1
|
Münchhalfen M, Görg R, Haberl M, Löber J, Willenbrink J, Schwarzt L, Höltermann C, Ickes C, Hammermann L, Kus J, Chapuy B, Ballabio A, Reichardt SD, Flügel A, Engels N, Wienands J. TFEB activation hallmarks antigenic experience of B lymphocytes and directs germinal center fate decisions. Nat Commun 2024; 15:6971. [PMID: 39138218 PMCID: PMC11322606 DOI: 10.1038/s41467-024-51166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Ligation of the B cell antigen receptor (BCR) initiates humoral immunity. However, BCR signaling without appropriate co-stimulation commits B cells to death rather than to differentiation into immune effector cells. How BCR activation depletes potentially autoreactive B cells while simultaneously primes for receiving rescue and differentiation signals from cognate T lymphocytes remains unknown. Here, we use a mass spectrometry-based proteomic approach to identify cytosolic/nuclear shuttling elements and uncover transcription factor EB (TFEB) as a central BCR-controlled rheostat that drives activation-induced apoptosis, and concurrently promotes the reception of co-stimulatory rescue signals by supporting B cell migration and antigen presentation. CD40 co-stimulation prevents TFEB-driven cell death, while enhancing and prolonging TFEB's nuclear residency, which hallmarks antigenic experience also of memory B cells. In mice, TFEB shapes the transcriptional landscape of germinal center B cells. Within the germinal center, TFEB facilitates the dark zone entry of light-zone-residing centrocytes through regulation of chemokine receptors and, by balancing the expression of Bcl-2/BH3-only family members, integrates antigen-induced apoptosis with T cell-provided CD40 survival signals. Thus, TFEB reprograms antigen-primed germinal center B cells for cell fate decisions.
Collapse
Affiliation(s)
- Matthias Münchhalfen
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Richard Görg
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Haberl
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Löber
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Jakob Willenbrink
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Schwarzt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Charlotte Höltermann
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Ickes
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Leonard Hammermann
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Kus
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, USA
| | - Sybille D Reichardt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Rahman SMT, Singh A, Lowe S, Aqdas M, Jiang K, Vaidehi Narayanan H, Hoffmann A, Sung MH. Co-imaging of RelA and c-Rel reveals features of NF-κB signaling for ligand discrimination. Cell Rep 2024; 43:113940. [PMID: 38483906 PMCID: PMC11015162 DOI: 10.1016/j.celrep.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Individual cell sensing of external cues has evolved through the temporal patterns in signaling. Since nuclear factor κB (NF-κB) signaling dynamics have been examined using a single subunit, RelA, it remains unclear whether more information might be transmitted via other subunits. Using NF-κB double-knockin reporter mice, we monitored both canonical NF-κB subunits, RelA and c-Rel, simultaneously in single macrophages by quantitative live-cell imaging. We show that signaling features of RelA and c-Rel convey more information about the stimuli than those of either subunit alone. Machine learning is used to predict the ligand identity accurately based on RelA and c-Rel signaling features without considering the co-activated factors. Ligand discrimination is achieved through selective non-redundancy of RelA and c-Rel signaling dynamics, as well as their temporal coordination. These results suggest a potential role of c-Rel in fine-tuning immune responses and highlight the need for approaches that will elucidate the mechanisms regulating NF-κB subunit specificity.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Apeksha Singh
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarina Lowe
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin Jiang
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haripriya Vaidehi Narayanan
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Wang Q, Zhang J, Wen Y, Qi S, Duan Y, Liu Q, Li C. The pleiotropic enhancer enh9 promotes cell proliferation and migration in non-small cell lung cancer via ERMP1 and PD-L1. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167015. [PMID: 38182069 DOI: 10.1016/j.bbadis.2023.167015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Enhancers, cis-acting DNA elements for transcriptional regulation, are important regulators of cell identity and disease. However, of the hundreds of thousands of enhancers annotated in the human genome, only a few have been studied for their regulatory mechanisms and functions in cancer progression and therapeutic resistance. Here, we report the pleiotropy of one enhancer (named enh9) in both cell proliferation and migration in non-small cell lung cancer (NSCLC) cells. By integrating multi-genomic data, ERMP1 and PD-L1 were screened out as potential targets of enh9. CUT&Tag sequencing demonstrated that enh9 was involved in the genomic interactions between the transcription factor RELA and the promoters of ERMP1 and PD-L1. In addition, ERMP1 and PD-L1 were validated to be involved in cell proliferation and migration, respectively. Our study fully elucidated the function and transcriptional regulation mechanisms of enh9 in NSCLC. The exploration on enhancers is promising to provide new insights for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yanling Wen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qian Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
4
|
Chong AY, Brenner N, Jimenez-Kaufmann A, Cortes A, Hill M, Littlejohns TJ, Gilchrist JJ, Fairfax BP, Knight JC, Hodel F, Fellay J, McVean G, Moreno-Estrada A, Waterboer T, Hill AVS, Mentzer AJ. A common NFKB1 variant detected through antibody analysis in UK Biobank predicts risk of infection and allergy. Am J Hum Genet 2024; 111:295-308. [PMID: 38232728 PMCID: PMC10870136 DOI: 10.1016/j.ajhg.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
Infectious agents contribute significantly to the global burden of diseases through both acute infection and their chronic sequelae. We leveraged the UK Biobank to identify genetic loci that influence humoral immune response to multiple infections. From 45 genome-wide association studies in 9,611 participants from UK Biobank, we identified NFKB1 as a locus associated with quantitative antibody responses to multiple pathogens, including those from the herpes, retro-, and polyoma-virus families. An insertion-deletion variant thought to affect NFKB1 expression (rs28362491), was mapped as the likely causal variant and could play a key role in regulation of the immune response. Using 121 infection- and inflammation-related traits in 487,297 UK Biobank participants, we show that the deletion allele was associated with an increased risk of infection from diverse pathogens but had a protective effect against allergic disease. We propose that altered expression of NFKB1, as a result of the deletion, modulates hematopoietic pathways and likely impacts cell survival, antibody production, and inflammation. Taken together, we show that disruptions to the tightly regulated immune processes may tip the balance between exacerbated immune responses and allergy, or increased risk of infection and impaired resolution of inflammation.
Collapse
Affiliation(s)
- Amanda Y Chong
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Nicole Brenner
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andres Jimenez-Kaufmann
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Mexico
| | - Adrian Cortes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Michael Hill
- MRC-Population Health Research Unit, University of Oxford, Oxford, UK
| | | | - James J Gilchrist
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Julian C Knight
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Flavia Hodel
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Andres Moreno-Estrada
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Mexico
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adrian V S Hill
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; The Jenner Institute, University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Wang X, Ding G, Yang P, Cheng G, Kong W, Xu Z. Teleost Eye Is the Portal of IHNV Entry and Contributes to a Robust Mucosal Immune Response. Int J Mol Sci 2023; 25:160. [PMID: 38203332 PMCID: PMC10778588 DOI: 10.3390/ijms25010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The ocular mucosa (OM) is an important and unique part of the vertebrate mucosal immune system. The OM plays an important role in maintaining visual function and defending against foreign antigens or microorganisms, while maintaining a balance between the two through complex regulatory mechanisms. However, the function of ocular mucosal defense against foreign pathogens and mucosal immune response in bony fish are still less studied. To acquire deeper understanding into the mucosal immunity of the OM in teleost fish, we established a study of the immune response of rainbow trout (Oncorhynchus mykiss) infected with the infectious hematopoietic necrosis virus (IHNV). Our findings revealed that IHNV could successfully infiltrate the trout's OM, indicating that the OM could be an important portal for the IHNV. Furthermore, qPCR and RNA-Seq analysis results showed that a large number of immune-related genes were significantly upregulated in the OM of trout with IHNV infection. Critically, the results of our RNA-Seq analysis demonstrated that viral infection triggered a robust immune response, as evidenced by the substantial induction of antiviral, innate, and adaptive immune-related genes in the OM of infected fish, which underscored the essential role of the OM in viral infection. Overall, our findings revealed a previously unknown function of teleost OM in antiviral defense, and provided a theoretical basis for the study of the mucosal immunity of fish.
Collapse
Affiliation(s)
- Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guangyi Ding
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| | - Peng Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| | - Gaofeng Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| |
Collapse
|
6
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Huizing GJ, Deutschmann IM, Peyré G, Cantini L. Paired single-cell multi-omics data integration with Mowgli. Nat Commun 2023; 14:7711. [PMID: 38001063 PMCID: PMC10673889 DOI: 10.1038/s41467-023-43019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The profiling of multiple molecular layers from the same set of cells has recently become possible. There is thus a growing need for multi-view learning methods able to jointly analyze these data. We here present Multi-Omics Wasserstein inteGrative anaLysIs (Mowgli), a novel method for the integration of paired multi-omics data with any type and number of omics. Of note, Mowgli combines integrative Nonnegative Matrix Factorization and Optimal Transport, enhancing at the same time the clustering performance and interpretability of integrative Nonnegative Matrix Factorization. We apply Mowgli to multiple paired single-cell multi-omics data profiled with 10X Multiome, CITE-seq, and TEA-seq. Our in-depth benchmark demonstrates that Mowgli's performance is competitive with the state-of-the-art in cell clustering and superior to the state-of-the-art once considering biological interpretability. Mowgli is implemented as a Python package seamlessly integrated within the scverse ecosystem and it is available at http://github.com/cantinilab/mowgli .
Collapse
Affiliation(s)
- Geert-Jan Huizing
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, F-75015, Paris, France.
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005, Paris, France.
| | - Ina Maria Deutschmann
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005, Paris, France
| | - Gabriel Peyré
- CNRS and DMA de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, Université PSL, 75005, Paris, France
| | - Laura Cantini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, F-75015, Paris, France.
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005, Paris, France.
| |
Collapse
|
8
|
Maccari ME, Wolkewitz M, Schwab C, Lorenzini T, Leiding JW, Aladjdi N, Abolhassani H, Abou-Chahla W, Aiuti A, Azarnoush S, Baris S, Barlogis V, Barzaghi F, Baumann U, Bloomfield M, Bohynikova N, Bodet D, Boutboul D, Bucciol G, Buckland MS, Burns SO, Cancrini C, Cathébras P, Cavazzana M, Cheminant M, Chinello M, Ciznar P, Coulter TI, D'Aveni M, Ekwall O, Eric Z, Eren E, Fasth A, Frange P, Fournier B, Garcia-Prat M, Gardembas M, Geier C, Ghosh S, Goda V, Hammarström L, Hauck F, Heeg M, Heropolitanska-Pliszka E, Hilfanova A, Jolles S, Karakoc-Aydiner E, Kindle GR, Kiykim A, Klemann C, Koletsi P, Koltan S, Kondratenko I, Körholz J, Krüger R, Jeziorski E, Levy R, Le Guenno G, Lefevre G, Lougaris V, Marzollo A, Mahlaoui N, Malphettes M, Meinhardt A, Merlin E, Meyts I, Milota T, Moreira F, Moshous D, Mukhina A, Neth O, Neubert J, Neven B, Nieters A, Nove-Josserand R, Oksenhendler E, Ozen A, Olbrich P, Perlat A, Pac M, Schmid JP, Pacillo L, Parra-Martinez A, Paschenko O, Pellier I, Sefer AP, Plebani A, Plantaz D, Prader S, Raffray L, Ritterbusch H, Riviere JG, Rivalta B, Rusch S, Sakovich I, Savic S, Scheible R, Schleinitz N, Schuetz C, Schulz A, Sediva A, Semeraro M, Sharapova SO, Shcherbina A, Slatter MA, Sogkas G, Soler-Palacin P, Speckmann C, Stephan JL, Suarez F, Tommasini A, Trück J, Uhlmann A, van Aerde KJ, van Montfrans J, von Bernuth H, Warnatz K, Williams T, Worth AJJ, Ip W, Picard C, Catherinot E, Nademi Z, Grimbacher B, Forbes Satter LR, Kracker S, Chandra A, Condliffe AM, Ehl S. Activated phosphoinositide 3-kinase δ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity. J Allergy Clin Immunol 2023; 152:984-996.e10. [PMID: 37390899 DOI: 10.1016/j.jaci.2023.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Activated phosphoinositide-3-kinase δ syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking. OBJECTIVES This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain-of-function (GOF) disease; and identify predictors of severity in APDS. METHODS Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs. RESULTS The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS. CONCLUSIONS APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients.
Collapse
Affiliation(s)
- Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tiziana Lorenzini
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Nathalie Aladjdi
- Pediatric Haemato-Immunology, Clinical Investigation Center (CIC) 1401, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique Pluridisciplinaire (CICP), Bordeaux University Hospital and Centre de Reference National des Cytopenies Auto-immunoes de l'Enfant (CEREVANCE), Bordeaux, France
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Wadih Abou-Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Saba Azarnoush
- Pediatric Hematology and Immunology Unit, Robert Debré Hospital, Paris, France
| | - Safa Baris
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Vincent Barlogis
- Pediatric Hematology, Immunology and Oncology, Aix-Marseille Université, Marseille, France
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Ulrich Baumann
- Pediatric Pulmonology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marketa Bloomfield
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nadezda Bohynikova
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Damien Bodet
- Department of Pediatric Hematology and Oncology, University Hospital of Caen, Caen, France
| | - David Boutboul
- Clinical Immunology Department, Hôpital Saint-Louis, Paris, France
| | - Giorgia Bucciol
- Departments of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Microbiology, Immunology, and Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Matthew S Buckland
- Barts Health National Health Service Trust, London, United Kingdom; Molecular and Cellular Immunology Section, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Caterina Cancrini
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | | | - Marina Cavazzana
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Biotherapy Clinical Investigation Center Groupe Hospitalier Centre, AP-HP, INSERM, Paris, France
| | - Morgane Cheminant
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Service d'Hématologie Adulte, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Matteo Chinello
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Peter Ciznar
- Pediatric Department, Comenius University Medical Faculty, Bratislava, Slovakia
| | - Tanya I Coulter
- Belfast Health and Social Care Trust, Ireland, United Kingdom
| | - Maud D'Aveni
- Department of Hematology, Nancy University Hospital, Université de Lorraine, Nancy, France; UMR 7365, Centre National de la Recherche Scientifique, Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, Nancy, France
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zelimir Eric
- University Clinical Centre of the Republic of Srpska, Republic of Srpska, Bosnia and Herzegovina
| | - Efrem Eren
- University Hospital Southampton, Southampton, United Kingdom
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medicine, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Pierre Frange
- Unité de Recherche Propre 7328, Fédération pour l'Étude et évaluation des Thérapeutiques intra-UtérineS (FETUS), Institut Imagine, Université Paris Cité, Paris, France; Laboratory of Clinical Microbiology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Benjamin Fournier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Christoph Geier
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University-University Hospital Düsseldorf, Düsseldorf, Germany
| | - Vera Goda
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Anna Hilfanova
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical School, International European University, Kyiv, Ukraine
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Elif Karakoc-Aydiner
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Gerhard R Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Biobanking FREEZE, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Christian Klemann
- Departments of Human Genetics, Hannover Medical School, Hannover, Germany; Department of Pediatric Immunology, Rheumatology, & Infectiology, Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Patra Koletsi
- Department of Pediatrics, Penteli Children's Hospital, Athens, Greece
| | - Sylwia Koltan
- Department of Paediatric Haematology and Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Irina Kondratenko
- Russian Clinical Childrens Hospital, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Julia Körholz
- Department of Pediatrics, Universitätsklinikum Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin Institute of Health, Berlin, Germany
| | - Eric Jeziorski
- General Pediatrics, CHU Montpellier, Montpellier, France; Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - Romain Levy
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Guillaume Le Guenno
- Department of Internal Medicine, Hôpital d'Estaing, Clermont-Ferrand, France
| | - Guillaume Lefevre
- CHU Lille, Institut d'Immunologie and University of Lille, Lille, France; Inserm U995, LIRIC-Lille Inflammation Research International Center, Lille, France
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology, and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | | | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Etienne Merlin
- Department of Pediatrics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Isabelle Meyts
- Departments of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Microbiology, Immunology, and Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Tomas Milota
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Fernando Moreira
- Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Despina Moshous
- Laboratories of Dynamique du Génome et Système Immunitaire, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | - Anna Mukhina
- Department of Immunology, Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Red de Investigación Translacional en Infectología Pediátrica, Seville, Spain
| | - Jennifer Neubert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University-University Hospital Düsseldorf, Düsseldorf, Germany
| | - Benedicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Alexandra Nieters
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Biobanking FREEZE, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Ahmet Ozen
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Red de Investigación Translacional en Infectología Pediátrica, Seville, Spain
| | | | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Lucia Pacillo
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Alba Parra-Martinez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Olga Paschenko
- Russian Clinical Childrens Hospital, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Asena Pinar Sefer
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Dominique Plantaz
- Unit of Pediatric Immuno Hemato and Oncology, University Hospital Centre of Grenoble, Grenoble, France
| | - Seraina Prader
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Loic Raffray
- Internal Medicine Department, Felix Guyon University Hospital, Saint Denis, La Réunion, France; Mixed Research Unit (UMR) "Infectious Processes in Tropical Island Environments", La Réunion, France
| | - Henrike Ritterbusch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacques G Riviere
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Beatrice Rivalta
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Stephan Rusch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inga Sakovich
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom; Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Raphael Scheible
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for AI and Informatics in Medicine, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
| | - Nicolas Schleinitz
- Département de Médecine Interne, Timone Hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
| | - Catharina Schuetz
- Department of Pediatrics, Universitätsklinikum Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anna Sediva
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Semeraro
- Clinical Investigation Center (CIC) 1419, Necker-Enfants Malades Hospital, AP-HP, Groupe Hospitalier Paris Centre, Paris, France; EA7323 Pediatric and Perinatal Drug Evaluation and Pharmacology Research Unit, Université Paris Cité, Paris, France
| | - Svetlana O Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Anna Shcherbina
- Department of Immunology, Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mary A Slatter
- Great North Children' s Hospital, Newcastle upon Tyne, United Kingdom; Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean-Louis Stephan
- Department of Pediatrics, North Hospital, University Hospital of Saint Etienne, Saint-Etienne, France; University Jean Monnet, Saint-Etienne, France
| | - Felipe Suarez
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Service d'Hématologie Adulte, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Alberto Tommasini
- Department of Medical Sciences, University of Trieste, Trieste, Italy; Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Johannes Trück
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Annette Uhlmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Koen J van Aerde
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Horst von Bernuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin Institute of Health, Berlin, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Tony Williams
- University Hospital Southampton, Southampton, United Kingdom
| | - Austen J J Worth
- Great Ormond Street Hospital for Children, University College London, London, United Kingdom
| | - Winnie Ip
- Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital for Children, University College London, London, United Kingdom
| | - Capucine Picard
- Lymphocyte Activation and Susceptibility to EBV Infection, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | | | - Zohreh Nademi
- Great North Children' s Hospital, Newcastle upon Tyne, United Kingdom; Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Sven Kracker
- Human Lymphohematopoiesis, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université Paris Cité, Paris, France; Université Paris Cité, Paris, France
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Jorge J, Neves J, Alves R, Geraldes C, Gonçalves AC, Sarmento-Ribeiro AB. Parthenolide Induces ROS-Mediated Apoptosis in Lymphoid Malignancies. Int J Mol Sci 2023; 24:ijms24119167. [PMID: 37298119 DOI: 10.3390/ijms24119167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Lymphoid malignancies are a group of highly heterogeneous diseases frequently associated with constitutive activation of the nuclear factor kappa B (NF-κB) signaling pathway. Parthenolide is a natural compound used to treat migraines and arthritis and found to act as a potent NF-κB signaling inhibitor. This study evaluated in vitro parthenolide efficacy in lymphoid neoplasms. We assessed parthenolide metabolic activity in NCI-H929 (MM), Farage (GCB-DLBCL), Raji (BL), 697 and KOPN-8 (B-ALL), and CEM and MOLT-4 (T-ALL), by resazurin assay. Cell death, cell cycle, mitochondrial membrane potential (ΔΨmit), reactive oxygen species (ROS) and reduced glutathione (GSH) levels, activated caspase-3, FAS-ligand, and phosphorylated NF-κB p65 were evaluated using flow cytometry. CMYC, TP53, GPX1, and TXRND1 expression levels were assessed using qPCR. Our results showed that parthenolide promoted a metabolic activity decrease in all cell lines in a time-, dose-, and cell-line-dependent manner. The mechanism induced by parthenolide was demonstrated to be cell line dependent. Nonetheless, parthenolide promoted cell death by apoptosis with significant ROS increase (peroxides and superoxide anion) and GSH decrease combined with a ΔΨmit reduction across all studied cell lines. Despite the need to further understand parthenolide mechanisms, parthenolide should be considered as a possible new therapeutic approach for B- and T-lymphoid malignancies.
Collapse
Affiliation(s)
- Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Joana Neves
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Alves
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Catarina Geraldes
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| |
Collapse
|
10
|
Pérez de la Lastra JM, Curieses Andrés CM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Hydroxytyrosol and Arginine as Antioxidant, Anti-Inflammatory and Immunostimulant Dietary Supplements for COVID-19 and Long COVID. Foods 2023; 12:foods12101937. [PMID: 37238755 DOI: 10.3390/foods12101937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Phytochemicals from plant extracts are becoming increasingly popular in the world of food science and technology because they have positive effects on human health. In particular, several bioactive foods and dietary supplements are being investigated as potential treatments for chronic COVID. Hydroxytyrosol (HXT) is a natural antioxidant, found in olive oil, with antioxidant anti-inflammatory properties that has been consumed by humans for centuries without reported adverse effects. Its use was approved by the European Food Safety Authority as a protective agent for the cardiovascular system. Similarly, arginine is a natural amino acid with anti-inflammatory properties that can modulate the activity of immune cells, reducing the production of pro-inflammatory cytokines such as IL-6 and TNF-α. The properties of both substances may be particularly beneficial in the context of COVID-19 and long COVID, which are characterised by inflammation and oxidative stress. While l-arginine promotes the formation of •NO, HXT prevents oxidative stress and inflammation in infected cells. This combination could prevent the formation of harmful peroxynitrite, a potent pro-inflammatory substance implicated in pneumonia and COVID-19-associated organ dysfunction, as well as reduce inflammation, improve immune function, protect against free radical damage and prevent blood vessel injury. Further research is needed to fully understand the potential benefits of HXT and arginine in the context of COVID-19.
Collapse
Affiliation(s)
- José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
11
|
Zheng Y, Yu M, Chen Y, Xue L, Zhu W, Fu G, Morris SW, Wen R, Wang D. CARD19, a Novel Regulator of the TAK1/NF-κB Pathway in Self-Reactive B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1222-1235. [PMID: 36961449 PMCID: PMC10156913 DOI: 10.4049/jimmunol.2200639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
The caspase recruitment domain family member (CARD)11-Bcl10-Malt1 signalosome controls TGF-β-activated kinase 1 (TAK1) activation and regulates BCR-induced NF-κB activation. In this study, we discovered that CARD19 interacted with TAK1 and inhibited TAB2-mediated TAK1 ubiquitination and activation. Although CARD19 deficiency in mice did not affect B cell development, it enhanced clonal deletion, receptor editing, and anergy of self-reactive B cells, and it reduced autoantibody production. Mechanistically, CARD19 deficiency increased BCR/TAK1-mediated NF-κB activation, leading to increased expression of transcription factors Egr2/3, as well as the E3 ubiquitin ligases c-Cbl/Cbl-b, which are known inducers of B cell tolerance in self-reactive B cells. RNA sequencing analysis revealed that although CARD19 deficiency did not affect the overall Ag-induced gene expression in naive B cells, it suppressed BCR signaling and increased hyporesponsiveness of self-reactive B cells. As a result, CARD19 deficiency prevented Bm12-induced experimental systemic lupus erythematosus. In summary, CARD19 negatively regulates BCR/TAK1-induced NF-κB activation and its deficiency increases Egr2/3 and c-Cbl/Cbl-b expression in self-reactive B cells, thereby enhancing B cell tolerance.
Collapse
Affiliation(s)
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Wen Zhu
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Guoping Fu
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
12
|
Pasqualucci L, Klein U. NF-κB Mutations in Germinal Center B-Cell Lymphomas: Relation to NF-κB Function in Normal B Cells. Biomedicines 2022; 10:2450. [PMID: 36289712 PMCID: PMC9599362 DOI: 10.3390/biomedicines10102450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most B cell lymphomas arise from the oncogenic transformation of B cells that have undergone the germinal center (GC) reaction of the T cell-dependent immune response, where high-affinity memory B cells and plasma cells are generated. The high proliferation of GC B cells coupled with occasional errors in the DNA-modifying processes of somatic hypermutation and class switch recombination put the cell at a risk to obtain transforming genetic aberrations, which may activate proto-oncogenes or inactivate tumour suppressor genes. Several subtypes of GC lymphomas harbor genetic mutations leading to constitutive, aberrant activation of the nuclear factor-κB (NF-κB) signaling pathway. In normal B cells, NF-κB has crucial biological roles in development and physiology. GC lymphomas highjack these activities to promote tumour-cell growth and survival. It has become increasingly clear that the separate canonical and non-canonical routes of the NF-κB pathway and the five downstream NF-κB transcription factors have distinct functions in the successive stages of GC B-cell development. These findings may have direct implications for understanding how aberrant NF-κB activation promotes the genesis of various GC lymphomas corresponding to the developmentally distinct GC B-cell subsets. The knowledge arising from these studies may be explored for the development of precision medicine approaches aimed at more effective treatments of the corresponding tumours with specific NF-κB inhibitors, thus reducing systemic toxicity. We here provide an overview on the patterns of genetic NF-κB mutations encountered in the various GC lymphomas and discuss the consequences of aberrant NF-κB activation in those malignancies as related to the biology of NF-κB in their putative normal cellular counterparts.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology & Cell Biology, The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
13
|
Wang W, Mu M, Zou Y, Deng S, Lu Y, Li Q, Li Z, Tao H, Wang Y, Tao X. Glycogen metabolism reprogramming promotes inflammation in coal dust-exposed lung. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113913. [PMID: 35907323 DOI: 10.1016/j.ecoenv.2022.113913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Long-term coal dust exposure triggers complex inflammatory processes in the coal workers' pneumoconiosis (CWP) lungs. The progress of the inflammation is reported to be affected by disordered cell metabolism. However, the changes in the metabolic reprogramming associated with the pulmonary inflammation induced by the coal dust particles are unknown. Herein, we show that coal dust exposure causes glycogen accumulation and the reprogramming of glucose metabolism in the CWP lung. The glycogen accumulation caused by coal dust is mainly due to macrophages, which reprogram glycogen metabolism and trigger an inflammatory response. In addition, 2-deoxy-D-glucose (2-DG) reduced glycogen content in macrophages, which was accompanied by mitigated inflammation and restrained NF-κB activation. Accordingly, we have pinpointed a novel and crucial metabolic pathway that is an essential regulator of the inflammatory phenotype of coal dust-exposed macrophages. These results shed light on new ways to regulate CWP inflammation.
Collapse
Affiliation(s)
- Wenyang Wang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China
| | - Yuanjie Zou
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Songsong Deng
- Department of Clinical Laboratory, Chaoyang Hospital, Huainan, China
| | - Yuting Lu
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Qinglong Li
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Zeyu Li
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Huihui Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China
| | - Yun Wang
- School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Xinrong Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China.
| |
Collapse
|
14
|
The Peptide/Antibody-Based Surface Decoration of Calcium Phosphate Nanoparticles Carrying siRNA Influences the p65 NF-κB Protein Expression in Inflamed Cells In Vitro. Biomedicines 2022; 10:biomedicines10071571. [PMID: 35884877 PMCID: PMC9313450 DOI: 10.3390/biomedicines10071571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/22/2022] Open
Abstract
Earlier studies with nanoparticles carrying siRNA were restricted to investigating the inhibition of target-specific protein expression, while almost ignoring effects related to the nanoparticle composition. Here, we demonstrate how the design and surface decoration of nanoparticles impact the p65 nuclear factor-kappa B (NF-κB) protein expression in inflamed leucocytes and endothelial cells in vitro. We prepared silica-coated calcium phosphate nanoparticles carrying encapsulated siRNA against p65 NF-κB and surface-decorated with peptides or antibodies. We show that RGD-decorated nanoparticles are efficient in down-regulating p65 NF-κB protein expression in endothelial cells as a result of an enhanced specific cellular binding and subsequent uptake of nanoparticles. In contrast, nanoparticles decorated with IgG (whether specific or not for CD69) are efficient in down-regulating p65 NF-κB protein expression in T-cells, but not in B-cells. Thus, an optimized nanoparticle decoration with xenogenic IgG may stimulate a specific cellular uptake. In summary, the composition of siRNA-loaded calcium phosphate nanoparticles can either weaken or stimulate p65 NF-κB protein expression in targeted inflamed leucocytes and endothelial cells. In general, unveiling such interactions may be very useful for the future design of anti-p65 siRNA-based nanomedicines for treatment of inflammation-associated diseases.
Collapse
|
15
|
Artyukhov VG, Basharina OV. Modern Ideas about the Mechanisms of Action of Ultraviolet Radiation on Cells and Subcellular Systems. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021120025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Merino-Vico A, van Hamburg JP, Tas SW. B Lineage Cells in ANCA-Associated Vasculitis. Int J Mol Sci 2021; 23:387. [PMID: 35008813 PMCID: PMC8745114 DOI: 10.3390/ijms23010387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that affects small sized blood vessels and can lead to serious complications in the lungs and kidneys. The prominent presence of ANCA autoantibodies in this disease implicates B cells in its pathogenesis, as these are the precursors of the ANCA-producing plasma cells (PCs). Further evidence supporting the potential role of B lineage cells in vasculitis are the increased B cell cytokine levels and the dysregulated B cell populations in patients. Confirmation of the contribution of B cells to pathology arose from the beneficial effect of anti-CD20 therapy (i.e., rituximab) in AAV patients. These anti-CD20 antibodies deplete circulating B cells, which results in amelioration of disease. However, not all patients respond completely, and this treatment does not target PCs, which can maintain ANCA production. Hence, it is important to develop more specific therapies for AAV patients. Intracellular signalling pathways may be potential therapeutic targets as they can show (disease-specific) alterations in certain B lineage cells, including pathogenic B cells, and contribute to differentiation and survival of PCs. Preliminary data on the inhibition of certain signalling molecules downstream of receptors specific for B lineage cells show promising therapeutic effects. In this narrative review, B cell specific receptors and their downstream signalling molecules that may contribute to pathology in AAV are discussed, including the potential to therapeutically target these pathways.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sander W. Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
IAP and HDAC inhibitors interact synergistically in myeloma cells through noncanonical NF-κB- and caspase-8-dependent mechanisms. Blood Adv 2021; 5:3776-3788. [PMID: 34464977 DOI: 10.1182/bloodadvances.2020003597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Interactions between the inhibitor of apoptosis protein antagonist LCL161 and the histone deacetylase inhibitor panobinostat (LBH589) were examined in human multiple myeloma (MM) cells. LCL161 and panobinostat interacted synergistically to induce apoptosis in diverse MM cell lines, including those resistant to bortezomib (PS-R). Similar interactions were observed with other histone deacetylase inhibitors (MS-275) or inhibitors of apoptosis protein antagonists (birinapant). These events were associated with downregulation of the noncanonical (but not the canonical) NF-κB pathway and activation of the extrinsic, caspase-8-related apoptotic cascade. Coexposure of MM cells to LCL161/LBH589 induced TRAF3 upregulation and led to TRAF2 and NIK downregulation, diminished expression of BCL-XL, and induction of γH2A.X. Ectopic expression of TRAF2, NIK, or BCL-XL, or short hairpin RNA TRAF3 knock-down, significantly reduced LCL161/LBH589 lethality, as did ectopic expression of dominant-negative FADD. Stromal/microenvironmental factors failed to diminish LCL161/LBH589-induced cell death. The LCL161/LBH589 regimen significantly increased cell killing in primary CD138+ cells (N = 31) and was particularly effective in diminishing the primitive progenitor cell-enriched CD138-/19+/20+/27+ population (N = 23) but was nontoxic to normal CD34+ cells. Finally, combined LCL161/LBH589 treatment significantly increased survival compared with single-agent treatment in an immunocompetent 5TGM1 murine MM model. Together, these findings argue that LCL161 interacts synergistically with LBH589 in MM cells through a process involving inactivation of the noncanonical NF-κB pathway and activation of the extrinsic apoptotic pathway, upregulation of TRAF3, and downregulation of TRAF2/BCL-XL. Notably, this regimen overcomes various forms of resistance, is active against primary MM cells, and displays significant in vivo activity. This strategy warrants further consideration in MM.
Collapse
|
18
|
Smaldone G, Coppola L, Pane K, Franzese M, Beneduce G, Parasole R, Menna G, Vitagliano L, Salvatore M, Mirabelli P. KCTD15 deregulation is associated with alterations of the NF-κB signaling in both pathological and physiological model systems. Sci Rep 2021; 11:18237. [PMID: 34521919 PMCID: PMC8440651 DOI: 10.1038/s41598-021-97775-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Like other KCTD proteins, KCTD15 is involved in important albeit distinct biological processes as cancer, neural crest formation, and obesity. Here, we characterized the role of KCTD15 in different physiological/pathological states to gain insights into its diversified function(s). The silencing of KCTD15 in MLL-rearranged leukemia models induced attenuation of the NF-κB pathway associated with a downregulation of pIKK-β and pIKB-α. Conversely, the activation of peripheral blood T cells upon PMA/ionomycin stimulation remarkably upregulated KCTD15 and, simultaneously, pIKK-β and pIKB-α. Moreover, a significant upregulation of KCTD15 was also observed in CD34 hematopoietic stem/progenitor cells where the NF-κB pathway is physiologically activated. The association between KCTD15 upregulation and increased NF-κB signaling was confirmed by luciferase assay as well as KCTD15 and IKK-β proximity ligation and immunoprecipitation experiments. The observed upregulation of IKK-β by KCTD15 provides a novel and intriguing interpretative key for understanding the protein function in a wide class of physiological/pathological conditions ranging from neuronal development to cancer and obesity/diabetes.
Collapse
Affiliation(s)
| | - Luigi Coppola
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - Katia Pane
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | | | - Giuliana Beneduce
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129, Naples, Italy
| | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129, Naples, Italy
| | - Giuseppe Menna
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone n.16, 80134, Naples, Italy.
| | | | | |
Collapse
|
19
|
Aberrant Immunoglobulin Kappa Locus Rearrangement in a Patient with CARD11-Related B Cell Lymphocytosis. J Clin Immunol 2021; 41:1943-1945. [PMID: 34355353 DOI: 10.1007/s10875-021-01114-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
|
20
|
Conditional Knockout Mouse Models to Study the Roles of Individual NF-κB Transcription Factors in Lymphocytes. Methods Mol Biol 2021. [PMID: 34236647 DOI: 10.1007/978-1-0716-1669-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The NF-κB signal transduction pathway has crucial functions in cell growth, survival, and the development of lymphocytes and other immune cells. Upon activation of the pathway, five distinct NF-κB transcription factor subunits that occur as homodimers or heterodimers comprise the downstream mediators that transcribe NF-κB target genes. A major quest in NF-κB research is to understand the biology of the separate subunits. However, determining the functions of the individual subunits using constitutional knockout mice is often hampered by the marked cell type and/or developmental stage-specific activation of the NF-κB pathway. To overcome these problems, we and others have generated loxP-flanked alleles of the genes encoding the different NF-κB subunits that upon crossing to suitable Cre-expressing mouse lines can be conditionally deleted in the desired cell type or developmental stage. We here describe the basic characteristics of conditional NF-κB subunit alleles rel (encoding c-REL), rela (RELA), relb (RELB), and nfkb2 (NF-κB2) generated in our laboratory that are available to the research community through a repository, and provide basic methods to study the consequences of tissue-specific ablation of NF-κB transcription factors in lymphocytes.
Collapse
|
21
|
Biology of Germinal Center B Cells Relating to Lymphomagenesis. Hemasphere 2021; 5:e582. [PMID: 34095765 PMCID: PMC8171379 DOI: 10.1097/hs9.0000000000000582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The germinal center (GC) reaction is a key feature of adaptive humoral immunity. GCs represent the site where mature B cells refine their B-cell receptor (BCR) and are selected based on the newly acquired affinity for the antigen. In the GC, B cells undergo multiple cycles of proliferation, BCR remodeling by immunoglobulin somatic hypermutation (SHM), and affinity-based selection before emerging as effector memory B cells or antibody-secreting plasma cells. At least 2 histologically and functionally distinct compartments are identified in the GC: the dark zone (DZ) and the light zone (LZ). The proliferative burst and immunoglobulin remodeling by SHM occur prevalently in the DZ compartment. In the LZ, GC B cells undergo an affinity-based selection process that requires the interaction with the antigen and accessory cells. GC B cells are also targeted by class switch recombination, an additional mechanism of immunoglobulin remodeling that ensures the expression of diverse isotype classes. These processes are regulated by a complex network of transcription factors, epigenetic modifiers, and signaling pathways that act in concert with mechanisms of intra-GC B-cell trafficking. The same mechanisms underlying the unique ability of GC B cells to generate high affinity antibodies and ensure immunological memory are hijacked during lymphomagenesis and become powerful weapons for malignant transformation. This review will summarize the main processes and transcriptional networks that drive GC B-cell development and are relevant for human B-cell lymphomagenesis.
Collapse
|
22
|
Bhat N, Virgen-Slane R, Ramezani-Rad P, Leung CR, Chen C, Balsells D, Shukla A, Kao E, Apgar JR, Fu M, Ware CF, Rickert RC. Regnase-1 is essential for B cell homeostasis to prevent immunopathology. J Exp Med 2021; 218:e20200971. [PMID: 33822844 PMCID: PMC8025244 DOI: 10.1084/jem.20200971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
Regnase-1 is an emerging regulator of immune responses with essential roles in the posttranscriptional control of immune cell activation. Regnase-1 is expressed in B cells; however, its B cell-specific functions remain unknown. Here, we demonstrate that Regnase-1 prevents severe autoimmune pathology and show its essential role in maintaining B cell homeostasis. Using Cre driver mice for ablation of Regnase-1 at various stages of B cell development, we demonstrate that loss of Regnase-1 leads to aberrant B cell activation and differentiation, resulting in systemic autoimmunity and early morbidity. The basis of these findings was informed by gene expression data revealing a regulatory role for Regnase-1 in the suppression of a transcriptional program that promotes B cell activation, survival, and differentiation. Overall, our study shows that Regnase-1 exerts critical control of B cell activation, which is required for prevention of immunopathology.
Collapse
Affiliation(s)
- Numana Bhat
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Richard Virgen-Slane
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Parham Ramezani-Rad
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Charlotte R. Leung
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Cindi Chen
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Daniel Balsells
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Ashima Shukla
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Elaine Kao
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - John R. Apgar
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO
| | - Carl F. Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Robert C. Rickert
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
23
|
Faumont N, Taoui O, Collares D, Jais JP, Leroy K, Prévaud L, Jardin F, Molina TJ, Copie-Bergman C, Petit B, Gourin MP, Bordessoule D, Troutaud D, Baud V, Feuillard J. c-Rel Is the Pivotal NF-κB Subunit in Germinal Center Diffuse Large B-Cell Lymphoma: A LYSA Study. Front Oncol 2021; 11:638897. [PMID: 33959502 PMCID: PMC8095348 DOI: 10.3389/fonc.2021.638897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Relationships between c-Rel and GCB-DLBCLs remain unclear. We found that strong c-Rel DNA-binding activity was mostly found in GCBs on two independent series of 48 DLBCLs and 66 DLBCLs, the latter issued from the GHEDI series. c-Rel DNA-binding activity was associated with increased REL mRNA expression. Extending the study to the whole GHEDI and Lenz DLBCL published series of 202 and 233 cases, it was found that the c-Rel gene expression profile (GEP) overlapped partially (12%) but only with the GCB GEP and not with the GEP of ABC-DLBCLs. Cases with both overexpression of REL mRNA and c-Rel GEP were defined as those having a c-Rel signature. These cases were GCBs in 88 and 83% of the GHEDI or Lenz's DLBCL series respectively. The c-Rel signature was also associated with various recurrent GCB-DLBCL genetic events, including REL gains, BCL2 translocation, MEF2B, EZH2, CREBBP, and TNFRSF14 mutations and with the EZB GCB genetic subtype. By CGH array, the c-Rel signature was specifically correlated with 2p15-16.1 amplification that includes XPO1, BCL11A, and USP34 and with the 22q11.22 deletion that covers IGLL5 and PRAME. The total number of gene copy number aberrations, so-called genomic imbalance complexity, was decreased in cases with the c-Rel signature. These cases exhibited a better overall survival. Functionally, overexpression of c-Rel induced its constitutive nuclear localization and protected cells against apoptosis while its repression tended to increase cell death. These results show that, clinically and biologically, c-Rel is the pivotal NF-κB subunit in the GCB-DLBCL subgroup. Functionally, c-Rel overexpression could directly promote DLBCL tumorigenesis without need for further activation signals.
Collapse
Affiliation(s)
- Nathalie Faumont
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Oussama Taoui
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Davi Collares
- Université de Paris, NF-κappaB, Differentiation and Cancer, Paris, France
| | | | - Karen Leroy
- UMRS1138, Centre de Recherche des Cordeliers, Paris Descartes University, CARPEM, Department of Genetics and Molecular Biology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Léa Prévaud
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Fabrice Jardin
- Inserm U1245 and Department of Henri-Becquerel Hematology Center and Normandie Univ UNIROUEN, Rouen, France
| | - Thierry J Molina
- Université de Paris, NF-κappaB, Differentiation and Cancer, Paris, France.,Pathology Department, Necker Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Barbara Petit
- Pathology Department, CHU of Limoges, Limoges, France
| | - Marie-Pierre Gourin
- Regional Reference Structure of Limousin Lymphomas, Clinical Hematology Department, CHU of Limoges, Limoges, France
| | - Dominique Bordessoule
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France.,Regional Reference Structure of Limousin Lymphomas, Clinical Hematology Department, CHU of Limoges, Limoges, France
| | | | - Véronique Baud
- Université de Paris, NF-κappaB, Differentiation and Cancer, Paris, France
| | - Jean Feuillard
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| |
Collapse
|
24
|
Kober-Hasslacher M, Oh-Strauß H, Kumar D, Soberon V, Diehl C, Lech M, Engleitner T, Katab E, Fernández-Sáiz V, Piontek G, Li H, Menze B, Ziegenhain C, Enard W, Rad R, Böttcher JP, Anders HJ, Rudelius M, Schmidt-Supprian M. c-Rel gain in B cells drives germinal center reactions and autoantibody production. J Clin Invest 2021; 130:3270-3286. [PMID: 32191641 DOI: 10.1172/jci124382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Single-nucleotide polymorphisms and locus amplification link the NF-κB transcription factor c-Rel to human autoimmune diseases and B cell lymphomas, respectively. However, the functional consequences of enhanced c-Rel levels remain enigmatic. Here, we overexpressed c-Rel specifically in mouse B cells from BAC-transgenic gene loci and demonstrate that c-Rel protein levels linearly dictated expansion of germinal center B (GCB) cells and isotype-switched plasma cells. c-Rel expression in B cells of otherwise c-Rel-deficient mice fully rescued terminal B cell differentiation, underscoring its critical B cell-intrinsic roles. Unexpectedly, in GCB cells transcription-independent regulation produced the highest c-Rel protein levels among B cell subsets. In c-Rel-overexpressing GCB cells this caused enhanced nuclear translocation, a profoundly altered transcriptional program, and increased proliferation. Finally, we provide a link between c-Rel gain and autoimmunity by showing that c-Rel overexpression in B cells caused autoantibody production and renal immune complex deposition.
Collapse
Affiliation(s)
- Maike Kober-Hasslacher
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hyunju Oh-Strauß
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dilip Kumar
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Valeria Soberon
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Carina Diehl
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Maciej Lech
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Oncology and Functional Genomics and
| | - Eslam Katab
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Vanesa Fernández-Sáiz
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Hongwei Li
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Björn Menze
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Christoph Ziegenhain
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Oncology and Functional Genomics and
| | - Jan P Böttcher
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Aplastic anemia in a patient with CVID due to NFKB1 haploinsufficiency. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005769. [PMID: 32972988 PMCID: PMC7784489 DOI: 10.1101/mcs.a005769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Acquired aplastic anemia (AA) is a life-threatening bone marrow failure caused by an autoimmune cytotoxic T lymphocyte attack on hematopoietic stem and progenitor cells. Factors contributing to aberrant autoimmune activation in AA include a deficit of T regulatory cells and high levels of inflammatory cytokines. Several acquired conditions of immune dysregulation and genetic polymorphisms in inflammatory cytokines and human leukocyte antigen genes have been linked to an increased risk of AA. However, AA has not been reported in patients with Mendelian disorders of immune regulation. Here we report a patient with familial common variable immunodeficiency (CVID) caused by a pathogenic variant in NFKB1, who developed AA as an adult. The patient had a difficult clinical course and was unable to tolerate standard AA therapy with cyclosporine A and eltrombopag, with complications attributed in part to the effect of cyclosporine A on NF-κB signaling. Our case suggests a novel link between genetic disorders of immune regulation and AA and highlights the importance of recognizing inherited autoimmunity syndromes in AA patients for the selection of optimal therapy and prognostic counseling.
Collapse
|
26
|
Labi V, Derudder E. Cell signaling and the aging of B cells. Exp Gerontol 2020; 138:110985. [PMID: 32504658 DOI: 10.1016/j.exger.2020.110985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
The uniqueness of each B cell lies in the structural diversity of the B-cell antigen receptor allowing the virtually limitless recognition of antigens, a necessity to protect individuals against a range of challenges. B-cell development and response to stimulation are exquisitely regulated by a group of cell surface receptors modulating various signaling cascades and their associated genetic programs. The effects of these signaling pathways in optimal antibody-mediated immunity or the aberrant promotion of immune pathologies have been intensely researched in the past in young individuals. In contrast, we are only beginning to understand the contribution of these pathways to the changes in B cells of old organisms. Thus, critical transcription factors such as E2A and STAT5 show differential expression or activity between young and old B cells. As a result, B-cell physiology appears altered, and antibody production is impaired. Here, we discuss selected phenotypic changes during B-cell aging and attempt to relate them to alterations of molecular mechanisms.
Collapse
Affiliation(s)
- Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
27
|
Lue JK, O’Connor OA, Bertoni F. Targeting pathogenic mechanisms in marginal zone lymphoma: from concepts and beyond. ANNALS OF LYMPHOMA 2020; 4:7. [PMID: 34667996 PMCID: PMC7611845 DOI: 10.21037/aol-20-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marginal zone lymphoma (MZL) represents a group of three distinct though overlapping lymphoid malignancies that includes extranodal, nodal and splenic marginal lymphoma. MZL patients usually present an indolent clinical course, although the disease remains largely incurable, save early stage disease that might be irradiated. Therapeutic advances have been limited due to the small patient population, and have largely been adapted from other indolent lymphomas. Here, we discuss the numerous targets and pathways which may offer the prospect of directly inhibiting the mechanisms identified promoting and sustaining marginal zone lymphomagenesis. In particular, we focus on the agents that may have at least a theoretical application in the disease. Various dysregulated pathways converge to produce an overarching stimulation of nuclear factor κB (NF-κB) and the MYD88-IRAK4 axis, which can be thus leveraged or targeting B-cell receptor signaling through BTK inhibitors (such as ibrutinib, zanubrutinib, acalabrutinib) and PI3K inhibitors (such as idelalisib, copanlisib, duvelisib umbralisib) or via more novel agents in development such as MALT1 inhibitors, SMAC mimetics, NIK inhibitors, IRAK4 or MYD88 inhibitors. NOTCH signaling is also crucial for marginal zone cells, but no clinical data are available with NOTCH inhibitors such as the γ-secretase inhibitor PF-03084014 or the NICD inhibitor CB-103. The hypermethylation phenotype, the overexpression of the PRC2-complex or the presence of TET2 mutations reported in MZL subsets make epigenetic agents (demethylating agents, EZH2 inhibitors, HDAC inhibitors) also potential therapeutic tools for MZL patients.
Collapse
Affiliation(s)
- Jennifer K. Lue
- Division of Hematology-Oncology, Department of Medicine, Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA
| | - Owen A. O’Connor
- Division of Hematology and Oncology, Program for T-Cell Lymphoma Research, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Francesco Bertoni
- institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
28
|
Nejatbakhsh Samimi L, Farhadi E, Tahmasebi MN, Jamshidi A, Sharafat Vaziri A, Mahmoudi M. NF-κB signaling in rheumatoid arthritis with focus on fibroblast-like synoviocytes. AUTOIMMUNITY HIGHLIGHTS 2020. [PMCID: PMC7414649 DOI: 10.1186/s13317-020-00135-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway regulates multiple processes in innate and adaptive immune cells. This pathway is involved in inflammation through the regulation of cytokines, chemokines, and adhesion molecules expression. The NF-κB transcription factor also participates in the survival, proliferation, and differentiation of cells. Therefore, deregulated NF-κB activation contributes to the pathogenesis of inflammatory diseases. Rheumatoid arthritis (RA) is classified as a heterogeneous and complex autoimmune inflammatory disease. Although different immune and non-immune cells contribute to the RA pathogenesis, fibroblast-like synoviocytes (FLSs) play a crucial role in disease progression. These cells are altered during the disease and produce inflammatory mediators, including inflammatory cytokines and matrix metalloproteinases, which result in joint and cartilage erosion. Among different cell signaling pathways, it seems that deregulated NF-κB activation is associated with the inflammatory picture of RA. NF-κB activation can also promote the proliferation of RA-FLSs as well as the inhibition of FLS apoptosis that results in hyperplasia in RA synovium. In this review, the role of NF-κB transcription factor in immune and non-immune cells (especially FLSs) that are involved in RA pathogenesis are discussed.
Collapse
|
29
|
Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Stem Cell Reports 2020; 13:992-1005. [PMID: 31813828 PMCID: PMC6915804 DOI: 10.1016/j.stemcr.2019.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-selective adhesion molecule (ESAM) is a lifelong marker of hematopoietic stem cells (HSCs). Although we previously elucidated the functional importance of ESAM in HSCs in stress-induced hematopoiesis in adults, it is unclear how ESAM affects hematopoietic development during fetal life. To address this issue, we analyzed fetuses from conventional or conditional ESAM-knockout mice. Approximately half of ESAM-null fetuses died after mid-gestation due to anemia. RNA sequencing analyses revealed downregulation of adult-type globins and Alas2, a heme biosynthesis enzyme, in ESAM-null fetal livers. These abnormalities were attributed to malfunction of ESAM-null HSCs, which was demonstrated in culture and transplantation experiments. Although crosslinking ESAM directly influenced gene transcription in HSCs, observations in conditional ESAM-knockout fetuses revealed the critical involvement of ESAM expressed in endothelial cells in fetal lethality. Thus, we showed that ESAM had important roles in developing definitive hematopoiesis. Furthermore, we unveiled the importance of endothelial ESAM in this process.
Collapse
|
30
|
Karnell JL, Albulescu M, Drabic S, Wang L, Moate R, Baca M, Oganesyan V, Gunsior M, Thisted T, Yan L, Li J, Xiong X, Eck SC, de Los Reyes M, Yusuf I, Streicher K, Müller-Ladner U, Howe D, Ettinger R, Herbst R, Drappa J. A CD40L-targeting protein reduces autoantibodies and improves disease activity in patients with autoimmunity. Sci Transl Med 2020; 11:11/489/eaar6584. [PMID: 31019027 DOI: 10.1126/scitranslmed.aar6584] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 11/06/2018] [Accepted: 03/25/2019] [Indexed: 12/23/2022]
Abstract
The CD40/CD40L axis plays a central role in the generation of humoral immune responses and is an attractive target for treating autoimmune diseases in the clinic. Here, we report the generation and clinical results of a CD40L binding protein, VIB4920, which lacks an Fc domain, therefore avoiding platelet-related safety issues observed with earlier monoclonal antibody therapeutics that targeted CD40L. VIB4920 blocked downstream CD40 signaling events, resulting in inhibition of human B cell activation and plasma cell differentiation, and did not induce platelet aggregation in preclinical studies. In a phase 1 study in healthy volunteers, VIB4920 suppressed antigen-specific IgG in a dose-dependent fashion after priming and boosting with the T-dependent antigen, KLH. Furthermore, VIB4920 significantly reduced circulating Ki67+ dividing B cells, class-switched memory B cells, and a plasma cell gene signature after immunization. In a phase 1b proof-of-concept study in patients with rheumatoid arthritis, VIB4920 significantly decreased disease activity, achieving low disease activity or clinical remission in more than 50% of patients in the two higher-dose groups. Dose-dependent decreases in rheumatoid factor autoantibodies and Vectra DA biomarker score provide additional evidence that VIB4920 effectively blocked the CD40/CD40L pathway. VIB4920 demonstrated a good overall safety profile in both clinical studies. Together, these data demonstrate the potential of VIB4920 to significantly affect autoimmune disease and humoral immune activation and to support further evaluation of this molecule in inflammatory conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Li Yan
- Viela Bio, Gaithersburg, MD 20878, USA
| | - Jing Li
- MedImmune, San Francisco, CA 94080, USA
| | | | | | | | | | | | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Campus Kerchoff, Justus-Liebig University Giessen, 61231 Bad Nauheim, Germany
| | - David Howe
- MedImmune, Granta Park, Cambridge CB21 6GH, UK
| | | | | | | |
Collapse
|
31
|
Gao Y, Jin H, Tan H, Wang Y, Wu J, Wang Y, Zhang J, Yang Y, Tian W, Hou R. The role of extracellular vesicles from stored RBC units in B lymphocyte survival and plasma cell differentiation. J Leukoc Biol 2020; 108:1765-1776. [PMID: 32421907 DOI: 10.1002/jlb.1a0220-666r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/22/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are small, double-membrane vesicles derived from erythrocytes, leukocytes, platelets, and cells of multiple tissues under physiologic or pathologic conditions. The role of EVs in stored RBC units is of great interest with respect to transfusion-related immunomodulation. The current study focuses on the quantity of EVs isolated from stored RBC units and their action on B cell-mediated immune responses. The in vitro experiment demonstrated that EVs exhibited a negative role in B cell survival, plasmacytic differentiation, and class switch recombination under LPS stimulation. Furthermore, LPS-induced antibody production was significantly decreased after EVs injection in vivo. Biochemical analysis revealed that EVs hampered the expression of Blimp-1 and IRF4 and the activation of NF-κB pathway in LPS-primed B cells. Overall, these data imply a vital role for EVs isolated from RBC units in B cell-mediated immune responses.
Collapse
Affiliation(s)
- Yuhan Gao
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Tan
- Guangdong Innovation Platform of Translational Research for Cerebrovascular Diseases, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yan Wang
- Department of Immunology, and Key Laboratory of Medical Immunology of Ministry of Public Health, Peking University Health Science Center, Beijing, China
| | - Jia Wu
- Department of Immunology, and Key Laboratory of Medical Immunology of Ministry of Public Health, Peking University Health Science Center, Beijing, China
| | - Yuqing Wang
- Department of Immunology, and Key Laboratory of Medical Immunology of Ministry of Public Health, Peking University Health Science Center, Beijing, China
| | - Jianhua Zhang
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Ying Yang
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Wenqin Tian
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Ruiqin Hou
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| |
Collapse
|
32
|
Mitchell S. What Will B Will B: Identifying Molecular Determinants of Diverse B-Cell Fate Decisions Through Systems Biology. Front Cell Dev Biol 2020; 8:616592. [PMID: 33511125 PMCID: PMC7835399 DOI: 10.3389/fcell.2020.616592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
B-cells are the poster child for cellular diversity and heterogeneity. The diverse repertoire of B lymphocytes, each expressing unique antigen receptors, provides broad protection against pathogens. However, B-cell diversity goes beyond unique antigen receptors. Side-stepping B-cell receptor (BCR) diversity through BCR-independent stimuli or engineered organisms with monoclonal BCRs still results in seemingly identical B-cells reaching a wide variety of fates in response to the same challenge. Identifying to what extent the molecular state of a B-cell determines its fate is key to gaining a predictive understanding of B-cells and consequently the ability to control them with targeted therapies. Signals received by B-cells through transmembrane receptors converge on intracellular molecular signaling networks, which control whether each B-cell divides, dies, or differentiates into a number of antibody-secreting distinct B-cell subtypes. The signaling networks that interpret these signals are well known to be susceptible to molecular variability and noise, providing a potential source of diversity in cell fate decisions. Iterative mathematical modeling and experimental studies have provided quantitative insight into how B-cells achieve distinct fates in response to pathogenic stimuli. Here, we review how systems biology modeling of B-cells, and the molecular signaling networks controlling their fates, is revealing the key determinants of cell-to-cell variability in B-cell destiny.
Collapse
|
33
|
The Unsolved Puzzle of c-Rel in B Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11070941. [PMID: 31277480 PMCID: PMC6678315 DOI: 10.3390/cancers11070941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/04/2023] Open
Abstract
Aberrant constitutive activation of Rel/NF-κB transcription factors is a hallmark of numerous cancers. Of the five Rel family members, c-Rel has the strongest direct links to tumorigenesis. c-Rel is the only member that can malignantly transform lymphoid cells in vitro. Furthermore, c-Rel is implicated in human B cell lymphoma through the frequent occurrence of REL gene locus gains and amplifications. In normal physiology, high c-Rel expression predominates in the hematopoietic lineage and a diverse range of stimuli can trigger enhanced expression and activation of c-Rel. Both expression and activation of c-Rel are tightly regulated on multiple levels, indicating the necessity to keep its functions under control. In this review we meta-analyze and integrate studies reporting gene locus aberrations to provide an overview on the frequency of REL gains in human B cell lymphoma subtypes, namely follicular lymphoma, diffuse large B cell lymphoma, primary mediastinal B cell lymphoma, and classical Hodgkin lymphoma. We also summarize current knowledge on c-Rel expression and protein localization in these human B cell lymphomas and discuss the co-amplification of BCL11A with REL. In addition, we highlight and illustrate key pathways of c-Rel activation and regulation with a specific focus on B cell biology.
Collapse
|
34
|
Zumaquero E, Stone SL, Scharer CD, Jenks SA, Nellore A, Mousseau B, Rosal-Vela A, Botta D, Bradley JE, Wojciechowski W, Ptacek T, Danila MI, Edberg JC, Bridges SL, Kimberly RP, Chatham WW, Schoeb TR, Rosenberg AF, Boss JM, Sanz I, Lund FE. IFNγ induces epigenetic programming of human T-bet hi B cells and promotes TLR7/8 and IL-21 induced differentiation. eLife 2019; 8:e41641. [PMID: 31090539 PMCID: PMC6544433 DOI: 10.7554/elife.41641] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Although B cells expressing the IFNγR or the IFNγ-inducible transcription factor T-bet promote autoimmunity in Systemic Lupus Erythematosus (SLE)-prone mouse models, the role for IFNγ signaling in human antibody responses is unknown. We show that elevated levels of IFNγ in SLE patients correlate with expansion of the T-bet expressing IgDnegCD27negCD11c+CXCR5neg (DN2) pre-antibody secreting cell (pre-ASC) subset. We demonstrate that naïve B cells form T-bethi pre-ASCs following stimulation with either Th1 cells or with IFNγ, IL-2, anti-Ig and TLR7/8 ligand and that IL-21 dependent ASC formation is significantly enhanced by IFNγ or IFNγ-producing T cells. IFNγ promotes ASC development by synergizing with IL-2 and TLR7/8 ligands to induce genome-wide epigenetic reprogramming of B cells, which results in increased chromatin accessibility surrounding IRF4 and BLIMP1 binding motifs and epigenetic remodeling of IL21R and PRDM1 loci. Finally, we show that IFNγ signals poise B cells to differentiate by increasing their responsiveness to IL-21.
Collapse
Affiliation(s)
- Esther Zumaquero
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Sara L Stone
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Scott A Jenks
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Anoma Nellore
- Department of Medicine, Division of Infectious DiseaseThe University of Alabama at BirminghamBirminghamUnited States
| | - Betty Mousseau
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Antonio Rosal-Vela
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Davide Botta
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Wojciech Wojciechowski
- Center for Pediatric Biomedical Research, Flow Cytometry Shared Resource LaboratoryUniversity of Rochester School of Medicine and DentistryRochesterUnited States
| | - Travis Ptacek
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- Informatics Group, Center for Clinical and Translational ScienceThe University of Alabama at BirminghamBirminghamUnited States
| | - Maria I Danila
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeffrey C Edberg
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - S Louis Bridges
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Robert P Kimberly
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - W Winn Chatham
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Trenton R Schoeb
- Department of Genetics, Animal Resources ProgramThe University of Alabama at BirminghamBirminghamUnited States
| | - Alexander F Rosenberg
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- The Informatics InstituteThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Ignacio Sanz
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Frances E Lund
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
35
|
Li Y, Yang JY, Xie X, Jie Z, Zhang L, Shi J, Lin D, Gu M, Zhou X, Li HS, Watowich SS, Jain A, Yun Jung S, Qin J, Cheng X, Sun SC. Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res 2019; 29:474-485. [PMID: 31086255 DOI: 10.1038/s41422-019-0174-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 01/21/2023] Open
Abstract
NF-κB, a family of transcription factors regulating diverse biological processes including immune responses, is activated by canonical and noncanonical pathways based on degradation of IκBα and processing of the IκB-like protein p100, respectively. Although p100 responds to noncanonical NF-κB stimuli for processing, it does not undergo degradation, but rather becomes accumulated, along with canonical NF-κB activation. We show here that the stability of p100 is tightly controlled by a deubiquitinase, Otub1. Otub1 deficiency not only promotes signal-induced p100 processing and noncanonical NF-κB activation but also causes steady-state p100 degradation, leading to aberrant NF-κB activation in the canonical pathway. B-cell-conditional deletion of Otub1 results in B-cell hyperplasia, antibody hyper-production, and lupus-like autoimmunity. Otub1-deficient B cells display aberrantly activated phenotypes and overproduce the cytokine IL-6, contributing to autoimmunity induction. Thus, maintenance of p100 stability by Otub1 serves as an unusual mechanism of NF-κB regulation that prevents autoimmunity.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianhong Shi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Daniel Lin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Dorrington MG, Fraser IDC. NF-κB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration. Front Immunol 2019; 10:705. [PMID: 31024544 PMCID: PMC6465568 DOI: 10.3389/fimmu.2019.00705] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is one of the best understood immune-related pathways thanks to almost four decades of intense research. NF-κB signaling is activated by numerous discrete stimuli and is a master regulator of the inflammatory response to pathogens and cancerous cells, as well as a key regulator of autoimmune diseases. In this regard, the role of NF-κB signaling in immunity is not unlike that of the macrophage. The dynamics by which NF-κB proteins shuttle between the cytoplasm and the nucleus to initiate transcription have been studied rigorously in fibroblasts and other non-hematopoietic cells, but many questions remain as to how current models of NF-κB signaling and dynamics can be translated to innate immune cells such as macrophages. In this review, we will present recent research on the dynamics of NF-κB signaling and focus especially on how these dynamics vary in different cell types, while discussing why these characteristics may be important. We will end by looking ahead to how new techniques and technologies should allow us to analyze these signaling processes with greater clarity, bringing us closer to a more complete understanding of inflammatory transcription factor dynamics and how different cellular contexts might allow for appropriate control of innate immune responses.
Collapse
Affiliation(s)
- Michael G Dorrington
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID, DIR, NIH, Bethesda, MD, United States
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID, DIR, NIH, Bethesda, MD, United States
| |
Collapse
|
37
|
Roy K, Mitchell S, Liu Y, Ohta S, Lin YS, Metzig MO, Nutt SL, Hoffmann A. A Regulatory Circuit Controlling the Dynamics of NFκB cRel Transitions B Cells from Proliferation to Plasma Cell Differentiation. Immunity 2019; 50:616-628.e6. [PMID: 30850343 DOI: 10.1016/j.immuni.2019.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/20/2018] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
Abstract
Humoral immunity depends on efficient activation of B cells and their subsequent differentiation into antibody-secreting cells (ASCs). The transcription factor NFκB cRel is critical for B cell proliferation, but incorporating its known regulatory interactions into a mathematical model of the ASC differentiation circuit prevented ASC generation in simulations. Indeed, experimental ectopic cRel expression blocked ASC differentiation by inhibiting the transcription factor Blimp1, and in wild-type (WT) cells cRel was dynamically repressed during ASC differentiation by Blimp1 binding the Rel locus. Including this bi-stable circuit of mutual cRel-Blimp1 antagonism into a multi-scale model revealed that dynamic repression of cRel controls the switch from B cell proliferation to ASC generation phases and hence the respective cell population dynamics. Our studies provide a mechanistic explanation of how dysregulation of this bi-stable circuit might result in pathologic B cell population phenotypes and thus offer new avenues for diagnostic stratification and treatment.
Collapse
Affiliation(s)
- Koushik Roy
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Simon Mitchell
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Liu
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sho Ohta
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Sheng Lin
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marie Oliver Metzig
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Aberrant Activation of NF-κB Signalling in Aggressive Lymphoid Malignancies. Cells 2018; 7:cells7110189. [PMID: 30380749 PMCID: PMC6262606 DOI: 10.3390/cells7110189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022] Open
Abstract
Lymphoid malignancies frequently harbor genetic mutations leading to aberrant activation of nuclear factor-κB (NF-κB) signaling; in normal cells, this pathway has important roles in the control of cell growth, survival, stress responses, and inflammation. Malignancies with mutations in NF-κB pathway components can derive from all cell stages of mature B-cell development; however, aberrant NF-κB activity is particularly prevalent in aggressive subtypes of non-Hodgkin lymphoma and myeloma. NF-κB activation is mediated by two separate pathways, the canonical and alternative pathway, and five downstream transcription factor subunits. Recent findings implicate a predominant role for distinct NF-κB pathways and subunits in certain lymphoma subtypes and myeloma; findings which are complemented by the realization that individual NF-κB subunits can have unique, non-redundant biological roles in the putative tumor precursor cells, including activated B cells, germinal center B cells and plasma cells. The knowledge gained from these studies may be exploited for the development of therapeutic strategies to inhibit aberrant NF-κB activity at the level of the transcription-factor subunits and their target genes, as global inhibition of the pathway is toxic. Here, we provide an overview on the role of aberrant NF-κB activation in aggressive lymphoid malignancies and discuss the potential importance of individual NF-κB subunits in the pathogenesis of tumor subtypes.
Collapse
|
39
|
Zhong L, Xu F, Chen F. Arsenic trioxide induces the apoptosis and decreases NF-κB expression in lymphoma cell lines. Oncol Lett 2018; 16:6267-6274. [PMID: 30333888 PMCID: PMC6176401 DOI: 10.3892/ol.2018.9424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Lymphoma is a type of cancer that develops from certain immune system cells. Arsenic trioxide (ATO) has attracted wide attention owing to its antitumor activities. However, the role of ATO in tumorigenesis and progression remains to be investigated. In the present study, the antitumor function of ATO was investigated in in lymphoma Raji and Jurkat cell lines and the effect of ATO on nuclear factor (NF)-κB expression levels. A Cell Counting kit-8 assay was used to assess cellular proliferation and the degree of cell apoptosis was measured by flow cytometric analysis; these assays demonstrated that ATO inhibited proliferation and promoted the apoptosis of Raji and Jurkat cells in a dose- and time-dependent manner. Western blot analysis revealed that ATO treatment affected the expression of apoptosis-associated proteins by downregulating the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) and upregulating the pro-apoptotic protein Bcl-2-associatedX and the degree of caspase-3 cleavage. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis showed that the mRNA and protein expression levels of NF-κB were downregulated significantly following treatment with 2 µM ATO for 24, 48 and 72 h in the two cell lines. Additionally, immunofluorescence staining indicated that NF-κB expression diminished following ATO treatment in a time-dependent manner. These data indicated that ATO inhibited the proliferation of lymphoma cells by inducing cell apoptosis, which may be associated with the inhibition of the NF-κB signaling pathway. The findings of the present study may lay the foundation for developing a personalized medicine strategy using ATO via targeting of the NF-κB signaling pathway in lymphoma.
Collapse
Affiliation(s)
- Lu Zhong
- Department of Hematology, Renji Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200001, P.R. China
| | - Fei Xu
- Department of Ultrasound, The Affiliated Shuhuang Hospital of University of Shanghai Chinese Medicine, Shanghai 201111, P.R. China
| | - Fangyuan Chen
- Department of Hematology, Renji Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200001, P.R. China
| |
Collapse
|
40
|
Pérez-Olivares M, Trento A, Rodriguez-Acebes S, González-Acosta D, Fernández-Antorán D, Román-García S, Martinez D, López-Briones T, Torroja C, Carrasco YR, Méndez J, Moreno de Alborán I. Functional interplay between c-Myc and Max in B lymphocyte differentiation. EMBO Rep 2018; 19:embr.201845770. [PMID: 30126925 DOI: 10.15252/embr.201845770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix-loop-helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c-Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c-Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional in vivo interplay between c-Myc and Max during B lymphocyte differentiation is not well understood. Using in vivo and ex vivo models, we show that while c-Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c-Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B-cell receptor. These data suggest that c-Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine-tuning the initial response after activation.
Collapse
Affiliation(s)
- Mercedes Pérez-Olivares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Alfonsina Trento
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | | | | | - David Fernández-Antorán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sara Román-García
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Dolores Martinez
- Centro Nacional de Investigaciones Oncológicas-CNIO, Madrid, Spain
| | | | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Juan Méndez
- Centro Nacional de Investigaciones Oncológicas-CNIO, Madrid, Spain
| | | |
Collapse
|
41
|
STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium 2018; 74:131-143. [PMID: 30048879 DOI: 10.1016/j.ceca.2018.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
The central role of Ca2+ signaling in the development of functional immunity and tolerance is well established. These signals are initiated by antigen binding to cognate receptors on lymphocytes that trigger store operated Ca2+ entry (SOCE). The underlying mechanism of SOCE in lymphocytes involves TCR and BCR mediated activation of Stromal Interaction Molecule 1 and 2 (STIM1/2) molecules embedded in the ER membrane leading to their activation of Orai channels in the plasma membrane. STIM/Orai dependent Ca2+ signals guide key antigen induced lymphocyte development and function principally through direct regulation of Ca2+ dependent transcription factors. The role of Ca2+ signaling in NFAT activation and signaling is well known and has been studied extensively, but a wide appreciation and mechanistic understanding of how Ca2+ signals also shape the activation and specificity of NF-κB dependent gene expression has lagged. Here we discuss and interpret what is known about Ca2+ dependent mechanisms of NF-kB activation, including what is known and the gaps in our understanding of how these signals control lymphocyte development and function.
Collapse
|
42
|
Thomas Y, Scott DC, Kristariyanto YA, Rinehart J, Clark K, Cohen P, Kurz T. The NEDD8 E3 ligase DCNL5 is phosphorylated by IKK alpha during Toll-like receptor activation. PLoS One 2018; 13:e0199197. [PMID: 29958295 PMCID: PMC6025869 DOI: 10.1371/journal.pone.0199197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
The activity of Cullin-RING ubiquitin E3 ligases (CRL) is regulated by NEDD8 modification. DCN-like proteins promote Cullin neddylation as scaffold-like E3s. One DCNL, DCNL5, is highly expressed in immune tissue. Here, we provide evidence that DCNL5 may be involved in innate immunity, as it is a direct substrate of the kinase IKKα during immune signalling. We find that upon activation of Toll-like receptors, DCNL5 gets rapidly and transiently phosphorylated on a specific N-terminal serine residue (S41). This phosphorylation event is specifically mediated by IKKα and not IKKβ. Our data for the first time provides evidence that DCNL proteins are post-translationally modified in an inducible manner. Our findings also provide the first example of a DCNL member as a kinase substrate in a signalling pathway, indicating that the activity of at least some DCNLs may be regulated.
Collapse
Affiliation(s)
- Yann Thomas
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daniel C. Scott
- Department of Structural Biology, Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yosua Adi Kristariyanto
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Kristopher Clark
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thimo Kurz
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
43
|
Noncanonical NF-κB in Cancer. Biomedicines 2018; 6:biomedicines6020066. [PMID: 29874793 PMCID: PMC6027307 DOI: 10.3390/biomedicines6020066] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The NF-κB pathway is a critical regulator of immune responses and is often dysregulated in cancer. Two NF-κB pathways have been described to mediate these responses, the canonical and the noncanonical. While understudied compared to the canonical NF-κB pathway, noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Here, we review noncanonical NF-κB pathways and discuss its important roles in promoting cancer. We also discuss alternative NF-κB-independent functions of some the components of noncanonical NF-κB signaling. Finally, we discuss important crosstalk between canonical and noncanonical signaling, which blurs the two pathways, indicating that understanding the full picture of NF-κB regulation is critical to deciphering how this broad pathway promotes oncogenesis.
Collapse
|
44
|
Sasaki Y, Iwai K. Crucial Role of Linear Ubiquitin Chain Assembly Complex-Mediated Inhibition of Programmed Cell Death in TLR4-Mediated B Cell Responses and B1b Cell Development. THE JOURNAL OF IMMUNOLOGY 2018; 200:3438-3449. [PMID: 29654209 DOI: 10.4049/jimmunol.1701526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/21/2018] [Indexed: 01/27/2023]
Abstract
Linear ubiquitin chain assembly complex (LUBAC)-mediated linear polyubiquitin plays crucial roles in thymus-dependent and -independent type II Ab responses and B1 cell development. In this study, we analyzed the role of LUBAC in TLR-mediated B cell responses. A mouse strain in which LUBAC activity was ablated specifically in B cells (B-HOIPΔlinear mice) showed defective Ab responses to a type I thymus-independent Ag, NP-LPS. B cells from B-HOIPΔlinear mice (HOIPΔlinear B cells) underwent massive cell death in response to stimulation of TLR4, but not TLR9. TLR4 stimulation induced caspase-8 activation in HOIPΔlinear B cells; this phenomenon, as well as TLR4-induced cell death, was suppressed by ablation of TRIF, a signal inducer specific for TLR4. In addition, LPS-induced survival, proliferation, and differentiation into Ab-producing cells of HOIPΔlinear B cells were substantially restored by inhibition of caspases together with RIP3 deletion, but not by RIP3 deletion alone, suggesting that LPS stimulation kills HOIPΔlinear B cells by apoptosis elicited via the TRIF pathway. Further examination of the roles of cell death pathways in B-HOIPΔlinear mice revealed that deletion of RIP3 increased the number of B1 cells, particularly B1b cells, in B-HOIPΔlinear mice, indicating that B1b cell homeostasis is controlled via LUBAC-mediated suppression of necroptosis. Taken together, the data show that LUBAC regulates TLR4-mediated B cell responses and B1b cell development and/or maintenance by inhibiting programmed cell death.
Collapse
Affiliation(s)
- Yoshiteru Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
45
|
Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines 2018; 6:biomedicines6020038. [PMID: 29587428 PMCID: PMC6027339 DOI: 10.3390/biomedicines6020038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The NF-κB transcription factor family plays a crucial role in lymphocyte proliferation and survival. Consequently, aberrant NF-κB activation has been described in a variety of lymphoid malignancies, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and adult T-cell leukemia. Several factors, such as persistent infections (e.g., with Helicobacter pylori), the pro-inflammatory microenvironment of the cancer, self-reactive immune receptors as well as genetic lesions altering the function of key signaling effectors, contribute to constitutive NF-κB activity in these malignancies. In this review, we will discuss the molecular consequences of recurrent genetic lesions affecting key regulators of NF-κB signaling. We will particularly focus on the oncogenic mechanisms by which these alterations drive deregulated NF-κB activity and thus promote the growth and survival of the malignant cells. As the concept of a targeted therapy based on the mutational status of the malignancy has been supported by several recent preclinical and clinical studies, further insight in the function of NF-κB modulators and in the molecular mechanisms governing aberrant NF-κB activation observed in lymphoid malignancies might lead to the development of additional treatment strategies and thus improve lymphoma therapy.
Collapse
Affiliation(s)
- Paula Grondona
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Anja Schmitt
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| |
Collapse
|
46
|
Gan T, Li BE, Mishra BP, Jones KL, Ernst P. MLL1 Promotes IL-7 Responsiveness and Survival during B Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2018; 200:1682-1691. [PMID: 29351999 DOI: 10.4049/jimmunol.1701572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
Abstract
B lymphocyte differentiation is an exquisitely regulated homeostatic process resulting in continuous production of appropriately selected B cells. Relatively small changes in gene expression can result in deregulation of this process, leading to acute lymphocytic leukemia (ALL), immune deficiency, or autoimmunity. Translocation of MLL1 (KMT2A) often results in a pro-B cell ALL, but little is known about its role in normal B cell differentiation. Using a Rag1-cre mouse knock-in to selectively delete Mll1 in developing lymphocytes, we show that B cell, but not T cell, homeostasis depends on MLL1. Mll1-/- B progenitors fail to differentiate efficiently through the pro- to pre-B cell transition, resulting in a persistent reduction in B cell populations. Cells inefficiently transit the pre-BCR checkpoint, despite normal to higher levels of pre-BCR components, and rearranged IgH expression fails to rescue this differentiation block. Instead of IgH-rearrangement defects, we find that Mll1-/- pre-B cells exhibit attenuated RAS/MAPK signaling downstream of the pre-BCR, which results in reduced survival in physiologic levels of IL-7. Genome-wide expression data illustrate that MLL1 is connected to B cell differentiation and IL-7-dependent survival through a complex transcriptional network. Overall, our data demonstrate that wild-type MLL1 is a regulator of pre-BCR signaling and B cell differentiation and further suggest that targeting its function in pro-B cell ALL may be more broadly effective than previously anticipated.
Collapse
Affiliation(s)
- Tao Gan
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Bin E Li
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Bibhu P Mishra
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Kenneth L Jones
- Hematology/Oncology/Bone Marrow Transplant Section, Department of Pediatrics, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045; and.,Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045
| | - Patricia Ernst
- Hematology/Oncology/Bone Marrow Transplant Section, Department of Pediatrics, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045; and .,Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
47
|
Hoeger B, Serwas NK, Boztug K. Human NF-κB1 Haploinsufficiency and Epstein-Barr Virus-Induced Disease-Molecular Mechanisms and Consequences. Front Immunol 2018; 8:1978. [PMID: 29403474 PMCID: PMC5778108 DOI: 10.3389/fimmu.2017.01978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 01/11/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)-related human primary immune deficiencies have initially been characterized as defining a subgroup of common variable immunodeficiencies (CVIDs), representing intrinsic B-cell disorders with antibody deficiency and recurrent infections of various kind. Recent evidence indicates that NF-κB1 haploinsufficiency underlies a variable type of combined immunodeficiency (CID) affecting both B and T lymphocyte compartments, with a broadened spectrum of disease manifestations, including Epstein–Barr virus (EBV)-induced lymphoproliferative disease and immediate life-threatening consequences. As part of this review series focused on EBV-related primary immunodeficiencies, we discuss the current clinical and molecular understanding of monoallelic NFKB1 germline mutations with special focus on the emerging context of EBV-associated disease. We outline mechanistic implications of dysfunctional NF-κB1 in B and T cells and discuss the fatal relation of impaired T-cell function with the inability to clear EBV infections. Finally, we compare common and suggested treatment angles in the context of this complex disease.
Collapse
Affiliation(s)
- Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Kathrin Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
49
|
Le Rossignol S, Ketheesan N, Haleagrahara N. Redox-sensitive transcription factors play a significant role in the development of rheumatoid arthritis. Int Rev Immunol 2017; 37:129-143. [PMID: 28898138 DOI: 10.1080/08830185.2017.1363198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease which is associated with significant morbidity. Redox sensitive transcription factors including NF-κB, HIF, AP-1, and Nrf2 are intimately involved in the pathogenesis of RA. The treatment of this disease is limited by the elusive nature of the pathogenesis of RA. NF-κB is crucial for the maturation of immune cells as well as production of TNFα and MMPs, which escalate RA. HIF is essential for activation of inflammatory cells, angiogenesis and pannus formation in RA. AP-1 regulates cytokine and MMP production as well as synovial hyperplasia which are key processes in RA. Nrf2 is involved with chondrogenesis, osteoblastogenesis, prostaglandin secretion and ROS production in RA. Targeting two or more of these transcription factors may result in increased efficacy than either therapy in isolation. This review will highlight the control specific mediators on these transcription factors, the subsequent effect of these transcription factors once activated, and then mesh this with the pathogenesis of RA. The elucidation of key transcription factor regulation in the pathogenesis of RA may highlight the novel therapy interventions which may prove to have a greater efficacy than those therapies currently available.
Collapse
Affiliation(s)
- Scott Le Rossignol
- a College of Medicine and Dentistry , James Cook University Townsville , Queensland , Australia
| | - Natkunam Ketheesan
- b Biomedicine, College of Public Health, Medical and Veterinary Sciences , James Cook University , Townsville , Queensland , Australia.,c Australian Institute of Tropical Health and Medicine , James Cook University , Townsville , Queensland , Australia
| | - Nagaraja Haleagrahara
- b Biomedicine, College of Public Health, Medical and Veterinary Sciences , James Cook University , Townsville , Queensland , Australia.,c Australian Institute of Tropical Health and Medicine , James Cook University , Townsville , Queensland , Australia
| |
Collapse
|
50
|
Shinohara H, Nagashima T, Cascalho MI, Kurosaki T. TAK1 maintains the survival of immunoglobulin λ-chain-positive B cells. Genes Cells 2016; 21:1233-1243. [PMID: 27696624 DOI: 10.1111/gtc.12442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022]
Abstract
TAK1 (MAP3K7) mediation of the IκB kinase (IKK) complex-nuclear factor-κB (NF-κB) pathway is crucial for the activation of immune response and to perpetuate inflammation. Although progress has been made to understand TAK1 function in the B-cell receptor (BCR) signaling, the physiological roles of TAK1 in B-cell development, particularly in the bone marrow (BM), remain elusive. Previous studies suggested that the IKK complex is required for the development of immunoglobulin light chain λ-positive B cells, but not for receptor editing. In contrast, NF-κB activity is suggested to be involved in the regulation of receptor editing. Thus, NF-κB signaling in early B-cell development is yet to be fully characterized. Therefore, we addressed the role of TAK1 in early B-cell development. TAK1-deficient mice showed significant reduction of BM Igλ-positive B-cell numbers without any alteration in the BCR editing. Furthermore, the expression of survival factor Bcl-2 was reduced in TAK1-deficient BM B cells as assessed by microarray and quantitative PCR analyses. Ex vivo over-expression of exogenous Bcl-2 enhanced the survival of TAK1-deficient Igλ-positive B cells. TAK1-IKK-NF-κB signaling contributes to the survival of λ-chain-positive B cells through NF-κB-dependent anti-apoptotic Bcl-2 expression.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeshi Nagashima
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Marilia I Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Laboratory for Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|