1
|
Sun J, Wang X, Xiao J, Yang Q, Huang X, Yang Z, Liu H, Liu Y, Wang H, Huang Z, Ma L, Cao Z. Autophagy mediates the impact of Porphyromonas gingivalis on short-chain fatty acids metabolism in periodontitis-induced gut dysbiosis. Sci Rep 2024; 14:26291. [PMID: 39487211 PMCID: PMC11530519 DOI: 10.1038/s41598-024-77909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), the main pathogen responsible for periodontitis, is linked to systemic disorders via the oral-gut axis. Short-chain fatty acids (SCFAs) are vital for gut health, but their role in P. gingivalis-induced gut disorders remains unclear. This study utilized metabolomics and 16 S rRNA sequencing to explore gut microbiota and SCFAs levels in P. gingivalis-induced periodontitis mouse models. Significant changes were observed in gut, including a reduction in SCFAs-producing bacteria, such as Lactobacillus, Ligilactobacillus, Allobucalum, and a notable decrease in Firmicutes and Actinobacteriota. The intestinal permeability tests and histological analyses revealed that periodontitis led to epithelial inflammation, reduced mucin secretion, and compromised gut barrier integrity. In vitro experiments with Caco-2 cells co-cultured with P. gingivalis showed that the bacterium disrupted cellular junctions by impairing autophagy, specifically through the ATG5-LC3 pathway, leading to decreased expression of tight junction proteins and reduced SCFA absorption. Remarkably, rapamycin treatment both in vitro and in vivo restored gut barrier function by enhancing autophagy, increasing tight junction protein expression, and promoting SCFAs absorption via MCT1 and SMCT1, alongside GPR43/GPR109a pathway activation. These findings reveal autophagy's novel role in regulating SCFAs metabolism in P. gingivalis-induced gut dysbiosis, offering insights for preventing and treating periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Jiahui Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qiudong Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengkun Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuqi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhendong Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Wang XH, Yang YN, Li YH, Cheng JL, Yan L, Liang Y, Zeng Q, Zhan T, Wang DW, Yu RH, Wu CM. Oral bacteriome and mycobiome of patients with idiopathic membranous nephropathy with different tongue coatings treated with a Chinese herbal formula. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118233. [PMID: 38685365 DOI: 10.1016/j.jep.2024.118233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/25/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moshen Fuyuan Formula (MSFY) is one of the representative Chinese medicine compound for Idiopathic membranous nephropathy (IMN), that originate from Fang Ji Huang Qi decoction in the Han dynasty. IMN is usually accompanied by different tongue coatings in traditional Chinese medicine (TCM), and tongue microorganisms are important factors affecting the formation of the tongue coating. Recently, oral microbiomes, including bacteria and fungi, have been identified as pivotal factors that contribute to disease development. However, the regulation of oral microbiomes by MSFY has not been defined. AIM OF THE STUDY In this work, we explore the characteristics of oral bacteria and fungi in IMN patients with different tongue coatings, and clarify the therapeutic effect of MSFY based on oral microbiome. MATERIALS AND METHODS We enrolled 24 patients with IMN, including 11 with white tongue (IMN-W) and 13 with yellow tongue (IMN-Y), and recruited an additional 10 healthy individuals. Patients with IMN were treated with the MSFY. The oral bacteriome and fungi before and after treatment were detected using full-length 16S rRNA and internal transcribed spacer gene sequencing. RESULTS The therapeutic effect of MSFY on patients with yellow tongue coating was more significant than that on patients with white tongue coating. In terms of oral bacteriome, Campylobacter bacteria were enriched in patients with yellow tongue and could be a promising biomarker for yellow coating. Enrichment of Veillonella parvula_A may partially account for the therapeutic effect of MSFY. As for oral fungi, Malassezia globosa was enhanced in patients with IMN-W and reduced in patients with IMN-Y. Notably, it was reduced by MSFY. We also found that mycobiome-bacteriome interactions were highly complex and dynamic in patients with IMN. CONCLUSION The regulation of the dynamic balance between oral fungi and bacteria by MSFY contributes to the treatment of IMN. This study determined the oral bacteriome and mycobiome of patients with IMN with different tongue coatings before and after MSFY treatment, which aids in promoting personalized treatment in clinical TCM and provides direction for investigating the mechanism of Chinese herbal medicines.
Collapse
Affiliation(s)
- Xin-Hui Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ya-Nan Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yi-Han Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Jia-Le Cheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Lei Yan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ying Liang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Qin Zeng
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Tian Zhan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Dian-Wen Wang
- Guang'anmen Hospital South Campus of China Academy of Chinese Medical Sciences, Beijing, 102611, China.
| | - Ren-Huan Yu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Chong-Ming Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Șalgău CA, Morar A, Zgarta AD, Ancuța DL, Rădulescu A, Mitrea IL, Tănase AO. Applications of Machine Learning in Periodontology and Implantology: A Comprehensive Review. Ann Biomed Eng 2024; 52:2348-2371. [PMID: 38884831 PMCID: PMC11329670 DOI: 10.1007/s10439-024-03559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Machine learning (ML) has led to significant advances in dentistry, easing the workload of professionals and improving the performance of various medical processes. The fields of periodontology and implantology can profit from these advances for tasks such as determining periodontally compromised teeth, assisting doctors in the implant planning process, determining types of implants, or predicting the occurrence of peri-implantitis. The current paper provides an overview of recent ML techniques applied in periodontology and implantology, aiming to identify popular models for different medical tasks, to assess the impact of the training data on the success of the automatic algorithms and to highlight advantages and disadvantages of various approaches. 48 original research papers, published between 2016 and 2023, were selected and divided into four classes: periodontology, implant planning, implant brands and types, and success of dental implants. These papers were analyzed in terms of aim, technical details, characteristics of training and testing data, results, and medical observations. The purpose of this paper is not to provide an exhaustive survey, but to show representative methods from recent literature that highlight the advantages and disadvantages of various approaches, as well as the potential of applying machine learning in dentistry.
Collapse
Affiliation(s)
- Cristiana Adina Șalgău
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Anca Morar
- National University of Science and Technology Politehnica Bucharest, Bucharest, Romania.
| | | | - Diana-Larisa Ancuța
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
- Cantacuzino National Medical-Military Institute for Research and Development, Bucharest, Romania
| | - Alexandros Rădulescu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Ioan Liviu Mitrea
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andrei Ovidiu Tănase
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| |
Collapse
|
4
|
Rams TE, Slots J. Elevated subgingival temperature infers high bacterial pathogen counts in severe periodontitis. Clin Exp Dent Res 2024; 10:e891. [PMID: 38706420 PMCID: PMC11070767 DOI: 10.1002/cre2.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/15/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES Periodontal inflammation may be assessed by bleeding on probing and subgingival temperature. This pilot study evaluated the intrapatient relationship between subgingival temperature and selected bacterial groups/species in deep periodontal pockets with bleeding on probing. MATERIALS AND METHODS In each of eight adults, an electronic temperature probe identified three "hot" pockets with elevated subgingival temperature and three "cool" pockets with normal subgingival temperature among premolars/molars with 6‒10 mm probing depths and bleeding on probing. Microbial samples collected separately from the hot and cool periodontal pockets were cultured for selected periodontal pathogens. RESULTS Hot compared to cool periodontal pockets revealed significantly higher absolute and normalized subgingival temperatures and yielded higher mean proportions of Porphyromonas gingivalis (10.2% for hot vs. 2.5% for cool, p = 0.030) and total red/orange complex periodontal pathogens (48.0% for hot vs. 24.6% for cool, p = 0.012). CONCLUSIONS Hot versus cool deep periodontal pockets harbored significantly higher levels of major periodontal pathogens. Subgingival temperature measurements may potentially be useful to assess risk of periodontitis progression and the efficacy of periodontal therapy.
Collapse
Affiliation(s)
- Thomas E. Rams
- Department of Periodontology and Oral ImplantologyTemple University School of DentistryPhiladelphiaPennsylvaniaUSA
| | - Jørgen Slots
- Division of Periodontology and Diagnostic SciencesUniversity of Southern California School of DentistryLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Rutherford J, Avad K, Dureja C, Norseeda K, GC B, Wu C, Sun D, Hevener KE, Hurdle JG. Evaluation of Fusobacterium nucleatum Enoyl-ACP Reductase (FabK) as a Narrow-Spectrum Drug Target. ACS Infect Dis 2024; 10:1612-1623. [PMID: 38597503 PMCID: PMC11091888 DOI: 10.1021/acsinfecdis.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Fusobacterium nucleatum, a pathobiont inhabiting the oral cavity, contributes to opportunistic diseases, such as periodontal diseases and gastrointestinal cancers, which involve microbiota imbalance. Broad-spectrum antimicrobial agents, while effective against F. nucleatum infections, can exacerbate dysbiosis. This necessitates the discovery of more targeted narrow-spectrum antimicrobial agents. We therefore investigated the potential for the fusobacterial enoyl-ACP reductase II (ENR II) isoenzyme FnFabK (C4N14_ 04250) as a narrow-spectrum drug target. ENRs catalyze the rate-limiting step in the bacterial fatty acid synthesis pathway. Bioinformatics revealed that of the four distinct bacterial ENR isoforms, F. nucleatum specifically encodes FnFabK. Genetic studies revealed that fabK was indispensable for F. nucleatum growth, as the gene could not be deleted, and silencing of its mRNA inhibited growth under the test conditions. Remarkably, exogenous fatty acids failed to rescue growth inhibition caused by the silencing of fabK. Screening of synthetic phenylimidazole analogues of a known FabK inhibitor identified an inhibitor (i.e., 681) of FnFabK enzymatic activity and F. nucleatum growth, with an IC50 of 2.1 μM (1.0 μg/mL) and a MIC of 0.4 μg/mL, respectively. Exogenous fatty acids did not attenuate the activity of 681 against F. nucleatum. Furthermore, FnFabK was confirmed as the intracellular target of 681 based on the overexpression of FnFabK shifting MICs and 681-resistant mutants having amino acid substitutions in FnFabK or mutations in other genetic loci affecting fatty acid biosynthesis. 681 had minimal activity against a range of commensal flora, and it was less active against streptococci in physiologic fatty acids. Taken together, FnFabK is an essential enzyme that is amenable to drug targeting for the discovery and development of narrow-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Jacob
T. Rutherford
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Kristiana Avad
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chetna Dureja
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Krissada Norseeda
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Bibek GC
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Chenggang Wu
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Dianqing Sun
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Kirk E. Hevener
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Julian G. Hurdle
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| |
Collapse
|
6
|
Boreak N, Alrajab EA, Nahari RA, Najmi LE, Masmali MA, Ghawi AA, Al Moaleem MM, Alhazmi MY, Maqbul AA. Unveiling Therapeutic Potential: Targeting Fusobacterium nucleatum's Lipopolysaccharide Biosynthesis for Endodontic Infections-An In Silico Screening Study. Int J Mol Sci 2024; 25:4239. [PMID: 38673822 PMCID: PMC11049844 DOI: 10.3390/ijms25084239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Complex microbial communities have been reported to be involved in endodontic infections. The microorganisms invade the dental pulp leading to pulpitis and initiating pulp inflammation. Fusobacterium nucleatum is a dominant bacterium implicated in both primary and secondary endodontic infections. Drugs targeting the molecular machinery of F. nucleatum will minimize pulp infection. LpxA and LpxD are early acyltransferases involved in the formation of lipid A, a major component of bacterial membranes. The identification of leads which exhibit preference towards successive enzymes in a single pathway can also prevent the development of bacterial resistance. A stringent screening strategy utilizing physicochemical and pharmacokinetic parameters along with a virtual screening approach identified two compounds, Lomefloxacin and Enoxacin, with good binding affinity towards the early acyltransferases LpxA and LpxD. Lomefloxacin and Enoxacin, members of the fluoroquinolone antibiotic class, exhibit wide-ranging activity against diverse bacterial strains. Nevertheless, their effectiveness in the context of endodontic treatment requires further investigation. This study explored the potential of Lomefloxacin and Enoxacin to manage endodontic infections via computational analysis. Moreover, the compounds identified herein serve as a foundation for devising novel combinatorial libraries with enhanced efficacy for endodontic therapeutic strategies.
Collapse
Affiliation(s)
- Nezar Boreak
- College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (E.A.A.); (R.A.N.); (L.E.N.); (M.A.M.); (A.A.G.); (M.M.A.M.); (M.Y.A.); (A.A.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen H, Peng L, Wang Z, He Y, Zhang X. Exploring the causal relationship between periodontitis and gut microbiome: Unveiling the oral-gut and gut-oral axes through bidirectional Mendelian randomization. J Clin Periodontol 2024; 51:417-430. [PMID: 38016486 DOI: 10.1111/jcpe.13906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
AIM This Mendelian randomization (MR) study was performed to explore the potential bidirectional causal relationship between the gut microbiome (GM) and periodontitis. MATERIALS AND METHODS We used genetic instruments from the genome-wide association study of European descent for periodontitis from the GeneLifestyle Interactions in Dental Endpoints (GLIDE) consortium (17,353 cases and 28,210 controls) and the FinnGen consortium (4434 cases and 259,234 controls) to investigate the causal relationship with GM (the MiBioGen consortium, 18,340 samples), and vice versa. Several MR techniques, which include inverse variance weighting (IVW), MR-Egger, weighted median, simple mode and weighted mode approaches, were employed to investigate the causal relationship between the exposures and the outcomes. Cochran's Q-test was performed to detect heterogeneity. The MR-Egger regression intercept and MR pleiotropy residual sum and outlier test (MR-PRESSO) were conducted to test potential horizontal pleiotropy. Leave-one-out sensitivity analyses were used to assess the stabilities of single nucleotide polymorphisms (SNPs). Finally, the IVW results from the two databases were analysed using meta-analysis. RESULTS We confirmed three potential causal relationships between GM taxa and periodontitis at the genus level. Among them, the genera Alistipes and Holdemanella were genetically associated with an increased risk of periodontitis. In reverse, periodontitis may lead to a decreased abundance of the genus Ruminococcaceae UCG014. CONCLUSIONS The demonstration of a causal link between GM and periodontitis provides compelling evidence, highlighting the interconnectivity and interdependence of the gut-oral and oral-gut axes.
Collapse
Affiliation(s)
- Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Niu C, Lv W, Zhu X, Dong Z, Yuan K, Jin Q, Zhang P, Li P, Mao M, Dong T, Chen Z, Luo J, Hou L, Zhang C, Hao K, Chen S, Huang Z. Intestinal Translocation of Live Porphyromonas gingivalis Drives Insulin Resistance. J Dent Res 2024; 103:197-207. [PMID: 38185909 DOI: 10.1177/00220345231214195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Periodontitis has been emphasized as a risk factor of insulin resistance-related systemic diseases. Accumulating evidence has suggested a possible "oral-gut axis" linking oral infection and extraoral diseases, but it remains unclear whether periodontal pathogens can survive the barriers of the digestive tract and how they play their pathogenic roles. The present study established a periodontitis mouse model through oral ligature plus Porphyromonas gingivalis inoculation and demonstrated that periodontitis aggravated diet-induced obesity and insulin resistance, while also causing P. gingivalis enrichment in the intestine. Metabolic labeling strategy validated that P. gingivalis could translocate to the gastrointestinal tract in a viable state. Oral administration of living P. gingivalis elicited insulin resistance, while administration of pasteurized P. gingivalis had no such effect. Combination analysis of metagenome sequencing and nontargeted metabolomics suggested that the tryptophan metabolism pathway, specifically indole and its derivatives, was involved in the pathogenesis of insulin resistance caused by oral administration of living P. gingivalis. Moreover, liquid chromatography-high-resolution mass spectrometry analysis confirmed that the aryl hydrocarbon receptor (AhR) ligands, mainly indole acetic acid, tryptamine, and indole-3-aldehyde, were reduced in diet-induced obese mice with periodontitis, leading to inactivation of AhR signaling. Supplementation with Ficz (6-formylindolo (3,2-b) carbazole), an AhR agonist, alleviated periodontitis-associated insulin resistance, in which the restoration of gut barrier function might play an important role. Collectively, these findings reveal that the oral-gut translocation of viable P. gingivalis works as a fuel linking periodontitis and insulin resistance, in which reduction of AhR ligands and inactivation of AhR signaling are involved. This study provides novel insight into the role of the oral-gut axis in the pathogenesis of periodontitis-associated comorbidities.
Collapse
Affiliation(s)
- C Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - W Lv
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, P. R. China
| | - X Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Z Dong
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - K Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Q Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - P Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - P Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - M Mao
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - T Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Z Chen
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - J Luo
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - L Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - C Zhang
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - K Hao
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - S Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, P. R. China
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - Z Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| |
Collapse
|
9
|
Qian J, Lu J, Cheng S, Zou X, Tao Q, Wang M, Wang N, Zheng L, Liao W, Li Y, Yan F. Periodontitis salivary microbiota exacerbates colitis-induced anxiety-like behavior via gut microbiota. NPJ Biofilms Microbiomes 2023; 9:93. [PMID: 38062089 PMCID: PMC10703887 DOI: 10.1038/s41522-023-00462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The gut-brain axis is a bidirectional communication system between the gut and central nervous system. Many host-related factors can affect gut microbiota, including oral bacteria, making the brain a vulnerable target via the gut-brain axis. Saliva contains a large number of oral bacteria, and periodontitis, a common oral disease, can change the composition of salivary microbiota. However, the role and mechanism of periodontitis salivary microbiota (PSM) on the gut-brain axis remain unclear. Herein, we investigated the nature and mechanisms of this relationship using the mice with dextran sulfate sodium salt (DSS)-induced anxiety-like behavior. Compared with healthy salivary microbiota, PSM worsened anxiety-like behavior; it significantly reduced the number of normal neurons and activated microglia in DSS mice. Antibiotic treatment eliminated the effect of PSM on anxiety-like behavior, and transplantation of fecal microbiota from PSM-gavaged mice exacerbated anxiety-like behavior. These observations indicated that the anxiety-exacerbating effect of PSM was dependent on the gut microbiota. Moreover, the PSM effect on anxiety-like behavior was not present in non-DSS mice, indicating that DSS treatment was a prerequisite for PSM to exacerbate anxiety. Mechanistically, PSM altered the histidine metabolism in both gut and brain metabolomics. Supplementation of histidine-related metabolites had a similar anxiety-exacerbating effect as that of PSM, suggesting that histidine metabolism may be a critical pathway in this process. Our results demonstrate that PSM can exacerbate colitis-induced anxiety-like behavior by directly affecting the host gut microbiota, emphasizing the importance of oral diseases in the gut-brain axis.
Collapse
Affiliation(s)
- Jun Qian
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiangyue Lu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuyu Cheng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xihong Zou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Min Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nannan Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenzheng Liao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Yamazaki K. Oral-gut axis as a novel biological mechanism linking periodontal disease and systemic diseases: A review. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:273-280. [PMID: 37674899 PMCID: PMC10477752 DOI: 10.1016/j.jdsr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Substantial evidence suggests that periodontal disease increases the risk of developing and progressing extraoral manifestations such as diabetes, atherosclerosis, rheumatoid arthritis, and inflammatory bowel disease. The most probable causative mechanism behind this is the influx of bacteria and/or bacterial products (endotoxin) and inflammatory cytokines into the systemic circulation originating from inflamed periodontal tissues. However, recent studies have revealed that oral bacteria, especially periodontopathic bacteria, play a role in inducing dysbiosis of the gut microbiota resulting induction of gut dysbiosis-related pathology associated with systemic diseases. Conversely, the disruption of gut microbiota has been shown to have a negative impact on the pathogenesis of periodontal disease. Based on our study findings and the available literature, this review presents an overview of the relationship between periodontal disease and systemic health, highlighting the mouth-gut connection.
Collapse
Affiliation(s)
- Kazuhisa Yamazaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
11
|
Eslami S, Hosseinzadeh Shakib N, Fooladfar Z, Nasrollahian S, Baghaei S, Mosaddad SA, Motamedifar M. The role of periodontitis-associated bacteria in Alzheimer's disease: A narrative review. J Basic Microbiol 2023; 63:1059-1072. [PMID: 37311215 DOI: 10.1002/jobm.202300250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease causes memory loss and dementia in older adults through a neurodegenerative mechanism. Despite the pathophysiological clarification of this cognitive disorder, novel molecular and cellular pathways should be identified to determine its exact mechanism. Alzheimer's disease (AD) is pathologically characterized by senile plaques comprising beta-amyloid and neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau as a microtubule-associated protein with a key role in the pathogenesis of AD. Periodontitis through inflammatory pathways is a risk factor for deteriorating cognitive impairment in AD patients. Poor oral hygiene coupled with immunocompromised status in older adults causes periodontal diseases and chronic inflammations through an oral bacterial imbalance. Toxic bacterial products, including bacteria themselves, can reach the central nervous system through the bloodstream and evoke inflammatory responses. The present review was conducted to investigate relationships between AD and periodontitis-involved bacteria as a risk factor.
Collapse
Affiliation(s)
- Saba Eslami
- Research Central Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Fooladfar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Nasrollahian
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Baghaei
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Motamedifar
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Alamri MM, Antonoglou GN, Proctor G, Balsa-Castro C, Tomás I, Nibali L. Biomarkers for diagnosis of stage III, grade C with molar incisor pattern periodontitis in children and young adults: a systematic review and meta-analysis. Clin Oral Investig 2023; 27:4929-4955. [PMID: 37535199 PMCID: PMC10492694 DOI: 10.1007/s00784-023-05169-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
AIM To explore the existing salivary, gingival crevicular fluid (GCF), blood, and serum biomarkers associated with grade C molar-incisor pattern (C/MIP) periodontitis in systemically healthy children and young adults. MATERIALS AND METHODS Cross-sectional, case-control, and cohort studies on stage III grade C periodontitis or former equivalent diagnosis with analysis of molecular biomarkers in saliva, GCF, blood, or serum were retrieved from six databases and screened based on the eligibility criteria. The risk of bias in included studies was evaluated. Meta-analysis was planned for biomarkers assessed using the same detection methods and sample type in at least two papers. RESULTS Out of 5621 studies identified at initial screening, 28 papers were included in the qualitative analysis of which 2 were eligible for meta-analysis for IgG in serum samples. Eighty-seven biomarkers were assessed with the majority being higher in cases than in controls. Only the meta-analysis of total serum IgG with low heterogeneity value revealed a significant increase in its levels in C/MIPs compared to controls (standardised mean difference: 1.08; 95% CI: 0.76, 1.40). CONCLUSION There is a paucity of data on biomarkers associated with molar-incisor pattern periodontitis. Although serum IgG levels are raised, other more specific biomarkers in saliva, GCF, and blood/serum may be promising but require further investigation.
Collapse
Affiliation(s)
- Meaad M Alamri
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Georgios N Antonoglou
- Centre for Dental Education, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Gordon Proctor
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute Foundation of Santiago (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute Foundation of Santiago (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Luigi Nibali
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
13
|
López-Valverde N, López-Valverde A, Montero J, Rodríguez C, Macedo de Sousa B, Aragoneses JM. Antioxidant, anti-inflammatory and antimicrobial activity of natural products in periodontal disease: a comprehensive review. Front Bioeng Biotechnol 2023; 11:1226907. [PMID: 37600299 PMCID: PMC10435350 DOI: 10.3389/fbioe.2023.1226907] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Periodontal diseases (PD) are common chronic inflammatory oral pathologies that are strongly linked to others not found in the mouth cavity. The immune system mediates the host response, which includes the upregulation of proinflammatory cytokines, metalloproteinases, and reactive oxygen species (ROS); the latter may play an important role in the establishment and progression of inflammatory diseases, particularly periodontal disease, via the development of oxidative stress (OS). Natural antioxidants have powerful anti-inflammatory properties, and some can reduce serum levels of key PD indicators such tumor necrosis factor (TNF) and interleukin IL-1. This review compiles, through a thorough literature analysis, the antioxidant, anti-inflammatory, and antibacterial effects of a variety of natural products, as well as their therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Javier Montero
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | - Bruno Macedo de Sousa
- Institute for Occlusion and Orofacial Pain Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
14
|
Tan X, Wang Y, Gong T. The interplay between oral microbiota, gut microbiota and systematic diseases. J Oral Microbiol 2023; 15:2213112. [PMID: 37200866 PMCID: PMC10187086 DOI: 10.1080/20002297.2023.2213112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
Over the past two decades, the importance of microbiota in health and disease has become evident. The human gut microbiota and oral microbiota are the largest and second-largest microbiome in the human body, respectively, and they are physically connected as the oral cavity is the beginning of the digestive system. Emerging and exciting evidence has shown complex and important connections between gut microbiota and oral microbiota. The interplay of the two microbiomes may contribute to the pathological processes of many diseases, including diabetes, rheumatoid arthritis, nonalcoholic fatty liver disease, inflammatory bowel disease, pancreatic cancer, colorectal cancer, and so on. In this review, we discuss possible routes and factors of oral microbiota to affect gut microbiota, and the contribution of this interplay between oral and gut microbiota to systemic diseases. Although most studies are association studies, recently, there have been increasing mechanistic investigations. This review aims to enhance the interest in the connection between oral and gut microbiota, and shows the tangible impact of this connection on human health.
Collapse
Affiliation(s)
- Xiujun Tan
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical CO. LTD, Taizhou, China
| | - Ting Gong
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
15
|
Deandra FA, Ketherin K, Rachmasari R, Sulijaya B, Takahashi N. Probiotics and metabolites regulate the oral and gut microbiome composition as host modulation agents in periodontitis: A narrative review. Heliyon 2023; 9:e13475. [PMID: 36820037 PMCID: PMC9937986 DOI: 10.1016/j.heliyon.2023.e13475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is defined as an oral bacterial dysbiosis-induced persistent inflammation on dental supporting tissue resulting in periodontal tissue breakdown and alveolar bone destruction. The disease is initiated by the interaction between periodontopathogens and the host immune system. Its development and severity can be associated with several systemic diseases, such as cardiovascular disease (CVD), diabetes mellitus, and rheumatoid arthritis (RA). Moreover, the latest research has suggested that the oral and gut microbiome hypothesis lays the oral and systemic connection mechanism. Bacterial homeostasis and restoration in the oral cavity and intestine become therapeutics concepts. Concerning the treatment of periodontitis, a local inflammatory condition, prolonged systemic administration of antibiotics is no longer recommended due to bacterial resistance issues. Probiotics and several bioactive metabolites have been widely investigated to address the needs of host modulation therapy in periodontitis. Evidence suggests that the use of probiotics helps downregulate the inflammation process through the regulation of toll-like receptor 4 (TLR4) and the production of fatty acid, targeting reactive oxygen species (ROS). In brief, several herbals have anti-inflammatory properties by inhibiting pro-inflammatory cytokines and mediators, including mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB). Consistently, improvement of periodontal pocket depth (PPD) and gingival index (GI) was seen in a group given melatonin as an adjunct treatment. In all, this review will highlight host modulation agents regarding periodontitis therapy, plausible mechanisms on how probiotics and metabolites work on periodontal restoration, and their reported studies. Limitations given by published studies will be elaborated, while future directions will be proposed.
Collapse
Affiliation(s)
- Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Ketherin Ketherin
- Postgraduate Program in Periodontology, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Rieska Rachmasari
- Postgraduate Program in Periodontology, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia,Dental Division, Universitas Indonesia Hospital, Depok, West Java, Indonesia,Corresponding author. Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia.
| | - Naoki Takahashi
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| |
Collapse
|
16
|
Mei T, Noguchi H, Kuraji R, Kubo S, Sato Y, Kaku K, Okabe Y, Onishi H, Nakamura M. Effects of periodontal pathogen-induced intestinal dysbiosis on transplant immunity in an allogenic skin graft model. Sci Rep 2023; 13:544. [PMID: 36631604 PMCID: PMC9834409 DOI: 10.1038/s41598-023-27861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease can induce dysbiosis, a compositional and functional alteration in the microbiota. Dysbiosis induced by periodontal disease is known to cause systemic inflammation and may affect transplant immunity. Here, we examined the effects of periodontal disease-related intestinal dysbiosis on transplant immunity using a mouse model of allogenic skin graft in which the mice were orally administered the periodontal pathogen Porphyromonas gingivalis (Pg). For 6 weeks, the Pg group orally received Pg while the control group orally received phosphate-buffered saline solution. After that, both groups received allogenic skin grafts. 16 s rRNA analysis of feces revealed that oral administration of Pg significantly increased three short chain fatty acids (SCFAs) producing genera. SCFA (acetate and propionate) levels were significantly higher in the Pg group (p = 0.040 and p = 0.005). The ratio of regulatory T cells, which are positively correlated with SCFAs, to total CD4+ T cells in the peripheral blood and spleen was significantly greater (p = 0.002 and p < 0.001) in the Pg group by flowcytometry. Finally, oral administration of Pg significantly prolonged skin graft survival (p < 0.001) and reduced pathological inflammation in transplanted skin grafts. In conclusion, periodontal pathogen-induced intestinal dysbiosis may affect transplant immunity through increased levels of SCFAs and regulatory T cells. (198 words).
Collapse
Affiliation(s)
- Takanori Mei
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Hiroshi Noguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Ryutaro Kuraji
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Shinsuke Kubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yu Sato
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Keizo Kaku
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yasuhiro Okabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Hideya Onishi
- Department of Cancer and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan.
| |
Collapse
|
17
|
Role of oral and gut microbiota in childhood obesity. Folia Microbiol (Praha) 2023; 68:197-206. [PMID: 36626083 DOI: 10.1007/s12223-023-01033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Childhood obesity not only causes damage to children's respiratory, cardiovascular, endocrine, motor, and other systems but also is a significant risk factor for metabolic diseases such as obesity in adulthood, which has become one of the serious public health problems worldwide. The etiology and pathogenesis of obesity are complex. In addition to genetic and lifestyle factors, recent studies have found that the microbes in the digestive tract play a crucial role in the occurrence and development of obesity. Among them, the gut microbiota has been confirmed to be one of the important pathogenic factors of obesity, which can mediate the occurrence and development of obesity by interfering with the balance of host energy metabolism and inducing low-grade chronic inflammation throughout the host. Targeting the gut microbiota to treat obesity through various methods such as fecal microbiota transplantation, dietary intervention, and probiotic supplementation has become a research hotspot in obesity treatment. In addition, the oral microbiota is also considered closely related to the occurrence and development of obesity due to its regulatory effect on the balance of gut microbiota. Exploring the relationship between oral and gut microbiota and childhood obesity elucidates the pathogenesis and treatment concepts of childhood obesity from a new perspective. It may provide new methods for the prevention and treatment of childhood obesity in the future.
Collapse
|
18
|
Exploring the Mechanisms and Association between Oral Microflora and Systemic Diseases. Diagnostics (Basel) 2022; 12:diagnostics12112800. [PMID: 36428859 PMCID: PMC9689323 DOI: 10.3390/diagnostics12112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
The scope of dentistry is ever-changing and dynamic in all fields of dentistry including periodontal health and disease. Recent studies show that oral health and systemic health are interdependent, particularly in the way that poor oral hygiene and periodontal health affect the systemic health of an individual and vice versa. Periodontal diseases are multifactorial in nature in which the role of bacterial infections is inevitable. Furthermore, high-throughput sequencing technologies have shed light on the dysregulation of the growth of oral microbial flora and their environment, including those that are associated with periodontitis and other oral and non-oral diseases. Under such circumstances, it becomes important to explore oral microbiota and understand the effects of periodontal pathogens in the pathogenesis of systemic diseases. In addition, it may strengthen our view that a better understanding of oral microbial flora and proper examination of the oral cavity may aid in the early diagnosis and possible treatment of systemic diseases and conditions. This will eventually lead to providing better care to our patients. Therefore, in this research, we attempt to outline the periodontal pathophysiology along with the role of periodontal pathogens in some commonly encountered systemic conditions.
Collapse
|
19
|
Bonasoni MP, Comitini G, Pati M, Bardaro M, Russello G, Carretto E, Dalla Dea G, Palicelli A, Bernardelli G, Chesi E, Gargano G. Fulminant Sepsis and Perinatal Death at 23 Weeks Due to Fusobacterium nucleatum. Fetal Pediatr Pathol 2022; 42:456-463. [PMID: 36218233 DOI: 10.1080/15513815.2022.2131487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction: Fusobacterium nucleatum is a gram-negative anaerobe, a constituent of the oral microflora, responsible for chronic periodontal diseases. Case Report: We describe a preterm infant with premature rupture of membranes at 23 weeks of gestational age due to F. nucleatum. The newborn died soon after birth. Placental histopathology showed severe necrotizing chorioamnionitis and funisitis with gram-negative bacilli. After autopsy, F. nucleatum was microbiologically isolated from the lung. The mother had dental hygiene 1 day before delivery, presenting mild and diffuse gingivitis. At admission, she had leukocytosis, foul-smelling vaginal discharge, but no fever. Conclusion: This case highlights the possibility of F. nucleatum spreading from oral cavity after a dental procedure to the placenta with chorioamnionitis and fetal infection. This raises the question of whether dental procedures during pregnancy should be accompanied by prophylactic antibiotics.
Collapse
Affiliation(s)
| | - Giuseppina Comitini
- Department of Obstetrics & Gynaecology, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mariangela Pati
- Department of Obstetrics & Gynaecology, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marcellino Bardaro
- Clinical Microbiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giuseppe Russello
- Clinical Microbiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Edoardo Carretto
- Clinical Microbiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Dalla Dea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Pathology Unit, "Maggiore della Carità" Hospital, Novara, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Elena Chesi
- Department of Obstetrics and Pediatrics, Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giancarlo Gargano
- Department of Obstetrics and Pediatrics, Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
20
|
Pathobiont-responsive Th17 cells in gut-mouth axis provoke inflammatory oral disease and are modulated by intestinal microbiome. Cell Rep 2022; 40:111314. [PMID: 36070692 DOI: 10.1016/j.celrep.2022.111314] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/20/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Host immune response via Th17 cells against oral pathobionts is a key mediator in periodontitis development. However, where and how the Th17-type immune response is induced during the development of periodontitis is not well understood. Here, we demonstrate that gut translocation of the oral pathobiont Porphyromonas gingivalis (Pg) exacerbates oral pathobiont-induced periodontitis with enhanced Th17 cell differentiation. The oral pathobiont-responsive Th17 cells are differentiated in Peyer's patches and translocated systemically in the peripheral immune tissues. They are also capable of migrating to and accumulating in the mouth upon oral infection. Development of periodontitis via the oral pathobiont-responsive Th17 cells is regulated by the intestinal microbiome, and altering the intestinal microbiome composition with antibiotics affects the development of periodontitis. Our study highlights that pathobiont-responsive Th17 cells in the gut-mouth axis and the intestinal microbiome work together to provoke inflammatory oral diseases, including periodontitis.
Collapse
|
21
|
Gong T, Chen Q, Mao H, Zhang Y, Ren H, Xu M, Chen H, Yang D. Outer membrane vesicles of Porphyromonas gingivalis trigger NLRP3 inflammasome and induce neuroinflammation, tau phosphorylation, and memory dysfunction in mice. Front Cell Infect Microbiol 2022; 12:925435. [PMID: 36017373 PMCID: PMC9397999 DOI: 10.3389/fcimb.2022.925435] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPorphyromonas gingivalis (Pg), the keystone pathogen in chronic periodontitis, is reported to initiate Alzheimer’s disease pathologies in preclinical studies. However, the specific mechanisms and signaling pathways acting on the brain still need to be further explored. Outer membrane vesicles are derived from Gram-negative bacteria and contain many virulence factors of bacteria. We hypothesized that outer membrane vesicles are an important weapon of Porphyromonas gingivalis to initiate Alzheimer’s disease pathologies.MethodsThe outer membrane vesicles of Porphyromonas gingivalis (Pg OMVs, 4 mg/kg) or saline were delivered to 14-month-old mice by oral gavage every other day for eight weeks. Behavioral alterations were assessed by the open field test, Morris water maze, and Y-maze test. Blood–brain barrier permeability, neuroinflammation, tau phosphorylation, and NLRP3 inflammasome-related protein were analyzed.ResultsPg OMVs impaired memory and learning ability of mice and decreased tight junction–related gene expression ZO-1, occludin, claudin-5, and occludin protein expression in the hippocampus. Pg OMVs could be detected in the hippocampus and cortex three days after oral gavage. Furthermore, Pg OMVs activated both astrocytes and microglia and elevated IL-1β, tau phosphorylation on the Thr231 site, and NLRP3 inflammasome–related protein expression in the hippocampus. In in vitro studies, Pg OMV (5 µg/ml) stimulation increased the mRNA and immunofluorescence of NLRP3 in BV2 microglia, which were significantly inhibited by the NLRP3 inhibitor MCC950. In contrast, the tau phosphorylation in N2a neurons was enhanced after treatment with conditioned media from Pg OMV-stimulated microglia, which was attenuated after pretreatment with MCC950.ConclusionsThese results indicate that Pg OMVs prompt memory dysfunction, neuroinflammation, and tau phosphorylation and trigger NLRP3 inflammasome in the brain of middle-aged mice. We propose that Pg OMVs play an important role in activating neuroinflammation in the AD-like pathology triggered by Porphyromonas gingivalis, and NLRP3 inflammasome activation is a possible mechanism.
Collapse
Affiliation(s)
- Ting Gong
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qi Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Hongchen Mao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Yao Zhang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Huan Ren
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Mengmeng Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Deqin Yang,
| |
Collapse
|
22
|
Li D, Ren T, Li H, Liao G, Zhang X. Porphyromonas gingivalis: A key role in Parkinson's disease with cognitive impairment? Front Neurol 2022; 13:945523. [PMID: 35959396 PMCID: PMC9363011 DOI: 10.3389/fneur.2022.945523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Cognitive impairment (CI) is a common complication of Parkinson's disease (PD). The major features of Parkinson's disease with cognitive impairment (PD-CI) include convergence of α-Synuclein (α-Syn) and Alzheimer's disease (AD)-like pathologies, neuroinflammation, and dysbiosis of gut microbiota. Porphyromonas gingivalis (P. gingivalis) is an important pathogen in periodontitis. Recent research has suggested a role of P. gingivalis and its virulence factor in the pathogenesis of PD and AD, in particular concerning neuroinflammation and deposition of α-Synuclein (α-Syn) and amyloid-β (Aβ). Furthermore, in animal models, oral P. gingivalis could cause neurodegeneration through regulating the gut-brain axis, suggesting an oral-gut-brain axis might exist. In this article, we discussed the pathological characteristics of PD-CI and the role of P. gingivalis in them.
Collapse
Affiliation(s)
- Dongcheng Li
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Tengzhu Ren
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Li
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Geng Liao
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Xiong Zhang
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
- *Correspondence: Xiong Zhang
| |
Collapse
|
23
|
Liu Y, Huang W, Dai K, Liu N, Wang J, Lu X, Ma J, Zhang M, Xu M, Long X, Liu J, Kou Y. Inflammatory response of gut, spleen, and liver in mice induced by orally administered Porphyromonas gingivalis. J Oral Microbiol 2022; 14:2088936. [PMID: 35756539 PMCID: PMC9225697 DOI: 10.1080/20002297.2022.2088936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Periodontitis is a chronic multifactorial inflammatory disease. Porphyromonas gingivalis is a primary periopathogen in the initiation and development of periodontal disease. Evidence has shown that P. gingivalis is associated with systemic diseases, including IBD and fatty liver disease. Inflammatory response is a key feature of diseases related to this species. Methods C57BL/6 mice were administered either PBS, or P. gingivalis. After 9 weeks, the inflammatory response in gut, spleen, and liver was analyzed. Results The findings revealed significant disturbance of the intestinal microbiota and increased inflammatory factors in the gut of P. gingivalis-administered mice. Administrated P. gingivalis remarkably promoted the secretion of IRF-1 and activated the inflammatory pathway IFN-γ/STAT1 in the spleen. Histologically, mice treated with P. gingivalis exhibited hepatocyte damage and lipid deposition. The inflammatory factors IL-17a, IL-6, and ROR-γt were also upregulated in the liver of mice fed with P. gingivalis. Lee’s index, spleen index, and liver index were also increased. Conclusion These results suggest that administrated P. gingivalis evokes inflammation in gut, spleen, and liver, which might promote the progression of various systemic diseases.
Collapse
Affiliation(s)
- Yingman Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Wenkai Huang
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Ke Dai
- Department of Stomatology, Lishui University School of Medicine, Lishui, Zhejing, China
| | - Ni Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jiaqi Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Xiaoying Lu
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jiaojiao Ma
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Manman Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Mengqi Xu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Xu Long
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jie Liu
- Department of Stomatology, Science Experiment Center, China Medical University, Shenyang, Liaoning, China
| | - Yurong Kou
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China.,Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Periodontitis may induce gut microbiota dysbiosis via salivary microbiota. Int J Oral Sci 2022; 14:32. [PMID: 35732628 PMCID: PMC9217941 DOI: 10.1038/s41368-022-00183-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to identify whether periodontitis induces gut microbiota dysbiosis via invasion by salivary microbes. First, faecal and salivary samples were collected from periodontally healthy participants (PH group, n = 16) and patients with severe periodontitis (SP group, n = 21) and analysed by 16S ribosomal RNA sequencing. Significant differences were observed in both the faecal and salivary microbiota between the PH and SP groups. Notably, more saliva-sourced microbes were observed in the faecal samples of the SP group. Then, the remaining salivary microbes were transplanted into C57BL6/J mice (the C-PH group and the C-SP group), and it was found that the composition of the gut microbiota of the C-SP group was significantly different from that of the C-PH group, with Porphyromonadaceae and Fusobacterium being significantly enriched in the C-SP group. In the colon, the C-SP group showed significantly reduced crypt depth and zonula occludens-1 expression. The mRNA expression levels of pro-inflammatory cytokines, chemokines and tight junction proteins were significantly higher in the C-SP group. To further investigate whether salivary bacteria could persist in the intestine, the salivary microbiota was stained with carboxyfluorescein diacetate succinimidyl ester and transplanted into mice. We found that salivary microbes from both the PH group and the SP group could persist in the gut for at least 24 h. Thus, our data demonstrate that periodontitis may induce gut microbiota dysbiosis through the influx of salivary microbes.
Collapse
|
25
|
Kitamoto S, Kamada N. Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms. Periodontol 2000 2022; 89:142-153. [PMID: 35244953 PMCID: PMC9018512 DOI: 10.1111/prd.12424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humans have coevolved with the trillions of resident microbes that populate every nook and cranny of the body. At each site, the resident microbiota creates a unique ecosystem specialized to its environment, benefiting the development and maintenance of human physiology through harmonious symbiotic relationships with the host. However, when the resident microbiota is perturbed, significant complications may arise with disastrous consequences that affect the local and distant ecosystems. In this context, periodontal disease results in inflammation beyond the oral cavity, such as in the gastrointestinal tract. Accumulating evidence indicates that potentially harmful oral resident bacteria (referred to as pathobionts) and pathogenic immune cells in the oral mucosa can migrate to the lower gastrointestinal tract and contribute to intestinal inflammation. We will review the most recent advances concerning the periodontal connection with intestinal inflammation from microbiological and immunological perspectives. Potential therapeutic approaches that target the connection between the mouth and the gut to treat gastrointestinal diseases, such as inflammatory bowel disease, will be examined. Deciphering the complex interplay between microbes and immunity along the mouth-gut axis will provide a better understanding of the pathogenesis of both oral and gut pathologies and present therapeutic opportunities.
Collapse
Affiliation(s)
- Sho Kitamoto
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Nobuhiko Kamada
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
26
|
Dong Z, Lv W, Zhang C, Chen S. Correlation Analysis of Gut Microbiota and Serum Metabolome With Porphyromonas gingivalis-Induced Metabolic Disorders. Front Cell Infect Microbiol 2022; 12:858902. [PMID: 35463645 PMCID: PMC9022097 DOI: 10.3389/fcimb.2022.858902] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis has been demonstrated to increase the risk of metabolic syndrome (MetS), but the underlying mechanism remains unclear. Recent studies have indicated periodontopathic bacteria such as Porphyromonas gingivalis could induce gut microbiota (GM) dysbiosis and aggravate metabolic disorders. However, the effects of microbial metabolites have barely been evaluated. Here, we investigated the alteration of serum metabolome with P. gingivalis-induced metabolic disorders, and explored the correlations of GM and serum metabolites. In this study, we orally administered P. gingivalis ATCC33277 to C57BL/6 mice and performed metagenomic sequencing and untargeted metabolomics with fecal samples and serum collection. In vivo experiments showed a higher proportion of fat mass and worse glucose tolerance in P. gingivalis-administered mice, accompanied with an increase of adipose inflammation and gut permeability, which was similar to HFD-induced obese mice. Metagenomic sequencing indicated a compositional and functional alteration of GM. Untargeted metabolomics revealed an alteration of metabolites in P. gingivalis-administered mice, and most of them were engaged in metabolic pathways, such as tryptophan metabolism and choline metabolism. Correlation analysis between GM and serum metabolome indicated strong relativity with P. gingivalis administration. These results demonstrated some specific microbiota-derived metabolites in the pathogenesis of P. gingivalis-induced metabolic disorders, providing promising targets for the development of novel treatment strategies for MetS.
Collapse
Affiliation(s)
- ZhengJie Dong
- Department of Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - WanQi Lv
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - ChenYang Zhang
- Department of Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- *Correspondence: ChenYang Zhang, ; Si Chen,
| | - Si Chen
- Department of Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- State Key Laboratory of Molecular Engineering of Ploymers, Fudan University, Shanghai, China
- *Correspondence: ChenYang Zhang, ; Si Chen,
| |
Collapse
|
27
|
Investigation of Fusobacterium Nucleatum in saliva and colorectal mucosa: a pilot study. Sci Rep 2022; 12:5622. [PMID: 35379861 PMCID: PMC8979950 DOI: 10.1038/s41598-022-09587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
As evidence has been linking the oral bacterium Fusobacterium nucleatum (F. nucleatum) to colorectal tumorigenesis, we aimed to produce preliminary data on the expression of F. nucleatum in both oral and colorectal body sites in cases diagnosed with colorectal neoplasms (CRN) and CRN-free controls. We conducted a pilot hospital-based case-control study among patients who underwent colonoscopy examination. Saliva samples and biopsies from healthy colon mucosa from CRN cases and CRN-free controls, and from tumors in cases, were collected, as well as data on periodontal condition and potential CRN risk factors. A total of 22 CRN cases and 21 CRN-free controls participated in this study, with a total of 135 biospecimens collected and analyzed by qPCR for detection and quantification of F. nucleatum. The detection rate of F. nucleatum was 95% in saliva samples and 18% in colorectal mucosa specimens. The median (95% CI) salivary F. nucleatum level was 0.35 (0.15-0.82) and 0.12 (0.05-0.65) in case and control groups, respectively, with a Spearman correlation of 0.64 (95% CI 0.2-0.94) between F. nucleatum level in saliva and healthy colorectal mucosa in controls. Our study results support the need for and the feasibility of further studies that aim to investigate the association between oral and colorectal levels of F. nucleatum in CRN cases and controls.Clinical Relevance: Considering the current evidence linking F. nucleatum to colorectal carcinogenesis, investigating the role of oral F. nucleatum expression in its colorectal enrichment is crucial for colorectal cancer screening and prevention avenues.
Collapse
|
28
|
Teles F, Collman RG, Mominkhan D, Wang Y. Viruses, periodontitis, and comorbidities. Periodontol 2000 2022; 89:190-206. [PMID: 35244970 DOI: 10.1111/prd.12435] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seminal studies published in the 1990s and 2000s explored connections between periodontal diseases and systemic conditions, revealing potential contributions of periodontal diseases in the initiation or worsening of systemic conditions. The resulting field of periodontal medicine led to the publication of studies indicating that periodontal diseases can influence the risk of systemic conditions, including adverse pregnancy outcomes, cardiovascular and respiratory diseases, as well as Alzheimer disease and cancers. In general, these studies hypothesized that the periodontal bacterial insult and/or the associated proinflammatory cascade could contribute to the pathogenesis of these systemic diseases. While investigations of the biological basis of the connections between periodontal diseases and systemic conditions generally emphasized the bacteriome, it is also biologically plausible, under an analogous hypothesis, that other types of organisms may have a similar role. Human viruses would be logical "suspects" in this role, given their ubiquity in the oral cavity, association with periodontal diseases, and ability to elicit strong inflammatory response, compromise immune responses, and synergize with bacteria in favor of a more pathogenic microbial consortium. In this review, the current knowledge of the role of viruses in connecting periodontal diseases and systemic conditions is examined. We will also delve into the mechanistic basis for such connections and highlight the importance of those relationships in the management and treatment of patients.
Collapse
Affiliation(s)
- Flavia Teles
- Department of Basic and Translational Sciences, School of Dental Medicine, Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dana Mominkhan
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Suzuki R, Kamio N, Kaneko T, Yonehara Y, Imai K. Fusobacterium nucleatum exacerbates chronic obstructive pulmonary disease in elastase-induced emphysematous mice. FEBS Open Bio 2022; 12:638-648. [PMID: 35034433 PMCID: PMC8886332 DOI: 10.1002/2211-5463.13369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Exacerbation of chronic obstructive pulmonary disease (COPD) is associated with disease progression and increased mortality. Periodontal disease is a risk factor for exacerbation of COPD, but little is known about the role of periodontopathic bacteria in this process. Here, we investigated the effects of intratracheal administration of Fusobacterium nucleatum, a periodontopathic bacteria species, on COPD exacerbation in elastase‐induced emphysematous mice. The administration of F. nucleatum to elastase‐treated mice enhanced inflammatory responses, production of alveolar wall destruction factors, progression of emphysema, and recruitment of mucin, all of which are symptoms observed in patients with COPD exacerbation. Hence, we propose that F. nucleatum may play a role in exacerbation of COPD.
Collapse
Affiliation(s)
- Ryuta Suzuki
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Noriaki Kamio
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
30
|
Sansores-España LD, Melgar-Rodríguez S, Olivares-Sagredo K, Cafferata EA, Martínez-Aguilar VM, Vernal R, Paula-Lima AC, Díaz-Zúñiga J. Oral-Gut-Brain Axis in Experimental Models of Periodontitis: Associating Gut Dysbiosis With Neurodegenerative Diseases. FRONTIERS IN AGING 2021; 2:781582. [PMID: 35822001 PMCID: PMC9261337 DOI: 10.3389/fragi.2021.781582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Periodontitis is considered a non-communicable chronic disease caused by a dysbiotic microbiota, which generates a low-grade systemic inflammation that chronically damages the organism. Several studies have associated periodontitis with other chronic non-communicable diseases, such as cardiovascular or neurodegenerative diseases. Besides, the oral bacteria considered a keystone pathogen, Porphyromonas gingivalis, has been detected in the hippocampus and brain cortex. Likewise, gut microbiota dysbiosis triggers a low-grade systemic inflammation, which also favors the risk for both cardiovascular and neurodegenerative diseases. Recently, the existence of an axis of Oral-Gut communication has been proposed, whose possible involvement in the development of neurodegenerative diseases has not been uncovered yet. The present review aims to compile evidence that the dysbiosis of the oral microbiota triggers changes in the gut microbiota, which creates a higher predisposition for the development of neuroinflammatory or neurodegenerative diseases.The Oral-Gut-Brain axis could be defined based on anatomical communications, where the mouth and the intestine are in constant communication. The oral-brain axis is mainly established from the trigeminal nerve and the gut-brain axis from the vagus nerve. The oral-gut communication is defined from an anatomical relation and the constant swallowing of oral bacteria. The gut-brain communication is more complex and due to bacteria-cells, immune and nervous system interactions. Thus, the gut-brain and oral-brain axis are in a bi-directional relationship. Through the qualitative analysis of the selected papers, we conclude that experimental periodontitis could produce both neurodegenerative pathologies and intestinal dysbiosis, and that periodontitis is likely to induce both conditions simultaneously. The severity of the neurodegenerative disease could depend, at least in part, on the effects of periodontitis in the gut microbiota, which could strengthen the immune response and create an injurious inflammatory and dysbiotic cycle. Thus, dementias would have their onset in dysbiotic phenomena that affect the oral cavity or the intestine. The selected studies allow us to speculate that oral-gut-brain communication exists, and bacteria probably get to the brain via trigeminal and vagus nerves.
Collapse
Affiliation(s)
- Luis Daniel Sansores-España
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Faculty of Dentistry, Autonomous University of Yucatán, Mérida, México
| | | | | | - Emilio A. Cafferata
- Department of Periodontology, School of Dentistry, Universidad Científica Del Sur, Lima, Perú
| | | | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Andrea Cristina Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Medicine, Faculty of Medicine, University of Atacama, Copiapó, Chile
- *Correspondence: Jaime Díaz-Zúñiga, ,
| |
Collapse
|
31
|
Rode PA, Kolte RA, Kolte AP, Purohit HJ, Swami RK. Evaluation and association of periodontal status with levels of Porphyromonas gingivalis in chronic periodontitis with and without Type 2 diabetes mellitus following nonsurgical periodontal therapy using quantitative polymerase chain reaction: An interventional study. J Indian Soc Periodontol 2021; 25:399-404. [PMID: 34667382 PMCID: PMC8452160 DOI: 10.4103/jisp.jisp_522_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/18/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022] Open
Abstract
Background: The aim of the present study was to detect and correlate the levels of Porphyromonas gingivalis with clinical parameters after nonsurgical periodontal therapy (NSPT) in chronic periodontitis patients with or without Type 2 diabetes mellitus (T2DM), using quantitative polymerase chain reaction (Q-PCR) method. Materials and Methods: Sixty patients equally divided into three groups, i.e., periodontally healthy (Group I), chronic periodontitis (CP) (Group II), and CP with T2DM patients (Group III) were assessed through clinical parameters of probing pocket depth (PPD) and clinical attachment level (CAL) and were correlated for the presence of P. gingivalis in the respective groups. PPD, CAL, and saliva samples for microbiological evaluation were assessed at baseline, 1-, and 3-month post-NSPT. Results: Significant reduction of PPD was found 1.26 ± 0.22 versus 0.43 ± 0.33 mm in Group I, 4.62 ± 0.78 versus 2.58 ± 0.60 mm in Group II, and 6.28 ± 1.52 versus 4.01 ± 1.38 mm in Group III post-NSPT at 3 months. Similarly, a notable reduction of CAL was exhibited in both Group II (5.28 ± 0.80 vs. 3.12 ± 0.77 mm) and Group III (7.14 ± 1.59 vs. 4.51 ± 1.38 mm) patients after NSPT at 3 months. A greater reduction of P. gingivalis concentrations was observed in both Group II and Group III at 3-month post-NSPT. Conclusion: The substantial improvement of clinical parameters was found to be in correlation with the load of P. gingivalis, which was reduced more in Group II than in Group III, emphasizing the applicability and sensitivity of Q-PCR method for its assessment.
Collapse
Affiliation(s)
- Pranita Avinash Rode
- Department of Periodontics and Implantology, VSPM Dental College and Research Centre, Nagpur, Maharashtra, India
| | - Rajashri Abhay Kolte
- Department of Periodontics and Implantology, VSPM Dental College and Research Centre, Nagpur, Maharashtra, India
| | - Abhay Pandurang Kolte
- Department of Periodontics and Implantology, VSPM Dental College and Research Centre, Nagpur, Maharashtra, India
| | - Hemant Jyotiswarup Purohit
- Environmental Genomics Division, National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Renuka Kashi Swami
- Department of Periodontics and Implantology, VSPM Dental College and Research Centre, Nagpur, Maharashtra, India
| |
Collapse
|
32
|
Yamazaki K, Kato T, Tsuboi Y, Miyauchi E, Suda W, Sato K, Nakajima M, Yokoji-Takeuchi M, Yamada-Hara M, Tsuzuno T, Matsugishi A, Takahashi N, Tabeta K, Miura N, Okuda S, Kikuchi J, Ohno H, Yamazaki K. Oral Pathobiont-Induced Changes in Gut Microbiota Aggravate the Pathology of Nonalcoholic Fatty Liver Disease in Mice. Front Immunol 2021; 12:766170. [PMID: 34707622 PMCID: PMC8543001 DOI: 10.3389/fimmu.2021.766170] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background & Aims Periodontitis increases the risk of nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanisms are unclear. Here, we show that gut dysbiosis induced by oral administration of Porphyromonas gingivalis, a representative periodontopathic bacterium, is involved in the aggravation of NAFLD pathology. Methods C57BL/6N mice were administered either vehicle, P. gingivalis, or Prevotella intermedia, another periodontopathic bacterium with weaker periodontal pathogenicity, followed by feeding on a choline-deficient, l-amino acid-defined, high-fat diet with 60 kcal% fat and 0.1% methionine (CDAHFD60). The gut microbial communities were analyzed by pyrosequencing the 16S ribosomal RNA genes. Metagenomic analysis was used to determine the relative abundance of the Kyoto Encyclopedia of Genes and Genomes pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance-based metabolomics coupled with multivariate statistical analyses. Hepatic gene expression profiles were analyzed via DNA microarray and quantitative polymerase chain reaction. Results CDAHFD60 feeding induced hepatic steatosis, and in combination with bacterial administration, it further aggravated NAFLD pathology, thereby increasing fibrosis. Gene expression analysis of liver samples revealed that genes involved in NAFLD pathology were perturbed, and the two bacteria induced distinct expression profiles. This might be due to quantitative and qualitative differences in the influx of bacterial products in the gut because the serum endotoxin levels, compositions of the gut microbiota, and serum metabolite profiles induced by the ingested P. intermedia and P. gingivalis were different. Conclusions Swallowed periodontopathic bacteria aggravate NAFLD pathology, likely due to dysregulation of gene expression by inducing gut dysbiosis and subsequent influx of gut bacteria and/or bacterial products.
Collapse
Affiliation(s)
- Kyoko Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keisuke Sato
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mayuka Nakajima
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji-Takeuchi
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Miki Yamada-Hara
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Tsuzuno
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aoi Matsugishi
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Medical AI Center, Niigata University School of Medicine, Niigata, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
33
|
Beltran JF, Viafara-Garcia SM, Labrador AP, Basterrechea J. The Role of Periodontopathogens and Oral Microbiome in the Progression of Oral Cancer. A Review. Open Dent J 2021. [DOI: 10.2174/1874210602115010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic periodontal disease and oral bacteria dysbiosis can lead to the accumulation of genetic mutations that eventually stimulate Oral Squamous Cell Cancer (OSCC). The annual incidence of OSCC is increasing significantly, and almost half of the cases are diagnosed in an advanced stage. Worldwide there are more than 380,000 new cases diagnosed every year, and a topic of extensive research in the last few years is the alteration of oral bacteria, their compositional changes and microbiome. This review aims to establish the relationship between bacterial dysbiosis and OSCC. Several bacteria implicated in periodontal disease, including Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and some Streptococcus species, promote angiogenesis, cell proliferation, and alteration in the host defense process; these same bacteria have been present in different stages of OSCC. Our review showed that genes involved in bacterial chemotaxis, the lipopolysaccharide (LPS) of the cell wall membrane of gram negatives bacteria, were significantly increased in patients with OSCC. Additionally, some bacterial diversity, particularly with Firmicutes, and Actinobacteria species, has been identified in pre-cancerous stage samples. This review suggests the importance of an early diagnosis and more comprehensive periodontal therapy for patients by the dental care professional.
Collapse
|
34
|
Zanatta CAR, Fritz PC, Comelli EM, Ward WE. Intervention with inulin prior to and during sanative therapy to further support periodontal health: study protocol for a randomized controlled trial. Trials 2021; 22:527. [PMID: 34376241 PMCID: PMC8353927 DOI: 10.1186/s13063-021-05504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Periodontal disease is a chronic state of inflammation that can destroy the supporting tissues around the teeth, leading to the resorption of alveolar bone. The initial strategy for treating periodontal disease is non-surgical sanative therapy (ST). Periodontal disease can also induce dysbiosis in the gut microbiota and contribute to low-grade systemic inflammation. Prebiotic fibers such as inulin can selectively alter the intestinal microbiota and support homeostasis by improving gut barrier functions and preventing inflammation. Providing an inulin supplement prior to and post-ST may influence periodontal health while providing insight into the complex relationship between periodontal disease and the gut microbiota. The primary objective is to determine if inulin is more effective than the placebo at improving clinical periodontal outcomes including probing depth (PD) and bleeding on probing (BOP). Secondary objectives include determining the effects of inulin supplementation pre- and post-ST on salivary markers of inflammation and periodontal-associated pathogens, as these outcomes reflect more rapid changes that can occur. Methods We will employ a single-center, randomized, double-blind, placebo-controlled study design and recruit and randomize 170 participants who are receiving ST to manage the periodontal disease to the intervention (inulin) or placebo (maltodextrin) group. A pilot study will be embedded within the randomized controlled trial using the first 48 participants to test the feasibility for the larger, powered trial. The intervention period will begin 4 weeks before ST through to their follow-up appointment at 10 weeks post-ST. Clinical outcomes of periodontal disease including the number of sites with PD ≥ 4 mm and the presence of BOP will be measured at baseline and post-ST. Salivary markers of inflammation, periodontal-associated pathogens, body mass index, and diet will be measured at baseline, pre-ST (after 4 weeks of intervention), and post-ST (after 14 weeks of intervention). Discussion We expect that inulin will enhance the positive effect of ST on the management of periodontal disease. The results of the study will provide guidance regarding the use of prebiotics prior to and as a supportive adjunct to ST for periodontal health. Trial registration ClinicalTrials.gov NCT04670133. Registered on 17 December 2020.
Collapse
Affiliation(s)
- Carly A R Zanatta
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Peter C Fritz
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Periodontal Wellness & Implant Surgery, Fonthill, ON, Canada
| | - Elena M Comelli
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences and Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada. .,Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
35
|
Liu Y, Huang W, Wang J, Ma J, Zhang M, Lu X, Liu J, Kou Y. Multifaceted Impacts of Periodontal Pathogens in Disorders of the Intestinal Barrier. Front Immunol 2021; 12:693479. [PMID: 34386004 PMCID: PMC8353228 DOI: 10.3389/fimmu.2021.693479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease, a common inflammatory disease, is considered a hazardous factor that contributes to the development of diseases of the digestive system as well as other systems. The bridge between periodontitis and systemic diseases is believed to be periodontal pathogens. The intestine, as part of the lower gastrointestinal tract, has a close connection with the oral cavity. Within the intestine, the intestinal barrier acts as a multifunctional system including microbial, mucous, physical and immune barrier. The intestinal barrier forms the body's first line of defense against external pathogens; its breakdown can lead to pathological changes in the gut and other organs or systems. Reports in the literature have described how oral periodontal pathogens and pathobiont-reactive immune cells can transmigrate to the intestinal mucosa, causing the destruction of intestinal barrier homeostasis. Such findings might lead to novel ideas for investigating the relationship between periodontal disease and other systemic diseases. This review summarizes studies on the effects of periodontal pathogens on the intestinal barrier, which might contribute to understanding the link between periodontitis and gastrointestinal diseases.
Collapse
Affiliation(s)
- Yingman Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wenxuan Huang
- School of Stomatology, Shenyang Medical College, Shenyang, China
| | - Jiaqi Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jiaojiao Ma
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Manman Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaoying Lu
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jie Liu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Yurong Kou
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
36
|
Haririan H, Andrukhov O, Laky M, Rausch-Fan X. Saliva as a Source of Biomarkers for Periodontitis and Periimplantitis. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.687638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Saliva has the potential to be used as a diagnostic and monitoring tool for various diseases if biomarkers of an adequate sensitivity and specificity could be identified. Several reviews and even meta-analyses have been performed in recent years, which have found some candidate biomarkers for periodontitis, like macrophage inflammatory protein-1 alpha, interleukin-1ß, interleukin-6, matrix metalloproteinase-8, or hemoglobin. However, none of those are currently in use to replace conventional periodontal diagnostics with a periodontal probe. For periimplantitis, to date, heterogeneity of different study protocols and implant types did not permit to discover clear biomarkers, which were able to distinguish between healthy and diseased implants. Few proinflammatory cytokines, similar to periodontitis, have been characterized as adjunct tools to clinical diagnosis. The additional determination of antimicrobial peptides, bone turnover markers, and bacteria could help to enhance sensitivity and specificity in a combined model for periodontitis and periimplantitis. Furthermore, proteomic approaches might be preferred over single biomarker determinations. A global consensus is also needed to harmonize salivary sampling methods as well as procedures of biomarker analysis to ensure future comparability.
Collapse
|
37
|
Li L, Zhang YL, Liu XY, Meng X, Zhao RQ, Ou LL, Li BZ, Xing T. Periodontitis Exacerbates and Promotes the Progression of Chronic Kidney Disease Through Oral Flora, Cytokines, and Oxidative Stress. Front Microbiol 2021; 12:656372. [PMID: 34211440 PMCID: PMC8238692 DOI: 10.3389/fmicb.2021.656372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Periodontitis is a type of systemic immune inflammation that is caused by the complex infection of a variety of microorganisms in the subgingival plaque and the imbalance of the microbial ecological environment in the mouth. Periodontitis and chronic kidney disease (CKD) share many risk factors, such as obesity, smoking, and age. A growing body of data supports a strong correlation between periodontitis and kidney disease. Evidence supports the role of periodontal inflammation and elevated serum inflammatory mediators in renal atherosclerosis, renal deterioration, and end-stage renal disease (ESRD) development. Periodontitis is a risk factor for kidney disease. However, to our knowledge, there are few studies detailing the possible link between periodontitis and CKD. This review summarizes the possible mechanisms underlying periodontitis and CKD. More importantly, it highlights novel and potential pathogenic factors for CKD, including bacteria, pro-inflammatory mediators and oxidative stress. However, most research on the relationship between periodontitis and systemic disease has not determined causality, and these diseases are largely linked by bidirectional associations. Future research will focus on exploring these links to contribute to new treatments for CKD.
Collapse
Affiliation(s)
- Ling Li
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Ya-Li Zhang
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xing-Yu Liu
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xiang Meng
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Rong-Quan Zhao
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Lin-Lin Ou
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tian Xing
- School of Stomatology, Anhui Medical University, Hefei, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Chigasaki O, Aoyama N, Sasaki Y, Takeuchi Y, Mizutani K, Ikeda Y, Gokyu M, Umeda M, Izumi Y, Iwata T, Aoki A. Porphyromonas gingivalis, the most influential pathogen in red-complex bacteria: A cross-sectional study on the relationship between bacterial count and clinical periodontal status in Japan. J Periodontol 2021; 92:1719-1729. [PMID: 33856713 DOI: 10.1002/jper.21-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/16/2021] [Accepted: 04/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Porphyromonas gingivalis is a key pathogen in microbiota associated with periodontitis. The purpose of the present study was to assess the association between salivary counts of red-complex bacteria and clinical periodontal status in a Japanese population. METHODS A total of 977 subjects who visited a general dental clinic in Japan from 2003 to 2006 were enrolled in the study. Stimulated saliva was obtained, and the amounts of major periodontal bacteria were measured using real-time polymerase chain reaction. Probing pocket depth (PPD), bleeding on probing (BOP), and each subject's average proximal bone crest level (BCL) on dental radiographs were measured. RESULTS The number of P. gingivalis strongly associated with percentage of 4 mm or more PPD sites, BOP positive percentage, and 1.5 mm or more BCL sites. The detection of P. gingivalis with Treponema denticola and/or Tannerella forsythia showed a high rate of three positive clinical parameters, whereas the only P. gingivalis detected group and those without P. gingivalis had a low rate of three positive clinical parameters. CONCLUSION Among red-complex bacteria, the amount of P. gingivalis showed the strongest association with the severity of periodontal condition, and co-occurrence of P. gingivalis with T. denticola and/or T. forsythia showed heightened progression of periodontitis.
Collapse
Affiliation(s)
- Otofumi Chigasaki
- Tsukuba Health-Care Dental Clinic, Tsukuba, Japan.,Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Norio Aoyama
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Department of Oral Interdisciplinary Medicine, Kanagawa Dental University, Yokosuka, Japan
| | - Yoshiyuki Sasaki
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Koji Mizutani
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yuichi Ikeda
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Misa Gokyu
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Japan
| | - Yuichi Izumi
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Oral Care Perio Center, Southern Tohoku General Hospital, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Takanori Iwata
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Akira Aoki
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
39
|
Determination of the Role of Fusobacterium Nucleatum in the Pathogenesis in and Out the Mouth. ACTA ACUST UNITED AC 2021; 41:87-99. [PMID: 32573481 DOI: 10.2478/prilozi-2020-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION One of the most important types of microorganisms in the oral cavity in both healthy and non-healthy individuals is Fusobacterium nucleatum. Although present as a normal resident in the oral cavity, this Gram-negative pathogen is dominant in periodontal disease and it is involved in many invasive infections in the population, acute and chronic inflammatory conditions, as well as many adverse events with a fatal outcome. AIM To determine the role of F. nucleatum in the development of polymicrobial biofilms thus pathogenic changes in and out of the oral media. MATERIAL AND METHOD A systematic review of the literature concerning the determination and role of F. nucleatum through available clinical trials, literature reviews, original research and articles published electronically at Pub Med and Google Scholar. CONCLUSION The presence of Fusobacterium nucleatum is commonly associated with the health status of individuals. These anaerobic bacteria plays a key role in oral pathological conditions and has been detected in many systemic disorders causing complex pathogenethic changes probably due to binding ability to various cells thus several virulence mechanisms. Most common diseases and conditions in the oral cavity associated with F.nucleatum are gingivitis (G), chronic periodontitis (CH), aggressive periodontitis (AgP), endo-periodental infections (E-P), chronic apical periodontitis (PCHA). The bacterium has been identified and detected in many systemic disorders such as coronary heart disease (CVD) pathological pregnancy (P); polycystic ovary syndrome (PCOS), high-risk pregnancy (HRP), colorectal cancer (CRC); pre-eclampsia (PE); rheumatoid arthritis (RA); osteoarthritis (OA).
Collapse
|
40
|
Tsuzuno T, Takahashi N, Yamada-Hara M, Yokoji-Takeuchi M, Sulijaya B, Aoki-Nonaka Y, Matsugishi A, Katakura K, Tabeta K, Yamazaki K. Ingestion of Porphyromonas gingivalis exacerbates colitis via intestinal epithelial barrier disruption in mice. J Periodontal Res 2021; 56:275-288. [PMID: 33512709 DOI: 10.1111/jre.12816] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/07/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effects of ingested periodontal pathogens on experimental colitis in mice and to elucidate its underlying mechanisms. BACKGROUND Inflammatory bowel disease (IBD) is defined as a chronic intestinal inflammation that results in damage to the gastrointestinal tract. Epidemiological studies have shown an association between IBD and periodontitis. Although a large number of ingested oral bacteria reach gastrointestinal tract constantly, the effect of ingested periodontal pathogens on intestinal inflammation is still unknown. METHODS Experimental colitis was induced by inclusion of dextran sodium sulfate solution in drinking water of the mice. Major periodontal pathogens (Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum) were administered orally every day during the experiment. The severity of colitis between the groups was compared. In vitro studies of the intestinal epithelial cell line were conducted to explore the molecular mechanisms by which periodontal pathogens affect the development of colitis. RESULTS The oral administration of P. gingivalis significantly increased the severity of colitis when compared to other pathogens in the DSS-induced colitis model. The ingested P. gingivalis disrupted the colonic epithelial barrier by decreasing the expression of tight junction proteins in vivo. In vitro permeability assays using the intestinal epithelial cell line suggested the P. gingivalis-specific epithelial barrier disruption. The possible involvement of gingipains in the exacerbation of colitis was implied by using P. gingivalis lacking gingipains. CONCLUSION Porphyromonas gingivalis exacerbates gastrointestinal inflammation by directly interacting with the intestinal epithelial barrier in a susceptible host.
Collapse
Affiliation(s)
- Takahiro Tsuzuno
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Miki Yamada-Hara
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji-Takeuchi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benso Sulijaya
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Yukari Aoki-Nonaka
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aoi Matsugishi
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kyoko Katakura
- Department of Gastroenterology, Iwase general hospital, Fukushima, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
41
|
Gasmi Benahmed A, Gasmi A, Dadar M, Arshad M, Bjørklund G. The role of sugar-rich diet and salivary proteins in dental plaque formation and oral health. J Oral Biosci 2021; 63:134-141. [PMID: 33497842 DOI: 10.1016/j.job.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dental plaque is a complex colorless film of bacteria that develops on the surfaces of teeth. Different mechanisms of microbial adhesion to tooth surfaces exist. Both non-specific and specific types of adherence have been anticipated. HIGHLIGHT The present review evaluated the effect of sugar-rich diet and salivary proteins on oral hygiene and dental plaque development. CONCLUSION The oral microbiota is essential for maintaining and reestablishing a healthy oral cavity. Different types of sugars have different effects on the inhibition and formation of dental plaque. The peptides, proteins, and amino acids secreted by parotid glands in the oral cavity facilitate neutralizing the acidity in dental plaque and preventing dental caries. A properly balanced diet is crucial for both a healthy oral cavity and the oral microbiome.
Collapse
Affiliation(s)
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maria Arshad
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo I Rana, Norway.
| |
Collapse
|
42
|
Choi JU, Lee JB, Kim KH, Kim S, Seol YJ, Lee YM, Rhyu IC. Comparison of Periodontopathic Bacterial Profiles of Different Periodontal Disease Severity Using Multiplex Real-Time Polymerase Chain Reaction. Diagnostics (Basel) 2020; 10:E965. [PMID: 33213109 PMCID: PMC7698795 DOI: 10.3390/diagnostics10110965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Periodontopathic bacteria are known to have a pivotal role in the pathogenesis of periodontitis. The aim of the study was to quantitatively compare bacterial profile of patients with different severity of periodontal disease using samples from mouthwash and the subgingival area. Further analysis was performed to evaluate the correlation between mouthwash and two subgingival sampling methods: paperpoint and gingival retraction cord; 114 subjects enrolled in the study, and were divided equally into three groups according to disease severity. Mouthwash and subgingival sampling were conducted, and the samples were quantitatively analyzed for 11 target periodontopathic bacteria using multiplex real-time PCR. There were statistically significant differences in bacterial counts and prevalence of several species between the study groups. Mouthwash sampling showed significant correlations with two different subgingival sampling methods in regard to the detection of several bacteria (e.g., ρ = 0.793 for Porphyromonas gingivalis in severe periodontitis), implying that mouthwash sampling can reflect subgingival microbiota. However, the correlation was more prominent as disease severity increased. Although bacteria in mouthwash have potential to become a biomarker, it may be more suitable for the diagnosis of severe periodontitis, rather than early diagnosis. Further research is required for the discovery of biomarkers for early diagnosis of periodontitis.
Collapse
Affiliation(s)
- Jin Uk Choi
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (J.U.C.); (K.-H.K.); (S.K.); (Y.-J.S.); (Y.-M.L.)
- Department of Periodontics, Seoul National University Dental Hospital, Seoul 03080, Korea;
| | - Jun-Beom Lee
- Department of Periodontics, Seoul National University Dental Hospital, Seoul 03080, Korea;
| | - Kyoung-Hwa Kim
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (J.U.C.); (K.-H.K.); (S.K.); (Y.-J.S.); (Y.-M.L.)
| | - Sungtae Kim
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (J.U.C.); (K.-H.K.); (S.K.); (Y.-J.S.); (Y.-M.L.)
- Department of Periodontics, Seoul National University Dental Hospital, Seoul 03080, Korea;
| | - Yang-Jo Seol
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (J.U.C.); (K.-H.K.); (S.K.); (Y.-J.S.); (Y.-M.L.)
- Department of Periodontics, Seoul National University Dental Hospital, Seoul 03080, Korea;
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (J.U.C.); (K.-H.K.); (S.K.); (Y.-J.S.); (Y.-M.L.)
- Department of Periodontics, Seoul National University Dental Hospital, Seoul 03080, Korea;
| | - In-Chul Rhyu
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (J.U.C.); (K.-H.K.); (S.K.); (Y.-J.S.); (Y.-M.L.)
- Department of Periodontics, Seoul National University Dental Hospital, Seoul 03080, Korea;
| |
Collapse
|
43
|
Kasimoglu Y, Koruyucu M, Birant S, Karacan I, Topcuoglu N, Tuna EB, Gencay K, Seymen F. Oral microbiota and dental caries data from monozygotic and dizygotic twin children. Sci Data 2020; 7:348. [PMID: 33051450 PMCID: PMC7555494 DOI: 10.1038/s41597-020-00691-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022] Open
Abstract
There are recent studies which aimed to detect the inheritance on the etiology of dental caries exploring oral composition. We present data on the oral microbiota and its relation with dental caries and other factors in monozygotic (MZ) and dizygotic (DZ) twin children. Following clinical investigation, DNA samples were collected and isolated from saliva of 198 patients (49 MZ and 50 DZ twins) with an average age of 9.7 ± 2.7 years. Salivary bacterial microbiota analysis was performed using high throughput amplicon sequencing method targeting V3-V4 region of the 16S rRNA gene. A total of 8,297,859 raw reads corresponding to 41,908 reads per sample were obtained on average. The QIIME2-deblur workflow was used for 16S rRNA amplicon analysis. Microbiome similarity analyses between twins (based on Bray-Curtis dissimilarity, weighted and unweighted Unifrac distances) showed that monozygotic twins share more bacterial microbial content compared to dizygotic twins. This is a large microbial community dataset of MZ and DZ twins with or without dental findings which can be further used for children oral microbiome profile explorations. Measurement(s) | Oral Microbiome • DNA • dental health | Technology Type(s) | twin design • amplicon sequencing • Examination | Factor Type(s) | zygosity status • age • sex | Sample Characteristic - Organism | Microbiota • Homo sapiens | Sample Characteristic - Environment | saliva |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12987797
Collapse
Affiliation(s)
- Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey.
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Sinem Birant
- Department of Pedodontics, Faculty of Dentistry, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Ilker Karacan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| | - Nursen Topcuoglu
- Department of Microbiology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Elif Bahar Tuna
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Koray Gencay
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
44
|
Clinical assessment of an automated fluorescent plaque index scoring with quantitative light-induced fluorescence. Photodiagnosis Photodyn Ther 2020; 32:102011. [PMID: 32949788 DOI: 10.1016/j.pdpdt.2020.102011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aims of this study were to evaluate the clinical applicability of a new fluorescent plaque index scoring (FPI) with the Turesky modified Quigley-Hein plaque index (mQH) and to evaluate its relationship with plaque maturity. METHODS In total 69 subjects participated in this study. White-light and fluorescent images of anterior teeth were acquired using a Qraycam (AIOBIO, Seoul, Korea). FPI was obtained from fluorescent images using the proprietary software (Q-Ray v.1.39, Inspektor Research System BV, Amsterdam, The Netherlands). Teeth were stained with a two-tone disclosing agent. mQH was used to manually score the combined red and blue disclosed plaque (Combi-mQH) and blue disclosed plaque (Blue-mQH) with the white-light images. Linear relationships between FPI and Combi-mQH (or Blue-mQH) were evaluated by using simple linear regression analysis. Differences of Combi-mQH (or Blue-mQH) with respect to FPI scores were statistically evaluated by using ANOVA with Duncan post hoc correction. RESULTS FPI showed a moderate positive correlation with Combi-mQH (r = 0.66, P < 0.001) and a high positive correlation with Blue-mQH (r = 0.78, P < 0.001). The model explanatory power (R2) between FPI and Blue-mQH was 60.8 %, which is 16.8 % higher than the explanatory power observed with Combi-mQH (44.0 %). Both Combi-mQH and Blue-mQH increased significantly with increasing FPI score (P < 0.001). CONCLUSION In this study we found that the FPI scoring system can be used to detect plaque and quantitatively distinguish plaque levels. In addition, FPI was determined to be useful in clinic because of its ability to detect and distinguish old and mature plaque.
Collapse
|
45
|
Huh JW, Roh TY. Opportunistic detection of Fusobacterium nucleatum as a marker for the early gut microbial dysbiosis. BMC Microbiol 2020; 20:208. [PMID: 32660414 PMCID: PMC7359021 DOI: 10.1186/s12866-020-01887-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background The essential roles of gut microbiome have been emphasized in modulating human health and disease. Fusobacterium nucleatum (F. nucleatum), an obligate Gram-negative microorganism residing in oral cavity, gastrointestinal tract and elsewhere, has been recently considered as a potential oncobacterium associated with human cancers. However, the consequence of its enrichment was not extensively explored in terms of microbial homeostasis and stability at the early stage of disease development. Result Our analysis on longitudinal metagenomic data generated by the Integrative Human Microbiome Project (iHMP) showed that F. nucleatum was frequently found in inflammatory bowel diseases (IBD) subjects with reduced microbial diversity. Using non-parametric logarithmic linear discriminant analysis (LDA) effect size (LEfSe) algorithm, 12 IBD- and 14 non-IBD-specific bacterial species were identified in the fecal metagenome and the IBD-specific ones were over-represented in the F. nucleatum-experienced subjects during long-term surveillance. In addition, F. nucleatum experience severely abrogated intra-personal stability of microbiome in IBD patients and induced highly variable gut microbiome between subjects. From the longitudinal comparison between microbial distributions prior and posterior to F. nucleatum detection, 41 species could be proposed as indicative “classifiers” for dysbiotic gut state. By multiple logistic regression models established on these classifiers, the high probability of experiencing F. nucleatum was significantly correlated with decreased alpha-diversity and increased number of biomarker species for IBD and colorectal cancer (CRC). Finally, microbial clustering confirmed that biomarker species for IBD and non-IBD conditions as well as CRC signature markers were well distinguishable and could be utilized for explaining gut symbiosis and dysbiosis. Conclusion F. nucleatum opportunistically appeared under early dysbiotic condition in gut, and discriminative classifier species associated with F. nucleatum were successfully applied to predict microbial alterations in both IBD and non-IBD conditions. Our prediction model and microbial classifier biomarkers for estimating gut dysbiosis should provide a novel aspect of microbial homeostasis/dynamics and useful information on non-invasive biomarker screening.
Collapse
Affiliation(s)
- Ji-Won Huh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Tae-Young Roh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,SysGenLab Inc, Pohang, 37673, Republic of Korea.
| |
Collapse
|
46
|
Porphyromonas gingivalis, a Long-Range Pathogen: Systemic Impact and Therapeutic Implications. Microorganisms 2020; 8:microorganisms8060869. [PMID: 32526864 PMCID: PMC7357039 DOI: 10.3390/microorganisms8060869] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is an inflammatory disease associated with a dysbiosis of the oral flora characterized by a chronic sustained inflammation leading to destruction of tooth-supporting tissues. Over the last decade, an association between periodontitis and systemic disorders such as cardiovascular diseases, rheumatoid arthritis and obesity has been demonstrated. The role of periodontal pathogens, notably Porphyromonas gingivalis (P. gingivalis), in the onset or exacerbation of systemic diseases has been proposed. P. gingivalis expresses several virulence factors that promote its survival, spreading, and sustaining systemic inflammation. Recently, the impact of periodontitis on gut dysbiosis has also been suggested as a potential mechanism underlying the systemic influence of periodontitis. New therapeutic strategies for periodontitis and other dysbiotic conditions, including the use of beneficial microbes to restore healthy microbial flora, may pave the way to improved therapeutic outcomes and more thorough patient management.
Collapse
|
47
|
Hashavya S, Pines N, Gayego A, Schechter A, Gross I, Moses A. The use of bacterial DNA from saliva for the detection of GAS pharyngitis. J Oral Microbiol 2020; 12:1771065. [PMID: 33312447 PMCID: PMC7717604 DOI: 10.1080/20002297.2020.1771065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Acute tonsillitis is a very common medical condition. Despite different methods of detection, all tests are based on GAS sampling using a throat swab. However, obtaining the swab can elicit vomiting and is often accompanied by fear and apprehension in children. The aim of this study was to find a non-invasive method for the detection of GAS pharyngitis. Methods A classic throat swab was obtained for culture, and a saliva sample was taken from 100 subjects recruited from Meuhedet Health Care Organization clinic. Real time PCR was performed to detect GAS dnaseB specific gene in the saliva samples. Results 56% of the throat cultures and 48% of the PCR samples were positive for GAS. The overall sensitivity and specificity of the saliva PCR method was 79% and 91% respectively; NPV and PPV were 77% and 92% respectively. When excluding patients who presented on the first day of fever, sensitivity and specificity increased to 90% and 100% respectively. No other anamnestic or clinical findings increased the yield of the test. Conclusion Saliva-based PCR amplification of GAS DNA method is effective in detection of GAS pharyngitis. Further studies are needed to achieve detection rates to replace the traditional throat swab-based approach.
Collapse
Affiliation(s)
- Saar Hashavya
- Department of Pediatric Emergency Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Naama Pines
- Department of Pediatrics, Hadassah and Hebrew University Hospital, Jerusalem, Israel
| | - Ayelet Gayego
- Department of Microbiology and Infectious Diseases, Hadassah and Hebrew University Hospital, Jerusalem, Israel
| | | | - Itai Gross
- Department of Pediatric Emergency Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Alon Moses
- Department of Microbiology and Infectious Diseases, Hadassah and Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
48
|
Tada A, Nakayama-Imaohji H, Yamasaki H, Elahi M, Nagao T, Yagi H, Ishikawa M, Shibuya K, Kuwahara T. Effect of thymoquinone on Fusobacterium nucleatum‑associated biofilm and inflammation. Mol Med Rep 2020; 22:643-650. [PMID: 32626941 PMCID: PMC7339527 DOI: 10.3892/mmr.2020.11136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/29/2020] [Indexed: 01/29/2023] Open
Abstract
Periodontitis affects oral tissues and induces systemic inflammation, which increases the risk of cardiovascular disease and metabolic syndrome. Subgingival plaque accumulation is a trigger of periodontitis. Fusobacterium nucleatum (FN) contributes to subgingival biofilm complexity by intercalating with early and late bacterial colonizers on tooth surfaces. In addition, inflammatory responses to FN are associated with the progression of periodontitis. Nigella sativa Lin. seed, which is known as black cumin (BC), has been used as a herbal medicine to treat ailments such as asthma and infectious diseases. The current study examined the inhibitory effect of BC oil and its active constituents, thymol (TM) and thymoquinone (TQ), on FN-associated biofilm and inflammation. FN-containing biofilms were prepared by co-cultivation with an early dental colonizer, Actinomyces naeslundii (AN). The stability and biomass of FN/AN dual species biofilms were significantly higher compared with FN alone. This effect was retained even with prefixed cells, indicating that FN/AN co-aggregation is mediated by physicochemical interactions with cell surface molecules. FN/AN biofilm formation was significantly inhibited by 0.1% TM or TQ. Confocal laser scanning microscopy indicated that treatment of preformed FN/AN biofilm with 0.01% of BC, TM or TQ significantly reduced biofilm thickness, and TQ demonstrated a cleansing effect equivalent to that of isopropyl methylphenol. TQ dose-dependently suppressed TNF-α production from a human monocytic cell line, THP-1 exposed to FN, yet showed no toxicity to THP-1 cells. These results indicated that oral hygiene care using TQ could reduce FN-associated biofilm and inflammation in gingival tissue.
Collapse
Affiliation(s)
- Ayano Tada
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Haruyuki Nakayama-Imaohji
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Hisashi Yamasaki
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Miad Elahi
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Tamiko Nagao
- Faculty of Nursing, Shikoku University, Ohjin, Tokushima 771‑1192, Japan
| | - Hirofumi Yagi
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Masao Ishikawa
- Laboratory for Oral Health Science, Tokyo 103‑0012, Japan
| | - Koji Shibuya
- Laboratory for Oral Health Science, Tokyo 103‑0012, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| |
Collapse
|
49
|
Zhao R, Huang R, Long H, Li Y, Gao M, Lai W. The dynamics of the oral microbiome and oral health among patients receiving clear aligner orthodontic treatment. Oral Dis 2020; 26:473-483. [PMID: 31418980 DOI: 10.1111/odi.13175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This 6-month prospective clinical study assessed the impacts of Invisalign appliances on the oral bacterial community and oral health of patients. METHODS Salivary samples were obtained from twenty-five adult patients receiving Invisalign aligner treatment before the treatment (Group B) and at a 6-month follow-up (Group P). The bacterial composition of each sample was determined using Illumina MiSeq sequencing of the bacterial 16S rRNA. Intra- and intergroup biodiversity was analyzed. Clinical periodontal parameters and daily oral hygiene habits were recorded. RESULTS Reduction in plaque, increased daily brushing frequency, and decreased dessert intake were observed in Group P compared with that in Group B. A total of 1,853,952 valid reads were obtained from the 50 salivary samples, with 37,904 sequences per sample. No significant differences were detected in the intra- and intergroup biodiversity comparisons between the two groups. By clustering, 8,885 OTUs were identified and categorized into six major phyla: Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria, and Candidate_division_TM7_norank. At the genus level, compared with Group B, Group P demonstrated significantly increased Bacillus abundance and decreased Prevotella abundance. CONCLUSIONS Our results suggested that the general biodiversity and salivary microbial community structure did not change significantly and that patients had increased beneficial oral hygiene habits and awareness during the first six months of Invisalign treatment. Hence, on the basis of this study, it appears that Invisalign aligner treatment did not induce deterioration of oral health nor significant biodiversity changes in oral bacterial communities, assuming that detailed oral hygiene instructions for both teeth and aligners were provided.
Collapse
Affiliation(s)
- Rui Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Renhuan Huang
- Department of Orthodontics, Tenth People's Hospital, Shanghai, China
| | - Hu Long
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiya Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Radhakrishnan P, Anbalagan R, Barani R, Mani M, Seshadri KG, Srikanth P. Sequencing of Porphyromonas gingivalis from saliva in patients with periodontitis and type 2 diabetes mellitus. Indian J Med Microbiol 2019; 37:54-59. [PMID: 31424011 DOI: 10.4103/ijmm.ijmm_18_409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Porphyromonas gingivalis is a major periodontal pathogen. Saliva is the most easy, non-invasive microbiological sample for detection of periodontal pathogens. Aim and Objectives A prospective study on 37 diabetic patients was grouped into well-controlled diabetes with/without periodontitis and uncontrolled diabetic with periodontitis. PCR and sequencing of P. gingivalis was performed in saliva samples. Materials and Methods DNA was extracted from saliva using Triton X-100 and 16s rRNA gene (404 bp) was amplified by polymerase chain reaction. DNA sequencing was performed for two samples. Results P. gingivalis was detected in 27.03% (n = 10), of which 30% (n = 9) were diabetic with periodontal disease and 14.3% (n = 1) were diabetic without periodontal disease. The percentage of poor oral hygiene was 50% and 20% in uncontrolled and controlled glycaemic patients, respectively. DNA sequencing of two samples showed 100% identity with the sequences in the GenBank database (Gen Bank accession no: KX640913-KX640914). Conclusion Type 2 diabetes mellitus and periodontitis are interlinked. Early detection of P. gingivalis and appropriate treatment with doxycycline will also assist in controlling the glycaemic status.
Collapse
Affiliation(s)
- Preethi Radhakrishnan
- Department of Microbiology, Diabetes and Metabolism, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rubini Anbalagan
- Department of Microbiology, Diabetes and Metabolism, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Ramya Barani
- Department of Microbiology, Diabetes and Metabolism, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Monika Mani
- Department of Microbiology, Diabetes and Metabolism, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Krishna G Seshadri
- Department of Endocrinology, Diabetes and Metabolism, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Padma Srikanth
- Department of Microbiology, Diabetes and Metabolism, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|