1
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Sobhiafshar U, Çakici B, Yilmaz E, Yildiz Ayhan N, Hedaya L, Ayhan MC, Yerinde C, Alankuş YB, Gürkaşlar HK, Firat‐Karalar EN, Emre NCT. Interferon regulatory factor 4 modulates epigenetic silencing and cancer-critical pathways in melanoma cells. Mol Oncol 2024; 18:2423-2448. [PMID: 38880659 PMCID: PMC11459048 DOI: 10.1002/1878-0261.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Interferon regulatory factor 4 (IRF4) was initially identified as a key controller in lymphocyte differentiation and function, and subsequently as a dependency factor and therapy target in lymphocyte-derived cancers. In melanocytes, IRF4 takes part in pigmentation. Although genetic studies have implicated IRF4 in melanoma, how IRF4 functions in melanoma cells has remained largely elusive. Here, we confirmed prevalent IRF4 expression in melanoma and showed that high expression is linked to dependency in cells and mortality in patients. Analysis of genes activated by IRF4 uncovered, as a novel target category, epigenetic silencing factors involved in DNA methylation (DNMT1, DNMT3B, UHRF1) and histone H3K27 methylation (EZH2). Consequently, we show that IRF4 controls the expression of tumour suppressor genes known to be silenced by these epigenetic modifications, for instance cyclin-dependent kinase inhibitors CDKN1A and CDKN1B, the PI3-AKT pathway regulator PTEN, and primary cilium components. Furthermore, IRF4 modulates activity of key downstream oncogenic pathways, such as WNT/β-catenin and AKT, impacting cell proliferation and survival. Accordingly, IRF4 modifies the effectiveness of pertinent epigenetic drugs on melanoma cells, a finding that encourages further studies towards therapeutic targeting of IRF4 in melanoma.
Collapse
Affiliation(s)
- Ulduz Sobhiafshar
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Betül Çakici
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Erdem Yilmaz
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Nalan Yildiz Ayhan
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Laila Hedaya
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Mustafa Can Ayhan
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | - Cansu Yerinde
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
| | | | - H. Kübra Gürkaşlar
- Department of Molecular Biology and GeneticsKoç UniversityIstanbulTurkey
| | | | - N. C. Tolga Emre
- Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
- Center for Life Sciences and TechnologiesBoğaziçi UniversityIstanbulTurkey
| |
Collapse
|
4
|
Wang P, Yang X, Zhang L, Sha S, Huang J, Peng J, Gu J, Pearson JA, Hu Y, Zhao H, Wong FS, Wang Q, Wen L. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nat Commun 2024; 15:4232. [PMID: 38762479 PMCID: PMC11102548 DOI: 10.1038/s41467-024-48611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.
Collapse
Affiliation(s)
- Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Xin Yang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Sha Sha
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - James Alexander Pearson
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Koshkin A, Herbach U, Martínez MR, Gandrillon O, Crauste F. Stochastic modeling of a gene regulatory network driving B cell development in germinal centers. PLoS One 2024; 19:e0301022. [PMID: 38547073 PMCID: PMC10977792 DOI: 10.1371/journal.pone.0301022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Germinal centers (GCs) are the key histological structures of the adaptive immune system, responsible for the development and selection of B cells producing high-affinity antibodies against antigens. Due to their level of complexity, unexpected malfunctioning may lead to a range of pathologies, including various malignant formations. One promising way to improve the understanding of malignant transformation is to study the underlying gene regulatory networks (GRNs) associated with cell development and differentiation. Evaluation and inference of the GRN structure from gene expression data is a challenging task in systems biology: recent achievements in single-cell (SC) transcriptomics allow the generation of SC gene expression data, which can be used to sharpen the knowledge on GRN structure. In order to understand whether a particular network of three key gene regulators (BCL6, IRF4, BLIMP1), influenced by two external stimuli signals (surface receptors BCR and CD40), is able to describe GC B cell differentiation, we used a stochastic model to fit SC transcriptomic data from a human lymphoid organ dataset. The model is defined mathematically as a piecewise-deterministic Markov process. We showed that after parameter tuning, the model qualitatively recapitulates mRNA distributions corresponding to GC and plasmablast stages of B cell differentiation. Thus, the model can assist in validating the GRN structure and, in the future, could lead to better understanding of the different types of dysfunction of the regulatory mechanisms.
Collapse
Affiliation(s)
- Alexey Koshkin
- Inria Dracula, Villeurbanne, France
- Laboratory of Biology and Modelling of the Cell, Universite de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Ulysse Herbach
- Université de Lorraine, CNRS, Inria, IECL, Nancy, France
| | | | - Olivier Gandrillon
- Inria Dracula, Villeurbanne, France
- Laboratory of Biology and Modelling of the Cell, Universite de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | | |
Collapse
|
6
|
Schleussner N, Cauchy P, Franke V, Giefing M, Fornes O, Vankadari N, Assi SA, Costanza M, Weniger MA, Akalin A, Anagnostopoulos I, Bukur T, Casarotto MG, Damm F, Daumke O, Edginton-White B, Gebhardt JCM, Grau M, Grunwald S, Hansmann ML, Hartmann S, Huber L, Kärgel E, Lusatis S, Noerenberg D, Obier N, Pannicke U, Fischer A, Reisser A, Rosenwald A, Schwarz K, Sundararaj S, Weilemann A, Winkler W, Xu W, Lenz G, Rajewsky K, Wasserman WW, Cockerill PN, Scheidereit C, Siebert R, Küppers R, Grosschedl R, Janz M, Bonifer C, Mathas S. Transcriptional reprogramming by mutated IRF4 in lymphoma. Nat Commun 2023; 14:6947. [PMID: 37935654 PMCID: PMC10630337 DOI: 10.1038/s41467-023-41954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.
Collapse
Affiliation(s)
- Nikolai Schleussner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Medical Center Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Vedran Franke
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, 60-479, Poland
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariantonia Costanza
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Ioannis Anagnostopoulos
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Thomas Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Marco G Casarotto
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Benjamin Edginton-White
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Michael Grau
- Department of Physics, University of Marburg, 35052, Marburg, Germany
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Stephan Grunwald
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Martin-Leo Hansmann
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
- Institute for Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lionel Huber
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Eva Kärgel
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Simone Lusatis
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Daniel Noerenberg
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Anja Fischer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Anja Reisser
- Department of Physics, Institute of Biophysics, Ulm University, Ulm, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Srinivasan Sundararaj
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Andre Weilemann
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wiebke Winkler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Wendan Xu
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, 13125, Berlin, Germany
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Ralf Küppers
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Martin Janz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany.
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Thouenon R, Kracker S. Human inborn errors of immunity associated with IRF4. Front Immunol 2023; 14:1236889. [PMID: 37809068 PMCID: PMC10556498 DOI: 10.3389/fimmu.2023.1236889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The transcription factor interferon regulatory factor 4 (IRF4) belongs to the IRF family and has several important functions for the adaptive immune response. Mutations affecting IRF family members IRF1, IRF3, IRF7, IRF8, or IRF9 have been described in patients presenting with inborn errors of immunity (IEI) highlighting the importance of these factors for the cellular host defense against mycobacterial and/or viral infections. IRF4 deficiency and haploinsufficiency have been associated with IEI. More recently, two novel IRF4 disease-causing mechanisms have been described due to the characterization of IEI patients presenting with cellular immunodeficiency associated with agammaglobulinemia. Here, we review the phenotypes and physiopathological mechanisms underlying IEI of IRF family members and, in particular, IRF4.
Collapse
Affiliation(s)
- Romane Thouenon
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR, Paris, France
| | - Sven Kracker
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR, Paris, France
| |
Collapse
|
8
|
Küppers R, Budeus B, Hartmann S, Hansmann ML. Clonal composition and differentiation stage of human CD30 + B cells in reactive lymph nodes. Front Immunol 2023; 14:1208610. [PMID: 37559724 PMCID: PMC10407394 DOI: 10.3389/fimmu.2023.1208610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction Normal CD30+ B cells represent a distinct B-cell differentiation stage with features of strong activation. We lack an in depth understanding of these cells, because they are not present in peripheral blood and are typically very rare in reactive lymphoid organs. CD30+ B cells have been discussed as a potential precursor population for the malignant CD30+ Hodgkin and Reed-Sternberg cells in classical Hodgkin lymphoma. As CD30+ B cells can be more numerous in some cases of reactive lymphadenitis, we aimed to characterize these CD30+ B cells in terms of their differentiation stage and clonal composition, also as a means to clarify whether such CD30+ B-cell populations may represent potential precursor lesions of Hodgkin lymphoma. Methods We microdissected single CD30+ B cells from tissue sections of eight reactive lymph nodes with substantial numbers of such cells and sequenced their rearranged immunoglobulin (Ig) heavy chain V region (IGHV) genes. Results The CD30+ B cells were polyclonal B cells in all instances, and they not only encompass post-germinal center (GC) B cells with mutated IGHV genes, but also include a substantial fraction of pre-germinal center B cells with unmutated IGHV genes. In five of the lymph nodes, mostly small clonal expansions were detected among the CD30+ B cells. Most of the expanded clones carried somatically mutated IGHV genes and about half of the mutated clones showed intraclonal diversity. Discussion We conclude that in human reactive lymph nodes with relatively many CD30+ B cells, these cells are a heterogenous population of polyclonal B cells encompassing activated pre-GC B cells as well as GC and post-GC B cells, with some clonal expansions. Because of their polyclonality and frequent pre-GC differentiation stage, there is no indication that such cell-rich CD30+ B-cell populations represent precursor lesions of Hodgkin lymphoma.
Collapse
Affiliation(s)
- Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Medical School, Frankfurt/Main, Germany
| | - Martin-Leo Hansmann
- Frankfurt Institute of Advanced Studies, Frankfurt/Main, Germany
- Institute for Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
9
|
Thouenon R, Chentout L, Moreno-Corona N, Poggi L, Lombardi EP, Hoareau B, Schmitt Y, Lagresle-Peyrou C, Bustamante J, André I, Cavazzana M, Durandy A, Casanova JL, Galicier L, Fadlallah J, Fischer A, Kracker S. A neomorphic mutation in the interferon activation domain of IRF4 causes a dominant primary immunodeficiency. J Exp Med 2023; 220:e20221292. [PMID: 36917008 PMCID: PMC10037104 DOI: 10.1084/jem.20221292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
Here, we report on a heterozygous interferon regulatory factor 4 (IRF4) missense variant identified in three patients from a multigeneration family with hypogammaglobulinemia. Patients' low blood plasmablast/plasma cell and naïve CD4 and CD8 T cell counts contrasted with high terminal effector CD4 and CD8 T cell counts. Expression of the mutant IRF4 protein in control lymphoblastoid B cell lines reduced the expression of BLIMP-1 and XBP1 (key transcription factors in plasma cell differentiation). In B cell lines, the mutant IRF4 protein as wildtype was found to bind to known IRF4 binding motifs. The mutant IRF4 failed to efficiently regulate the transcriptional activity of interferon-stimulated response elements (ISREs). Rapid immunoprecipitation mass spectrometry of endogenous proteins indicated that the mutant and wildtype IRF4 proteins differed with regard to their respective sets of binding partners. Our findings highlight a novel mechanism for autosomal-dominant primary immunodeficiency through altered protein binding by mutant IRF4 at ISRE, leading to defective plasma cell differentiation.
Collapse
Affiliation(s)
- Romane Thouenon
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERMUMR 1163, Paris, France
| | - Loïc Chentout
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERMUMR 1163, Paris, France
| | - Nidia Moreno-Corona
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERMUMR 1163, Paris, France
| | - Lucie Poggi
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERMUMR 1163, Paris, France
| | - Emilia Puig Lombardi
- Université de Paris, Bioinformatics Core Facility, Imagine Institute, INSERMUMR 1163, Paris, France
| | - Benedicte Hoareau
- Sorbonne Université, UMS037, PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière, Paris, France
| | - Yohann Schmitt
- Plateforme de génomique, Institut Imagine-Structure Fédérative de Recherche Necker, INSERMU1163 et INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Chantal Lagresle-Peyrou
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERMUMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERMU1163, Necker Hospital for Sick Children, Paris, France
- Paris Hospital, Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle André
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERMUMR 1163, Paris, France
| | - Marina Cavazzana
- Université Paris Cité, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- Departement de Biotherapie Hôpital Universitaire Necker-Enfants malades, Groupe Hospitalier Paris Centre Assistance Publique-Hôpitaux de Paris, Paris, France
- Imagine Institute, INSERMUMR 1163, Paris, France
| | - Anne Durandy
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERMUMR 1163, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERMU1163, Necker Hospital for Sick Children, Paris, France
- Necker Hospital, Pediatric Hematology-Immunology and Rheumatology Unit, Assistance Publique-Hôpitaux de Paris, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Lionel Galicier
- Clinical Immunology Department, Hôpital Saint Louis, Université de Paris, Paris, France
- National Reference Center for Castleman disease, Hôpital Saint Louis, Université de Paris, Paris, France
| | - Jehane Fadlallah
- Clinical Immunology Department, Hôpital Saint Louis, Université de Paris, Paris, France
- National Reference Center for Castleman disease, Hôpital Saint Louis, Université de Paris, Paris, France
| | - Alain Fischer
- Imagine Institute, INSERMUMR 1163, Paris, France
- Necker Hospital, Pediatric Hematology-Immunology and Rheumatology Unit, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| | - Sven Kracker
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERMUMR 1163, Paris, France
| |
Collapse
|
10
|
Swanson RV, Gupta A, Foreman TW, Lu L, Choreno-Parra JA, Mbandi SK, Rosa BA, Akter S, Das S, Ahmed M, Garcia-Hernandez MDLL, Singh DK, Esaulova E, Artyomov MN, Gommerman J, Mehra S, Zuniga J, Mitreva M, Scriba TJ, Rangel-Moreno J, Kaushal D, Khader SA. Antigen-specific B cells direct T follicular-like helper cells into lymphoid follicles to mediate Mycobacterium tuberculosis control. Nat Immunol 2023; 24:855-868. [PMID: 37012543 PMCID: PMC11133959 DOI: 10.1038/s41590-023-01476-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/24/2023] [Indexed: 04/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.
Collapse
Affiliation(s)
- Rosemary V Swanson
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ananya Gupta
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Taylor W Foreman
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
- AstraZeneca, Washington DC-Baltimore, MD, USA
| | - Lan Lu
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jose Alberto Choreno-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Sadia Akter
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Maria de la Luz Garcia-Hernandez
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dhiraj K Singh
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Smriti Mehra
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Joaquin Zuniga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Mexico City, Mexico
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Deepak Kaushal
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Vlasevska S, Garcia-Ibanez L, Duval R, Holmes A, Jahan R, Cai B, Kim A, Mo T, Basso K, Soni R, Bhagat G, Dalla-Favera R, Pasqualucci L. KMT2D acetylation by CREBBP reveals a cooperative functional interaction at enhancers in normal and malignant germinal center B cells. Proc Natl Acad Sci U S A 2023; 120:e2218330120. [PMID: 36893259 PMCID: PMC10089214 DOI: 10.1073/pnas.2218330120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/26/2023] [Indexed: 03/11/2023] Open
Abstract
Heterozygous inactivating mutations of the KMT2D methyltransferase and the CREBBP acetyltransferase are among the most common genetic alterations in B cell lymphoma and co-occur in 40 to 60% of follicular lymphoma (FL) and 30% of EZB/C3 diffuse large B cell lymphoma (DLBCL) cases, suggesting they may be coselected. Here, we show that combined germinal center (GC)-specific haploinsufficiency of Crebbp and Kmt2d synergizes in vivo to promote the expansion of abnormally polarized GCs, a common preneoplastic event. These enzymes form a biochemical complex on select enhancers/superenhancers that are critical for the delivery of immune signals in the GC light zone and are only corrupted upon dual Crebbp/Kmt2d loss, both in mouse GC B cells and in human DLBCL. Moreover, CREBBP directly acetylates KMT2D in GC-derived B cells, and, consistently, its inactivation by FL/DLBCL-associated mutations abrogates its ability to catalyze KMT2D acetylation. Genetic and pharmacologic loss of CREBBP and the consequent decrease in KMT2D acetylation lead to reduced levels of H3K4me1, supporting a role for this posttranslational modification in modulating KMT2D activity. Our data identify a direct biochemical and functional interaction between CREBBP and KMT2D in the GC, with implications for their role as tumor suppressors in FL/DLBCL and for the development of precision medicine approaches targeting enhancer defects induced by their combined loss.
Collapse
Affiliation(s)
- Sofija Vlasevska
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | | | - Romain Duval
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Antony B. Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Rahat Jahan
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Bowen Cai
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Andrew Kim
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Tongwei Mo
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Department of Genetics and Development, Columbia University, New York, NY10032
- Department of Microbiology and Immunology, Columbia University, New York, NY10032
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| |
Collapse
|
12
|
Kozaki R, Yasuhiro T, Kato H, Murai J, Hotta S, Ariza Y, Sakai S, Fujikawa R, Yoshida T. Investigation of the anti-tumor mechanism of tirabrutinib, a highly selective Bruton's tyrosine kinase inhibitor, by phosphoproteomics and transcriptomics. PLoS One 2023; 18:e0282166. [PMID: 36897912 PMCID: PMC10004634 DOI: 10.1371/journal.pone.0282166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Tirabrutinib is a highly selective Bruton's tyrosine kinase (BTK) inhibitor used to treat hematological malignancies. We analyzed the anti-tumor mechanism of tirabrutinib using phosphoproteomic and transcriptomic methods. It is important to check the drug's selectivity against off-target proteins to understand the anti-tumor mechanism based on the on-target drug effect. Tirabrutinib's selectivity was evaluated by biochemical kinase profiling assays, peripheral blood mononuclear cell stimulation assays, and the BioMAP system. Next, in vitro and in vivo analyses of the anti-tumor mechanisms were conducted in activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) cells followed by phosphoproteomic and transcriptomic analyses. In vitro kinase assays showed that, compared with ibrutinib, tirabrutinib and other second-generation BTK inhibitors demonstrated a highly selective kinase profile. Data from in vitro cellular systems showed that tirabrutinib selectively affected B-cells. Tirabrutinib inhibited the cell growth of both TMD8 and U-2932 cells in correlation with the inhibition of BTK autophosphorylation. Phosphoproteomic analysis revealed the downregulation of ERK and AKT pathways in TMD8. In the TMD8 subcutaneous xenograft model, tirabrutinib showed a dose-dependent anti-tumor effect. Transcriptomic analysis indicated that IRF4 gene expression signatures had decreased in the tirabrutinib groups. In conclusion, tirabrutinib exerted an anti-tumor effect by regulating multiple BTK downstream signaling proteins, such as NF-κB, AKT, and ERK, in ABC-DLBCL.
Collapse
Affiliation(s)
- Ryohei Kozaki
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
- * E-mail:
| | - Tomoko Yasuhiro
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hikaru Kato
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Jun Murai
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Shingo Hotta
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yuko Ariza
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Shunsuke Sakai
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Ryu Fujikawa
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Takao Yoshida
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| |
Collapse
|
13
|
Liang H, Liu B, Gao Y, Nie J, Feng S, Yu W, Wen S, Su X. Jmjd3/IRF4 axis aggravates myeloid fibroblast activation and m2 macrophage to myofibroblast transition in renal fibrosis. Front Immunol 2022; 13:978262. [PMID: 36159833 PMCID: PMC9494509 DOI: 10.3389/fimmu.2022.978262] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis commonly occurs in the process of chronic kidney diseases. Here, we explored the role of Jumonji domain containing 3 (Jmjd3)/interferon regulatory factor 4 (IRF4) axis in activation of myeloid fibroblasts and transition of M2 macrophages into myofibroblasts transition (M2MMT) in kidney fibrosis. In mice, Jmjd3 and IRF4 were highly induced in interstitial cells of kidneys with folic acid or obstructive injury. Jmjd3 deletion in myeloid cells or Jmjd3 inhibitor reduced the levels of IRF4 in injured kidneys. Myeloid Jmjd3 depletion impaired bone marrow-derived fibroblasts activation and M2MMT in folic acid or obstructive nephropathy, resulting in reduction of extracellular matrix (ECM) proteins expression, myofibroblasts formation and renal fibrosis progression. Pharmacological inhibition of Jmjd3 also prevented myeloid fibroblasts activation, M2MMT, and kidney fibrosis development in folic acid nephropathy. Furthermore, IRF4 disruption inhibited myeloid myofibroblasts accumulation, M2MMT, ECM proteins accumulation, and showed milder fibrotic response in obstructed kidneys. Bone marrow transplantation experiment showed that wild-type mice received IRF4-/- bone marrow cells presented less myeloid fibroblasts activation in injured kidneys and exhibited much less kidney fibrosis after unilateral ureteral obstruction. Myeloid Jmjd3 deletion or Jmjd3 inhibitor attenuated expressions of IRF4, α-smooth muscle actin and fibronectin and impeded M2MMT in cultured monocytes exposed to IL-4. Conversely, overexpression IRF4 abrogated the effect of myeloid Jmjd3 deletion on M2MMT. Thus, Jmjd3/IRF4 signaling has a crucial role in myeloid fibroblasts activation, M2 macrophages to myofibroblasts transition, extracellular matrix protein deposition, and kidney fibrosis progression.
Collapse
Affiliation(s)
- Hua Liang
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, China
- Department of Anesthesiology, Affiliated Foshan Women and Children Hospital of Southern Medical University, Foshan, China
| | - Benquan Liu
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Ying Gao
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Jiayi Nie
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Shuyun Feng
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Wenqiang Yu
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenqiang Yu, ; Xi Su,
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xi Su
- Department of Paediatrics, Foshan Women and Children Hospital, Foshan, China
- *Correspondence: Wenqiang Yu, ; Xi Su,
| |
Collapse
|
14
|
Wang X, Su W, Gao Y, Feng Y, Wang X, Chen X, Hu Y, Ma Y, Ou Q, Liang D, Huang H. A pilot study of the use of dynamic analysis of cell-free DNA from aqueous humor and vitreous fluid for the diagnosis and treatment monitoring of vitreoretinal lymphomas. Haematologica 2022; 107:2154-2162. [PMID: 35142151 PMCID: PMC9425330 DOI: 10.3324/haematol.2021.279908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
The diagnosis of vitreoretinal lymphoma (VRL), a rare subtype of primary central nervous system lymphoma, is challenging. We aimed to investigate the mutational landscape of VRL by sequencing circulating tumor DNA (ctDNA) from aqueous humor (AH) and/or vitreous fluid (VF), as well as applying ctDNA sequencing to diagnosis and treatment monitoring. Baseline AH and/or VF specimens from 15 VRL patients underwent comprehensive genomic profiling using targeted next-generation sequencing. The molecular profiles of paired baseline AH and VF specimens were highly concordant, with comparable allele frequencies. However, the genetic alterations detected in cerebrospinal fluid ctDNA only partially overlapped with those from simultaneously collected AH/VF samples, with much lower allele frequencies. Serial post-treatment AH or VF samples were available for five patients and their changes in ctDNA allele frequency displayed a similar trend as the changes in interleukin-10 levels; an indicator of response to treatment. A cohort of 23 patients with primary central nervous system lymphoma was included as a comparison group for the genetic landscape and evaluations of the efficacy of ibrutinib. More MYD88 mutations, but fewer IRF4 mutations and CDKN2A/B copy number losses were observed in the baseline samples of primary central nervous system lymphoma than VRL patients. The objective response rate to ibrutinib treatment was much higher for patients with primary central nervous system lymphoma (64.7%, 11/17) than for those with VRL (14.3%, 1/7). In summary, we provide valuable clinical evidence that AH is a good source of tumor genomic information and can substitute VF. Moreover, molecular profiling of AH has clinical utility for the diagnosis of VRL and treatment monitoring.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Yanfen Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Xiaoxia Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou
| | - Yutong Ma
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou.
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou.
| |
Collapse
|
15
|
L'Imperio V, Morello G, Vegliante MC, Cancila V, Bertolazzi G, Mazzara S, Belmonte B, Mangogna A, Balzarini P, Corral L, Lopez G, Di Napoli A, Facchetti F, Pagni F, Tripodo C. Spatial transcriptome of a germinal center plasmablastic burst hints at MYD88/CD79B mutants-enriched diffuse large B-cell lymphomas. Eur J Immunol 2022; 52:1350-1361. [PMID: 35554927 PMCID: PMC9546146 DOI: 10.1002/eji.202149746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022]
Abstract
The GC reaction results in the selection of B cells acquiring effector Ig secreting ability by progressing toward plasmablastic differentiation. This transition is associated with exclusion from the GC microenvironment. The aberrant expansion of plasmablastic elements within the GC fringes configures an atypical condition, the biological characteristics of which have not been defined yet. We investigated the in situ immunophenotypical and transcriptional characteristics of a nonclonal germinotropic expansion of plasmablastic elements (GEx) occurring in the tonsil of a young patient. Compared to neighboring GC and perifollicular regions, the GEx showed a distinctive signature featuring key regulators of plasmacytic differentiation, cytokine signaling, and cell metabolism. The GEx signature was tested in the setting of diffuse large B‐cell lymphoma (DLBCL) as a prototypical model of lymphomagenesis encompassing transformation at different stages of GC and post‐GC functional differentiation. The signature outlined DLBCL clusters with different immune microenvironment composition and enrichment in genetic subtypes. This report represents the first insight into the transcriptional features of a germinotropic plasmablastic burst, shedding light into the molecular hallmarks of B cells undergoing plasmablastic differentiation and aberrant expansion within the noncanonical setting of the GC microenvironment.
Collapse
Affiliation(s)
- Vincenzo L'Imperio
- Department of Medicine and Surgery, University of Milano-Bicocca, Pathology, San Gerardo Hospital, Via G.B. Pergolesi 33, Monza, Italy
| | - Gaia Morello
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | | | - Valeria Cancila
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giorgio Bertolazzi
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Saveria Mazzara
- Division of Diagnostic Haematopathology, European Institute of Oncology, Milan, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Burlo Garofolo", Trieste, 34137, Italy
| | - Piera Balzarini
- Department of Molecular and Translational Medicine, University of Brescia, Piazzale Spedali Civili 1, Brescia, 25123, Italy
| | - Lilia Corral
- Centro Ricerca Tettamanti, Pediatric Clinic, University of Milan Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Gianluca Lopez
- Pathology Unit, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Arianna Di Napoli
- Pathology Unit, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | | | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Pathology, San Gerardo Hospital, Via G.B. Pergolesi 33, Monza, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy.,the FIRC Institute of Molecular Oncology, Tumor and Microenvironment Histopathology Unit, IFOM, Milan, Italy
| |
Collapse
|
16
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
17
|
Fiorcari S, Maffei R, Atene CG, Mesini N, Maccaferri M, Leonardi G, Martinelli S, Paolini A, Nasillo V, Debbia G, Potenza L, Luppi M, Marasca R. Notch2 Increases the Resistance to Venetoclax-Induced Apoptosis in Chronic Lymphocytic Leukemia B Cells by Inducing Mcl-1. Front Oncol 2022; 11:777587. [PMID: 35070982 PMCID: PMC8770925 DOI: 10.3389/fonc.2021.777587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) has experienced a clinical revolution—thanks to the discovery of crucial pathogenic mechanisms. CLL is still an incurable disease due to intrinsic or acquired resistance of the leukemic clone. Venetoclax is a Bcl-2 inhibitor with a marked activity in CLL, but emerging patterns of resistance are being described. We hypothesize that intrinsic features of CLL cells may contribute to drive mechanisms of resistance to venetoclax. We analyzed the expression of Interferon Regulatory Factor 4 (IRF4), Notch2, and Mcl-1 in a cohort of CLL patients. We evaluated CLL cell viability after genetic and pharmaceutical modulation of Notch2 expression in patients harboring trisomy 12. We tested venetoclax in trisomy 12 CLL cells either silenced or not for Notch2 expression or in combination with an inhibitor of Mcl-1, AMG-176. Trisomy 12 CLL cells were characterized by low expression of IRF4 associated with high levels of Notch2 and Mcl-1. Notch2 and Mcl-1 expression determined protection of CLL cells from spontaneous and drug-induced apoptosis. Considering the involvement of Mcl-1 in venetoclax resistance, our data demonstrated a contribution of high levels of Notch2 and Mcl-1 in a reduced response to venetoclax in CLL cells carrying trisomy 12. Furthermore, reduction of Mcl-1 expression by silencing Notch2 or by treatment with AMG-176 was able to restore the response of CLL cells to venetoclax. The expression of Notch2 identifies a subset of CLL patients, mainly harboring trisomy 12, characterized by high levels of Mcl-1. This biological mechanism may compromise an effective response to venetoclax.
Collapse
Affiliation(s)
- Stefania Fiorcari
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Maffei
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Claudio Giacinto Atene
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicolò Mesini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Maccaferri
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Giovanna Leonardi
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Silvia Martinelli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ambra Paolini
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Vincenzo Nasillo
- Diagnostic Hematology and Clinical Genomics Laboratory, Department of Laboratory Medicine and Pathology, Azienda Unità Sanitaria Locale di Modena (AUSL)/Azienda Ospedaliero-Universitaria di Modena (AOU) Policlinico, Policlinico, Modena, Italy
| | - Giulia Debbia
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy.,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy.,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy.,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| |
Collapse
|
18
|
Chen L, Shuai J, Liu T. Germinal Center-Derived Diffuse Large B-cell Lymphomas with Aberrant Co-expression of MUM1 in Adults and Children. CLINICAL CANCER INVESTIGATION JOURNAL 2022. [DOI: 10.51847/3frfymkupw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
19
|
Stoler-Barak L, Shulman Z. Complete Visualization of T Follicular Helper Cells in Germinal Centers by Light Sheet Fluorescence Microscopy. Methods Mol Biol 2022; 2380:3-13. [PMID: 34802117 DOI: 10.1007/978-1-0716-1736-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Long-lasting immunity depends on generation of antibody forming cells in germinal centers (GCs). Conventional methods such as immunohistology and intravital live imaging have been used extensively to investigate the location of cellular assemblies within tissues as well as their dynamic motility and cellular interactions. Two photon laser scanning microscopy (TPLSM) intravital imaging allows scanning of large areas within tissues and reveals multiple immune cell niches. Nonetheless, this type of imaging is limited by the depth of penetration and cannot capture effectively all of the GC niches within lymphoid organs. Here we describe a method to visualize antigen-specific T and B cells in multiple microanatomical locations and niches at the level of a whole organ. This large-scale imaging approach can greatly increase our understanding of the spatial distribution of immune cells and help obtain detailed 3D maps of their locations and quantities.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
21
|
McGettigan SE, Debes GF. Immunoregulation by antibody secreting cells in inflammation, infection, and cancer. Immunol Rev 2021; 303:103-118. [PMID: 34145601 PMCID: PMC8387433 DOI: 10.1111/imr.12991] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Antibody-secreting cells (ASCs) are considered work horses of the humoral immune response for their tireless effort to produce large amounts of antibodies that fulfill an array of functions in host defense, inflammation, and maintenance of homeostasis. While traditionally considered largely senescent cells, surprising recent findings demonstrate that subsets of ASCs downmodulate ongoing immune responses independent of antibody formation. Such regulatory ASCs produce IL-10 or IL-35 and are implicated in maintaining tissue and immune homeostasis. They also serve to suppress pathogenic leukocytes in infection, allergy, and inflammatory diseases that affect tissues, such as the central nervous system and the respiratory tract. Additionally, regulatory ASCs infiltrate various cancer types and restrict effective anti-tumor T cell responses. While incompletely understood, there is significant overlap in factors that control ASC differentiation, IL-10 expression by B cells and the generation of ASCs that secrete both antibodies and IL-10. In this review, we will cover the biology, phenotype, generation, maintenance and function of regulatory ASCs in various tissues under pathological and steady states. An improved understanding of the development of regulatory ASCs and their biological roles will be critical for generating novel ASC-targeted therapies for the treatment of inflammatory diseases, infection, and cancer.
Collapse
Affiliation(s)
- Shannon E. McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
| | - Gudrun F. Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107
| |
Collapse
|
22
|
Benatti S, Atene CG, Fiorcari S, Mesini N, Martinelli S, Zucchini P, Bacchelli F, Maccaferri M, Debbia G, Potenza L, Rossi D, Vallisa D, Trentin L, Gaidano G, Luppi M, Marasca R, Maffei R. IRF4 L116R mutation promotes proliferation of chronic lymphocytic leukemia B cells inducing MYC. Hematol Oncol 2021; 39:707-711. [PMID: 34431535 DOI: 10.1002/hon.2915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stefania Benatti
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Giacinto Atene
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Fiorcari
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicolò Mesini
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Martinelli
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Zucchini
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Bacchelli
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Maccaferri
- Department of Oncology and Hematology, Hematology Division, Azienda Ospedaliero-Universitaria of Modena-Policlinico, Modena, Italy
| | - Giulia Debbia
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Potenza
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Daniele Vallisa
- Division of Hematology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology, Department of Medicine, University of Padua, Padua, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Mario Luppi
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Marasca
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Maffei
- Department of Oncology and Hematology, Hematology Division, Azienda Ospedaliero-Universitaria of Modena-Policlinico, Modena, Italy
| |
Collapse
|
23
|
Ikeda S, Tagawa H. Impact of hypoxia on the pathogenesis and therapy resistance in multiple myeloma. Cancer Sci 2021; 112:3995-4004. [PMID: 34310776 PMCID: PMC8486179 DOI: 10.1111/cas.15087] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a refractory plasma cell tumor. In myeloma cells, the transcription factor IRF4, the master regulator of plasma cells, is aberrantly upregulated and plays an essential role in oncogenesis. IRF4 forms a positive feedback loop with MYC, leading to additional tumorigenic properties. In recent years, molecular targeted therapies have contributed to a significant improvement in the prognosis of MM. Nevertheless, almost all patients experience disease progression, which is thought to be a result of treatment resistance induced by various elements of the bone marrow microenvironment. Among these, the hypoxic response, one of the key processes for cellular homeostasis, induces hypoxia‐adapted traits such as undifferentiation, altered metabolism, and dissemination, leading to drug resistance. These inductions are caused by ectopic gene expression changes mediated by the activation of hypoxia‐inducible factors (HIFs). By contrast, the expression levels of IRF4 and MYC are markedly reduced by hypoxic stress. Notably, an anti‐apoptotic capability is usually acquired under both normoxic and hypoxic conditions, but the mechanism is distinct. This fact strongly suggests that myeloma cells may survive by switching their dependent regulatory factors from IRF4 and MYC (normoxic bone marrow region) to HIF (hypoxic bone marrow microenvironment). Therefore, to achieve deep remission, combination therapeutic agents, which are complementarily effective against both IRF4‐MYC‐dominant and HIF‐dominated fractions, may become an important therapeutic strategy for MM.
Collapse
Affiliation(s)
- Sho Ikeda
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
24
|
Wang J, Clay-Gilmour AI, Karaesmen E, Rizvi A, Zhu Q, Yan L, Preus L, Liu S, Wang Y, Griffiths E, Stram DO, Pooler L, Sheng X, Haiman C, Van Den Berg D, Webb A, Brock G, Spellman S, Pasquini M, McCarthy P, Allan J, Stölzel F, Onel K, Hahn T, Sucheston-Campbell LE. Genome-Wide Association Analyses Identify Variants in IRF4 Associated With Acute Myeloid Leukemia and Myelodysplastic Syndrome Susceptibility. Front Genet 2021; 12:554948. [PMID: 34220922 PMCID: PMC8248805 DOI: 10.3389/fgene.2021.554948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
The role of common genetic variation in susceptibility to acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS), a group of rare clonal hematologic disorders characterized by dysplastic hematopoiesis and high mortality, remains unclear. We performed AML and MDS genome-wide association studies (GWAS) in the DISCOVeRY-BMT cohorts (2,309 cases and 2,814 controls). Association analysis based on subsets (ASSET) was used to conduct a summary statistics SNP-based analysis of MDS and AML subtypes. For each AML and MDS case and control we used PrediXcan to estimate the component of gene expression determined by their genetic profile and correlate this imputed gene expression level with risk of developing disease in a transcriptome-wide association study (TWAS). ASSET identified an increased risk for de novo AML and MDS (OR = 1.38, 95% CI, 1.26-1.51, Pmeta = 2.8 × 10-12) in patients carrying the T allele at s12203592 in Interferon Regulatory Factor 4 (IRF4), a transcription factor which regulates myeloid and lymphoid hematopoietic differentiation. Our TWAS analyses showed increased IRF4 gene expression is associated with increased risk of de novo AML and MDS (OR = 3.90, 95% CI, 2.36-6.44, Pmeta = 1.0 × 10-7). The identification of IRF4 by both GWAS and TWAS contributes valuable insight on the role of genetic variation in AML and MDS susceptibility.
Collapse
Affiliation(s)
- Junke Wang
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Alyssa I. Clay-Gilmour
- Department of Epidemiology, Mayo Clinic, Rochester, MN, United States
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Ezgi Karaesmen
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Abbas Rizvi
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Leah Preus
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yiwen Wang
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Elizabeth Griffiths
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Daniel O. Stram
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Loreall Pooler
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xin Sheng
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Christopher Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Van Den Berg
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy Webb
- Department on Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Guy Brock
- Department on Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Marcelo Pasquini
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Philip McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - James Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - Kenan Onel
- Department of Pediatrics, Mount Sinai Medical Center, Miami Beach, NY, United States
| | - Theresa Hahn
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Lara E. Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
Li X, Zhai S, Zhang J, Zhang D, Wang S, Wang L, Yu J. Interferon Regulatory Factor 4 Correlated With Immune Cells Infiltration Could Predict Prognosis for Patients With Lung Adenocarcinoma. Front Oncol 2021; 11:698465. [PMID: 34195096 PMCID: PMC8236722 DOI: 10.3389/fonc.2021.698465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
Background Immune related interferon regulatory factor 4 (IRF4) is a member of the IRF family, whereas the clinical significance and possible role of IRF4 in lung adenocarcinoma (LUAD) remains unclear. We aimed to investigate the role of IRF4 in predicting the prognosis of LUAD patients. Methods Using The Cancer Genome Atlas (TCGA) database and our immunohistochemical (IHC) cohort, we analyzed the correlation between IRF4 expression and clinical characteristics, and the prognostic value of IRF4 was also evaluated in LUAD. The potential biological functions of IRF4 in LUAD were analyzed by Gene Set Enrichment Analysis (GSEA). The relationship between IRF4 and immune cell infiltration were evaluated by TISIDB database and our own IHC cohort. In addition, an immune checkpoint inhibitor (ICI) treated cohort from Gene Expression Omnibus database was used to determine the role of IRF4 in LUAD patients with immunotherapy. Results We found that either mRNA or protein expression level of IRF4 was significantly higher in LUAD than in normal tissues (P < 0.001). The elevate in IRF4 expression in LUAD was significantly associated with the earlier clinical stage (P = 0.002). Patients with LUAD and IRF4 high expression correlated with significant longer overall survival in both TCGA database (P < 0.05) and our IHC-cohort (P = 0.001). Our results also demonstrated that IRF4 could serve as an independent favorable prognostic factor in patients with LUAD. GSEA analysis indicated that high IRF4 expression group enriched with several immune-related pathways, such as B cell receptor signaling pathway, T cell receptor signaling pathway and cytokine-cytokine receptor interaction signaling pathway. In LUAD, IRF4 positively correlated with several different immune infiltrations including various B cells, CD8+ T cells and CD4+ T cells both in mRNA and protein levels. Additionally, we found that the expression of IRF4 was positively associated with PD-1 and PD-L1 mRNA expression levels, and IRF4 high expression predicted moderate better survival in LUAD with immunotherapy (P = 0.071). Conclusions Our results suggested that IRF4 was associated with higher B cells and T cells infiltration levels and might be a favorable prognostic biomarker in LUAD patients, whereas the potential prognostic role of IRF4 in ICI-treated patients needed further exploration.
Collapse
Affiliation(s)
- Xuanzong Li
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shujun Zhai
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dai Zhang
- Department of Radiation Oncology, School of Medicine, Shandong University, Jinan, China
| | - Shijiang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
26
|
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78:3883-3906. [PMID: 33599798 PMCID: PMC8106603 DOI: 10.1007/s00018-021-03756-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
27
|
Pasqualucci L, Klein U. Mouse Models in the Study of Mature B-Cell Malignancies. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a034827. [PMID: 32398289 DOI: 10.1101/cshperspect.a034827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past two decades, genomic analyses of several B-cell lymphoma entities have identified a large number of genes that are recurrently mutated, suggesting that their aberrant function promotes lymphomagenesis. For many of those genes, the specific role in normal B-cell development is unknown; moreover, whether and how their deregulated activity contributes to lymphoma initiation and/or maintenance is often difficult to determine. Genetically engineered mouse models that faithfully mimic lymphoma-associated genetic alterations represent valuable tools for elucidating the pathogenic roles of candidate oncogenes and tumor suppressors in vivo, as well as for the preclinical testing of novel therapeutic principles in an intact microenvironment. Here we summarize what has been learned about the mechanisms of oncogenic transformation from accurately modeling the most common and well-characterized genetic alterations identified in mature B-cell malignancies. This information is expected to guide the design of improved molecular diagnostics and mechanism-based therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
28
|
Abstract
As one of the most important weapons against infectious diseases, vaccines have saved countless lives since their first use in the late eighteenth century. Antibodies produced by effector B cells upon vaccination play a critical role in mediating protection. The past several decades of research have led to a revolution in our understanding of B cell response to vaccination. Vaccines against SARS-CoV-2 coronavirus were developed at an unprecedented speed to power our global fight against COVID-19 pandemic. Nevertheless, we still face many challenges in the development of vaccines against many other deadly viruses, such as human immunodeficiency virus (HIV) and influenza virus. In this review, we summarize the latest findings on B cell response to vaccination and pathogen infection. We also discuss the current challenges in the field and the potential strategies targeting B cell response to improve vaccine efficacy.Key abbreviations box: BCR: B cell receptor; bNAb: broadly neutralizing antibody; DC: dendritic cells; DZ: dark zone; EF response: extrafollicular response; FDC: follicular dendritic cell; GC: germinal center; HIV: human immunodeficiency virus; IC: immune complex; LLPC: long-lived plasma cell; LZ: light zone; MBC: memory B cell; SLPB: short-lived plasmablast; TFH: T follicular helper cells; TLR: Toll-like receptor.
Collapse
Affiliation(s)
- Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qian Yin
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
29
|
Merino Tejero E, Lashgari D, García-Valiente R, Gao X, Crauste F, Robert PA, Meyer-Hermann M, Martínez MR, van Ham SM, Guikema JEJ, Hoefsloot H, van Kampen AHC. Multiscale Modeling of Germinal Center Recapitulates the Temporal Transition From Memory B Cells to Plasma Cells Differentiation as Regulated by Antigen Affinity-Based Tfh Cell Help. Front Immunol 2021; 11:620716. [PMID: 33613551 PMCID: PMC7892951 DOI: 10.3389/fimmu.2020.620716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Germinal centers play a key role in the adaptive immune system since they are able to produce memory B cells and plasma cells that produce high affinity antibodies for an effective immune protection. The mechanisms underlying cell-fate decisions are not well understood but asymmetric division of antigen, B-cell receptor affinity, interactions between B-cells and T follicular helper cells (triggering CD40 signaling), and regulatory interactions of transcription factors have all been proposed to play a role. In addition, a temporal switch from memory B-cell to plasma cell differentiation during the germinal center reaction has been shown. To investigate if antigen affinity-based Tfh cell help recapitulates the temporal switch we implemented a multiscale model that integrates cellular interactions with a core gene regulatory network comprising BCL6, IRF4, and BLIMP1. Using this model we show that affinity-based CD40 signaling in combination with asymmetric division of B-cells result in switch from memory B-cell to plasma cell generation during the course of the germinal center reaction. We also show that cell fate division is unlikely to be (solely) based on asymmetric division of Ag but that BLIMP1 is a more important factor. Altogether, our model enables to test the influence of molecular modulations of the CD40 signaling pathway on the production of germinal center output cells.
Collapse
Affiliation(s)
- Elena Merino Tejero
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Danial Lashgari
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rodrigo García-Valiente
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | | | - Philippe A Robert
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Huub Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.,Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Anderson DA, Dutertre CA, Ginhoux F, Murphy KM. Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol 2021; 21:101-115. [PMID: 32908299 PMCID: PMC10955724 DOI: 10.1038/s41577-020-00413-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) develop in the bone marrow from haematopoietic progenitors that have numerous shared characteristics between mice and humans. Human counterparts of mouse DC progenitors have been identified by their shared transcriptional signatures and developmental potential. New findings continue to revise models of DC ontogeny but it is well accepted that DCs can be divided into two main functional groups. Classical DCs include type 1 and type 2 subsets, which can detect different pathogens, produce specific cytokines and present antigens to polarize mainly naive CD8+ or CD4+ T cells, respectively. By contrast, the function of plasmacytoid DCs is largely innate and restricted to the detection of viral infections and the production of type I interferon. Here, we discuss genetic models of mouse DC development and function that have aided in correlating ontogeny with function, as well as how these findings can be translated to human DCs and their progenitors.
Collapse
Affiliation(s)
- David A Anderson
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
31
|
Yongjun C, Nan Q, Yumeng S, Xiaowen J, Weibo W. Dioscin alleviates hashimoto's thyroiditis by regulating the SUMOylation of IRF4 to promote CD4 +CD25 +Foxp3 + treg cell differentiation. Autoimmunity 2020; 54:51-59. [PMID: 33274645 DOI: 10.1080/08916934.2020.1855428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dioscin has been used as a treatment for Hashimoto's thyroiditis (HT) in China. However, the molecular mechanisms governing the modes of action of dioscin have not been elucidated. In this study, flow cytometry and Western blotting were used to identify the proportions of CD4+CD25+ regulatory T (Treg) cells and the expression of forkhead box P3 (Foxp3) and SUMO-specific protease 1 (SENP1) in HT patients' peripheral blood mononuclear cells (PBMCs). A pTg-induced rat model of HT was established by injection of 100 μg pTg. Then, the model rats were randomly divided into three groups (n = 5): control (NC), model (HT) and dioscin treatment. After oral administration of dioscin each day for two weeks, CD4+CD25+Foxp3+ Treg cells were analysed by flow cytometry, and the protein expression levels of SENP1, Foxp3, SUMO-1 and SUMO-2/3 were measured by Western blotting. Co-immunoprecipitation (Co-IP) was used to identify the SUMOylation of interferon regulatory factor 4 (IRF4). The results showed that the proportions of CD4+CD25+ Treg cells and the expression of Foxp3 were significantly decreased in HT patients, but the expression of SENP1 was enhanced compared to healthy controls (HCs). However, compared to the pTg-induced HT rat group, the expression of Foxp3, SUMO-1, and SUMO-2/3 and the proportions of CD4+CD25+Foxp3+ Treg cells were increased, whereas the expression of SENP1 was decreased, in the dioscin-treated group. Furthermore, the SUMOylation of IRF4 was increased after SENP1 was knocked down. The results of our study indicate that dioscin can promote the differentiation of the CD4+CD25+Foxp3+ Treg cells and subsequently upregulate the SUMOylation of IRF4 by downregulating SENP1 expression.
Collapse
Affiliation(s)
- Cao Yongjun
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Qiao Nan
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Sun Yumeng
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Jin Xiaowen
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Wen Weibo
- The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
32
|
Ricker E, Verma A, Marullo R, Gupta S, Ye C, Pannellini T, Manni M, Tam W, Inghirami G, Elemento O, Cerchietti L, Pernis AB. Selective dysregulation of ROCK2 activity promotes aberrant transcriptional networks in ABC diffuse large B-cell lymphoma. Sci Rep 2020; 10:13094. [PMID: 32753663 PMCID: PMC7403583 DOI: 10.1038/s41598-020-69884-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/13/2020] [Indexed: 01/11/2023] Open
Abstract
Activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive subtype of lymphoma usually associated with inferior outcomes. ABC-DLBCL exhibits plasmablastic features and is characterized by aberrancies in the molecular networks controlled by IRF4. The signaling pathways that are dysregulated in ABC-DLBCL are, however, not fully understood. ROCK2 is a serine-threonine kinase whose role in lymphomagenesis is unknown. Here we show that ROCK2 activity is constitutively dysregulated in ABC-DLBCL but not in GCB-DLBCL and BL. We furthermore show that ROCK2 phosphorylates IRF4 and that the ROCK2-mediated phosphorylation of IRF4 modulates its ability to regulate a subset of target genes. In addition to its effects on IRF4, ROCK2 also controls the expression of MYC in ABC-DLBCL by regulating MYC protein levels. ROCK inhibition furthermore selectively decreases the proliferation and survival of ABC-DLBCL in vitro and inhibits ABC-DLBCL growth in xenograft models. Thus, dysregulated ROCK2 activity contributes to the aberrant molecular program of ABC-DLBCL via its dual ability to modulate both IRF4- and MYC-controlled gene networks and ROCK inhibition could represent an attractive therapeutic target for the treatment of ABC-DLBCL.
Collapse
Affiliation(s)
- Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rossella Marullo
- Hematology and Oncology Division, Weill Cornell Medicine, New York, NY, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Chao Ye
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Leandro Cerchietti
- Hematology and Oncology Division, Weill Cornell Medicine, New York, NY, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Zhao R, Zhang H, Zhang Y, Li D, Huang C, Li F. In vivo Screen Identifies Zdhhc2 as a Critical Regulator of Germinal Center B Cell Differentiation. Front Immunol 2020; 11:1025. [PMID: 32587588 PMCID: PMC7297983 DOI: 10.3389/fimmu.2020.01025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Germinal center (GC) B cell differentiation is critical for the production of affinity-matured pathogen-specific antibodies, the dysregulation of which may lead to humoral immunodeficiency or autoimmunity. The development of an in vivo screening system for factors regulating GC B cell differentiation has been a challenge. Here we describe a small-scale in vivo screening system with NP-specific B1-8hi cells and a retroviral shRNA library targeting 78 candidate genes to search for B cell-intrinsic factors that specifically regulate GC B cell differentiation. Zdhhc2, a gene encoding palmitoyltransferase ZDHHC2 and highly expressed in GC B cells, is identified as a strong positive regulator of GC B cell differentiation. B1-8hi cells transduced with Zdhhc2-shRNA are severely compromised in differentiating into GC B cells. A further analysis of in vitro differentiated B cells transduced with Zdhhc2-shRNA shows that Zdhhc2 is critical for the proliferation and the survival of B cells stimulated by CD40L, BAFF, and IL-21 and consequently impacts on their differentiation into GC B cells and post-GC B cells. These studies not only identify Zdhhc2 as a novel regulator of GC B cell differentiation but also represent a proof of concept of in vivo screen for regulators of GC B cell differentiation.
Collapse
Affiliation(s)
- Rongqing Zhao
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Zhang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Boston Consulting Group, Shenzhen, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fubin Li
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
B-cell-specific IRF4 deletion accelerates chronic lymphocytic leukemia development by enhanced tumor immune evasion. Blood 2020; 134:1717-1729. [PMID: 31537531 DOI: 10.1182/blood.2019000973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogenous disease that is highly dependent on a cross talk of CLL cells with the microenvironment, in particular with T cells. T cells derived from CLL patients or murine CLL models are skewed to an antigen-experienced T-cell subset, indicating a certain degree of antitumor recognition, but they are also exhausted, preventing an effective antitumor immune response. Here we describe a novel mechanism of CLL tumor immune evasion that is independent of T-cell exhaustion, using B-cell-specific deletion of the transcription factor IRF4 (interferon regulatory factor 4) in Tcl-1 transgenic mice developing a murine CLL highly similar to the human disease. We show enhanced CLL disease progression in IRF4-deficient Tcl-1 tg mice, associated with a severe downregulation of genes involved in T-cell activation, including genes involved in antigen processing/presentation and T-cell costimulation, which massively reduced T-cell subset skewing and exhaustion. We found a strong analogy in the human disease, with inferior prognosis of CLL patients with low IRF4 expression in independent CLL patient cohorts, failed T-cell skewing to antigen-experienced subsets, decreased costimulation capacity, and downregulation of genes involved in T-cell activation. These results have therapeutic relevance because our findings on molecular mechanisms of immune privilege may be responsible for the failure of immune-therapeutic strategies in CLL and may lead to improved targeting in the future.
Collapse
|
35
|
Lee J, Zhang J, Chung YJ, Kim JH, Kook CM, González-Navajas JM, Herdman DS, Nürnberg B, Insel PA, Corr M, Mo JH, Tao A, Yasuda K, Rifkin IR, Broide DH, Sciammas R, Webster NJG, Raz E. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. eLife 2020; 9:e49416. [PMID: 32014112 PMCID: PMC7000221 DOI: 10.7554/elife.49416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclic AMP (cAMP) is involved in many biological processes but little is known regarding its role in shaping immunity. Here we show that cAMP-PKA-CREB signaling (a pattern recognition receptor [PRR]-independent mechanism) regulates conventional type-2 Dendritic Cells (cDC2s) in mice and reprograms their Th17-inducing properties via repression of IRF4 and KLF4, transcription factors essential for cDC2-mediated Th2 induction. In mice, genetic loss of IRF4 phenocopies the effects of cAMP on Th17 induction and restoration of IRF4 prevents the cAMP effect. Moreover, curdlan, a PRR-dependent microbial product, activates CREB and represses IRF4 and KLF4, resulting in a pro-Th17 phenotype of cDC2s. These in vitro and in vivo results define a novel signaling pathway by which cDC2s display plasticity and provide a new molecular basis for the classification of novel cDC2 and cDC17 subsets. The findings also reveal that repressing IRF4 and KLF4 pathway can be harnessed for immuno-regulation.
Collapse
Affiliation(s)
- Jihyung Lee
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
| | - Junyan Zhang
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
- The Second Affiliated Hospital of Guangzhou Medical University (GMU), The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical ImmunologyGuangzhouChina
- Center for Immunology, Inflammation and Immune-mediated disease, GMUGuangzhouChina
| | - Young-Jun Chung
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
- Department of Otorhinolaryngology-Head and Neck SurgeryDankook University College of MedicineChungnamRepublic of Korea
| | - Jun Hwan Kim
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
| | - Chae Min Kook
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
| | - José M González-Navajas
- Center for Immunology, Inflammation and Immune-mediated disease, GMUGuangzhouChina
- Alicante Institute for Health and Biomedical Research (ISABIAL - FISABIO)AlicanteSpain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd)Institute of Health Carlos IIIMadridSpain
| | - David S Herdman
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental TherapyUniversity of TübingenTübingenGermany
| | - Paul A Insel
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
- Department of PharmacologyUniversity of California San DiegoSan DiegoUnited States
| | - Maripat Corr
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
| | - Ji-Hun Mo
- Department of Otorhinolaryngology-Head and Neck SurgeryDankook University College of MedicineChungnamRepublic of Korea
| | - Ailin Tao
- The Second Affiliated Hospital of Guangzhou Medical University (GMU), The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical ImmunologyGuangzhouChina
- Center for Immunology, Inflammation and Immune-mediated disease, GMUGuangzhouChina
| | - Kei Yasuda
- Boston University School of MedicineBostonUnited States
| | - Ian R Rifkin
- Boston University School of MedicineBostonUnited States
- VA Boston Healthcare SystemBostonUnited States
| | - David H Broide
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
| | - Roger Sciammas
- Center for Comparative MedicineUniversity of California, DavisDavisUnited States
| | - Nicholas JG Webster
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
- VA San Diego Healthcare SystemSan DiegoUnited States
| | - Eyal Raz
- Department of MedicineUniversity of California San DiegoSan DiegoUnited States
- Center for Immunology, Inflammation and Immune-mediated disease, GMUGuangzhouChina
| |
Collapse
|
36
|
Jeong JH, Ha YJ, Choi S, Kim J, Yun Y, Lee JR. Over‐expression of p190Rho
GEF
enhances B‐cell activation and germinal center formation in T‐cell‐dependent humoral immune responses. Immunol Cell Biol 2019; 97:877-887. [DOI: 10.1111/imcb.12286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/30/2018] [Accepted: 07/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Ji Hye Jeong
- Department of Life Science College of Natural Sciences & Research Center for Cellular Homeostasis Ewha Womans University Seoul 03760 Republic of Korea
| | - Yun Jung Ha
- Department of Life Science College of Natural Sciences & Research Center for Cellular Homeostasis Ewha Womans University Seoul 03760 Republic of Korea
| | - So‐Yeon Choi
- Department of Life Science College of Natural Sciences & Research Center for Cellular Homeostasis Ewha Womans University Seoul 03760 Republic of Korea
| | - Jee‐Hae Kim
- Department of Life Science College of Natural Sciences & Research Center for Cellular Homeostasis Ewha Womans University Seoul 03760 Republic of Korea
| | - Yungdae Yun
- Department of Life Science College of Natural Sciences & Research Center for Cellular Homeostasis Ewha Womans University Seoul 03760 Republic of Korea
| | - Jong Ran Lee
- Department of Life Science College of Natural Sciences & Research Center for Cellular Homeostasis Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
37
|
Thomas MJ, Klein U, Lygeros J, Rodríguez Martínez M. A Probabilistic Model of the Germinal Center Reaction. Front Immunol 2019; 10:689. [PMID: 31001283 PMCID: PMC6456718 DOI: 10.3389/fimmu.2019.00689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Germinal centers (GCs) are specialized compartments within the secondary lymphoid organs, where B cells proliferate, differentiate, and mutate their antibody genes. Upon exit from the GC, B cells terminally differentiate into plasma cells or memory B cells. While we have a good comprehension of plasma cell differentiation, memory B cell differentiation is still incompletely understood. In this paper, we extend previous models of the molecular events underlying B cell differentiation with new findings regarding memory B cell formation, and present a quantitative stochastic model of the intracellular and extracellular dynamics governing B cell maturation and exit from the GC. To simulate this model, we develop a novel extension to the Gillespie algorithm that enables the efficient stochastic simulation of the system, while keeping track of individual cell properties. Our model is able to explain the dynamical shift from memory B cell to plasma cell production over the lifetime of a GC. Moreover, our results suggest that B cell fate selection can be explained as a process that depends fundamentally on antigen affinity.
Collapse
Affiliation(s)
- Marcel Jan Thomas
- IBM Research Zürich, Rüschlikon, Switzerland.,ETH Zürich, Automatic Control Laboratory, Zurich, Switzerland
| | - Ulf Klein
- Experimental Haematology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - John Lygeros
- ETH Zürich, Automatic Control Laboratory, Zurich, Switzerland
| | | |
Collapse
|
38
|
Overexpression of CD49d in trisomy 12 chronic lymphocytic leukemia patients is mediated by IRF4 through induction of IKAROS. Leukemia 2019; 33:1278-1302. [DOI: 10.1038/s41375-018-0296-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 02/02/2023]
|
39
|
Rodríguez-Carrio J, López P, Alperi-López M, Caminal-Montero L, Ballina-García FJ, Suárez A. IRF4 and IRGs Delineate Clinically Relevant Gene Expression Signatures in Systemic Lupus Erythematosus and Rheumatoid Arthritis. Front Immunol 2019; 9:3085. [PMID: 30666255 PMCID: PMC6330328 DOI: 10.3389/fimmu.2018.03085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
Introduction: Overactivation of the type I interferon (IFN) signature has been observed in several systemic autoimmune conditions, such as Systemic Lupus Erythematosus (SLE) or Rheumatoid Arthritis (RA). Impaired control of Interferon-Responding Genes (IRGs) expression by their regulatory mechanisms, including Interferon Regulatory Factors (IRFs), may underlie these findings and it may explain the heterogeneity observed among these conditions. In the present study we aimed to evaluate the associations between IRF4 gene expression and those of IRGs in SLE and RA patients to gain insight about its links with the IFN signature as well as to explore the potential clinical relevance of these associations. Methods: The gene expression of IRF4 and IRGs (IFI44, IFI44L, IFI6, and MX1) in peripheral blood was analyzed in 75 SLE patients, 98 RA patients, and 28 healthy controls. A group of 13 biological-naïve RA patients was prospectively followed upon TNFα-blockade. The associations among IRF4 and IRGs were evaluated by principal component analyses (PCA), correlations and network analyses. Publicly available datasets were used for replication. Results: A broad activation of IRGs was observed in autoimmune patients, although certain heterogeneity can be distinguished, whereas IRF4 was only upregulated in RA. The differential expression of IRF4 in RA was then confirmed in publicly available gene expression datasets. PCA revealed different associations among IRF4 and IRGs in each condition, which was later confirmed by correlation and network analyses. Cluster analysis identified 3 gene expression signatures on the basis of IRF4 and IRGs expression which were differentially used by SLE and RA patients. Cluster III was associated with markers of disease severity in SLE patients. Cluster II, hallmarked by IRF4 upregulation, was linked to clinical stage and mild disease course in RA. TNFα-blockade led to changes in the association between IRF4 and IRGs, whereas increasing IRF4 expression was associated with a good clinical outcome in RA. Conclusions: The differential expression of IRF4 and IRGs observed in SLE and RA can delineate gene expression signatures associated with clinical features and treatment outcomes. These results support a clinically-relevant phenomenon of shaping of the IFN signature by IRF4 in autoimmune patients.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Bone and Mineral Research Unit, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Patricia López
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Mercedes Alperi-López
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Luis Caminal-Montero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Francisco J Ballina-García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
40
|
McMaster ML, Berndt SI, Zhang J, Slager SL, Li SA, Vajdic CM, Smedby KE, Yan H, Birmann BM, Brown EE, Smith A, Kleinstern G, Fansler MM, Mayr C, Zhu B, Chung CC, Park JH, Burdette L, Hicks BD, Hutchinson A, Teras LR, Adami HO, Bracci PM, McKay J, Monnereau A, Link BK, Vermeulen RCH, Ansell SM, Maria A, Diver WR, Melbye M, Ojesina AI, Kraft P, Boffetta P, Clavel J, Giovannucci E, Besson CM, Canzian F, Travis RC, Vineis P, Weiderpass E, Montalvan R, Wang Z, Yeager M, Becker N, Benavente Y, Brennan P, Foretova L, Maynadie M, Nieters A, de Sanjose S, Staines A, Conde L, Riby J, Glimelius B, Hjalgrim H, Pradhan N, Feldman AL, Novak AJ, Lawrence C, Bassig BA, Lan Q, Zheng T, North KE, Tinker LF, Cozen W, Severson RK, Hofmann JN, Zhang Y, Jackson RD, Morton LM, Purdue MP, Chatterjee N, Offit K, Cerhan JR, Chanock SJ, Rothman N, Vijai J, Goldin LR, Skibola CF, Caporaso NE. Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia. Nat Commun 2018; 9:4182. [PMID: 30305637 PMCID: PMC6180091 DOI: 10.1038/s41467-018-06541-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40-31.03, P = 1.36 × 10-54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45-6.96, P = 8.75 × 10-19). Both risk alleles are observed at a low frequency among controls (~2-3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy.
Collapse
Affiliation(s)
- Mary L McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA.
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Jianqing Zhang
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, 55905, MN, USA
| | - Shengchao Alfred Li
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Claire M Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Karin E Smedby
- Department of Medicine, Solna Karolinska Institutet, Stockholm, 17176, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Huihuang Yan
- Department of Health Sciences Research, Mayo Clinic, Rochester, 55905, MN, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Elizabeth E Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Alex Smith
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Geffen Kleinstern
- Department of Health Sciences Research, Mayo Clinic, Rochester, 55905, MN, USA
| | - Mervin M Fansler
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, 10021, NY, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Charles C Chung
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Ju-Hyun Park
- Department of Statistics, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Laurie Burdette
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Lauren R Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, 30303, GA, USA
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Institute of Health and Society, Clinical Effectiveness Research Group, University of Oslo, Oslo, NO-0316, Norway
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, 94118, CA, USA
| | - James McKay
- International Agency for Research on Cancer (IARC), Lyon, 69372, France
| | - Alain Monnereau
- Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris, F-94807, France
- Université Paris Descartes, Paris, 75006, France
- Registry of Hematological Malignancies in Gironde, Institut Bergonié, University of Bordeaux, Inserm, Team EPICENE, UMR 1219, Bordeaux, 33000, France
| | - Brian K Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, 52242, IA, USA
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, 3508 TD, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Stephen M Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, 55905, MN, USA
| | - Ann Maria
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, 30303, GA, USA
| | - Mads Melbye
- Division of Health Surveillance and Research, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, 2300, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Akinyemi I Ojesina
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Paolo Boffetta
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Jacqueline Clavel
- Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris, F-94807, France
- Université Paris Descartes, Paris, 75006, France
| | - Edward Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Caroline M Besson
- Service d'hématologie et Oncologie, Centre Hospitalier de Versailles, Le Chesnay, Inserm U1018, Centre pour la Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, 78157, France
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, OX3 7LF, UK
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Human Genetics Foundation, Turin, 10126, Italy
| | - Elisabete Weiderpass
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, 9019, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, 0379, Norway
- Genetic Epidemiology Group, Folkhälsan Research Center and University of Helsinki, Helsinki, 00250, Finland
| | | | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, 38105, TN, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20877, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Lab for Cancer Research, Frederick, 20877, MD, USA
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Baden-Württemberg, Germany
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, 69372, France
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and MF MU, Brno, 65653, Czech Republic
| | - Marc Maynadie
- EA 4184, Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, Dijon, 21070, France
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, 79108, Baden-Württemberg, Germany
| | - Silvia de Sanjose
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Anthony Staines
- School of Nursing and Human Sciences, Dublin City University, Dublin, 9, Ireland
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Jacques Riby
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, 94720, CA, USA
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 75105, Sweden
| | - Henrik Hjalgrim
- Division of Health Surveillance and Research, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, 2300, Denmark
- Department of Hematology, Rigshospitalet, Copenhagen, 2100, Denmark
| | - Nisha Pradhan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, 55905, MN, USA
| | - Anne J Novak
- Department of Internal Medicine, Mayo Clinic, Rochester, 55905, MN, USA
| | | | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, 02903, RI, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, 98117, WA, USA
| | - Wendy Cozen
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
- Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
| | - Richard K Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, 48201, MI, USA
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, 06520, CT, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, 43210, OH, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
- Ontario Health Study, Toronto, M5S 1C6, ON, Canada
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, 21205, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, 21205, MD, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, 55905, MN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| | - Lynn R Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| | - Christine F Skibola
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, 30322, GA, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 20892, MD, USA
| |
Collapse
|
41
|
T Follicular Helper Cell-Germinal Center B Cell Interaction Strength Regulates Entry into Plasma Cell or Recycling Germinal Center Cell Fate. Immunity 2018; 48:702-715.e4. [DOI: 10.1016/j.immuni.2018.03.027] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/15/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
|
42
|
Cherian MA, Olson S, Sundaramoorthi H, Cates K, Cheng X, Harding J, Martens A, Challen GA, Tyagi M, Ratner L, Rauch D. An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem 2018. [PMID: 29540473 DOI: 10.1074/jbc.ra117.000164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human T-cell leukemia virus-1 (HTLV-1) oncoprotein Tax drives cell proliferation and resistance to apoptosis early in the pathogenesis of adult T-cell leukemia (ATL). Subsequently, probably as a result of specific immunoediting, Tax expression is down-regulated and functionally replaced by somatic driver mutations of the host genome. Both amplification and point mutations of interferon regulatory factor 4 (IRF4) have been previously detected in ATL., K59R is the most common single-nucleotide variation of IRF4 and is found exclusively in ATL. High-throughput whole-exome sequencing revealed recurrent activating genetic alterations in the T-cell receptor, CD28, and NF-κB pathways. We found that IRF4, which is transcriptionally activated downstream of these pathways, is frequently mutated in ATL. IRF4 RNA, protein, and IRF4 transcriptional targets are uniformly elevated in HTLV-1-transformed cells and ATL cell lines, and IRF4 was bound to genomic regulatory DNA of many of these transcriptional targets in HTLV-1-transformed cell lines. We further noted that the K59R IRF4 mutant is expressed at higher levels in the nucleus than WT IRF4 and is transcriptionally more active. Expression of both WT and the K59R mutant of IRF4 from a constitutive promoter in retrovirally transduced murine bone marrow cells increased the abundance of T lymphocytes but not myeloid cells or B lymphocytes in mice. IRF4 may represent a therapeutic target in ATL because ATL cells select for a mutant of IRF4 with higher nuclear expression and transcriptional activity, and overexpression of IRF4 induces the expansion of T lymphocytes in vivo.
Collapse
Affiliation(s)
- Mathew A Cherian
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sydney Olson
- the Department of Biology, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Hemalatha Sundaramoorthi
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kitra Cates
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Xiaogang Cheng
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Harding
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Andrew Martens
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Grant A Challen
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Manoj Tyagi
- the Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20892
| | - Lee Ratner
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110,
| | - Daniel Rauch
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
43
|
Bravo García-Morato M, Aracil Santos FJ, Briones AC, Blázquez Moreno A, Del Pozo Maté Á, Domínguez-Soto Á, Beato Merino MJ, Del Pino Molina L, Torres Canizales J, Marin AV, Vallespín García E, Feito Rodríguez M, Plaza López Sabando D, Jiménez-Reinoso A, Mozo Del Castillo Y, Sanz Santaeufemia FJ, de Lucas-Laguna R, Cárdenas PP, Casamayor Polo L, Coronel Díaz M, Valés-Gómez M, Roldán Santiago E, Ferreira Cerdán A, Nevado Blanco J, Corbí ÁL, Reyburn HT, Regueiro JR, López-Granados E, Rodríguez Pena R. New human combined immunodeficiency caused by interferon regulatory factor 4 (IRF4) deficiency inherited by uniparental isodisomy. J Allergy Clin Immunol 2018; 141:1924-1927.e18. [PMID: 29408330 DOI: 10.1016/j.jaci.2017.12.995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Affiliation(s)
- María Bravo García-Morato
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain.
| | | | - Alejandro Contreras Briones
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Alfonso Blázquez Moreno
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ángela Del Pozo Maté
- Institute of Medical and Molecular Genetics (INGEMM), Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | - Lucía Del Pino Molina
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| | - Juan Torres Canizales
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| | - Ana Victoria Marin
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Elena Vallespín García
- Institute of Medical and Molecular Genetics (INGEMM), Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | - Anaïs Jiménez-Reinoso
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | | | | | - Paula P Cárdenas
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | | | - Mar Valés-Gómez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Antonio Ferreira Cerdán
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| | - Julián Nevado Blanco
- Institute of Medical and Molecular Genetics (INGEMM), Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Ramón Regueiro
- Department of Microbiology I (Immunology), School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Eduardo López-Granados
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| | - Rebeca Rodríguez Pena
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| |
Collapse
|
44
|
Shukla V, Shukla A, Joshi SS, Lu R. Interferon regulatory factor 4 attenuates Notch signaling to suppress the development of chronic lymphocytic leukemia. Oncotarget 2018; 7:41081-41094. [PMID: 27232759 PMCID: PMC5173044 DOI: 10.18632/oncotarget.9596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/14/2016] [Indexed: 11/25/2022] Open
Abstract
Molecular pathogenesis of Chronic Lymphocytic Leukemia (CLL) is not fully elucidated. Genome wide association studies have linked Interferon Regulatory Factor 4 (IRF4) to the development of CLL. We recently established a causal relationship between low levels of IRF4 and development of CLL. However, the molecular mechanism through which IRF4 suppresses CLL development remains unclear. Deregulation of Notch signaling pathway has been identified as one of the most recurrent molecular anomalies in the pathogenesis of CLL. Yet, the role of Notch signaling as well as its regulation during CLL development remains poorly understood. Previously, we demonstrated that IRF4 deficient mice expressing immunoglobulin heavy chain Vh11 (IRF4−/−Vh11) developed spontaneous CLL with complete penetrance. In this study, we show that elevated Notch2 expression and the resulting hyperactivation of Notch signaling are common features of IRF4−/−Vh11 CLL cells. Our studies further reveal that Notch signaling is indispensable for CLL development in the IRF4−/−Vh11 mice. Moreover, we identify E3 ubiquitin ligase Nedd4, which targets Notch for degradation, as a direct target of IRF4 in CLL cells and their precursors. Collectively, our studies provide the first in vivo evidence for an essential role of Notch signaling in the development of CLL and establish IRF4 as a critical regulator of Notch signaling during CLL development.
Collapse
Affiliation(s)
- Vipul Shukla
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashima Shukla
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shantaram S Joshi
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Runqing Lu
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
45
|
JMJD3 promotes survival of diffuse large B-cell lymphoma subtypes via distinct mechanisms. Oncotarget 2017; 7:29387-99. [PMID: 27102442 PMCID: PMC5045403 DOI: 10.18632/oncotarget.8836] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/28/2016] [Indexed: 01/14/2023] Open
Abstract
JMJD3 (Jumonji domain containing-3), a histone H3 Lys27 (H3K27) demethylase, has been reported to be involved in the antigen-driven differentiation of germinal center B-cells. However, insight into the mechanism of JMJD3 in DLBCL (Diffuse large B-cell lymphoma) progression remains poorly understood. In this study, we investigated the subtype-specific JMJD3-dependent survival effects in DLBCL. Our data showed that in the ABC subtype, silencing-down of JMJD3 inhibited interferon regulatory factor 4 (IRF4) expression in a demethylase activity-dependent fashion. IRF4 reciprocally stimulated expression of JMJD3, forming a positive feedback loop that promoted survival in these cells. Accordingly, IRF4 expression was sufficient to rescue the pro-apoptotic effect of JMJD3 suppression in the ABC, but not in the GCB subtype. In contrast, ectopic overexpression of BCL-2 completely offset JMJD3-mediated survival in the GCB DLBCL cells. In vivo, treatment with siRNA to JMJD3 reduced tumor volume concordant with increased apoptosis in either subtype. This suggests it is a common target, though the distinctive signaling axes regulating DCBCL survival offer different strategic options for treating DLBCL subtypes.
Collapse
|
46
|
Manni M, Ricker E, Pernis AB. Regulation of systemic autoimmunity and CD11c + Tbet + B cells by SWEF proteins. Cell Immunol 2017; 321:46-51. [PMID: 28780965 DOI: 10.1016/j.cellimm.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed the existence of a T-bet dependent subset of B cells, which expresses unique phenotypic and functional characteristics including high levels of CD11c and CD11b. In the murine system this B cell subset has been termed Age/autoimmune-associated B cells (ABCs) since it expands with age in non-autoimmune mice and it prematurely accumulates in autoimmune-prone strains. The molecular mechanisms that promote the expansion and function of ABCs are largely unknown. This review will focus on the SWEF proteins, a small family of Rho GEFs comprised of SWAP-70 and its homolog DEF6, a newly identified risk variant for human SLE. We will first provide an overview of the SWEF proteins and then discuss the complex array of biological processes that they control and the autoimmune phenotypes that spontaneously develop in their absence, highlighting the emerging involvement of these proteins in regulating ABCs. A better understanding of the pathways controlled by the SWEF proteins could help provide new insights into the mechanisms responsible for the expansion of ABCs in autoimmunity and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
47
|
Saelee P, Kearly A, Nutt SL, Garrett-Sinha LA. Genome-Wide Identification of Target Genes for the Key B Cell Transcription Factor Ets1. Front Immunol 2017; 8:383. [PMID: 28439269 PMCID: PMC5383717 DOI: 10.3389/fimmu.2017.00383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background The transcription factor Ets1 is highly expressed in B lymphocytes. Loss of Ets1 leads to premature B cell differentiation into antibody-secreting cells (ASCs), secretion of autoantibodies, and development of autoimmune disease. Despite the importance of Ets1 in B cell biology, few Ets1 target genes are known in these cells. Results To obtain a more complete picture of the function of Ets1 in regulating B cell differentiation, we performed Ets1 ChIP-seq in primary mouse B cells to identify >10,000-binding sites, many of which were localized near genes that play important roles in B cell activation and differentiation. Although Ets1 bound to many sites in the genome, it was required for regulation of less than 5% of them as evidenced by gene expression changes in B cells lacking Ets1. The cohort of genes whose expression was altered included numerous genes that have been associated with autoimmune disease susceptibility. We focused our attention on four such Ets1 target genes Ptpn22, Stat4, Egr1, and Prdm1 to assess how they might contribute to Ets1 function in limiting ASC formation. We found that dysregulation of these particular targets cannot explain altered ASC differentiation in the absence of Ets1. Conclusion We have identified genome-wide binding targets for Ets1 in B cells and determined that a relatively small number of these putative target genes require Ets1 for their normal expression. Interestingly, a cohort of genes associated with autoimmune disease susceptibility is among those that are regulated by Ets1. Identification of the target genes of Ets1 in B cells will help provide a clearer picture of how Ets1 regulates B cell responses and how its loss promotes autoantibody secretion.
Collapse
Affiliation(s)
- Prontip Saelee
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Alyssa Kearly
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
48
|
Regulation of memory B and plasma cell differentiation. Curr Opin Immunol 2017; 45:126-131. [DOI: 10.1016/j.coi.2017.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/19/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
|
49
|
Iwata A, Durai V, Tussiwand R, Briseño CG, Wu X, Grajales-Reyes GE, Egawa T, Murphy TL, Murphy KM. Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex. Nat Immunol 2017; 18:563-572. [PMID: 28346410 PMCID: PMC5401770 DOI: 10.1038/ni.3714] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022]
Abstract
Variable strengths of T cell receptor (TCR) signaling can produce divergent outcomes, but the mechanism remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared TH2 gene expression with BATF/IRF4 enhancer occupancy at varying strengths of TCR stimulation. BATF/IRF4-dependent genes clustered into distinct TCR-sensitivities. Enhancers exhibited a spectrum of occupancy by BATF/IRF4 ternary complex that correlated with TCR-sensitivity of gene expression. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity for BATF/IRF4 for direct binding to DNA. ChIP-exo analysis allowed identification of a novel high-affinity AICE2 motif at a human SNP of CTLA4 associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex may underlie divergent signaling outcomes in response to various strengths of TCR signaling.
Collapse
Affiliation(s)
- Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Xiaodi Wu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA.,Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
50
|
da Silva Filho MI, Försti A, Weinhold N, Meziane I, Campo C, Huhn S, Nickel J, Hoffmann P, Nöthen MM, Jöckel KH, Landi S, Mitchell JS, Johnson D, Morgan GJ, Houlston R, Goldschmidt H, Jauch A, Milani P, Merlini G, Rowcieno D, Hawkins P, Hegenbart U, Palladini G, Wechalekar A, Schönland SO, Hemminki K. Genome-wide association study of immunoglobulin light chain amyloidosis in three patient cohorts: comparison with myeloma. Leukemia 2016; 31:1735-1742. [PMID: 28025584 DOI: 10.1038/leu.2016.387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/28/2016] [Accepted: 11/30/2016] [Indexed: 01/27/2023]
Abstract
Immunoglobulin light chain (AL) amyloidosis is characterized by tissue deposition of amyloid fibers derived from immunoglobulin light chain. AL amyloidosis and multiple myeloma (MM) originate from monoclonal gammopathy of undetermined significance. We wanted to characterize germline susceptibility to AL amyloidosis using a genome-wide association study (GWAS) on 1229 AL amyloidosis patients from Germany, UK and Italy, and 7526 healthy local controls. For comparison with MM, recent GWAS data on 3790 cases were used. For AL amyloidosis, single nucleotide polymorphisms (SNPs) at 10 loci showed evidence of an association at P<10-5 with homogeneity of results from the 3 sample sets; some of these were previously documented to influence MM risk, including the SNP at the IRF4 binding site. In AL amyloidosis, rs9344 at the splice site of cyclin D1, promoting translocation (11;14), reached the highest significance, P=7.80 × 10-11; the SNP was only marginally significant in MM. SNP rs79419269 close to gene SMARCD3 involved in chromatin remodeling was also significant (P=5.2 × 10-8). These data provide evidence for common genetic susceptibility to AL amyloidosis and MM. Cyclin D1 is a more prominent driver in AL amyloidosis than in MM, but the links to aggregation of light chains need to be demonstrated.
Collapse
Affiliation(s)
- M I da Silva Filho
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Lund University, Malmo, Sweden
| | - N Weinhold
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - I Meziane
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Campo
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Huhn
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - J Nickel
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - P Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - M M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Research Center, University of Bonn, Bonn, Germany
| | - K-H Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - S Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - J S Mitchell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Surrey, UK
| | - D Johnson
- Division of Molecular Pathology, The Institute of Cancer Research, Surrey, UK
| | - G J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - R Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Surrey, UK.,Division of Molecular Pathology, The Institute of Cancer Research, Surrey, UK
| | - H Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,National Centre of Tumor Diseases, Heidelberg, Germany
| | - A Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - P Milani
- Department of Molecular Medicine, Amyloidosis Research and Treatment Center, Foundation 'Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo', University of Pavia, Pavia, Italy
| | - G Merlini
- Department of Molecular Medicine, Amyloidosis Research and Treatment Center, Foundation 'Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo', University of Pavia, Pavia, Italy
| | - D Rowcieno
- National Amyloidosis Centre, University College London Medical School, London UK
| | - P Hawkins
- National Amyloidosis Centre, University College London Medical School, London UK
| | - U Hegenbart
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - G Palladini
- Department of Molecular Medicine, Amyloidosis Research and Treatment Center, Foundation 'Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo', University of Pavia, Pavia, Italy
| | - A Wechalekar
- National Amyloidosis Centre, University College London Medical School, London UK
| | - S O Schönland
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - K Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Lund University, Malmo, Sweden
| |
Collapse
|