1
|
Tsiftsis S, Štípková Z, Rejmánek M, Kindlmann P. Predictions of species distributions based only on models estimating future climate change are not reliable. Sci Rep 2024; 14:25778. [PMID: 39468261 PMCID: PMC11519670 DOI: 10.1038/s41598-024-76524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Changes in climate and land use are the most often mentioned factors responsible for the current decline in species diversity. To reduce the effect of these factors, we need reliable predictions of future species distributions. This is usually done by utilizing species distribution models (SDMs) based on expected climate. Here we explore the accuracy of such projections: we use orchid (Orchidaceae) recordings and environmental (mainly climatic) data from the years 1901-1950 in SDMs to predict maps of potential species distributions in 1980-2014. This should enable us to compare the predictions of species distributions in 1980-2014, based on records of species distribution in the years 1901-1950, with real data in the 1980-2014 period. We found that the predictions of the SDMs often differ from reality in this experiment. The results clearly indicate that SDM predictions of future species distributions as a reaction to climate change must be treated with caution.
Collapse
Affiliation(s)
- Spyros Tsiftsis
- Department of Forest and Natural Environment Sciences, Democritus University of Thrace, 66132, Drama, Greece.
| | - Zuzana Štípková
- Global Change Research Institute AS CR, Bělidla 986/4a, 60300, Brno, Czech Republic
| | - Marcel Rejmánek
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Pavel Kindlmann
- Global Change Research Institute AS CR, Bělidla 986/4a, 60300, Brno, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic
| |
Collapse
|
2
|
Ruchitha BG, Kumar N, Sura C, Tung S. Selection for greater dispersal in early life increases rate of age-dependent decline in locomotor activity and shortens lifespan. J Evol Biol 2024; 37:1148-1157. [PMID: 39105302 DOI: 10.1093/jeb/voae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/08/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Locomotor activity is one of the major traits that is affected by age. Greater locomotor activity is also known to evolve in the course of dispersal evolution. However, the impact of dispersal evolution on the functional senescence of locomotor activity is largely unknown. We addressed this knowledge gap using large outbred populations of Drosophila melanogaster selected for increased dispersal. We tracked locomotor activity of these flies at regular intervals until a late age. The longevity of these flies was also recorded. We found that locomotor activity declines with age in general. However interestingly, the activity level of dispersal-selected populations never drops below the ancestry-matched controls, despite the rate of age-dependent decline in activity of the dispersal-selected populations being greater than their respective controls. The dispersal-selected population was also found to have a shorter lifespan as compared to its control, a potential cost of elevated level of activity throughout their life. These results are crucial in the context of invasion biology as contemporary climate change, habitat degradation, and destruction provide congenial conditions for dispersal evolution. Such controlled and tractable studies investigating the ageing pattern of important functional traits are important in the field of biogerontology as well.
Collapse
Affiliation(s)
- B G Ruchitha
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana 131029, India
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra 411008, India
| | - Nishant Kumar
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana 131029, India
| | - Chand Sura
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana 131029, India
| | - Sudipta Tung
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana 131029, India
| |
Collapse
|
3
|
Cuff JP, Labonte D, Windsor FM. Understanding Trophic Interactions in a Warming World by Bridging Foraging Ecology and Biomechanics with Network Science. Integr Comp Biol 2024; 64:306-321. [PMID: 38872009 PMCID: PMC11406160 DOI: 10.1093/icb/icae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Climate change will disrupt biological processes at every scale. Ecosystem functions and services vital to ecological resilience are set to shift, with consequences for how we manage land, natural resources, and food systems. Increasing temperatures cause morphological shifts, with concomitant implications for biomechanical performance metrics crucial to trophic interactions. Biomechanical performance, such as maximum bite force or running speed, determines the breadth of resources accessible to consumers, the outcome of interspecific interactions, and thus the structure of ecological networks. Climate change-induced impacts to ecosystem services and resilience are therefore on the horizon, mediated by disruptions of biomechanical performance and, consequently, trophic interactions across whole ecosystems. Here, we argue that there is an urgent need to investigate the complex interactions between climate change, biomechanical traits, and foraging ecology to help predict changes to ecological networks and ecosystem functioning. We discuss how these seemingly disparate disciplines can be connected through network science. Using an ant-plant network as an example, we illustrate how different data types could be integrated to investigate the interaction between warming, bite force, and trophic interactions, and discuss what such an integration will achieve. It is our hope that this integrative framework will help to identify a viable means to elucidate previously intractable impacts of climate change, with effective predictive potential to guide management and mitigation.
Collapse
Affiliation(s)
- Jordan P Cuff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
4
|
Clark-Wolf TJ, Boersma PD, Plard F, Rebstock GA, Abrahms B. Increasing environmental variability inhibits evolutionary rescue in a long-lived vertebrate. Proc Natl Acad Sci U S A 2024; 121:e2406314121. [PMID: 39133852 PMCID: PMC11348156 DOI: 10.1073/pnas.2406314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/06/2024] [Indexed: 08/29/2024] Open
Abstract
Evolutionary rescue, whereby adaptive evolutionary change rescues populations from extinction, is theorized to enable imperiled animal populations to persist under increasing anthropogenic change. Despite a large body of evidence in theoretical and laboratory settings, the potential for evolutionary rescue to be a viable adaptation process for free-ranging animals remains unknown. Here, we leverage a 38-year dataset following the fates of 53,959 Magellanic penguins (Spheniscus magellanicus) to investigate whether a free-ranging vertebrate species can morphologically adapt to long-term environmental change sufficiently to promote population persistence. Despite strong selective pressures, we found that penguins did not adapt morphologically to long-term environmental changes, leading to projected population extirpation. Fluctuating selection benefited larger penguins in some environmental contexts, and smaller penguins in others, ultimately mitigating their ability to adapt under increasing environmental variability. Under future climate projections, we found that the species cannot be rescued by adaptation, suggesting similar constraints for other long-lived species. Such results reveal how fluctuating selection driven by environmental variability can inhibit adaptation under long-term environmental change. Our eco-evolutionary approach helps explain the lack of adaptation and evolutionary rescue in response to environmental change observed in many animal species.
Collapse
Affiliation(s)
- T. J. Clark-Wolf
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT84322
| | - P. Dee Boersma
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| | - Floriane Plard
- Independent Researcher, Barraque de la Pinatelle, Tremoulet, Molompize15500, France
| | - Ginger A. Rebstock
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| |
Collapse
|
5
|
Feng X, Peterson AT, Aguirre-López LJ, Burger JR, Chen X, Papeş M. Rethinking ecological niches and geographic distributions in face of pervasive human influence in the Anthropocene. Biol Rev Camb Philos Soc 2024; 99:1481-1503. [PMID: 38597328 DOI: 10.1111/brv.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Species are distributed in predictable ways in geographic spaces. The three principal factors that determine geographic distributions of species are biotic interactions (B), abiotic conditions (A), and dispersal ability or mobility (M). A species is expected to be present in areas that are accessible to it and that contain suitable sets of abiotic and biotic conditions for it to persist. A species' probability of presence can be quantified as a combination of responses to B, A, and M via ecological niche modeling (ENM; also frequently referred to as species distribution modeling or SDM). This analytical approach has been used broadly in ecology and biogeography, as well as in conservation planning and decision-making, but commonly in the context of 'natural' settings. However, it is increasingly recognized that human impacts, including changes in climate, land cover, and ecosystem function, greatly influence species' geographic ranges. In this light, historical distinctions between natural and anthropogenic factors have become blurred, and a coupled human-natural landscape is recognized as the new norm. Therefore, B, A, and M (BAM) factors need to be reconsidered to understand and quantify species' distributions in a world with a pervasive signature of human impacts. Here, we present a framework, termed human-influenced BAM (Hi-BAM, for distributional ecology that (i) conceptualizes human impacts in the form of six drivers, and (ii) synthesizes previous studies to show how each driver modifies the natural BAM and species' distributions. Given the importance and prevalence of human impacts on species distributions globally, we also discuss implications of this framework for ENM/SDM methods, and explore strategies by which to incorporate increasing human impacts in the methodology. Human impacts are redefining biogeographic patterns; as such, future studies should incorporate signals of human impacts integrally in modeling and forecasting species' distributions.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | - Joseph R Burger
- Department of Biology, University of Kentucky, Lexington, KY, 40502, USA
| | - Xin Chen
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Monica Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
6
|
Corley M, Garcia de la Chica A, van der Heide G, Rotundo M, Caccone A, Fernandez-Duque E. Inbreeding avoidance, competition and natal dispersal in a pair-living, genetically monogamous mammal, Azara's owl monkey ( Aotus azarae). ROYAL SOCIETY OPEN SCIENCE 2024; 11:240379. [PMID: 39113772 PMCID: PMC11305132 DOI: 10.1098/rsos.240379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024]
Abstract
Natal dispersal is an important life-history stage influencing individual fitness, social dynamics of groups and population structure. Understanding factors influencing dispersal is essential for evaluating explanations for the evolution and maintenance of social organization, including parental care and mating systems. The social and mating systems of Azara's owl monkeys (Aotus azarae) are infrequent among mammals; these primates are pair-living, serially and genetically monogamous and both sexes directly care for offspring. To evaluate the role that competition and inbreeding avoidance play in shaping dispersal patterns, we used 25 years of demographic and genetic data to examine how variation in timing of natal dispersal is related to social (adult replacements, step-parents, births and group size) and ecological factors (seasonal abundance of resources) in a wild population of A. azarae in Formosa, Argentina. We found that all males and females dispersed from their natal groups, but subadults delayed dispersal when a step-parent of the opposite sex joined the group, indicating that they may perceive these step-parents as potential mates. Dispersal was more probable when resource conditions were better, regardless of age. Overall, agonistic conflict over food and potential mates with adults in the natal group, as well as inbreeding avoidance, contribute to regulating dispersal.
Collapse
Affiliation(s)
- Margaret Corley
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Owl Monkey Project, Fundación ECO, Formosa, Argentina
| | - Alba Garcia de la Chica
- Owl Monkey Project, Fundación ECO, Formosa, Argentina
- Departamento de Ecología, Genética y Evolución-Facultad de Ciencias Exactas y Naturales, Laboratorio de Ecología y Comportamiento Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Eduardo Fernandez-Duque
- Owl Monkey Project, Fundación ECO, Formosa, Argentina
- Department of Anthropology and School of the Environment, Yale University, New Haven, CT, USA
- Facultad de Recursos Naturales, Universidad Nacional de Formosa, Formosa, Argentina
| |
Collapse
|
7
|
Tonos J, Papinot B, Park DS, Raelison M, Ramaroson H, Stubbs J, Razafindratsima OH. Examining the structure of plant-lemur interactions in the face of imperfect knowledge. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14323. [PMID: 39045776 DOI: 10.1111/cobi.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 07/25/2024]
Abstract
Biotic interactions, such as plant-animal seed dispersal mutualisms, are essential for ecosystem function. Such interactions are threatened by the possible extinction of the animal partners. Using a data set that includes plant-lemur interactions across Madagascar, we studied the current state of knowledge of these interactions and their structure to determine which plant species are most at risk of losing dispersal services due to the loss of lemurs. We found substantial gaps in understanding of plant-lemur interactions; data were substantially skewed toward a few lemur species and locations. There was also a large gap in knowledge on the interactions of plants and small-bodied or nocturnal lemurs and lemurs outside a few highly studied locations. Of the recorded interactions, a significant portion occurred between lemurs and endemic plants, rather than native or introduced plants. We also found that lemur species tended to primarily consume closely related plant species. Such interaction patterns may indicate the threats to Malagasy endemic plants and highlight how lemur population loss or reductions could affect plant phylogenetic diversity. When examining the impacts of lemur extinction, losing critically endangered species left 164 plant species with no known lemur frugivore partners. Despite phylogenetic patterns in lemur diet, plants for which the only known lemur frugivore is critically endangered were not closely related. These results emphasize the need for further studies to complete our knowledge on these essential interactions and to inform conservation priorities.
Collapse
Affiliation(s)
- Jadelys Tonos
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| | - Bastien Papinot
- Tundra Ecology Lab, Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Daniel S Park
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | | | - Herilantonirina Ramaroson
- Zootechnic, Veterinary and Fish Research Department (DRZVP), National Research Institute Applied for Rural Development (FOFIFA / CENRADERU), Antananarivo, Madagascar
| | - Jessica Stubbs
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| | - Onja H Razafindratsima
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Gaya HE, Cooper RJ, Delancey CD, Hepinstall-Cymerman J, Kurimo-Beechuk EA, Lewis WB, Merker SA, Chandler RB. Clinging to the top: natal dispersal tracks climate gradient in a trailing-edge population of a migratory songbird. MOVEMENT ECOLOGY 2024; 12:28. [PMID: 38627871 PMCID: PMC11020467 DOI: 10.1186/s40462-024-00470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Trailing-edge populations at the low-latitude, receding edge of a shifting range face high extinction risk from climate change unless they are able to track optimal environmental conditions through dispersal. METHODS We fit dispersal models to the locations of 3165 individually-marked black-throated blue warblers (Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black-throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter areas at higher elevations but has declined at warmer and drier areas at lower elevations. RESULTS Median dispersal distance of young warblers was 917 m (range 23-3200 m), and dispersal tended to be directed away from warm and dry locations. In contrast, adults exhibited strong site fidelity between breeding seasons and rarely dispersed more than 100 m (range 10-1300 m). Consequently, adult dispersal kernels were much more compact and symmetric than natal dispersal kernels, suggesting adult dispersal is unlikely a driving force of declines in this population. CONCLUSION Our findings suggest that directional natal dispersal may mitigate fitness costs for trailing-edge populations by allowing individuals to track changing climate and avoid warming conditions at warm-edge range boundaries.
Collapse
Affiliation(s)
- Heather E Gaya
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30602, USA.
| | - Robert J Cooper
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30602, USA
| | - Clayton D Delancey
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30602, USA
| | - Jeffrey Hepinstall-Cymerman
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30602, USA
| | - Elizabeth A Kurimo-Beechuk
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, 589 D. W. Brooks Drive, Athens, GA, 30602, USA
| | - William B Lewis
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30602, USA
| | - Samuel A Merker
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Storrs, CT, 06269, USA
| | - Richard B Chandler
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Chust G, Villarino E, McLean M, Mieszkowska N, Benedetti-Cecchi L, Bulleri F, Ravaglioli C, Borja A, Muxika I, Fernandes-Salvador JA, Ibaibarriaga L, Uriarte A, Revilla M, Villate F, Iriarte A, Uriarte I, Zervoudaki S, Carstensen J, Somerfield PJ, Queirós AM, McEvoy AJ, Auber A, Hidalgo M, Coll M, Garrabou J, Gómez-Gras D, Linares C, Ramírez F, Margarit N, Lepage M, Dambrine C, Lobry J, Peck MA, de la Barra P, van Leeuwen A, Rilov G, Yeruham E, Brind'Amour A, Lindegren M. Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas. Nat Commun 2024; 15:2126. [PMID: 38459105 PMCID: PMC10923825 DOI: 10.1038/s41467-024-46526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal invertebrates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (deborealization, 18%). Tropicalization dominated Atlantic sites compared to semi-enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi-enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization.
Collapse
Affiliation(s)
- Guillem Chust
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.
| | - Ernesto Villarino
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
- Oregon State University, College of Earth, Ocean and Atmospheric Science, Corvallis, USA
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Nova Mieszkowska
- Marine Biological Association, Citadel hill, Plymouth, Devon, PL1 2PB, UK
- University of Liverpool, Liverpool, UK
| | | | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Angel Borja
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Iñigo Muxika
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - José A Fernandes-Salvador
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Leire Ibaibarriaga
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Ainhize Uriarte
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Marta Revilla
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Fernando Villate
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), PO Box 644, E-48080, Bilbao, Spain
- Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain
| | - Arantza Iriarte
- Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, E-01006, Gasteiz, Spain
| | - Ibon Uriarte
- Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, E-01006, Gasteiz, Spain
| | - Soultana Zervoudaki
- Institute of Oceanography, Hellenic Centre for Marine Research, Athens, Greece
| | - Jacob Carstensen
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Paul J Somerfield
- Plymouth Marine Laboratory, Plymouth, UK
- University of Plymouth, Plymouth, UK
| | - Ana M Queirós
- Plymouth Marine Laboratory, Plymouth, UK
- University of Exeter, Exeter, UK
| | | | - Arnaud Auber
- IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, 150 quai Gambetta, BP699, 62321, Boulogne-sur-Mer, France
| | - Manuel Hidalgo
- Spanish Institute of Oceanography (IEO, CSIC), Balearic Oceanographic Center (COB), Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n, 07015, Palma, Spain
| | - Marta Coll
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain
| | - Joaquim Garrabou
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain
| | - Daniel Gómez-Gras
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, Hawaii, USA
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Francisco Ramírez
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain
| | - Núria Margarit
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mario Lepage
- INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France
| | - Chloé Dambrine
- INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France
| | - Jérémy Lobry
- INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands
| | - Paula de la Barra
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands
| | - Anieke van Leeuwen
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel
| | - Erez Yeruham
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel
| | - Anik Brind'Amour
- Ecosystem Dynamics and Sustainability (UMR DECOD), IFREMER, Institut Agro, INRAE, Rue de l'Ile d'Yeu, Nantes, France
| | - Martin Lindegren
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
10
|
Hällfors MH, Heikkinen RK, Kuussaari M, Lehikoinen A, Luoto M, Pöyry J, Virkkala R, Saastamoinen M, Kujala H. Recent range shifts of moths, butterflies, and birds are driven by the breadth of their climatic niche. Evol Lett 2024; 8:89-100. [PMID: 38370541 PMCID: PMC10872046 DOI: 10.1093/evlett/qrad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2024] Open
Abstract
Species are altering their ranges as a response to climate change, but the magnitude and direction of observed range shifts vary considerably among species. The ability to persist in current areas and colonize new areas plays a crucial role in determining which species will thrive and which decline as climate change progresses. Several studies have sought to identify characteristics, such as morphological and life-history traits, that could explain differences in the capability of species to shift their ranges together with a changing climate. These characteristics have explained variation in range shifts only sporadically, thus offering an uncertain tool for discerning responses among species. As long-term selection to past climates have shaped species' tolerances, metrics describing species' contemporary climatic niches may provide an alternative means for understanding responses to on-going climate change. Species that occur in a broader range of climatic conditions may hold greater tolerance to climatic variability and could therefore more readily maintain their historical ranges, while species with more narrow tolerances may only persist if they are able to shift in space to track their climatic niche. Here, we provide a first-filter test of the effect of climatic niche dimensions on shifts in the leading range edges in three relatively well-dispersing species groups. Based on the realized changes in the northern range edges of 383 moth, butterfly, and bird species across a boreal 1,100 km latitudinal gradient over c. 20 years, we show that while most morphological or life-history traits were not strongly connected with range shifts, moths and birds occupying a narrower thermal niche and butterflies occupying a broader moisture niche across their European distribution show stronger shifts towards the north. Our results indicate that the climatic niche may be important for predicting responses under climate change and as such warrants further investigation of potential mechanistic underpinnings.
Collapse
Affiliation(s)
- Maria H Hällfors
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Risto K Heikkinen
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Mikko Kuussaari
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Aleksi Lehikoinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Miska Luoto
- Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Juha Pöyry
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Raimo Virkkala
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Marjo Saastamoinen
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heini Kujala
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Drees TH, Shea K. Climate warming increases insect-driven seed removal of two elaiosome-bearing invasive thistle species. Ecology 2024; 105:e4223. [PMID: 38038399 DOI: 10.1002/ecy.4223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Ants and other insects are often a source of localized secondary dispersal for wind-dispersed plants and thus play an important ecological role in their spatial dynamics, but there is limited information on how climate change will affect such dispersal processes. Here, we use field experiments to investigate how climate warming affects seed removal, as this initiation of movement represents the first step in insect-driven secondary dispersal. Our results indicate that for the invasive thistles Carduus nutans and Carduus acanthoides, increased growing temperature influences seed attractiveness to insect dispersers, with seeds from maternal plants grown at temperatures 0.6°C above ambient removed by insect dispersers at higher rates than their unwarmed counterparts. We also observe that seed elaiosomes in these two species play an important role in dispersal, as seeds without elaiosomes were significantly less likely to be removed over the same period. Significant interactions between elaiosome presence/absence and warming treatment were also observed, though only for C. acanthoides, with the boost in seed removal from warming dampened when the elaiosome was present compared to when it was absent. These findings provide evidence that climate warming may alter aspects of dispersal such as seed removal by secondary dispersers, with potential ramifications for dispersal in future climates since seed-bearing plants around the world may be subject to increased growing temperatures, and many of these plant species bear elaiosomes and experience seed dispersal by insects.
Collapse
Affiliation(s)
- Trevor H Drees
- Department of Biology and IGDP in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katriona Shea
- Department of Biology and IGDP in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Peniston JH, Burgess SC. Larval and Adult Traits Coevolve in Response to Asymmetric Coastal Currents to Shape Marine Dispersal Kernels. Am Nat 2024; 203:E63-E77. [PMID: 38306287 DOI: 10.1086/728003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractDispersal emerges as an outcome of organismal traits and external forcings. However, it remains unclear how the emergent dispersal kernel evolves as a by-product of selection on the underlying traits. This question is particularly compelling in coastal marine systems, where dispersal is tied to development and reproduction and where directional currents bias larval dispersal downstream, causing selection for retention. We modeled the dynamics of a metapopulation along a finite coastline using an integral projection model and adaptive dynamics to understand how asymmetric coastal currents influence the evolution of larval (pelagic larval duration) and adult (spawning frequency) life history traits, which indirectly shape the evolution of marine dispersal kernels. Selection induced by alongshore currents favors the release of larvae over multiple time periods, allowing long pelagic larval durations and long-distance dispersal to be maintained in marine life cycles in situations where they were previously predicted to be selected against. Two evolutionarily stable strategies emerged: one with a long pelagic larval duration and many spawning events, resulting in a dispersal kernel with a larger mean and variance, and another with a short pelagic larval duration and few spawning events, resulting in a dispersal kernel with a smaller mean and variance. Our theory shows how coastal ocean flows are important agents of selection that can generate multiple, often co-occurring evolutionary outcomes for marine life history traits that affect dispersal.
Collapse
|
13
|
Puchałka R, Paź-Dyderska S, Dylewski Ł, Czortek P, Vítková M, Sádlo J, Klisz M, Koniakin S, Čarni A, Rašomavičius V, De Sanctis M, Dyderski MK. Forest herb species with similar European geographic ranges may respond differently to climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167303. [PMID: 37742951 DOI: 10.1016/j.scitotenv.2023.167303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Many phenological studies have shown that spring geophytes are very sensitive to climate change, responding by shifting flowering and fruiting dates. However, there is a gap in knowledge about climatic drivers of their distributions and range shifts under climate change. Here we aimed to estimate climate niche shifts for four widely distributed and common geophytes of the nemoral zone of Europe (Anemone nemorosa, Anemone ranunculoides, Convallaria majalis and Maianthemum bifolium) and to assess the threat level under various climate change scenarios. Using MaxEnt species distribution models and future climate change scenarios we found that the precipitation of the warmest quarter was the most important factor shaping their ranges. All species studied will experience more loss in the 2061-2080 period than in 2041-2060, and under more pessimistic scenarios. M. bifolium will experience the highest loss, followed by A. nemorosa, A. ranunculoides, and the smallest for C. majalis. A. ranunculoides will gain the most, while M. bifolium will have the smallest potential range expansion. Studied species may respond differently to climate change despite similar current distributions and climatic variables affecting their potential distribution. Even slight differences in climatic niches could reduce the overlap of future ranges compared to present. We expect that due to high dependence on the warmest quarter precipitation, summer droughts in the future may be particularly severe for species that prefer moist soils. The lack of adaptation to long-distance migration and limited availability of appropriate soils may limit their migration and lead to a decline in biodiversity and changes in European forests.
Collapse
Affiliation(s)
- Radosław Puchałka
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Poland; Centre for Climate Change Research, Nicolaus Copernicus University in Toruń, Poland.
| | | | - Łukasz Dylewski
- Department of Zoology, Poznań University of Life Sciences, Poland
| | - Patryk Czortek
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | - Michaela Vítková
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Jiří Sádlo
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Marcin Klisz
- Department of Silviculture and Genetics, Forest Research Institute, Poland
| | - Serhii Koniakin
- Department of Phytoecology, Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Andraž Čarni
- Research Center of the Slovenian Academy of Sciences and Arts, Institute of Biology, Ljubljana, Slovenia; University of Nova Gorica, School for Viticulture and Enology, Nova Gorica, Slovenia
| | | | | | | |
Collapse
|
14
|
Park JS, Lee H. Predicting the spatio-temporal distribution of the invasive alien plant Andropogon virginicus, in the South Korean peninsula considering long-distance dispersal capacities. PLoS One 2023; 18:e0291365. [PMID: 37963154 PMCID: PMC10645320 DOI: 10.1371/journal.pone.0291365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/26/2023] [Indexed: 11/16/2023] Open
Abstract
The spread of invasive alien species is a major threat to biodiversity. Estimating the long-distance dispersal capacity of invasive alien plants is vital for understanding their population dynamics and community composition. We predicted the spatial-temporal distribution of the alien plant Andropogon virginicus, in the Korean peninsula under climate change scenario using Random Forest (RF) and Cellular Automaton (CA) methods. Land use, barriers to dispersal, long-distance dispersal frequency, and maximum long-distance dispersal range were considered in our analysis. Our results showed that, among the five selected environmental variables, annual mean temperature and Human Foot-Printing (HFP) were positively associated with the occurrence probability of A. virginicus. This suggests that A. virginicus is likely to spread to the disturbed northern part of the Korean Peninsula due to climate change and habitat preference. When comparing modeling results for dispersal to field survey data, the modeling raster sets drawn from the long-distance dispersal frequency of 0.05 and maximum long-distance dispersal distance of 30 km y-1 had the most similar spatial expansion among the six long-distance dispersal parameter sets. The dispersal directions were associated with the landscape. Specifically, seeds dispersed by wind (anemochorous seeds) could propagate into open landscapes more easily than in forests. Regarding A. virginicus management, this grass can quickly invade bare ground with their wind-dispersed seeds, therefore habitat destruction, such as excessive logging and weeding, should be restrained.
Collapse
Affiliation(s)
- Jeong-Soo Park
- Division of Climate Change Research, National Institute of Ecology, Seocheon, Korea
| | - Hyohyemi Lee
- Division of Climate Change Research, National Institute of Ecology, Seocheon, Korea
| |
Collapse
|
15
|
Pointer MD, Spurgin LG, Gage MJG, McMullan M, Richardson DS. Genetic architecture of dispersal behaviour in the post-harvest pest and model organism Tribolium castaneum. Heredity (Edinb) 2023; 131:253-262. [PMID: 37516814 PMCID: PMC10539327 DOI: 10.1038/s41437-023-00641-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
Dispersal behaviour is an important aspect of the life-history of animals. However, the genetic architecture of dispersal-related traits is often obscure or unknown, even in well studied species. Tribolium castaneum is a globally significant post-harvest pest and established model organism, yet studies of its dispersal have shown ambiguous results and the genetic basis of this behaviour remains unresolved. We combine experimental evolution and agent-based modelling to investigate the number of loci underlying dispersal in T. castaneum, and whether the trait is sex-linked. Our findings demonstrate rapid evolution of dispersal behaviour under selection. We find no evidence of sex-biases in the dispersal behaviour of the offspring of crosses, supporting an autosomal genetic basis of the trait. Moreover, simulated data approximates experimental data under simulated scenarios where the dispersal trait is controlled by one or few loci, but not many loci. Levels of dispersal in experimentally inbred lines, compared with simulations, indicate that a single locus model is not well supported. Taken together, these lines of evidence support an oligogenic architecture underlying dispersal in Tribolium castaneum. These results have implications for applied pest management and for our understanding of the evolution of dispersal in the coleoptera, the world's most species-rich order.
Collapse
|
16
|
Weeks TL, Betts MG, Pfeifer M, Wolf C, Banks-Leite C, Barbaro L, Barlow J, Cerezo A, Kennedy CM, Kormann UG, Marsh CJ, Olivier PI, Phalan BT, Possingham HP, Wood EM, Tobias JA. Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds. Nat Ecol Evol 2023; 7:1079-1091. [PMID: 37248334 DOI: 10.1038/s41559-023-02077-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/18/2023] [Indexed: 05/31/2023]
Abstract
Species sensitivity to forest fragmentation varies latitudinally, peaking in the tropics. A prominent explanation for this pattern is that historical landscape disturbance at higher latitudes has removed fragmentation-sensitive species or promoted the evolution of more resilient survivors. However, it is unclear whether this so-called extinction filter is the dominant driver of geographic variation in fragmentation sensitivity, particularly because climatic factors may also cause latitudinal gradients in dispersal ability, a key trait mediating sensitivity to habitat fragmentation. Here we combine field survey data with a morphological proxy for avian dispersal ability (hand-wing index) to assess responses to forest fragmentation in 1,034 bird species worldwide. We find that fragmentation sensitivity is strongly predicted by dispersal limitation and that other factors-latitude, body mass and historical disturbance events-have relatively limited explanatory power after accounting for species differences in dispersal. We also show that variation in dispersal ability is only weakly predicted by historical disturbance and more strongly associated with intra-annual temperature fluctuations (seasonality). Our results suggest that climatic factors play a dominant role in driving global variation in the impacts of forest fragmentation, emphasizing the need for more nuanced environmental policies that take into account local context and associated species traits.
Collapse
Affiliation(s)
- Thomas L Weeks
- Department of Life Sciences, Imperial College London, Ascot, UK.
- Department of Life Sciences, Natural History Museum London, London, UK.
| | - Matthew G Betts
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Marion Pfeifer
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher Wolf
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | | | - Luc Barbaro
- Dynafor, University of Toulouse, INRAE, Castanet-Tolosan, France
- CESCO, Museum National d'Histoire Naturelle, CNRS, Sorbonne-University, Paris, France
| | - Jos Barlow
- Lancaster Environmental Centre, Lancaster University, Lancaster, UK
| | - Alexis Cerezo
- Foundation for Ecodevelopment and Conservation (FUNDAECO), Ciudad de Guatemala, Guatemala
| | - Christina M Kennedy
- Global Protect Oceans, Lands and Waters Program, The Nature Conservancy, Fort Collins, CO, USA
| | - Urs G Kormann
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Charles J Marsh
- Department of Ecology and Evolution, and Yale Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Pieter I Olivier
- M.A.P Scientific Services, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Benjamin T Phalan
- Centre for Conservation of Atlantic Forest Birds, Parque das Aves, Foz do Iguaçu, Brazil
| | - Hugh P Possingham
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Eric M Wood
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
17
|
Smith CCR, Tittes S, Ralph PL, Kern AD. Dispersal inference from population genetic variation using a convolutional neural network. Genetics 2023; 224:iyad068. [PMID: 37052957 PMCID: PMC10213498 DOI: 10.1093/genetics/iyad068] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The geographic nature of biological dispersal shapes patterns of genetic variation over landscapes, making it possible to infer properties of dispersal from genetic variation data. Here, we present an inference tool that uses geographically distributed genotype data in combination with a convolutional neural network to estimate a critical population parameter: the mean per-generation dispersal distance. Using extensive simulation, we show that our deep learning approach is competitive with or outperforms state-of-the-art methods, particularly at small sample sizes. In addition, we evaluate varying nuisance parameters during training-including population density, demographic history, habitat size, and sampling area-and show that this strategy is effective for estimating dispersal distance when other model parameters are unknown. Whereas competing methods depend on information about local population density or accurate inference of identity-by-descent tracts, our method uses only single-nucleotide-polymorphism data and the spatial scale of sampling as input. Strikingly, and unlike other methods, our method does not use the geographic coordinates of the genotyped individuals. These features make our method, which we call "disperseNN," a potentially valuable new tool for estimating dispersal distance in nonmodel systems with whole genome data or reduced representation data. We apply disperseNN to 12 different species with publicly available data, yielding reasonable estimates for most species. Importantly, our method estimated consistently larger dispersal distances than mark-recapture calculations in the same species, which may be due to the limited geographic sampling area covered by some mark-recapture studies. Thus genetic tools like ours complement direct methods for improving our understanding of dispersal.
Collapse
Affiliation(s)
- Chris C R Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Silas Tittes
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Andrew D Kern
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
18
|
Madeira AG, Tsuda Y, Nagano Y, Iwasaki T, Zucchi MI, Kajita T, Mori GM. The role of oceanic currents in the dispersal and connectivity of the mangrove Rhizophora mangle on the Southwest Atlantic region. Mol Ecol Resour 2023. [PMID: 37173824 DOI: 10.1111/1755-0998.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Dispersal is a crucial mechanism to living beings, allowing them to reach new resources such that populations and species can occupy new environments. However, directly observing the dispersal mechanisms of widespread species can be costly or even impractical, which is the case for mangrove trees. The influence of ocean currents on mangrove dispersal is increasingly evident; however, few studies mechanistically relate the patterns of population distribution with the dispersal by oceanic currents under an integrated framework. Here, we evaluate the role of oceanic currents on connectivity of Rhizophora mangle along the Southwest Atlantic. We inferred population genetic structure and migration rates, simulated the displacement of propagules and tested our hypotheses with Mantel tests and redundancy analysis. We observed populations structured in two major groups, north and south, which is corroborated by other studies with Rhizophora and other coastal plants. Inferred recent migration rates do not indicate ongoing gene flow between sites. Conversely, long-term migration rates were low across groups and contrasting dispersal patterns within each one, which is consistent with long-distance dispersal events. Our hypothesis tests suggest that both isolation by distance and isolation by oceanography (derived from the oceanic currents) can explain the neutral genetic variation of R. mangle in the region. Our findings expand current knowledge of mangrove connectivity and highlight how the association of molecular methods with oceanographic simulations improve the interpretation of the dispersal process. This integrative approach is a cost- and time-efficient strategy to include dispersal and connectivity data into marine protected areas planning and management.
Collapse
Affiliation(s)
| | - Yoshiaki Tsuda
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Nagano, Japan
| | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | - Tadashi Kajita
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | |
Collapse
|
19
|
Constanti Crosby L, Sayol F, Horswill C. Relative brain size is associated with natal dispersal rate and species' vulnerability to climate change in seabirds. OIKOS 2023. [DOI: 10.1111/oik.09698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
20
|
Hernandez JO, Naeem M, Zaman W. How Does Changing Environment Influence Plant Seed Movements as Populations of Dispersal Vectors Decline? PLANTS (BASEL, SWITZERLAND) 2023; 12:1462. [PMID: 37050088 PMCID: PMC10097094 DOI: 10.3390/plants12071462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Plants differ widely in their ability to find tolerable climatic ranges through seed dispersal, depending on their life-history traits and habitat characteristics. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review on seed dispersal mechanisms was conducted to elucidate plant seed movements amid changing environments. Here, the highest relative count of studies was found in Spain (16.47%), followed by Brazil (14.12%), and the USA (14.12%). The megadiverse, hotspot countries (e.g., Philippines, Vietnam, Myanmar, India, and Indonesia) and Africa (Tanzania, South Africa, Democratic Republic of the Congo) have very low to no data about the reviewed topic. The effects of land use changes, habitat degradation/disturbances, climate, and extreme weather conditions on seed dispersal mechanisms and agents had the highest share of studies across topics and countries. Plant diversity and distribution of anemochorous, endozoochorous, epizoochorous, hydrochorous, myrmecochorous, and ornithochorous species are seriously affected by changing environments due to altered long-distance seed dispersal. The fruit types commonly associated with endozoochory and ornithochory are species with achene, capsule, drupe, fleshy, and nut fruits/seeds, whereas achene, capsule, samara/winged seeds are associated with anemochory. The present review provides a summary of evidence on how plants are affected by climate change as populations of dispersal vectors decline. Finally, recommendations for further study were made based on the identified knowledge gaps.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
21
|
Zhang X, Ci X, Hu J, Bai Y, Thornhill AH, Conran JG, Li J. Riparian areas as a conservation priority under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159879. [PMID: 36334670 DOI: 10.1016/j.scitotenv.2022.159879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Identifying climatic refugia is important for long-term conservation planning under climate change. Riparian areas have the potential to provide climatic refugia for wildlife, but literature remains limited, especially for plants. This study was conducted with the purpose of identifying climatic refugia of plant biodiversity in the portion of the Mekong River Basin located in Xishuangbanna, China. We first predicted the current and future (2050s and 2070s) potential distribution of 50 threatened woody species in Xishuangbanna by using an ensemble of small models, then stacked the predictions for individual species to derive spatial biodiversity patterns within each 10 × 10 km grid cell. We then identified the top 17 % of the areas for spatial biodiversity patterns as biodiversity hotspots, with climatic refugia defined as areas that remained as biodiversity hotspots over time. Stepwise regression and linear correlation were applied to analyze the environmental correlations with spatial biodiversity patterns and the relationships between climatic refugia and river distribution, respectively. Our results showed potential upward and northward shifts in threatened woody species, with range contractions and expansions predicted. The spatial biodiversity patterns shift from southeast to northwest, and were influenced by temperature, precipitation, and elevation heterogeneity. Climatic refugia under climate change were related closely to river distribution in Xishuangbanna, with riparian areas identified that could provide climatic refugia. These refugial zones are recommended as priority conservation areas for mitigating the impacts of climate change on biodiversity. Our study confirmed that riparian areas could act as climatic refugia for plants and emphasizes the conservation prioritization of riparian areas within river basins for protecting biodiversity under climate change.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqin Ci
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China.
| | - Jianlin Hu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China; Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun, Yunnan 666303, China
| | - Andrew H Thornhill
- The University of Adelaide, School of Biological Sciences, Adelaide, South Australia 5005, Australia; State Herbarium of South Australia, Botanic Garden and State Herbarium, Department for Environment and Water, Hackney Road, Adelaide, South Australia 5001, Australia
| | - John G Conran
- The University of Adelaide, School of Biological Sciences, Adelaide, South Australia 5005, Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China.
| |
Collapse
|
22
|
McFadden IR, Sendek A, Brosse M, Bach PM, Baity‐Jesi M, Bolliger J, Bollmann K, Brockerhoff EG, Donati G, Gebert F, Ghosh S, Ho H, Khaliq I, Lever JJ, Logar I, Moor H, Odermatt D, Pellissier L, de Queiroz LJ, Rixen C, Schuwirth N, Shipley JR, Twining CW, Vitasse Y, Vorburger C, Wong MKL, Zimmermann NE, Seehausen O, Gossner MM, Matthews B, Graham CH, Altermatt F, Narwani A. Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecol Lett 2023; 26:203-218. [PMID: 36560926 PMCID: PMC10107666 DOI: 10.1111/ele.14153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems.
Collapse
Affiliation(s)
- Ian R. McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
- Present address:
Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Agnieszka Sendek
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Morgane Brosse
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Peter M. Bach
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Marco Baity‐Jesi
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Janine Bolliger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Eckehard G. Brockerhoff
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Giulia Donati
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Friederike Gebert
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Shyamolina Ghosh
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Hsi‐Cheng Ho
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Imran Khaliq
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - J. Jelle Lever
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Ivana Logar
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Helen Moor
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Daniel Odermatt
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Luiz Jardim de Queiroz
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
- Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)DavosSwitzerland
| | - Nele Schuwirth
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - J. Ryan Shipley
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Cornelia W. Twining
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Christoph Vorburger
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Integrative Biology, Department of Environmental Systems ScienceETH ZürichZurichSwitzerland
| | - Mark K. L. Wong
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Niklaus E. Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Ole Seehausen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
- Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
| | - Martin M. Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Blake Matthews
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Catherine H. Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Florian Altermatt
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Anita Narwani
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| |
Collapse
|
23
|
Proença-Ferreira A, Borda-de-Água L, Porto M, Mira A, Moreira F, Pita R. dispfit: An R package to estimate species dispersal kernels. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
24
|
Pinto MP, Beltrão-Mendes R, Talebi M, de Lima AA. Primates facing climate crisis in a tropical forest hotspot will lose climatic suitable geographical range. Sci Rep 2023; 13:641. [PMID: 36635347 PMCID: PMC9837198 DOI: 10.1038/s41598-022-26756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Global climate changes affect biodiversity and cause species distribution shifts, contractions, and expansions. Climate change and disease are emerging threats to primates, and approximately one-quarter of primates' ranges have temperatures over historical ones. How will climate changes influence Atlantic Forest primate ranges? We used habitat suitability models and measured potential changes in area and distributions shifts. Climate change expected in 2100 may change the distribution area of Atlantic Forest primates. Fourteen species (74%) are predicted to lose more than 50% of their distribution, and nine species (47%) are predicted to lose more than 75% of their distribution. The balance was negative, indicating a potential future loss, and the strength of the reduction in the distribution is related to the severity of climate change (SSP scenarios). Directional shifts were detected to the south. The projected mean centroid latitudinal shift is ~ 51 km to the south for 2100 SSP5-8.5 scenario. The possibility of dispersal will depend on suitable routes and landscape configuration. Greenhouse gas emissions should be urgently reduced. Our results also emphasize that no more forest loss is acceptable in Atlantic Forest, and restoration, canopy bridges, friendly agroecosystems, and monitoring of infrastructure projects are urgent to enable dealing with climate change.
Collapse
Affiliation(s)
- Míriam Plaza Pinto
- Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil.
- Programa de Pós-Graduação em Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil.
| | - Raone Beltrão-Mendes
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe (UFS), 49100-000, São Cristóvão, SE, Brasil
| | - Maurício Talebi
- Departamento de Ciências Ambientais, Universidade Federal de São Paulo (UNIFESP), 09972-270, Diadema, SP, Brasil
- Programa de Pós-Graduação em Análise Ambiental Integrada, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brasil
| | - Adriana Almeida de Lima
- Programa de Pós-Graduação em Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil
| |
Collapse
|
25
|
Davis CL, Muñoz DJ, Amburgey SM, Dinsmore CR, Teitsworth EW, Miller DAW. Multistate model to estimate sex‐specific dispersal rates and distances for a wetland‐breeding amphibian population. Ecosphere 2023. [DOI: 10.1002/ecs2.4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Courtney L. Davis
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
- Intercollege Graduate Ecology Program, Pennsylvania State University University Park Pennsylvania USA
- Cornell Lab of Ornithology Cornell University Ithaca New York USA
| | - David J. Muñoz
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
- Intercollege Graduate Ecology Program, Pennsylvania State University University Park Pennsylvania USA
| | - Staci M. Amburgey
- Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
- Washington Department of Fish and Wildlife Olympia Washington USA
| | - Carli R. Dinsmore
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
| | - Eric W. Teitsworth
- Department of Fisheries, Wildlife, and Conservation Biology North Carolina State University Raleigh North Carolina USA
| | - David A. W. Miller
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
- Intercollege Graduate Ecology Program, Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
26
|
Cote J, Dahirel M, Schtickzelle N, Altermatt F, Ansart A, Blanchet S, Chaine AS, De Laender F, De Raedt J, Haegeman B, Jacob S, Kaltz O, Laurent E, Little CJ, Madec L, Manzi F, Masier S, Pellerin F, Pennekamp F, Therry L, Vong A, Winandy L, Bonte D, Fronhofer EA, Legrand D. Dispersal syndromes in challenging environments: A cross-species experiment. Ecol Lett 2022; 25:2675-2687. [PMID: 36223413 PMCID: PMC9828387 DOI: 10.1111/ele.14124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/12/2023]
Abstract
Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems.
Collapse
Affiliation(s)
- Julien Cote
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier; UMR5174 EDB (Laboratoire Evolution & Diversité Biologique)Toulouse CedexFrance
| | - Maxime Dahirel
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR6553RennesFrance,Department of BiologyGhent UniversityGhentBelgium
| | - Nicolas Schtickzelle
- Univ. Catholique de LouvainEarth and Life Institute, Biodiversity Research CentreLouvain‐la‐NeuveBelgium
| | - Florian Altermatt
- Eawag: Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Armelle Ansart
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR6553RennesFrance
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Alexis S. Chaine
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance,Institute for Advanced Studies in Toulouse, Toulouse School of EconomicsToulouseFrance
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium
| | - Jonathan De Raedt
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium,Laboratory of Environmental Toxicology and Applied EcologyGhent UniversityGhentBelgium
| | - Bart Haegeman
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Staffan Jacob
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Oliver Kaltz
- ISEM, Univ MontpellierCNRS, EPHE, IRDMontpellierFrance
| | - Estelle Laurent
- Univ. Catholique de LouvainEarth and Life Institute, Biodiversity Research CentreLouvain‐la‐NeuveBelgium
| | - Chelsea J. Little
- Eawag: Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland,School of Environmental ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Luc Madec
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR6553RennesFrance
| | - Florent Manzi
- ISEM, Univ MontpellierCNRS, EPHE, IRDMontpellierFrance,Department of Ecosystem ResearchLeibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
| | | | - Felix Pellerin
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier; UMR5174 EDB (Laboratoire Evolution & Diversité Biologique)Toulouse CedexFrance
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Lieven Therry
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier; UMR5174 EDB (Laboratoire Evolution & Diversité Biologique)Toulouse CedexFrance,Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Alexandre Vong
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Laurane Winandy
- Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier; UMR5174 EDB (Laboratoire Evolution & Diversité Biologique)Toulouse CedexFrance,Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Dries Bonte
- Department of BiologyGhent UniversityGhentBelgium
| | - Emanuel A. Fronhofer
- Eawag: Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland,ISEM, Univ MontpellierCNRS, EPHE, IRDMontpellierFrance
| | - Delphine Legrand
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| |
Collapse
|
27
|
Patchett R, Styles P, Robins King J, Kirschel ANG, Cresswell W. The potential function of post-fledging dispersal behavior in first breeding territory selection for males of a migratory bird. Curr Zool 2022; 68:708-715. [PMID: 36743231 PMCID: PMC9892789 DOI: 10.1093/cz/zoac002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
One possible hypothesis for the function of post-fledging dispersal is to locate a suitable future breeding area. This post-fledging period may be particularly important in migratory species because they have a limited period to gather information prior to autumn migration, and in protandrous species, males must quickly acquire a territory after returning from spring migration to maximize their fitness. Here we use color-ring resightings to investigate how the post-fledging dispersal movements of the Cyprus wheatear Oenanthe cypriaca, a small migratory passerine, relate to their first breeding territory the following year when they return from migration. We found that males established first breeding territories that were significantly closer to their post-fledging location than to their natal sites or to post-fledging locations of other conspecifics, but these patterns were not apparent in females. Our findings suggest that familiarity with potential breeding sites may be important for juveniles of migratory species, particularly for the sex that acquires and advertises breeding territories. Exploratory dispersal prior to a migrant's first autumn migration may contribute toward its breeding success the following year, further highlighting the importance of early seasonal breeding on fitness and population dynamics more generally.
Collapse
Affiliation(s)
- Robert Patchett
- Centre for Biological Diversity, University of St Andrews, St Andrews, KY16 9TH, UK
| | - Patrick Styles
- Centre for Biological Diversity, University of St Andrews, St Andrews, KY16 9TH, UK
| | - Joanna Robins King
- Centre for Biological Diversity, University of St Andrews, St Andrews, KY16 9TH, UK
| | | | - Will Cresswell
- Centre for Biological Diversity, University of St Andrews, St Andrews, KY16 9TH, UK
| |
Collapse
|
28
|
de Jong MJ, White CR, Wong BBM, Chapple DG. Univariate and multivariate plasticity in response to incubation temperature in an Australian lizard. J Exp Biol 2022; 225:281298. [PMID: 36354342 PMCID: PMC10112869 DOI: 10.1242/jeb.244352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022]
Abstract
Environments, particularly developmental environments, can generate a considerable amount of phenotypic variation through phenotypic plasticity. Plasticity in response to incubation temperature is well characterised in egg-laying reptiles. However, traits do not always vary independently of one another, and studies encompassing a broad range of traits spanning multiple categories are relatively rare but crucial to better understand whole-organism responses to environmental change, particularly if covariation among traits may constrain plasticity. In this study, we investigated multivariate plasticity in response to incubation across three temperatures in the delicate skink, Lampropholis delicata, and whether this was affected by covariation among traits. At approximately 1 month of age, a suite of growth, locomotor performance, thermal physiology and behavioural traits were measured. Plasticity in the multivariate phenotype of delicate skinks was distinct for different incubation temperatures. Cool temperatures drove shifts in growth, locomotor performance and thermal physiology, while hot temperatures primarily caused changes in locomotor performance and behaviour. These differences are likely due to variation in thermal reaction norms, as there was little evidence that covariation among traits or phenotypic integration influenced plasticity, and there was no effect of incubation temperature on the direction or strength of covariation. While there were broad themes in terms of which trait categories were affected by different incubation treatments, traits appeared to be affected independently by developmental temperature. Comparing reaction norms of a greater range of traits and temperatures will enable better insight into these patterns among trait categories, as well as the impacts of environmental change.
Collapse
Affiliation(s)
- Madeleine J de Jong
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| |
Collapse
|
29
|
Campana JLM, Raffard A, Chaine AS, Huet M, Legrand D, Jacob S. Dispersal plasticity driven by variation in fitness across species and environmental gradients. Ecol Lett 2022; 25:2410-2421. [PMID: 36198081 PMCID: PMC9827879 DOI: 10.1111/ele.14101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Dispersal plasticity, when organisms adjust their dispersal decisions depending on their environment, can play a major role in ecological and evolutionary dynamics, but how it relates to fitness remains scarcely explored. Theory predicts that high dispersal plasticity should evolve when environmental gradients have a strong impact on fitness. Using microcosms, we tested in five species of the genus Tetrahymena whether dispersal plasticity relates to differences in fitness sensitivity along three environmental gradients. Dispersal plasticity was species- and environment-dependent. As expected, dispersal plasticity was generally related to fitness sensitivity, with higher dispersal plasticity when fitness is more affected by environmental gradients. Individuals often preferentially disperse out of low fitness environments, but leaving environments that should yield high fitness was also commonly observed. We provide empirical support for a fundamental, but largely untested, assumption in dispersal theory: the extent of dispersal plasticity correlates with fitness sensitivity to the environment.
Collapse
Affiliation(s)
| | - Allan Raffard
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research CentreLouvain‐la‐NeuveBelgium,Present address:
Univ. Savoie Mont Blanc, INRAE, CARRTELThonon‐les‐BainsFrance
| | - Alexis S. Chaine
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| | - Michèle Huet
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| | - Delphine Legrand
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| | - Staffan Jacob
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| |
Collapse
|
30
|
Somveille M, Ellis‐Soto D. Linking animal migration and ecosystem processes: Data-driven simulation of propagule dispersal by migratory herbivores. Ecol Evol 2022; 12:e9383. [PMID: 36267687 PMCID: PMC9577414 DOI: 10.1002/ece3.9383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Animal migration is a key process underlying active subsidies and species dispersal over long distances, which affects the connectivity and functioning of ecosystems. Despite much research describing patterns of where animals migrate, we still lack a framework for quantifying and predicting how animal migration affects ecosystem processes. In this study, we aim to integrate animal movement behavior and ecosystem functioning by developing a predictive modeling framework that can inform ecosystem management and conservation. We propose a framework to model individual‐level migration trajectories between populations' seasonal ranges as well as the resulting dispersal and fate of propagules carried by the migratory animals, which can be calibrated using empirical data at every step of the modeling process. As a case study, we applied our framework to model the spread of guava seeds, Psidium guajava, by a population of migratory Galapagos tortoises, Chelonoidis porteri, across Santa Cruz Island. Galapagos tortoises are large herbivores that transport seeds and nutrients across the island, while Guava is one of the most problematic invasive species in the Galapagos archipelago. Our model can predict the pattern of spread of guava seeds alongside tortoises' downslope migration range, and it identified areas most likely to see establishment success. Our results show that Galapagos tortoises' seed dispersal may particularly contribute to guava range expansion on Santa Cruz Island, due to both long gut retention time and tortoise's long‐distance migration across vegetation zones. In particular, we predict that tortoises are dispersing a significant amount of guava seeds into the Galapagos National Park, which has important consequences for the native flora. The flexibility and modularity of our framework allow for the integration of multiple data sources. It also allows for a wide range of applications to investigate how migratory animals affect ecosystem processes, including propagule dispersal but also other processes such as nutrient transport across ecosystems. Our framework is also a valuable tool for predicting how animal‐mediated propagule dispersal can be affected by environmental change. These different applications can have important conservation implications for the management of ecosystems that include migratory animals.
Collapse
Affiliation(s)
- Marius Somveille
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA,Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment ResearchUniversity College LondonLondonUK
| | - Diego Ellis‐Soto
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA,Center for Biodiversity and Global ChangeYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
31
|
Lemes P, Barbosa FG, Naimi B, Araújo MB. Dispersal abilities favor commensalism in animal-plant interactions under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155157. [PMID: 35405230 DOI: 10.1016/j.scitotenv.2022.155157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Scientists still poorly understand how biotic interactions and dispersal limitation jointly interact and affect the ability of species to track suitable habitats under climate change. Here, we examine how animal-plant interactions and dispersal limitations might affect the responses of Brazil nut-dependent frogs facing projected climate change. Using ecological niche modelling and dispersal simulations, we forecast the future distributions of the Brazil nut tree and three commensalist frog species over time (2030, 2050, 2070, and 2090) in the regional rivalry (SSP370) scenario that includes great challenges to mitigation and adaptation. With the exception of one species, projections point to a decrease in suitable habitats of up to 40.6%. For frog species with potential reductions of co-occurrence areas, this is expected to reduce up to 23.8% of suitable areas for binomial animal-plant relationships. Even so, biotic interactions should not be lost over time. Species will depend on their own dispersal abilities to reach analogous climates in the future for maintaining ecological and evolutionary processes associated with commensal taxa. However, ecological and evolutionary processes associated with commensal taxa should be maintained in accordance with their own dispersal ability. When dispersal limitation is included in the models, the suitable range of all three frog species is reduced considerably by the end of the century. This highlights the importance of dispersal limitation inclusion for forecasting future distribution ranges when biotic interactions matter.
Collapse
Affiliation(s)
- Priscila Lemes
- Laboratório de Ecologia e Biogeografia da Conservação, Departamento de Botânica e Ecologia, Instituto de Biologia, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | | | - Babak Naimi
- Rui Nabeiro Biodiversity Chair, MED Institute, University of Évora, Évora, Portugal
| | - Miguel B Araújo
- Rui Nabeiro Biodiversity Chair, MED Institute, University of Évora, Évora, Portugal; Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC, Madrid, Spain
| |
Collapse
|
32
|
Liu Y, Riley WJ, Keenan TF, Mekonnen ZA, Holm JA, Zhu Q, Torn MS. Dispersal and fire limit Arctic shrub expansion. Nat Commun 2022; 13:3843. [PMID: 35788612 PMCID: PMC9253140 DOI: 10.1038/s41467-022-31597-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Arctic shrub expansion alters carbon budgets, albedo, and warming rates in high latitudes but remains challenging to predict due to unclear underlying controls. Observational studies and models typically use relationships between observed shrub presence and current environmental suitability (bioclimate and topography) to predict shrub expansion, while omitting shrub demographic processes and non-stationary response to changing climate. Here, we use high-resolution satellite imagery across Alaska and western Canada to show that observed shrub expansion has not been controlled by environmental suitability during 1984-2014, but can only be explained by considering seed dispersal and fire. These findings provide the impetus for better observations of recruitment and for incorporating currently underrepresented processes of seed dispersal and fire in land models to project shrub expansion and climate feedbacks. Integrating these dynamic processes with projected fire extent and climate, we estimate shrubs will expand into 25% of the non-shrub tundra by 2100, in contrast to 39% predicted based on increasing environmental suitability alone. Thus, using environmental suitability alone likely overestimates and misrepresents shrub expansion pattern and its associated carbon sink.
Collapse
Affiliation(s)
- Yanlan Liu
- School of Earth Sciences, The Ohio State University, Columbus, OH, USA.
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA.
| | - William J Riley
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA, USA
| | - Zelalem A Mekonnen
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer A Holm
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qing Zhu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Margaret S Torn
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
33
|
Arango A, Pinto-Ledezma J, Rojas-Soto O, Lindsay AM, Mendenhall CD, Villalobos F. Hand-Wing Index as a surrogate for dispersal ability: the case of the Emberizoidea (Aves: Passeriformes) radiation. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Measuring the dispersal ability of birds is particularly challenging and thus researchers have relied on the extended use of morphological proxies as surrogates for such ability. However, few studies have tested the relationship between morphological proxies and other dispersal-related traits. In this study, we test the relationship of the most commonly used morphological proxy for dispersal—the Hand-Wing Index (HWI)—with traits highly associated with dispersal abilities, such as geographic range size, migratory behaviour and migratory distances. We used the Emberizoidea superfamily to evaluate these relationships and measured the HWI of 2520 individuals from 431 species (almost half of all the species in the superfamily). We first estimated the phylogenetic signal of HWI and searched for the best evolutionary model to explain its variation. We then performed PGLS analyses to assess the relationships between HWI and dispersal abilities. Our results showed that HWI has a strong phylogenetic signal and is positively related to dispersal abilities. Our findings support the use of HWI as a viable morphological proxy for dispersal in birds.
Collapse
Affiliation(s)
- Axel Arango
- Red de Biología Evolutiva, Instituto de Ecología, A.C. - INECOL , Xalapa , Mexico
- Programa de Doctorado en Ciencias, Instituto de Ecología, A.C. - INECOL , Xalapa , Mexico
| | - Jesús Pinto-Ledezma
- Departament of Ecology, Evolution & Behavior, University of Minnesota, Minneapolis , MN 55455, USA
| | - Octavio Rojas-Soto
- Red de Biología Evolutiva, Instituto de Ecología, A.C. - INECOL , Xalapa , Mexico
| | - Andrea M Lindsay
- Powdermill Nature Reserve, Carnegie Museum of Natural History , Rector , PA 15677, USA
| | - Chase D Mendenhall
- Section of Birds, Carnegie Museum of Natural History , Pittsburgh , PA 15213, USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología, A.C. - INECOL , Xalapa , Mexico
| |
Collapse
|
34
|
Sonkoly J, Takács A, Molnár V A, Török P. Trade of commercial potting substrates: A largely overlooked means of the long-distance dispersal of plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154093. [PMID: 35218840 DOI: 10.1016/j.scitotenv.2022.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Although long-distance dispersal (LDD) events are rare and stochastic, they are disproportionately important and drive several large-scale ecological processes; yet, we have a very limited understanding of their frequency, extent and consequences. Humanity intentionally spreads several species, which is associated with the accidental dispersal of other plant species. Although the global trade of potted plants and horticultural substrates may disperse large quantities of propagules, it has hardly been studied from an ecological point of view. We assessed the viable seed content of different types of commercial potting substrates to answer the following questions: (i) In what richness and density do substrates contain viable seeds? (ii) Does the composition of substrates influence their viable seed content? and (iii) Are there common characteristics of the species dispersed this way? We detected 438 seedlings of 66 taxa and found that 1 l of potting substrate contains an average of 13.27 seeds of 6.24 species, so an average 20-liter bag of substrate contains 265 viable seeds. There was a high variability in the seed content of the substrates, as substrates containing manure contained a substantially higher number of species and seeds than substrates without manure. Thus, this pathway of LDD is an interplay between endozoochory by grazing livestock and accidental human-vectored dispersal, implying that the diet preference of grazing animals influences the ability of a plant species to be dispersed this way. According to our results, potting substrates can disperse large quantities of seeds of a wide range of plant species over large distances. We conclude that this kind of human-vectored LDD may have complex effects on plant populations and communities; however, as this dispersal pathway is largely understudied and has hardly been considered as a type of LDD, its consequences are still unknown and further studies of the issue are of great importance.
Collapse
Affiliation(s)
- Judit Sonkoly
- Department of Ecology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary; MTA-DE Lendület Functional and Restoration Ecology Research Group, H-4032 Debrecen, Egyetem tér 1., Hungary.
| | - Attila Takács
- MTA-DE Lendület Functional and Restoration Ecology Research Group, H-4032 Debrecen, Egyetem tér 1., Hungary; Department of Botany, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary
| | - Attila Molnár V
- Department of Botany, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary
| | - Péter Török
- Department of Ecology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary; MTA-DE Lendület Functional and Restoration Ecology Research Group, H-4032 Debrecen, Egyetem tér 1., Hungary; Polish Academy of Sciences, Botanical Garden - Center for Biological Diversity Conservation in Powsin, Prawdziwka St., 202-973 Warszawa, Poland
| |
Collapse
|
35
|
DiLeo MF, Nonaka E, Husby A, Saastamoinen M. Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation. Proc Biol Sci 2022; 289:20220322. [PMID: 35673865 PMCID: PMC9174707 DOI: 10.1098/rspb.2022.0322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Active dispersal is driven by extrinsic and intrinsic factors at the three stages of departure, transfer and settlement. Most empirical studies capture only one stage of this complex process, and knowledge of how much can be generalized from one stage to another remains unknown. Here we use genetic assignment tests to reconstruct dispersal across 5 years and 232 habitat patches of a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We link individual dispersal events to weather, landscape structure, size and quality of habitat patches, and individual genotype to identify the factors that influence the three stages of dispersal and post-settlement survival. We found that nearly all tested factors strongly affected departure probabilities, but that the same factors explained very little variation in realized dispersal distances. Surprisingly, we found no effect of dispersal distance on post-settlement survival. Rather, survival was influenced by weather conditions, quality of the natal habitat patch, and a strong interaction between genotype and occupancy status of the settled habitat patch, with more mobile genotypes having higher survival as colonists rather than as immigrants. Our work highlights the multi-causality of dispersal and that some dispersal costs can only be understood by considering extrinsic and intrinsic factors and their interaction across the entire dispersal process.
Collapse
Affiliation(s)
- Michelle F. DiLeo
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, ON, Canada
| | - Etsuko Nonaka
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Li W, Tian F, Rudaya N, Herzschuh U, Cao X. Pollen-Based Holocene Thawing-History of Permafrost in Northern Asia and Its Potential Impacts on Climate Change. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.894471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As the recent permafrost thawing of northern Asia proceeds due to anthropogenic climate change, precise and detailed palaeoecological records from past warm periods are essential to anticipate the extent of future permafrost variations. Here, based on the modern relationship between permafrost and vegetation (represented by pollen assemblages), we trained a Random Forest model using pollen and permafrost data and verified its reliability to reconstruct the history of permafrost in northern Asia during the Holocene. An early Holocene (12–8 cal ka BP) strong thawing trend, a middle-to-late Holocene (8–2 cal ka BP) relatively slow thawing trend, and a late Holocene freezing trend of permafrost in northern Asia are consistent with climatic proxies such as summer solar radiation and Northern Hemisphere temperature. The extensive distribution of permafrost in northern Asia inhibited the spread of evergreen coniferous trees during the early Holocene warming and might have decelerated the enhancement of the East Asian summer monsoon (EASM) by altering hydrological processes and albedo. Based on these findings, we suggest that studies of the EASM should consider more the state of permafrost and vegetation in northern Asia, which are often overlooked and may have a profound impact on climate change in this region.
Collapse
|
37
|
Claramunt S, Hong M, Bravo A. The effect of flight efficiency on gap‐crossing ability in Amazonian forest birds. Biotropica 2022. [DOI: 10.1111/btp.13109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Santiago Claramunt
- Department of Natural History Royal Ontario Museum Toronto Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Milly Hong
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Adriana Bravo
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
38
|
Zhu G, Papeş M, Armsworth PR, Giam X. Climate change vulnerability of terrestrial vertebrates in a major refuge and dispersal corridor in North America. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Gengping Zhu
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Monica Papeş
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Paul R. Armsworth
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Xingli Giam
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| |
Collapse
|
39
|
Sopniewski J, Scheele BC, Cardillo M. Predicting the distribution of Australian frogs and their overlap with
Batrachochytrium dendrobatidis
under climate change. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Jarrod Sopniewski
- Macroevolution & Macroecology Research School of Biology The Australian National University Canberra Australian Capital Territory Australia
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
| | - Benjamin C. Scheele
- Macroevolution & Macroecology Research School of Biology The Australian National University Canberra Australian Capital Territory Australia
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Marcel Cardillo
- Macroevolution & Macroecology Research School of Biology The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
40
|
Buckley SJ, Brauer CJ, Unmack PJ, Hammer MP, Beheregaray LB. Variation in intraspecific demography drives localised concordance but species-wide discordance in response to past climatic change. BMC Ecol Evol 2022; 22:35. [PMID: 35317750 PMCID: PMC8941757 DOI: 10.1186/s12862-022-01990-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Understanding how species biology may facilitate resilience to climate change remains a critical factor in detecting and protecting species at risk of extinction. Many studies have focused on the role of particular ecological traits in driving species responses, but less so on demographic history and levels of standing genetic variation. Additionally, spatial variation in the interaction of demographic and adaptive factors may further complicate prediction of species responses to environmental change. We used environmental and genomic datasets to reconstruct the phylogeographic histories of two ecologically similar and largely co-distributed freshwater fishes, the southern (Nannoperca australis) and Yarra (N. obscura) pygmy perches, to assess the degree of concordance in their responses to Plio-Pleistocene climatic changes. We described contemporary genetic diversity, phylogenetic histories, demographic histories, and historical species distributions across both species, and statistically evaluated the degree of concordance in co-occurring populations. RESULTS Marked differences in contemporary genetic diversity, historical distribution changes and historical migration were observed across the species, with a distinct lack of genetic diversity and historical range expansion suggested for N. obscura. Although several co-occurring populations within a shared climatic refugium demonstrated concordant demographic histories, idiosyncratic population size changes were found at the range edges of the more spatially restricted species. Discordant responses between species were associated with low standing genetic variation in peripheral populations. This might have hindered adaptive potential, as documented in recent demographic declines and population extinctions for the two species. CONCLUSION Our results highlight both the role of spatial scale in the degree of concordance in species responses to climate change, and the importance of standing genetic variation in facilitating range shifts. Even when ecological traits are similar between species, long-term genetic diversity and historical population demography may lead to discordant responses to ongoing and future climate change.
Collapse
Affiliation(s)
- Sean James Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT, 0801, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia.
| |
Collapse
|
41
|
Tardy O, Vincenot CE, Bouchard C, Ogden NH, Leighton PA. Context-dependent host dispersal and habitat fragmentation determine heterogeneity in infected tick burdens: an agent-based modelling study. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 35360357 DOI: 10.5061/dryad.nzs7h44rx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As the incidence of tick-borne diseases has sharply increased over the past decade, with serious consequences for human and animal health, there is a need to identify ecological drivers contributing to heterogeneity in tick-borne disease risk. In particular, the relative importance of animal host dispersal behaviour in its three context-dependent phases of emigration, transfer and settlement is relatively unexplored. We built a spatially explicit agent-based model to investigate how the host dispersal process, in concert with the tick and host demographic processes, habitat fragmentation and the pathogen transmission process, affects infected tick distributions among hosts. A sensitivity analysis explored the impacts of different input parameters on infected tick burdens on hosts and infected tick distributions among hosts. Our simulations indicate that ecological predictors of infected tick burdens differed among the post-egg life stages of ticks, with tick attachment and detachment, tick questing activity and pathogen transmission dynamics identified as key processes, in a coherent way. We also found that the type of host settlement strategy and the proportion of habitat suitable for hosts determined super-spreading of infected ticks. We developed a theoretical mechanistic framework that can serve as a first step towards applied studies of on-the-ground public health intervention strategies.
Collapse
Affiliation(s)
- Olivia Tardy
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Christian E Vincenot
- Department of Social Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Catherine Bouchard
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Nicholas H Ogden
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Patrick A Leighton
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| |
Collapse
|
42
|
Chowdhury SR, Arumugam R, Zou W, Chandrasekar VK, Senthilkumar DV. Role of limiting dispersal on metacommunity stability and persistence. Phys Rev E 2022; 105:034309. [PMID: 35428060 DOI: 10.1103/physreve.105.034309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/01/2022] [Indexed: 11/07/2022]
Abstract
The role of dispersal on the stability and synchrony of a metacommunity is a topic of considerable interest in theoretical ecology. Dispersal is known to promote both synchrony, which enhances the likelihood of extinction, and spatial heterogeneity, which favors the persistence of the population. Several efforts have been made to understand the effect of diverse variants of dispersal in the spatially distributed ecological community. Despite that environmental change strongly affects the dispersal, the effects of controlled dispersal on the metacommunity stability and their persistence remain unknown. We study the influence of limiting the immigration using two-patch prey-predator metacommunity at both local and spatial scales. We find that the spread of the inhomogeneous stable steady states (asynchronous states) decreases monotonically upon limiting the predator dispersal. Nevertheless, at the local scale, the spread of the inhomogeneous steady states increases up to a critical value of the limiting factor, favoring the metacommunity persistence, and then starts decreasing for a further decrease in the limiting factor with varying local interaction. Interestingly, limiting the prey dispersal promotes inhomogeneous steady states in a large region of the parameter space, thereby increasing the metacommunity persistence at both spatial and local scales. Further, we show similar qualitative dynamics in an entire class of complex networks consisting of a large number of patches. We also deduce various bifurcation curves and stability conditions for the inhomogeneous steady states, which we find to agree well with the simulation results. Thus, our findings on the effect of the limiting dispersal can help to develop conservation measures for ecological communities.
Collapse
Affiliation(s)
- Snehasish Roy Chowdhury
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Ramesh Arumugam
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Wei Zou
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
| | - V K Chandrasekar
- Department of Physics, Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
43
|
Tardy O, Vincenot CE, Bouchard C, Ogden NH, Leighton PA. Context-dependent host dispersal and habitat fragmentation determine heterogeneity in infected tick burdens: an agent-based modelling study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220245. [PMID: 35360357 PMCID: PMC8965412 DOI: 10.1098/rsos.220245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
As the incidence of tick-borne diseases has sharply increased over the past decade, with serious consequences for human and animal health, there is a need to identify ecological drivers contributing to heterogeneity in tick-borne disease risk. In particular, the relative importance of animal host dispersal behaviour in its three context-dependent phases of emigration, transfer and settlement is relatively unexplored. We built a spatially explicit agent-based model to investigate how the host dispersal process, in concert with the tick and host demographic processes, habitat fragmentation and the pathogen transmission process, affects infected tick distributions among hosts. A sensitivity analysis explored the impacts of different input parameters on infected tick burdens on hosts and infected tick distributions among hosts. Our simulations indicate that ecological predictors of infected tick burdens differed among the post-egg life stages of ticks, with tick attachment and detachment, tick questing activity and pathogen transmission dynamics identified as key processes, in a coherent way. We also found that the type of host settlement strategy and the proportion of habitat suitable for hosts determined super-spreading of infected ticks. We developed a theoretical mechanistic framework that can serve as a first step towards applied studies of on-the-ground public health intervention strategies.
Collapse
Affiliation(s)
- Olivia Tardy
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Christian E. Vincenot
- Department of Social Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Catherine Bouchard
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Nicholas H. Ogden
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| | - Patrick A. Leighton
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec, Canada J2S 2M2
| |
Collapse
|
44
|
Brooks GC, Kindsvater HK. Early Development Drives Variation in Amphibian Vulnerability to Global Change. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.813414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding how natural selection determines species’ life histories can reveal their resilience or sensitivity to anthropogenic changes. For example, the safe harbor hypothesis posits that natural selection will favor life histories that maximize the time spent in the safest life stages; a second theoretical prediction suggests that species with complex life histories will maximize the growth potential of a life stage relative to its safety. Amphibians exhibit complex life histories, with a diversity of developmental strategies occurring across taxa. Many strategies involve the complete elimination of a particular life stage, and thus provide an excellent opportunity to evaluate the main tenets of the safe harbor hypothesis and understand the consequences of this developmental variation for conservation of threatened amphibians. We develop a general framework for understanding developmental life histories of amphibians – including the special cases of paedomorphism, direct development, and viviparity – based on the relative growth potential and safety offered by aquatic and terrestrial habitat, which we tested using a global trait database. We then compare the IUCN Red List status of species differing in developmental mode, revealing that most fully aquatic species and species with an aquatic larval stage are currently of Least Concern, despite the fact that freshwater habitats are being lost at a much faster rate compared with terrestrial ecosystems. The higher proportion of direct developing and viviparous species that are threatened can be attributed to their smaller ranges, the fact that they are more likely to be found in rainforest habitats, and their relatively slow life histories. We conclude that an amphibian’s developmental mode reflects the relative costs and benefits of different habitats, and that this could contribute to the resilience or vulnerability of amphibians to future anthropogenic change.
Collapse
|
45
|
Climate change threatens native potential agroforestry plant species in Brazil. Sci Rep 2022; 12:2267. [PMID: 35145191 PMCID: PMC8831634 DOI: 10.1038/s41598-022-06234-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Climate change is one of the main drivers of species extinction in the twentyfirst-century. Here, we (1) quantify potential changes in species' bioclimatic area of habitat (BAH) of 135 native potential agroforestry species from the Brazilian flora, using two different climate change scenarios (SSP2-4.5 and SSP5-8.5) and dispersal scenarios, where species have no ability to disperse and reach new areas (non-dispersal) and where species can migrate within the estimated BAH (full dispersal) for 2041–2060 and 2061–2080. We then (2) assess the preliminary conservation status of each species based on IUCN criteria. Current and future potential habitats for species were predicted using MaxEnt, a machine-learning algorithm used to estimate species' probability distribution. Future climate is predicted to trigger a mean decline in BAH between 38.5–56.3% under the non-dispersal scenario and between 22.3–41.9% under the full dispersal scenario for 135 native potential agroforestry species. Additionally, we found that only 4.3% of the studied species could be threatened under the IUCN Red List criteria B1 and B2. However, when considering the predicted quantitative habitat loss due to climate change (A3c criterion) the percentages increased between 68.8–84.4% under the non-dispersal scenario and between 40.7–64.4% under the full dispersal scenario. To lessen such threats, we argue that encouraging the use of these species in rural and peri-urban agroecosystems are promising, complementary strategies for their long-term conservation.
Collapse
|
46
|
Climate warming and dispersal strategies determine species persistence in a metacommunity. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Chen G, Gu X, Liu Y, Wang W, Wang M. Different functional feeding groups of mangrove soil molluscs invoke unique co‐occurrence patterns in response to a climate extreme. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Guogui Chen
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of Education College of the Environment & Ecology Xiamen University Xiamen China
| | - Xuan Gu
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of Education College of the Environment & Ecology Xiamen University Xiamen China
| | - Yi Liu
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of Education College of the Environment & Ecology Xiamen University Xiamen China
| | - Wenqing Wang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of Education College of the Environment & Ecology Xiamen University Xiamen China
| | - Mao Wang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of Education College of the Environment & Ecology Xiamen University Xiamen China
| |
Collapse
|
48
|
Torralvo K, Fraga R, Lima AP, Dayrell J, Magnusson WE. Environmental filtering and deforestation shape frog assemblages in Amazonia: An empirical approach assessing species abundances and functional traits. Biotropica 2021. [DOI: 10.1111/btp.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kelly Torralvo
- Programa de Pós‐Graduação em Ecologia Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - Rafael Fraga
- Laboratório de Ecologia e Comportamento Animal Universidade Federal do Oeste do Pará Santarém Brazil
| | - Albertina P. Lima
- Coordenação de Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - Jussara Dayrell
- Programa de Pós‐Graduação em Ecologia Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - William E. Magnusson
- Coordenação de Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| |
Collapse
|
49
|
Zhu J, Lukić N, Rajtschan V, Walter J, Schurr FM. Seed dispersal by wind decreases when plants are water-stressed, potentially counteracting species coexistence and niche evolution. Ecol Evol 2021; 11:16239-16249. [PMID: 34824824 PMCID: PMC8601872 DOI: 10.1002/ece3.8305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Hydrology is a major environmental factor determining plant fitness, and hydrological niche segregation (HNS) has been widely used to explain species coexistence. Nevertheless, the distribution of plant species along hydrological gradients does not only depend on their hydrological niches but also depend on their seed dispersal, with dispersal either weakening or reinforcing the effects of HNS on coexistence. However, it is poorly understood how seed dispersal responds to hydrological conditions. To close this gap, we conducted a common-garden experiment exposing five wind-dispersed plant species (Bellis perennis, Chenopodium album, Crepis sancta, Hypochaeris glabra, and Hypochaeris radicata) to different hydrological conditions. We quantified the effects of hydrological conditions on seed production and dispersal traits, and simulated seed dispersal distances with a mechanistic dispersal model. We found species-specific responses of seed production, seed dispersal traits, and predicted dispersal distances to hydrological conditions. Despite these species-specific responses, there was a general positive relationship between seed production and dispersal distance: Plants growing in favorable hydrological conditions not only produce more seeds but also disperse them over longer distances. This arises mostly because plants growing in favorable environments grow taller and thus disperse their seeds over longer distances. We postulate that the positive relationship between seed production and dispersal may reduce the concentration of each species to the environments favorable for it, thus counteracting species coexistence. Moreover, the resulting asymmetrical gene flow from favorable to stressful habitats may slow down the microevolution of hydrological niches, causing evolutionary niche conservatism. Accounting for context-dependent seed dispersal should thus improve ecological and evolutionary models for the spatial dynamics of plant populations and communities.
Collapse
Affiliation(s)
- Jinlei Zhu
- Institute of Landscape and Plant EcologyUniversity of HohenheimStuttgartGermany
| | - Nataša Lukić
- Institute of Landscape and Plant EcologyUniversity of HohenheimStuttgartGermany
| | - Verena Rajtschan
- Institute of Soil Science and Land EvaluationUniversity of HohenheimStuttgartGermany
- Institute of Physics and MeteorologyUniversity of HohenheimStuttgartGermany
| | - Julia Walter
- Institute of Landscape and Plant EcologyUniversity of HohenheimStuttgartGermany
- LTZ AugustenbergRheinstettenGermany
| | - Frank M. Schurr
- Institute of Landscape and Plant EcologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
50
|
Edwards DD, Gordon NM. HELMINTH DIVERSITY OF GREEN TREEFROGS (HYLA CINEREA) IN THEIR EXPANDED GEOGRAPHICAL RANGE. J Parasitol 2021; 107:923-932. [PMID: 34902862 DOI: 10.1645/20-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There has been a growing interest in characterizing the parasite faunas of species populations as they expand their geographical ranges as a result of climate change. Expanded-range populations often exhibit lower parasite diversity than historical-range populations, and reduced parasitism may, in part, be attributable to expanded-range populations escaping their native range parasites. The present study compares the helminth faunas of green treefrogs (Hyla cinerea) from 4 historical and 4 expanded-range populations to determine whether these latter populations have undergone parasite escape. Results of this study found relatively high degrees of similarity in species composition among helminth assemblages within historical or within range-expansion locations, with marked differences in the composition of helminth faunas between historical and expanded-range populations of these frogs. Because green treefrogs from expanded-range locations exhibited significant decreases in helminth species diversity compared with those from historical sites, they appear to be escaping levels of parasitism typically experienced by these frogs in their native range. Most notably, there was a decrease in the abundance of helminths with direct life cycles and the absence of trematode assemblages with indirect life cycles among expanded-range populations of H. cinerea. The low prevalence of trematode assemblages among historical populations of green treefrogs could limit these parasites' ability to be introduced and propagated in expanded-range locations. However, the lack of trematode assemblages among populations of H. cinerea in its expanded range may also be due to the absence or limited availability of other aquatic hosts that are required to complete the life cycles of these parasites. The reduction in helminth diversity among expanded-range populations of green treefrogs lends some credence to the notion that individuals at the front of a range expansion often invest less energy in reproduction and in doing so allocate more energy to dispersal and other life-history traits, including resistance to parasites. There may, however, be other explanations for differences in parasite species diversity between historical and expanded-range populations of H. cinerea. Because many of the helminths reported from this study are host generalists of amphibians whose recruitment and transmission among intermediate and paratenic hosts are known to be constrained by water and/or soil moisture conditions, we cannot ignore the role of both local amphibian diversity and local abiotic factors in influencing helminth diversity between the 2 population types of green treefrogs. These latter factors would decrease the role of parasite escape or energy trade-offs in driving helminth diversity among populations of H. cinerea and instead would suggest that local conditions play a more prominent role in structuring their helminth communities.
Collapse
Affiliation(s)
- Dale D Edwards
- Department of Biology, University of Evansville, 1800 Lincoln Avenue, Evansville, Indiana 47722
| | - Noah M Gordon
- Department of Biology, University of Evansville, 1800 Lincoln Avenue, Evansville, Indiana 47722
| |
Collapse
|