the accumulation of inflammatory cells and attenuates the expression of Th2 cytokines in both nasal and bronchoalveolar lavage fluid. Furthermore, UPE treatment inhibits the NF-κB/MAPK signaling pathway in lung homogenates. Additionally, UPE prevents shedding of the nasal mucosal epithelium, protects the integrity of the epithelium, enhances the expression of E-cadherin at the junction of epithelial cells, and inhibits the degradation of ZO-1 and occludin in the airway epithelium. In addition, UPE ameliorates dysfunction of the nasal epithelial barrier by enhancing antioxidant properties and downregulating the expression of the inflammatory factor IL-33. These results suggest that UPE may treat CARAS by modulating epithelial cell dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Yan Jing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- School of Medicine, Liaocheng University, Liaocheng 252000, China
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Chun Hua Piao
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Tae-Geum Kim
- Department of Bio-Convergence Science, Jeongup Campus of Jeonbuk National University, Jeongup 56212, Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Institute for Medical Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Institute for Medical Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Obeagu EI, Obeagu GU, Akinleye CA. Unveiling the enigmatic roles of basophils in HIV infection: A narrative review. Medicine (Baltimore) 2024; 103:e40384. [PMID: 39496030 PMCID: PMC11537621 DOI: 10.1097/md.0000000000040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
The intricate interplay between the human immunodeficiency virus (HIV) and the immune system has long been a focal point in understanding disease progression. Among the myriad of immune cells, basophils, often overshadowed, have recently emerged as pivotal contributors to the complex immunological landscape of HIV infection. This paper aims to provide a succinct overview of the enigmatic roles of basophils in HIV pathogenesis, elucidating their multifaceted functions and implications. Basophils, conventionally perceived as minor players in immune responses, exhibit active participation in HIV infection. Their activation triggered by viral antigens, cytokines, and immune complexes orchestrates a cascade of immune events, influencing immune modulation, cytokine release, and the activation of adaptive immune cells. Furthermore, basophils function as antigen-presenting cells, potentially impacting viral dissemination and immune dysregulation. Additionally, basophils serve as crucial regulators in HIV infection through cytokine secretion, notably interleukin (IL)-4, IL-13, and IL-3, influencing immune cell differentiation, polarization, and antibody production. Their interactions with various immune cells intricately shape the immune response against HIV, impacting disease progression and immune equilibrium. Moreover, harnessing basophils as potential vaccine targets or immune modulators represents a compelling avenue for future research. In conclusion, the emerging understanding of basophils' multifaceted involvement in HIV infection challenges prior perceptions and underscores their significance in shaping immune responses and disease outcomes. This abstraction highlights the need for continued research to unlock the full potential of basophils, paving the way for novel strategies in combatting HIV/AIDS.
Collapse
|
5
|
Ehrhardt B, Roeder T, Krauss-Etschmann S. Drosophila melanogaster as an Alternative Model to Higher Organisms for In Vivo Lung Research. Int J Mol Sci 2024; 25:10324. [PMID: 39408654 PMCID: PMC11476989 DOI: 10.3390/ijms251910324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
COPD and asthma are lung diseases that cause considerable burden to more than 800 million people worldwide. As both lung diseases are so far incurable, it is mandatory to understand the mechanisms underlying disease development and progression for developing novel therapeutic approaches. Exposures to environmental cues such as cigarette smoke in earliest life are known to increase disease risks in the individual's own future. To explore the pathomechanisms leading to later airway disease, mammalian models are instrumental. However, such in vivo experiments are time-consuming and burdensome for the animals, which applies in particular to transgenerational studies. Along this line, the fruit fly Drosophila melanogaster comes with several advantages for research in this field. The short lifespan facilitates transgenerational studies. A high number of evolutionary conserved signaling pathways, together with a large toolbox for tissue-specific gene modification, has the potential to identify novel target genes involved in disease development. A well-defined airway microbiome could help to untangle interactions between disease development and microbiome composition. In the following article, Drosophila melanogaster is therefore presented and discussed as an alternative in vivo model to investigate airway diseases that can complement and/or replace models in higher organisms.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 24118 Kiel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| |
Collapse
|
6
|
Ehrhardt B, Angstmann H, Höschler B, Kovacevic D, Hammer B, Roeder T, Rabe KF, Wagner C, Uliczka K, Krauss-Etschmann S. Airway specific deregulation of asthma-related serpins impairs tracheal architecture and oxygenation in D. melanogaster. Sci Rep 2024; 14:16567. [PMID: 39019933 PMCID: PMC11255251 DOI: 10.1038/s41598-024-66752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Hanna Angstmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Beate Höschler
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Hammer
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, LungenClinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Kiel, Germany
| | - Christina Wagner
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Karin Uliczka
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany.
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
7
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Zazara DE, Giannou O, Schepanski S, Pagenkemper M, Giannou AD, Pincus M, Belios I, Bonn S, Muntau AC, Hecher K, Diemert A, Arck PC. Fetal lung growth predicts the risk for early-life respiratory infections and childhood asthma. World J Pediatr 2024; 20:481-495. [PMID: 38261172 PMCID: PMC11136800 DOI: 10.1007/s12519-023-00782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Early-life respiratory infections and asthma are major health burdens during childhood. Markers predicting an increased risk for early-life respiratory diseases are sparse. Here, we identified the predictive value of ultrasound-monitored fetal lung growth for the risk of early-life respiratory infections and asthma. METHODS Fetal lung size was serially assessed at standardized time points by transabdominal ultrasound in pregnant women participating in a pregnancy cohort. Correlations between fetal lung growth and respiratory infections in infancy or early-onset asthma at five years were examined. Machine-learning models relying on extreme gradient boosting regressor or classifier algorithms were developed to predict respiratory infection or asthma risk based on fetal lung growth. For model development and validation, study participants were randomly divided into a training and a testing group, respectively, by the employed algorithm. RESULTS Enhanced fetal lung growth throughout pregnancy predicted a lower early-life respiratory infection risk. Male sex was associated with a higher risk for respiratory infections in infancy. Fetal lung growth could also predict the risk of asthma at five years of age. We designed three machine-learning models to predict the risk and number of infections in infancy as well as the risk of early-onset asthma. The models' R2 values were 0.92, 0.90 and 0.93, respectively, underscoring a high accuracy and agreement between the actual and predicted values. Influential variables included known risk factors and novel predictors, such as ultrasound-monitored fetal lung growth. CONCLUSION Sonographic monitoring of fetal lung growth allows to predict the risk for early-life respiratory infections and asthma.
Collapse
Affiliation(s)
- Dimitra E Zazara
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251, Hamburg, Germany
- University Children's Hospital, UKE, Hamburg, Germany
| | - Olympia Giannou
- Computer Engineering and Informatics Department, Polytechnic School, University of Patras, Patras, Greece
| | - Steven Schepanski
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | | | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, UKE, Hamburg, Germany
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, UKE, Hamburg, Germany
| | - Maike Pincus
- Pediatrics and Pediatric Pneumology Practice, Berlin, Germany
| | - Ioannis Belios
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, ZMNH, UKE, Hamburg, Germany
- Hamburg Center for Translational Immunology, UKE, Hamburg, Germany
| | - Ania C Muntau
- University Children's Hospital, UKE, Hamburg, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, UKE, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, UKE, Hamburg, Germany
| | - Petra Clara Arck
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251, Hamburg, Germany.
- Hamburg Center for Translational Immunology, UKE, Hamburg, Germany.
| |
Collapse
|
9
|
Kicic-Starcevich E, Hancock DG, Iosifidis T, Agudelo-Romero P, Caparros-Martin JA, Karpievitch YV, Silva D, Turkovic L, Le Souef PN, Bosco A, Martino DJ, Kicic A, Prescott SL, Stick SM. Airway epithelium respiratory illnesses and allergy (AERIAL) birth cohort: study protocol. FRONTIERS IN ALLERGY 2024; 5:1349741. [PMID: 38666051 PMCID: PMC11043573 DOI: 10.3389/falgy.2024.1349741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to 5 years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to 6 weeks, 1, 3, and 5 years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Discussion The AERIAL study will provide a comprehensive longitudinal assessment of factors influencing the association between epithelial dysfunction and respiratory morbidity in early life, and hopefully identify novel targets for diagnosis and early intervention.
Collapse
Affiliation(s)
| | - David G. Hancock
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Thomas Iosifidis
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Patricia Agudelo-Romero
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- European Virus Bioinformatics Centre, Jena, Germany
| | | | | | - Desiree Silva
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
- Department of Paediatrics and Neonatology, Joondalup Health Campus, Joondalup, WA, Australia
- School of Medicine and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Peter N. Le Souef
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Anthony Bosco
- School of Population Health, Curtin University, Bentley, WA, Australia
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - David J. Martino
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Susan L. Prescott
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
- European Virus Bioinformatics Centre, Jena, Germany
| | - Stephen M. Stick
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
10
|
Drazen JM, Fredberg JJ. Epithelial cells crowded out in asthma. Science 2024; 384:30-31. [PMID: 38574157 DOI: 10.1126/science.ado4514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Bronchoconstriction causes epithelial cell extrusion that promotes airway inflammation.
Collapse
Affiliation(s)
- Jeffrey M Drazen
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
11
|
Bagley DC, Russell T, Ortiz-Zapater E, Stinson S, Fox K, Redd PF, Joseph M, Deering-Rice C, Reilly C, Parsons M, Brightling C, Rosenblatt J. Bronchoconstriction damages airway epithelia by crowding-induced excess cell extrusion. Science 2024; 384:66-73. [PMID: 38574138 DOI: 10.1126/science.adk2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.
Collapse
Affiliation(s)
- Dustin C Bagley
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Tobias Russell
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Sally Stinson
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | | | - Polly F Redd
- University of Utah, Salt Lake City, UT 84112, USA
| | - Merry Joseph
- University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | - Maddy Parsons
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Christopher Brightling
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| |
Collapse
|
12
|
Hayashi R, Srisomboon Y, Iijima K, Maniak PJ, Tei R, Kobayashi T, Matsunaga M, Luo H, Masuda MY, O'Grady SM, Kita H. Cholinergic sensing of allergen exposure by airway epithelium promotes type 2 immunity in the lungs. J Allergy Clin Immunol 2024; 153:793-808.e2. [PMID: 38000698 PMCID: PMC10939907 DOI: 10.1016/j.jaci.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Nonneuronal cells, including epithelial cells, can produce acetylcholine (ACh). Muscarinic ACh receptor antagonists are used clinically to treat asthma and other medical conditions; however, knowledge regarding the roles of ACh in type 2 immunity is limited. OBJECTIVE Our aim was to investigate the roles of epithelial ACh in allergic immune responses. METHODS Human bronchial epithelial (HBE) cells were cultured with allergen extracts, and their ACh production and IL-33 secretion were studied in vitro. To investigate immune responses in vivo, naive BALB/c mice were treated intranasally with different muscarinic ACh receptor antagonists and then exposed intranasally to allergens. RESULTS At steady state, HBE cells expressed cellular components necessary for ACh production, including choline acetyltransferase and organic cation transporters. Exposure to allergens caused HBE cells to rapidly release ACh into the extracellular medium. Pharmacologic or small-interfering RNA-based blocking of ACh production or autocrine action through the M3 muscarinic ACh receptors in HBE cells suppressed allergen-induced ATP release, calcium mobilization, and extracellular secretion of IL-33. When naive mice were exposed to allergens, ACh was quickly released into the airway lumen. A series of clinical M3 muscarinic ACh receptor antagonists inhibited allergen-induced IL-33 secretion and innate type 2 immune response in the mouse airways. In a preclinical murine model of asthma, an ACh receptor antagonist suppressed allergen-induced airway inflammation and airway hyperreactivity. CONCLUSIONS ACh is released quickly by airway epithelial cells on allergen exposure, and it plays an important role in type 2 immunity. The epithelial ACh system can be considered a therapeutic target in allergic airway diseases.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Yotesawee Srisomboon
- Department of Animal Science, University of Minnesota, St Paul, Minn; Department of Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Koji Iijima
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Peter J Maniak
- Department of Animal Science, University of Minnesota, St Paul, Minn; Department of Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Rinna Tei
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Takao Kobayashi
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Mayumi Matsunaga
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Huijun Luo
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Mia Y Masuda
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minn; Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, Ariz
| | - Scott M O'Grady
- Department of Animal Science, University of Minnesota, St Paul, Minn; Department of Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz.
| |
Collapse
|
13
|
Tang H, Guo Y, Gan S, Chen Z, Dong M, Lin L, Chen H, Ji X, Xian M, Shi X, Tao A, Lv Y, Yao L, Chen R, Li S, Li J. GLUT1 mediates the release of HMGB1 from airway epithelial cells in mixed granulocytic asthma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167040. [PMID: 38281711 DOI: 10.1016/j.bbadis.2024.167040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Asthma is quite heterogenous and can be categorized as eosinophilic, mixed granulocytic (presence of both eosinophils and neutrophils in the airways) and neutrophilic. Clinically, mixed granulocytic asthma (MGA) often tends to be severe and requires large doses of corticosteroids. High mobility group box 1 (HMGB1) is one of the epithelium-derived alarmins that contributes to type 2 inflammation and asthma. This study was aimed to investigate the role of glucose transporter 1 (GLUT1) in modulation of airway epithelial HMGB1 production in MGA. Induced sputum and bronchial biopsy specimens were obtained from healthy subjects and asthma patients. BALB/c mice, the airway epithelial cell line BEAS-2B, or primary human bronchial epithelial cells (HBECs) were immunized with allergens. Intracellular and extracellular HMGB1 were both detected. The role of GLUT1 was assessed by using a pharmacological antagonist BAY876. MGA patients have a significant higher sputum HMGB1 level than the health and subjects with other inflammatory phenotypes. Nuclear-to-cytoplasmic translocation of HMGB1 was also observed in the bronchial epithelia. Allergen exposure markedly induced GLUT1 expression in murine lungs and cultured epithelial cells. Pharmacological antagonism of GLUT1 with BAY876 dramatically decreased airway hyperresponsiveness, neutrophil and eosinophil accumulation, as well as type 2 inflammation in murine models of MGA. Besides, the allergen-induced up-regulation of HMGB1 was also partly recovered by BAY876, accompanied by inhibited secretion into the airway lumen. In vitro, treatment with BAY876 relieved the allergen-induced over-expression and secretion of HMGB1 in airway epithelia. Taken together, our data indicated that GLUT1 mediates bronchial epithelial HMGB1 release in MGA.
Collapse
Affiliation(s)
- Haixiong Tang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yubiao Guo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sudan Gan
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zemin Chen
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meihua Dong
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqin Lin
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huifang Chen
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Ji
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanhua Lv
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Gongdong, China
| | - Lihong Yao
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Lee E, Lee SY, Kim HB, Yang SI, Yoon J, Suh DI, Oh HY, Ahn K, Kim KW, Shin YH, Hong SJ. Insights from the COCOA birth cohort: The origins of childhood allergic diseases and future perspectives. Allergol Int 2024; 73:3-12. [PMID: 37752021 DOI: 10.1016/j.alit.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The ongoing COhort for Childhood Origin of Asthma and allergic diseases (COCOA) study is a prospective birth cohort investigating the origin and natural courses of childhood allergic diseases, including atopic dermatitis, food allergy, allergic rhinitis and asthma, with long-term prognosis. Initiated under the premise that allergic diseases result from a complex interplay of immune development alterations, environmental exposures, and host susceptibility, the COCOA study explores these dynamic interactions during prenatal and postnatal periods, framed within the hygiene and microbial hypotheses alongside the developmental origins of health and disease (DOHaD) hypothesis. The scope of the COCOA study extends to genetic predispositions, indoor and outdoor environmental variables affecting mothers and their offsprings such as outdoor and indoor air pollution, psychological factors, diets, and the microbiomes of skin, gut, and airway. We have embarked on in-depth investigations of diverse risk factors and the pathophysiological underpinnings of allergic diseases. By employing multi-omics approaches-proteomics, transcriptomics, and metabolomics-we gain deeper insights into the distinct pathophysiological processes across various endotypes of childhood allergic diseases, incorporating the exposome using extensive resources within the COCOA study. Integration with large-scale datasets, such as national health insurance records, enhances robustness and mitigates potential limitations inherent to birth cohort studies. As part of global networks focused on childhood allergic diseases, the COCOA study fosters collaborative research across multiple cohorts. The findings from the COCOA study are instrumental in informing precision medicine strategies for childhood allergic diseases, underpinning the establishment of disease trajectories.
Collapse
Affiliation(s)
- Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Song-I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Jisun Yoon
- Department of Pediatrics, Chung-Ang University College of Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, South Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Hea Young Oh
- Department of Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn Ho Shin
- Department of Pediatrics, The Catholic University of Korea, Yeouido St. Mary's Hospital, Seoul, South Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Maguire TJA, Yung S, Ortiz-Zapater E, Kayode OS, Till S, Corrigan C, Siew LQC, Knock GA, Woszczek G. Sphingosine-1-phosphate induces airway smooth muscle hyperresponsiveness and proliferation. J Allergy Clin Immunol 2023; 152:1131-1140.e6. [PMID: 37474025 DOI: 10.1016/j.jaci.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND The emerging role of sphingosine-1-phosphate (S1P) in regulating smooth muscle functions has led to the exploration of the possibility that this sphingolipid could represent a potential therapeutic target in asthma and other lung diseases. Several studies in animal surrogates have suggested a role for S1P-mediated signaling in the regulation of airway smooth muscle (ASM) contraction, airway hyperresponsiveness, and airway remodeling, but evidence from human studies is lacking. OBJECTIVE We sought to compare the responsiveness of the airways to S1P in healthy and asthmatic individuals in vivo, in isolated human airways ex vivo, and in murine airways dissected from healthy and house dust mite (HDM)-sensitized animals. METHODS Airway responsiveness was measured by spirometry during inhalation challenges and by wire myography in airways isolated from human and mouse lungs. Thymidine incorporation and calcium mobilization assays were used to study human ASM cell responses. RESULTS S1P did not induce contraction of airways isolated from healthy and HDM-exposed mice, nor in human airways. Similarly, there was no airway constriction observed in healthy and asthmatic subjects in response to increasing concentrations of inhaled S1P. However, a 30-minute exposure to S1P induced a significant concentration-dependent enhancement of airway reactivity to methacholine and to histamine in murine and human airways, respectively. HDM-sensitized mice demonstrated a significant increase in methacholine responsiveness, which was not further enhanced by S1P treatment. S1P also concentration-dependently enhanced proliferation of human ASM cells, an effect mediated through S1P receptor type 2, as shown by selective antagonism and S1P receptor type 2 small-interfering RNA knockdown. CONCLUSIONS Our data suggest that S1P released locally into the airways may be involved in the regulation of ASM hyperresponsiveness and hyperplasia, defining a novel target for future therapies.
Collapse
Affiliation(s)
- Thomas J A Maguire
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Stephanie Yung
- Department of Adult Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Elena Ortiz-Zapater
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom; Department of Biochemistry and Molecular Biology, Faculty of Medicina-IIS INCLIVA, University of Valencia, Valencia, Spain
| | - O Stephanie Kayode
- Department of Adult Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Stephen Till
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Chris Corrigan
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Leonard Q C Siew
- Department of Adult Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Gregory A Knock
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Grzegorz Woszczek
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| |
Collapse
|
16
|
Morin A, Thompson EE, Helling BA, Shorey-Kendrick LE, Faber P, Gebretsadik T, Bacharier LB, Kattan M, O'Connor GT, Rivera-Spoljaric K, Wood RA, Barnes KC, Mathias RA, Altman MC, Hansen K, McEvoy CT, Spindel ER, Hartert T, Jackson DJ, Gern JE, McKennan CG, Ober C. A functional genomics pipeline to identify high-value asthma and allergy CpGs in the human methylome. J Allergy Clin Immunol 2023; 151:1609-1621. [PMID: 36754293 PMCID: PMC10859971 DOI: 10.1016/j.jaci.2022.12.828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND DNA methylation of cytosines at cytosine-phosphate-guanine (CpG) dinucleotides (CpGs) is a widespread epigenetic mark, but genome-wide variation has been relatively unexplored due to the limited representation of variable CpGs on commercial high-throughput arrays. OBJECTIVES To explore this hidden portion of the epigenome, this study combined whole-genome bisulfite sequencing with in silico evidence of gene regulatory regions to design a custom array of high-value CpGs. This study focused on airway epithelial cells from children with and without allergic asthma because these cells mediate the effects of inhaled microbes, pollution, and allergens on asthma and allergic disease risk. METHODS This study identified differentially methylated regions from whole-genome bisulfite sequencing in nasal epithelial cell DNA from a total of 39 children with and without allergic asthma of both European and African ancestries. This study selected CpGs from differentially methylated regions, previous allergy or asthma epigenome-wide association studies (EWAS), or genome-wide association study loci, and overlapped them with functional annotations for inclusion on a custom Asthma&Allergy array. This study used both the custom and EPIC arrays to perform EWAS of allergic sensitization (AS) in nasal epithelial cell DNA from children in the URECA (Urban Environment and Childhood Asthma) birth cohort and using the custom array in the INSPIRE [Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure] birth cohort. Each CpG on the arrays was assigned to its nearest gene and its promotor capture Hi-C interacting gene and performed expression quantitative trait methylation (eQTM) studies for both sets of genes. RESULTS Custom array CpGs were enriched for intermediate methylation levels compared to EPIC CpGs. Intermediate methylation CpGs were further enriched among those associated with AS and for eQTMs on both arrays. CONCLUSIONS This study revealed signature features of high-value CpGs and evidence for epigenetic regulation of genes at AS EWAS loci that are robust to race/ethnicity, ascertainment, age, and geography.
Collapse
Affiliation(s)
- Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | | | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Pieter Faber
- Genomics Core, University of Chicago, Chicago, Ill
| | - Tebeb Gebretsadik
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Mass
| | | | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | | | | | - Matthew C Altman
- Systems Immunology Division, Benaroya Research Institute Systems, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash
| | - Kasper Hansen
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Cindy T McEvoy
- Department of Pediatrics, Oregon Health and Science University, Portland, Ore
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Tina Hartert
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Chris G McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pa.
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| |
Collapse
|
17
|
Bossen J, Kühle JP, Roeder T. The tracheal immune system of insects - A blueprint for understanding epithelial immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103960. [PMID: 37235953 DOI: 10.1016/j.ibmb.2023.103960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The unique design of respiratory organs in multicellular organisms makes them prone to infection by pathogens. To cope with this vulnerability, highly effective local immune systems evolved that are also operative in the tracheal system of insects. Many pathogens and parasites (including viruses, bacteria, fungi, and metazoan parasites) colonize the trachea or invade the host via this route. Currently, only two modules of the tracheal immune system have been characterized in depth: 1) Immune deficiency pathway-mediated activation of antimicrobial peptide gene expression and 2) local melanization processes that protect the structure from wounding. There is an urgent need to increase our understanding of the architecture of tracheal immune systems, especially regarding those mechanisms that enable the maintenance of immune homeostasis. This need for new studies is particularly exigent for species other than Drosophila.
Collapse
Affiliation(s)
- Judith Bossen
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Jan-Philip Kühle
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
18
|
Liu XF, Shao JH, Liao YT, Wang LN, Jia Y, Dong PJ, Liu ZZ, He DD, Li C, Zhang X. Regulation of short-chain fatty acids in the immune system. Front Immunol 2023; 14:1186892. [PMID: 37215145 PMCID: PMC10196242 DOI: 10.3389/fimmu.2023.1186892] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
A growing body of research suggests that short-chain fatty acids (SCFAs), metabolites produced by intestinal symbiotic bacteria that ferment dietary fibers (DFs), play a crucial role in the health status of symbiotes. SCFAs act on a variety of cell types to regulate important biological processes, including host metabolism, intestinal function, and immune function. SCFAs also affect the function and fate of immune cells. This finding provides a new concept in immune metabolism and a better understanding of the regulatory role of SCFAs in the immune system, which impacts the prevention and treatment of disease. The mechanism by which SCFAs induce or regulate the immune response is becoming increasingly clear. This review summarizes the different mechanisms through which SCFAs act in cells. According to the latest research, the regulatory role of SCFAs in the innate immune system, including in NLRP3 inflammasomes, receptors of TLR family members, neutrophils, macrophages, natural killer cells, eosinophils, basophils and innate lymphocyte subsets, is emphasized. The regulatory role of SCFAs in the adaptive immune system, including in T-cell subsets, B cells, and plasma cells, is also highlighted. In addition, we discuss the role that SCFAs play in regulating allergic airway inflammation, colitis, and osteoporosis by influencing the immune system. These findings provide evidence for determining treatment options based on metabolic regulation.
Collapse
Affiliation(s)
- Xiao-feng Liu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Jia-hao Shao
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Yi-Tao Liao
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Li-Ning Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuan Jia
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Peng-jun Dong
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Zhi-zhong Liu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Dan-dan He
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Chao Li
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
19
|
Kicic-Starcevich E, Hancock DG, Iosifidis T, Agudelo-Romero P, Caparros-Martin JA, Silva D, Turkovic L, Le Souef PN, Bosco A, Martino DJ, Kicic A, Prescott SL, Stick SM. Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) birth cohort: study protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.29.23289314. [PMID: 37205501 PMCID: PMC10187351 DOI: 10.1101/2023.04.29.23289314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Introduction Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods and Analysis The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to five years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to six weeks, one, three, and five years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Ethics and Dissemination Ethical approval has been obtained from Ramsey Health Care HREC WA-SA (#1908). Results will be disseminated through open-access peer-reviewed manuscripts, conference presentations, and through different media channels to consumers, ORIGINS families, and the wider community.
Collapse
|
20
|
Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol 2023; 151:431-446.e16. [PMID: 36243221 DOI: 10.1016/j.jaci.2022.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Airway epithelial cells (AECs) with impaired barrier function contribute to airway remodeling through the activation of epithelial-mesenchymal trophic units (EMTUs). Although the decreased expression of ITGB4 in AECs is implicated in the pathogenesis of asthma, how ITGB4 deficiency impacts airway remodeling remains obscure. OBJECTIVE This study aims to determine the effect of epithelial ITGB4 deficiency on the barrier function of AECs, asthma susceptibility, airway remodeling, and EMTU activation. METHODS AEC-specific ITGB4 conditional knockout mice (ITGB4-/-) were generated and an asthma model was employed by the sensitization and challenge of house dust mite (HDM). EMTU activation-related growth factors were examined in ITGB4-silenced primary human bronchial epithelial cells of healthy subjects after HDM stimulation. Dexamethasone, the inhibitors of JNK phosphorylation or FGF2 were administered for the identification of the molecular mechanisms of airway remodeling in HDM-exposed ITGB4-/- mice. RESULTS ITGB4 deficiency in AECs enhanced asthma susceptibility and airway remodeling by disrupting airway epithelial barrier function. Aggravated airway remodeling in HDM-exposed ITGB4-/- mice was induced through the enhanced activation of EMTU mediated by Src homology domain 2-containing protein tyrosine phosphatase 2/c-Jun N-terminal kinase/Jun N-terminal kinase-dependent transcription factor/FGF2 (SHP2/JNK/c-Jun/FGF2) signaling pathway, which was partially independent of airway inflammation. Both JNK and FGF2 inhibitors significantly inhibited the aggravated airway remodeling and EMTU activation in HDM-exposed ITGB4-/- mice. CONCLUSIONS Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model of asthma through enhanced EMTU activation that is regulated by the SHP2/JNK/c-Jun/FGF2 pathway.
Collapse
|
21
|
Tu W, Xiao X, Lu J, Liu X, Wang E, Yuan R, Wan R, Shen Y, Xu D, Yang P, Gong M, Gao P, Huang SK. Vanadium exposure exacerbates allergic airway inflammation and remodeling through triggering reactive oxidative stress. Front Immunol 2023; 13:1099509. [PMID: 36776398 PMCID: PMC9912158 DOI: 10.3389/fimmu.2022.1099509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023] Open
Abstract
Background Metal components of environmental PM2.5 are associated with the exacerbation of allergic diseases like asthma. In our recent hospital-based population study, exposure to vanadium is shown to pose a significant risk for current asthma, but the causal relationship and its underlying molecular mechanisms remain unclear. Objective We sought to determine whether vanadium co-exposure can aggravate house dust mite (HDM)-induced allergic airway inflammation and remodeling, as well as investigate its related mechanisms. Methods Asthma mouse model was generated by using either vanadium pentoxide (V2O5) or HDM alone or in combination, in which the airway inflammation and remodeling was investigated. The effect of V2O5 co-exposure on HDM-induced epithelial-derived cytokine release and oxidative stress (ROS) generation was also examined by in vitro analyses. The role of ROS in V2O5 co-exposure-induced cytokine release and airway inflammation and remodeling was examined by using inhibitors or antioxidant. Results Compared to HDM alone, V2O5 co-exposure exacerbated HDM-induced airway inflammation with increased infiltration of inflammatory cells and elevated levels of Th1/Th2/Th17 and epithelial-derived (IL-25, TSLP) cytokines in the bronchoalveolar lavage fluids (BALFs). Intriguingly, V2O5 co-exposure also potentiated HDM-induced airway remodeling. Increased cytokine release was further supported by in vitro analysis in human bronchial epithelial cells (HBECs). Mechanistically, ROS, particularly mitochondrial-derived ROS, was significantly enhanced in HBECs after V2O5 co-exposure as compared to HDM challenge alone. Inhibition of ROS with its inhibitor N-acetyl-L-cysteine (NAC) and mitochondrial-targeted antioxidant MitoTEMPO blocked the increased epithelial release caused by V2O5 co-exposure. Furthermore, vitamin D3 as an antioxidant was found to inhibit V2O5 co-exposure-induced increased airway epithelial cytokine release and airway remodeling. Conclusions Our findings suggest that vanadium co-exposure exacerbates epithelial ROS generation that contribute to increased allergic airway inflammation and remodeling.
Collapse
Affiliation(s)
- Wei Tu
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China,Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiahua Lu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaoyu Liu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Eryi Wang
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ruyi Yuan
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Rongjun Wan
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingchun Shen
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Damo Xu
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Pingchang Yang
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Miao Gong
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Shau-Ku Huang, ; Peisong Gao,
| | - Shau-Ku Huang
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan,*Correspondence: Shau-Ku Huang, ; Peisong Gao,
| |
Collapse
|
22
|
Tu W, Xiao X, Lu J, Liu X, Wang E, Yuan R, Wan R, Shen Y, Xu D, Yang P, Gong M, Gao P, Huang SK. Vanadium exposure exacerbates allergic airway inflammation and remodeling through triggering reactive oxidative stress. Front Immunol 2023. [DOI: 10.3389/fimmu.2023.1099509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BackgroundMetal components of environmental PM2.5 are associated with the exacerbation of allergic diseases like asthma. In our recent hospital-based population study, exposure to vanadium is shown to pose a significant risk for current asthma, but the causal relationship and its underlying molecular mechanisms remain unclear.ObjectiveWe sought to determine whether vanadium co-exposure can aggravate house dust mite (HDM)-induced allergic airway inflammation and remodeling, as well as investigate its related mechanisms.MethodsAsthma mouse model was generated by using either vanadium pentoxide (V2O5) or HDM alone or in combination, in which the airway inflammation and remodeling was investigated. The effect of V2O5 co-exposure on HDM-induced epithelial-derived cytokine release and oxidative stress (ROS) generation was also examined by in vitro analyses. The role of ROS in V2O5 co-exposure-induced cytokine release and airway inflammation and remodeling was examined by using inhibitors or antioxidant.ResultsCompared to HDM alone, V2O5 co-exposure exacerbated HDM-induced airway inflammation with increased infiltration of inflammatory cells and elevated levels of Th1/Th2/Th17 and epithelial-derived (IL-25, TSLP) cytokines in the bronchoalveolar lavage fluids (BALFs). Intriguingly, V2O5 co-exposure also potentiated HDM-induced airway remodeling. Increased cytokine release was further supported by in vitro analysis in human bronchial epithelial cells (HBECs). Mechanistically, ROS, particularly mitochondrial-derived ROS, was significantly enhanced in HBECs after V2O5 co-exposure as compared to HDM challenge alone. Inhibition of ROS with its inhibitor N-acetyl-L-cysteine (NAC) and mitochondrial-targeted antioxidant MitoTEMPO blocked the increased epithelial release caused by V2O5 co-exposure. Furthermore, vitamin D3 as an antioxidant was found to inhibit V2O5 co-exposure-induced increased airway epithelial cytokine release and airway remodeling.ConclusionsOur findings suggest that vanadium co-exposure exacerbates epithelial ROS generation that contribute to increased allergic airway inflammation and remodeling.
Collapse
|
23
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
24
|
Wang M, Deng R. Effects of carbon black nanoparticles and high humidity on the lung metabolome in Balb/c mice with established allergic asthma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65100-65111. [PMID: 35484453 DOI: 10.1007/s11356-022-20349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
In respiratory diseases, the induction of allergic asthma has gradually aroused public concerns. Co-exposures of environmental risk factors such as nanoparticles and high humidity could play important roles in the development of allergic asthma. However, the relevant researches are still lacking and the involved mechanisms, especially metabolic changes, remain unclear. We took the lead in studying the combined induction effect and underlying mechanisms of carbon black nanoparticles (CB NPs) and high humidity on allergic asthma. In this work, murine models of allergic asthma were established with ovalbumin under the single and combined exposures of 15 μg/kg CB NPs and 90% relative humidity. The two risk factors, particularly their co-exposure, exhibited adjuvant effect on airway hyperresponsiveness, remodeling, and inflammation in Balb/c mice. Untargeted metabolomics identified the potential biomarkers in lung for asthma occurrence and for asthma exacerbation caused by CB NPs and high humidity. The significantly dysregulated metabolic pathways in asthmatic mice were proposed, and the disturbed metabolic pathways under the exposures of CB NPs and/or high humidity were mainly implicated in asthma symptoms. This work sheds light on the understanding for health risks of NP pollutions and high environmental humidity and contributes to useful biomarker identification and asthma control.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
25
|
Chen J, Oshima T, Huang X, Tomita T, Fukui H, Miwa H. Esophageal Mucosal Permeability as a Surrogate Measure of Cure in Eosinophilic Esophagitis. J Clin Med 2022; 11:jcm11144246. [PMID: 35888006 PMCID: PMC9319696 DOI: 10.3390/jcm11144246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the relationship of esophageal epithelial permeability with mast cell infiltration and IgG4 deposits as well as chemokine levels in eosinophilic esophagitis (EoE) patients before and after treatment. Biopsies from controls and EoE patients before and after treatment were analyzed. Hematoxylin and eosin staining was used to show eosinophil infiltration. Paracellular permeability of the esophageal epithelium was assessed using surface biotinylation. Immunohistochemical staining was performed to examine mast cell infiltration and IgG4 deposits. Gene expression of chemokines was evaluated by qRT-PCR. Esophageal epithelial infiltration of mast cells, IgG4 deposits, and permeability were significantly increased in EoE patients. Levels of interleukin-13, calpain-14, and eotaxin-3 mRNAs were significantly upregulated, while filaggrin, serine peptidase inhibitor Kazal type 7 (SPINK7), and involucrin mRNAs were significantly downregulated in EoE patients. In patients achieving histologic remission diagnosed by eosinophil counts, a subset of EoE patients with unchanged permeability after treatment showed increases in mast cell infiltration, IgG4 deposits, and interleukin-13, calpain-14, filaggrin, and SPINK7 expression, with decreased eotaxin-3 and involucrin. Other EoE patients with decreased permeability displayed decreased eotaxin-3, involucrin, and mast cell infiltration, no IgG4 deposits, and increased IL-13, calpain-14, filaggrin, and SPINK7. Increased permeability of the esophagus in EoE patients without eosinophil infiltration after treatment was associated with mast cell infiltration and IgG4 deposits.
Collapse
|
26
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
27
|
Smith AM, Ramirez RM, Harper N, Jimenez F, Branum AP, Meunier JA, Pandranki L, Carrillo A, Winter C, Winter L, Rather CG, Ramirez DA, Andrews CP, Restrepo MI, Maselli DJ, Pugh JA, Clark RA, Lee GC, Moreira AG, Manoharan MS, Okulicz JF, Jacobs RL, Ahuja SK. Large-scale provocation studies identify maladaptive responses to ubiquitous aeroallergens as a correlate of severe allergic rhinoconjunctivitis and asthma. Allergy 2022; 77:1797-1814. [PMID: 34606106 PMCID: PMC9298287 DOI: 10.1111/all.15124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Allergic asthma (AA) and allergic rhinoconjunctivitis (ARC) are common comorbid environmentally triggered diseases. We hypothesized that severe AA/ARC reflects a maladaptive or unrestrained response to ubiquitous aeroallergens. METHODS We performed provocation studies wherein six separate cohorts of persons (total n = 217) with ARC, with or without AA, were challenged once or more with fixed concentrations of seasonal or perennial aeroallergens in an aeroallergen challenge chamber (ACC). RESULTS Aeroallergen challenges elicited fully or partially restrained vs. unrestrained evoked symptom responsiveness, corresponding to the resilient and adaptive vs. maladaptive AA/ARC phenotypes, respectively. The maladaptive phenotype was evoked more commonly during challenge with a non-endemic versus endemic seasonal aeroallergen. In an AA cohort, symptom responses evoked after house dust mite (HDM) challenges vs. recorded in the natural environment were more accurate and precise predictors of asthma severity and control, lung function (FEV1), and mechanistic correlates of maladaptation. Correlates included elevated levels of peripheral blood CD4+ and CD8+ T-cells, eosinophils, and T-cell activation, as well as gene expression proxies for ineffectual epithelial injury/repair responses. Evoked symptom severity after HDM challenge appeared to be more closely related to levels of CD4+ and CD8+ T-cells than eosinophils, neutrophils, or HDM-specific IgE. CONCLUSIONS Provocation studies support the concept that resilience, adaptation, and maladaptation to environmental disease triggers calibrate AA/ARC severity. Despite the ubiquity of aeroallergens, in response to these disease triggers in controlled settings (ie, ACC), most atopic persons manifest the resilient or adaptive phenotype. Thus, ARC/AA disease progression may reflect the failure to preserve the resilient or adaptive phenotype. The triangulation of CD8+ T-cell activation, airway epithelial injury/repair processes and maladaptation in mediating AA disease severity needs more investigation.
Collapse
|
28
|
Weaver AK, Head JR, Gould CF, Carlton EJ, Remais JV. Environmental Factors Influencing COVID-19 Incidence and Severity. Annu Rev Public Health 2022; 43:271-291. [PMID: 34982587 PMCID: PMC10044492 DOI: 10.1146/annurev-publhealth-052120-101420] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging evidence supports a link between environmental factors-including air pollution and chemical exposures, climate, and the built environment-and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and coronavirus disease 2019 (COVID-19) susceptibility and severity. Climate, air pollution, and the built environment have long been recognized to influence viral respiratory infections, and studies have established similar associations with COVID-19 outcomes. More limited evidence links chemical exposures to COVID-19. Environmental factors were found to influence COVID-19 through four major interlinking mechanisms: increased risk of preexisting conditions associated with disease severity; immune system impairment; viral survival and transport; and behaviors that increase viral exposure. Both data and methodologic issues complicate the investigation of these relationships, including reliance on coarse COVID-19 surveillance data; gaps in mechanistic studies; and the predominance of ecological designs. We evaluate the strength of evidence for environment-COVID-19 relationships and discuss environmental actions that might simultaneously address the COVID-19 pandemic, environmental determinants of health, and health disparities.
Collapse
Affiliation(s)
- Amanda K Weaver
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA; ,
| | - Jennifer R Head
- Department of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA;
| | - Carlos F Gould
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA;
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, Colorado, USA;
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA; ,
| |
Collapse
|
29
|
Associations of early-life pet ownership with asthma and allergic sensitization: a meta-analysis of >77,000 children from the EU Child Cohort Network. J Allergy Clin Immunol 2022; 150:82-92. [PMID: 35150722 DOI: 10.1016/j.jaci.2022.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Studies examining associations of early-life cat and dog ownership with childhood asthma have reported inconsistent results. Several factors could explain these inconsistencies, including type of pet, timing and degree of exposure. OBJECTIVE To study associations of early-life cat and dog ownership with school-age asthma, including the role of type (cat versus dog), timing (never, prenatal or early childhood) and degree (number) of ownership, and the role of allergic sensitisation. METHODS We used harmonised data from 77,434 mother-child dyads aged 5-11 years from nine birth cohorts in the EU Child Cohort Network. Associations were examined through the DataSHIELD platform using adjusted logistic regression models, fitted separately for each cohort and combined using random-effects meta-analysis. RESULTS Early-life cat and dog ownership ranged between 12-45% and 7-47% respectively, and prevalence of asthma between 2-20%. There was no overall association between either cat or dog ownership and asthma (OR: 0.97 (95% CI: 0.87-1.09) and 0.92 (0.85-1.01), respectively). Timing and degree of ownership did not strongly influence associations. Cat and dog ownership were also not associated with cat- and dog-specific allergic sensitisation (OR: 0.92 (0.75-1.13) and 0.93 (0.57-1.54), respectively). However, cat- and dog-specific allergic sensitisation were strongly associated with school-age asthma (OR: 6.69 (4.91-9.10) and 5.98 (3.14-11.36), respectively). There was also some indication of an interaction between ownership and sensitisation, suggesting that ownership may exacerbate the risks associated with pet-specific sensitisation, but offer some protection against asthma in the absence of sensitisation. CONCLUSION Our findings do not support early-life cat and dog ownership in themselves increasing the risk of school-age asthma, but suggest that ownership may potentially exacerbate the risks associated with cat- and dog-specific allergic sensitisation.
Collapse
|
30
|
Gong N, Shi L, Bing X, Li H, Hu H, Zhang P, Yang H, Guo N, Du H, Xia M, Liu C. S100A4/TCF Complex Transcription Regulation Drives Epithelial-Mesenchymal Transition in Chronic Sinusitis Through Wnt/GSK-3β/β-Catenin Signaling. Front Immunol 2022; 13:835888. [PMID: 35154161 PMCID: PMC8832002 DOI: 10.3389/fimmu.2022.835888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is thought to be involved in the tissue remodeling and long-term inflammatory process of chronic sinusitis (CRS), but the driving mechanism is still unclear. Using high-resolution mass spectrometry, we performed a proteomic screen of CRS nasal mucosal tissue to identify differentially expressed proteins. Data are available via ProteomeXchange with identifier PXD030884. Specifically, we identified S100 calcium binding protein A4 (S100A4), an effective factor in inflammation-related diseases, and its downstream protein closely related to tissue fibrosis collagen type I alpha 1 chain (COL1A1), which suggested its involvement in nasal mucosal tissue remodeling. In addition, stimulation of human nasal epithelial cells (HNEpCs) with lipopolysaccharide (LPS) mimicked the inflammatory environment of CRS and showed that S100A4 is involved in regulating EMT and thus accelerating tissue remodeling in the nasal mucosa, both in terms of increased cell motility and overexpression of mesenchymal-type proteins. Additionally, we further investigated the regulation mechanism of S100A4 involved in EMT in CRS. Our research results show that in the inflammatory environment of CRS nasal mucosal epithelial cells, TCF-4 will target to bind to S100A4 and regulate its transcription. The transcription of S100A4 in turn affects the execution of the important signaling pathway in EMT, the Wnt/GSK-3β/β-catenin pathway, through the TCF-4/β-catenin complex. In conclusion, this study confirmed that the expression of S100A4 was significantly increased during the progressive EMT process of CRS mucosal epithelial cells, and revealed that the transcriptional regulation of S100A4 plays an important role in the occurrence and development of EMT. This finding will help us to better understand the pathogenesis behind the remodeling in CRS patients, and identify target molecules for the treatment of CRS.
Collapse
Affiliation(s)
- Ningyue Gong
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Shi
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Houyang Hu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pan Zhang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huiming Yang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjie Du
- Department of Biotechnology Research and Development, Qilu Pharmaceutical, Co.Ltd, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Ming Xia, ; Chengcheng Liu,
| | - Chengcheng Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Ming Xia, ; Chengcheng Liu,
| |
Collapse
|
31
|
Fang L, Roth M. Airway Wall Remodeling in Childhood Asthma-A Personalized Perspective from Cell Type-Specific Biology. J Pers Med 2021; 11:jpm11111229. [PMID: 34834581 PMCID: PMC8625708 DOI: 10.3390/jpm11111229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Airway wall remodeling is a pathology occurring in chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease, and fibrosis. In 2017, the American Thoracic Society released a research statement highlighting the gaps in knowledge and understanding of airway wall remodeling. The four major challenges addressed in this statement were: (i) the lack of consensus to define “airway wall remodeling” in different diseases, (ii) methodologic limitations and inappropriate models, (iii) the lack of anti-remodeling therapies, and (iv) the difficulty to define endpoints and outcomes in relevant studies. This review focuses on the importance of cell-cell interaction, especially the bronchial epithelium, in asthma-associated airway wall remodeling. The pathology of “airway wall remodeling” summarizes all structural changes of the airway wall without differentiating between different pheno- or endo-types of asthma. Indicators of airway wall remodeling have been reported in childhood asthma in the absence of any sign of inflammation; thus, the initiation event remains unknown. Recent studies have implied that the interaction between the epithelium with immune cells and sub-epithelial mesenchymal cells is modified in asthma by a yet unknown epigenetic mechanism during early childhood.
Collapse
|
32
|
Lee PH, Park S, Lee YG, Choi SM, An MH, Jang AS. The Impact of Environmental Pollutants on Barrier Dysfunction in Respiratory Disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:850-862. [PMID: 34734504 PMCID: PMC8569032 DOI: 10.4168/aair.2021.13.6.850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Respiratory epithelial cells form a selective barrier between the outside environment and underlying tissues. Epithelial cells are polarized and form specialized cell-cell junctions, known as the apical junctional complex (AJC). Assembly and disassembly of the AJC regulates epithelial morphogenesis and remodeling processes. The AJC consists of tight and adherens junctions, functions as a barrier and boundary, and plays a role in signal transduction. Endothelial junction proteins play important roles in tissue integrity and vascular permeability, leukocyte extravasation, and angiogenesis. Air pollutants such as particulate matter, ozone, and biologic contaminants penetrate deep into the airways, reaching the bronchioles and alveoli before entering the bloodstream to trigger airway inflammation. Pollutants accumulating in the lungs exacerbate the symptoms of respiratory diseases, including asthma and chronic obstructive lung disease. Biological contaminants include bacteria, viruses, animal dander and cat saliva, house dust mites, cockroaches, and pollen. Allergic inflammation develops in tissues such as the lung and skin with large epithelial surface areas exposed to the environment. Barrier dysfunction in the lung allows allergens and environmental pollutants to activate the epithelium and produce cytokines that promote the induction and development of immune responses. In this article, we review the impact of environmental pollutants on the cell barrier in respiratory diseases.
Collapse
Affiliation(s)
- Pureun-Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Shinhee Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Yun-Gi Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Seon-Muk Choi
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Min-Hyeok An
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
33
|
Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol Rev 2021; 73:233-262. [PMID: 34716226 DOI: 10.1124/pharmrev.121.000300] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrolides are among the most widely prescribed broad spectrum antibacterials, particularly for respiratory infections. It is now recognized that these drugs, in particular azithromycin, also exert time-dependent immunomodulatory actions that contribute to their therapeutic benefit in both infectious and other chronic inflammatory diseases. Their increased chronic use in airway inflammation and, more recently, of azithromycin in COVID-19, however, has led to a rise in bacterial resistance. An additional crucial aspect of chronic airway inflammation, such as chronic obstructive pulmonary disease, as well as other inflammatory disorders, is the loss of epithelial barrier protection against pathogens and pollutants. In recent years, azithromycin has been shown with time to enhance the barrier properties of airway epithelial cells, an action that makes an important contribution to its therapeutic efficacy. In this article, we review the background and evidence for various immunomodulatory and time-dependent actions of macrolides on inflammatory processes and on the epithelium and highlight novel nonantibacterial macrolides that are being studied for immunomodulatory and barrier-strengthening properties to circumvent the risk of bacterial resistance that occurs with macrolide antibacterials. We also briefly review the clinical effects of macrolides in respiratory and other inflammatory diseases associated with epithelial injury and propose that the beneficial epithelial effects of nonantibacterial azithromycin derivatives in chronic inflammation, even given prophylactically, are likely to gain increasing attention in the future. SIGNIFICANCE STATEMENT: Based on its immunomodulatory properties and ability to enhance the protective role of the lung epithelium against pathogens, azithromycin has proven superior to other macrolides in treating chronic respiratory inflammation. A nonantibiotic azithromycin derivative is likely to offer prophylactic benefits against inflammation and epithelial damage of differing causes while preserving the use of macrolides as antibiotics.
Collapse
Affiliation(s)
- Jennifer A Kricker
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Clive P Page
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Fridrik Runar Gardarsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Olafur Baldursson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Michael J Parnham
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| |
Collapse
|
34
|
Ban GY, Kim SH, Park HS. Persistent Eosinophilic Inflammation in Adult Asthmatics with High Serum and Urine Levels of Leukotriene E 4. J Asthma Allergy 2021; 14:1219-1230. [PMID: 34675552 PMCID: PMC8520485 DOI: 10.2147/jaa.s325499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background Cysteinyl leukotrienes (CysLTs) are key mediators for bronchoconstriction, eosinophil recruitment and mucus production in the airways of asthmatic patients. To better understand the role of CysLTs in different asthma phenotypes, we compared the levels of arachidonic acid metabolites in relation to asthma control status and phenotypes in adult asthmatics on regular anti-asthma medications. Methods A total of 137 adult asthmatics (47 with aspirin-exacerbated respiratory disease [AERD] and 90 asthmatics with aspirin-tolerant asthma [ATA]) and 20 healthy controls were enrolled. Arachidonic acid metabolites in serum and urine were analyzed using LC-MS/MS methods, and clinical data, including asthma control status, exhaled NO (FeNO) and lung function tests, were collected. Results Urine LTE4 levels were significantly higher in AERD patients on inhaled corticosteroid-long-acting β2- agonist plus leukotriene receptor antagonist (LTRA) treatment than in ATA patients (P=0.001). No differences were found in the serum or urine levels of 15-HETE, TXB2, or PGF2α. High serum LTE4 levels were associated with lower FEV1% and uncontrolled status in AERD patients (P=0.006 and P=0.002, respectively), but not in ATA patients. Multivariate analysis demonstrated that blood eosinophil counts, FeNO levels and aspirin hypersensitivity were significant factors affecting urine LTE4 levels. Conclusion Despite LTRA treatment in AERD, the LTE4 levels remained high and showed close associations with blood eosinophilia, high FeNO levels and impaired disease control. Our real-world evidence indicates that control of asthma is not fully achieved by blocking the CysLT pathway with LTRA. Thus, introduction of treatment modalities targeting eosinophilia could be a better option for patients with high CysLTs.
Collapse
Affiliation(s)
- Ga-Young Ban
- Department of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.,Allergy and Clinical Immunology Research Center, Hallym University College of Medicine, Chuncheon, Korea
| | - Seung-Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, 16499, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
35
|
Effects of Air Pollutants on Airway Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189905. [PMID: 34574829 PMCID: PMC8465980 DOI: 10.3390/ijerph18189905] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Air pollutants include toxic particles and gases emitted in large quantities from many different combustible materials. They also include particulate matter (PM) and ozone, and biological contaminants, such as viruses and bacteria, which can penetrate the human airway and reach the bloodstream, triggering airway inflammation, dysfunction, and fibrosis. Pollutants that accumulate in the lungs exacerbate symptoms of respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Asthma, a heterogeneous disease with complex pathological mechanisms, is characterized by particular symptoms such as shortness of breath, a tight chest, coughing, and wheezing. Patients with COPD often experience exacerbations and worsening of symptoms, which may result in hospitalization and disease progression. PM varies in terms of composition, and can include solid and liquid particles of various sizes. PM concentrations are higher in urban areas. Ozone is one of the most toxic photochemical air pollutants. In general, air pollution decreases quality of life and life expectancy. It exacerbates acute and chronic respiratory symptoms in patients with chronic airway diseases, and increases the morbidity and risk of hospitalization associated with respiratory diseases. However, the mechanisms underlying these effects remain unclear. Therefore, we reviewed the impact of air pollutants on airway diseases such as asthma and COPD, focusing on their underlying mechanisms.
Collapse
|
36
|
Lv LX, Wen M, Lv F, Ji TB, Fu HL, Man N. Knockdown of long noncoding RNA growth arrest-specific transcript 5 regulates forkhead box O3 to inhibit lipopolysaccharide-induced human bronchial epithelial cell pyroptosis. Kaohsiung J Med Sci 2021; 38:87-96. [PMID: 34529353 DOI: 10.1002/kjm2.12452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/14/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a novel proinflammatory programmed cell death process. This study was designed to investigate the functional mechanisms of long noncoding RNA growth arrest-specific transcript 5 (lncRNA GAS5) on lipopolysaccharide (LPS)-induced human bronchial epithelial cell (HBEC) pyroptosis. LPS was used to induce pyroptosis in HBECs, followed by the detection of the expression of GAS5, forkhead box O3 (FOXO3), and nuclear factor E2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathway-related factors. Cell viability was evaluated using CCK-8 assay, lactate dehydrogenase (LDH) release was assessed by LDH assay kit and caspase-1 activity by flow cytometry. Furthermore, expression of NOD-like receptor family pyrin domain containing 3 and pyroptosis-related proteins was evaluated using Western blot analysis, while enzyme-linked immunosorbent assay was used to determine the levels of inflammatory factors. The interaction between GAS5 and FOXO3 was confirmed using bioinformatic prediction, RNA immunoprecipitation assay, RNA pull-down, and dual-luciferase reporter gene assay. Treatment of HBECs with LPS upregulated the expression of GAS5 and FOXO3, resulting in the inactivation of the Nrf2/HO-1 signaling pathway. On the other hand, inhibition of both GAS5 and FOXO3 promoted cell viability, reduced LDH release, pyroptosis, and inflammatory response in LPS-induced HBECs. Furthermore, FOXO3 could interact with GAS5, while FOXO3 overexpression reversed the inhibitory effect of GAS5 knockdown on cell pyroptosis. Thus, mechanistically, inhibition of FOXO3 activates the Nrf2/HO-1 pathway to suppress LPS-induced pyroptosis in HBECs. This study revealed that GAS5 knockdown attenuates FOXO3 expression thereby activating the Nrf2/HO-1 pathway to inhibit LPS-induced pyroptosis in HBECs. These findings may contribute to identifying novel targets that inhibit pyroptosis in HBECs.
Collapse
Affiliation(s)
- Ling-Xia Lv
- Respiratory and Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, Hubei, China
| | - Mei Wen
- Respiratory and Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, Hubei, China
| | - Fei Lv
- Respiratory and Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, Hubei, China
| | - Tai-Bing Ji
- Respiratory and Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, Hubei, China
| | - Hua-Li Fu
- Respiratory and Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, Hubei, China
| | - Ning Man
- Respiratory and Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, Hubei, China
| |
Collapse
|
37
|
Janbazacyabar H, van Daal M, Leusink-Muis T, van Ark I, Garssen J, Folkerts G, van Bergenhenegouwen J, Braber S. The Effects of Maternal Smoking on Pregnancy and Offspring: Possible Role for EGF? Front Cell Dev Biol 2021; 9:680902. [PMID: 34485278 PMCID: PMC8415274 DOI: 10.3389/fcell.2021.680902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoke exposure during pregnancy and lactation is associated with adverse pregnancy outcomes. Here, we investigated the effects of maternal smoke exposure on pregnancy and offspring immunity and explored whether, epidermal growth factor (EGF), an important growth-promoting factor in human colostrum and milk, might be a possible missing link in maternal smoke exposure and changes in infants’ immune responses. Pregnant BALB/c mice were exposed to either cigarette smoke or air during gestation and lactation, and effects on pulmonary inflammation in dams and immune responses in offspring were examined. Maternal smoke exposure increased airway hyperresponsiveness and accumulation of inflammatory cells in the lungs of pregnant dams compared to non-pregnant dams. The E-cadherin protein expression was reduced in mammary glands of cigarette smoke-exposed pregnant dams. EGF levels were higher in mammary glands and serum of smoke-exposed pregnant dams compared to air-exposed pregnant dams. Offspring from cigarette smoke-exposed dams exhibited elevated levels of IL-17A, MCP-1, IL-22, and IL-13 in anti-CD3 stimulated spleen cell culture supernatants. EGF levels were also increased in serum of offspring from smoke-exposed dams. A positive correlation was observed between serum EGF levels and neutrophil numbers in bronchoalveolar lavage fluid of the dams. Interestingly, IL-17A, MCP-1, IL-22, IL13, and IFN-γ levels in anti-CD3 stimulated spleen cell culture supernatants of male pups also showed a positive correlation with EGF serum levels. In summary, our results reveal that maternal smoke exposure predisposes dams to exacerbated airway inflammation and offspring to exacerbated immune responses and both phenomena are associated with elevated EGF concentrations.
Collapse
Affiliation(s)
- Hamed Janbazacyabar
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Marthe van Daal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
38
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
39
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
40
|
Cho HJ, Ha JG, Lee SN, Kim CH, Wang DY, Yoon JH. Differences and similarities between the upper and lower airway: focusing on innate immunity. Rhinology 2021; 59:441-450. [PMID: 34339483 DOI: 10.4193/rhin21.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nose is the first respiratory barrier to external pathogens, allergens, pollutants, or cigarette smoke, and vigorous immune responses are triggered when external pathogens come in contact with the nasal epithelium. The mucosal epithelial cells of the nose are essential to the innate immune response against external pathogens and transmit signals that modulate the adaptive immune response. The upper and lower airways share many physiological and immunological features, but there are also numerous differences. It is crucial to understand these differences and their contribution to pathophysiology in order to optimize treatments for inflammatory diseases of the respiratory tract. This review summarizes important differences in the embryological development, histological features, microbiota, immune responses, and cellular subtypes of mucosal epithelial cells of the nose and lungs.
Collapse
Affiliation(s)
- H-J Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J G Ha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - S N Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea 2 Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, Korea
| | - C-H Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - D-Y Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - J-H Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Mogren S, Berlin F, Ramu S, Sverrild A, Porsbjerg C, Uller L, Andersson CK. Mast cell tryptase enhances wound healing by promoting migration in human bronchial epithelial cells. Cell Adh Migr 2021; 15:202-214. [PMID: 34308764 PMCID: PMC8312598 DOI: 10.1080/19336918.2021.1950594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial damage and increase of intraepithelial mast cells (MC) are characteristics of asthma. The role of MC mediator tryptase and the protease-activated receptor-2 (PAR2) on epithelial wound healing is not fully investigated. Stimulation of bronchial epithelial cells (BECs) with tryptase promoted gap closure, migration and cellular speed compared to controls. Stimulated BECs had higher expression of migration marker CD151 compared to controls. Proliferation marker KI67 was upregulated in tryptase-stimulated BECs compared to controls. Treatment with PAR2 antagonist I-191 reduced gap closure, migration and cell speed compared to BECs stimulated with tryptase. We found that tryptase enhances epithelial wound healing by increased migration and proliferation, which is in part regulated via PAR2. Our data suggest that tryptase might be beneficial in tissue repair under baseline conditions. However, in a pathological context such as asthma with increased numbers of activated MCs, it might lead to epithelial remodeling and loss of function.
Collapse
Affiliation(s)
- Sofia Mogren
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Frida Berlin
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sangeetha Ramu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Asger Sverrild
- Department of Respiratory Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
42
|
Liang Y, Mak JCW. Inhaled Therapies for Asthma and Chronic Obstructive Pulmonary Disease. Curr Pharm Des 2021; 27:1469-1481. [PMID: 33243107 DOI: 10.2174/1389201021666201126144057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases which are characterized by chronic inflammation and an increase in mucus production, and are highly prevalent conditions. Despite recent advances and multiple available therapies, there remains a significant unmet medical need. Over the past 40 years, the introduction of new classes of safe and effective therapy is insufficient. In spite of the high burden of asthma and COPD among patients, there are fewer new approved therapies in comparison to cardiovascular, metabolic and neurological diseases due to few drug candidates and a higher failure rate in the development of respiratory medicine. Lung diseases are amongst the leading causes of death globally with asthma being one of the most prevalent respiratory diseases, which affects people of all ages but, despite effective therapies available, many patients are poorly controlled and have a low quality of life. COPD is currently ranked as the fourth cause of death worldwide and predicted to become the third leading cause of death in 2030. The development of more effective treatments is urgently needed in order to reduce the high mortality rate and the enormous suffering from asthma and COPD. Various inhalation devices with different classes of medications are the foundation as therapies in both asthma and COPD. This article gives a comprehensive review of the promising inhaled therapies in the treatment of asthma and COPD. However, the lack of disease control in asthma and COPD patients may be due to numerous reasons. The association between non-adherence to guidelines on the part of the health care provider and poor inhalation technique and/or non-adherence to the prescribed treatment plan by the patients is common. It is therefore essential to discuss the different delivery systems and the methods used in asthma and COPD patients.
Collapse
Affiliation(s)
- Yingmin Liang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Judith C W Mak
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
43
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Looi K, Kicic A, Noble PB, Wang KCW. Intrauterine growth restriction predisposes to airway inflammation without disruption of epithelial integrity in postnatal male mice. J Dev Orig Health Dis 2021; 12:496-504. [PMID: 32799948 DOI: 10.1017/s2040174420000744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Evidence from animal models demonstrate that intrauterine growth restriction (IUGR) alters airway structure and function which may affect susceptibility to disease. Airway inflammation and dysregulated epithelial barrier properties are features of asthma which have not been examined in the context of IUGR. This study used a maternal hypoxia-induced IUGR mouse model to assess lung-specific and systemic inflammation and airway epithelial tight junctions (TJs) protein expression. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to 17.5 (IUGR group; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A Control group was housed under normoxic conditions throughout pregnancy. Offspring weights were recorded at 2 and 8 weeks of age and euthanized for bronchoalveolar lavage (BAL) and peritoneal cavity fluid collection for inflammatory cells counts. From a separate group of mice, right lungs were collected for Western blotting of TJs proteins. IUGR offspring had greater inflammatory cells in the BAL fluid but not in peritoneal fluid compared with Controls. At 8 weeks of age, interleukin (IL)-2, IL-13, and eotaxin concentrations were higher in male IUGR compared with male Control offspring but not in females. IUGR had no effect on TJs protein expression. Maternal hypoxia-induced IUGR increases inflammatory cells in the BAL fluid of IUGR offspring with no difference in TJs protein expression. Increased cytokine release, specific to the lungs of IUGR male offspring, indicates that both IUGR and sex can influence susceptibility to airway disease.
Collapse
Affiliation(s)
- Kevin Looi
- Telethon Kids Institute, The University of Western Australia, Crawley, WA6009, Australia
- School of Public Health, Curtin University, Bentley, WA6102, Australia
| | - Anthony Kicic
- Telethon Kids Institute, The University of Western Australia, Crawley, WA6009, Australia
- School of Public Health, Curtin University, Bentley, WA6102, Australia
- Faculty of Health and Medical Science, The University of Western Australia, Crawley, WA6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Crawley, WA6009, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, WA6009, Australia
| | - Kimberley C W Wang
- Telethon Kids Institute, The University of Western Australia, Crawley, WA6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA6009, Australia
| |
Collapse
|
45
|
Zhao J, Jiang T, Li P, Dai L, Shi G, Jing X, Gao S, Jia L, Wu S, Wang Y, Peng Y, Cheng Z. Tissue factor promotes airway pathological features through epithelial-mesenchymal transition of bronchial epithelial cells in mice with house dust mite-induced asthma. Int Immunopharmacol 2021; 97:107690. [PMID: 33940323 DOI: 10.1016/j.intimp.2021.107690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022]
Abstract
It has recently been shown that expression levels of tissue factor (TF) are high in the serum and peripheral blood mononuclear cells of patients with asthma. However, whether TF impacts airway inflammation and remodelling in asthma remains unknown. The aim of this study was to investigate the effect of TF in asthma airway inflammation and remodelling using a house dust mite (HDM)-induced chronic asthma model and human bronchial epithelial (16HBE) cells. A chronic asthma model was constructed in BALB/c mice by the intranasal instillation of HDM. Mice were treated with short hairpin TF (shTF), and airway inflammation and remodelling features of asthma and epithelial-mesenchymal transition (EMT) were assessed. 16HBE cells were induced by transforming growth factor-β1 (TGF-β1) and HDM in the presence or absence of shTF; then, EMT markers and invasion and migration ability were determined. TF expression increased in the lung tissue and 16HBE cells when exposed to HDM. TF downregulation in the lung significantly reduced airway hyperresponsiveness, eosinophil inflammation, the EMT process, and levels of interleukin (IL)-4, IL-6, IL-13, and TGF-β1 in bronchoalveolar lavage fluid of asthmatic mice. Moreover, TF downregulation inhibited migration and incursion and decreased the expression levels of fibronectin 1 and TGF-β1, but increased the expression of E-cadherin in HDM- and TGF-β1-stimulated 16HBE cells. These results demonstrated that TF promoted airway pathological features by enhancing the EMT of bronchial epithelial cells both in vitro and in mice with house dust mite-induced asthma.
Collapse
Affiliation(s)
- Junwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, He'nan 450052, PR China.
| | - Tianci Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450052, PR China; Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, He'nan 450052, PR China
| | - Pengfei Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450052, PR China; Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, He'nan 450052, PR China
| | - Lingling Dai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450052, PR China
| | - Guang Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, He'nan 450052, PR China
| | - Xiaogang Jing
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450052, PR China
| | - Shuhui Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, He'nan 450052, PR China
| | - Liuqun Jia
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450052, PR China
| | - Shujun Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450052, PR China
| | - Yu Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450052, PR China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, He'nan 450052, PR China
| | - Zhe Cheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450052, PR China; Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, He'nan 450052, PR China.
| |
Collapse
|
46
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
47
|
Michi AN, Love ME, Proud D. Rhinovirus-Induced Modulation of Epithelial Phenotype: Role in Asthma. Viruses 2020; 12:v12111328. [PMID: 33227953 PMCID: PMC7699223 DOI: 10.3390/v12111328] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Human rhinoviruses have been linked both to the susceptibility of asthma development and to the triggering of acute exacerbations. Given that the human airway epithelial cell is the primary site of human rhinovirus (HRV) infection and replication, the current review focuses on how HRV-induced modulation of several aspects of epithelial cell phenotype could contribute to the development of asthma or to the induction of exacerbations. Modification of epithelial proinflammatory and antiviral responses are considered, as are alterations in an epithelial barrier function and cell phenotype. The contributions of the epithelium to airway remodeling and to the potential modulation of immune responses are also considered. The potential interactions of each type of HRV-induced epithelial phenotypic changes with allergic sensitization and allergic phenotype are also considered in the context of asthma development and of acute exacerbations.
Collapse
|
48
|
Respiratory syncytial virus upregulates IL-33 expression in mouse model of virus-induced inflammation exacerbation in OVA-sensitized mice and in asthmatic subjects. Cytokine 2020; 138:155349. [PMID: 33132030 DOI: 10.1016/j.cyto.2020.155349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bronchial asthma (BA) is a chronic disease of the airways. The great majority of BA exacerbations are associated with respiratory viral infections. Recent findings point out a possible role of proinflammatory cytokine interleukin-33 (IL-33) in the development of atopic diseases. Although, little is known about the role of IL-33 in virus-induced BA exacerbations. METHODS We used mouse models of RSV (respiratory syncytial virus)-induced inflammation exacerbation in OVA-sensitized mice and RSV infection alone in adult animals to characterize expression of il33 in the mouse lungs. Moreover, we studied the influence of il33 knockdown with intranasally administrated siRNA on the development of RSV-induced inflammation exacerbation. In addition, we evaluated the expression of IL33 in the ex vivo stimulated PBMCs from allergic asthma patients and healthy subjects with and without confirmed acute respiratory viral infection. RESULTS Using mouse models, we found that infection with RSV drives enhanced il33 mRNA expression in the mouse lung. Treatment with anti-il33 siRNA diminishes airway inflammation in the lungs (we found a decrease in the number of inflammatory cells in the lungs and in the severity of histopathological alterations) of mice with RSV-induced inflammation exacerbation, but do not influence viral load. Elevated level of the IL33 mRNA was detected in ex vivo stimulated blood lymphocytes of allergic asthmatics infected with respiratory viruses. RSV and rhinovirus were the most detected viruses in volunteers with symptoms of respiratory infection. CONCLUSION The present study provides additional evidence of the crucial role of the IL-33 in pathogenesis of RSV infection and virus-induced allergic bronchial asthma exacerbations.
Collapse
|
49
|
Paudel KR, Wadhwa R, Mehta M, Chellappan DK, Hansbro PM, Dua K. Rutin loaded liquid crystalline nanoparticles inhibit lipopolysaccharide induced oxidative stress and apoptosis in bronchial epithelial cells in vitro. Toxicol In Vitro 2020; 68:104961. [DOI: 10.1016/j.tiv.2020.104961] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022]
|
50
|
Bakowski D, Murray F, Parekh AB. Store-Operated Ca 2+ Channels: Mechanism, Function, Pharmacology, and Therapeutic Targets. Annu Rev Pharmacol Toxicol 2020; 61:629-654. [PMID: 32966177 DOI: 10.1146/annurev-pharmtox-031620-105135] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium (Ca2+) release-activated Ca2+ (CRAC) channels are a major route for Ca2+ entry in eukaryotic cells. These channels are store operated, opening when the endoplasmic reticulum (ER) is depleted of Ca2+, and are composed of the ER Ca2+ sensor protein STIM and the pore-forming plasma membrane subunit Orai. Recent years have heralded major strides in our understanding of the structure, gating, and function of the channels. Loss-of-function and gain-of-function mutants combined with RNAi knockdown strategies have revealed important roles for the channel in numerous human diseases, making the channel a clinically relevant target. Drugs targeting the channels generally lack specificity or exhibit poor efficacy in animal models. However, the landscape is changing, and CRAC channel blockers are now entering clinical trials. Here, we describe the key molecular and biological features of CRAC channels, consider various diseases associated with aberrant channel activity, and discuss targeting of the channels from a therapeutic perspective.
Collapse
Affiliation(s)
| | - Fraser Murray
- Pandeia Therapeutics, Oxford OX4 4GP, United Kingdom
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3PT, United Kingdom; , .,Current affiliation: National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|