1
|
Hopkins S, Gajagowni S, Qadeer Y, Wang Z, Virani SS, Meurman JH, Leischik R, Lavie CJ, Strauss M, Krittanawong C. More than just teeth: How oral health can affect the heart. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 43:100407. [PMID: 38873102 PMCID: PMC11169959 DOI: 10.1016/j.ahjo.2024.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Epidemiological evidence has revealed a potential relationship between periodontal disease and cardiovascular disease (CVD). Consensus regarding a link between these pathologies remains elusive, however, largely secondary to the considerable overlap between risk factors and comorbidities common to both disease processes. This review article aims to update the evidence for an association by summarizing the evidence for causality between periodontitis and comorbidities linked to CVD, including endocarditis, hypertension (HTN), atrial fibrillation (AF), coronary artery disease (CAD), diabetes mellitus (DM) and hyperlipidemia (HLD). This article additionally discusses the role for periodontal therapy to improved management of the comorbidities, with the larger goal of examining the value of periodontal therapy on reduction of CVD risk. In doing so, we endeavor to further the understanding of the commonality between periodontitis, and CVD.
Collapse
Affiliation(s)
- Steven Hopkins
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Yusuf Qadeer
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
- Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Salim S. Virani
- Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Office of the Vice Provost (Research), The Aga Khan University, Karachi 74800, Pakistan
| | - Jukka H. Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Roman Leischik
- Department of Cardiology, Sector Preventive Medicine, Health Promotion, Faculty of Health, School of Medicine, University Witten/Herdecke, 58095 Hagen, Germany
| | - Carl J. Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA 70121, USA
| | - Markus Strauss
- Department of Cardiology, Sector Preventive Medicine, Health Promotion, Faculty of Health, School of Medicine, University Witten/Herdecke, 58095 Hagen, Germany
- Department of Cardiology I- Coronary and Periphal Vascular Disease, Heart Failure Medicine, University Hospital Muenster, Cardiol, 48149 Muenster, Germany
| | | |
Collapse
|
2
|
Luangphiphat W, Prombutara P, Muangsillapasart V, Sukitpunyaroj D, Eeckhout E, Taweechotipatr M. Exploring of gut microbiota features in dyslipidemia and chronic coronary syndrome patients undergoing coronary angiography. Front Microbiol 2024; 15:1384146. [PMID: 38646625 PMCID: PMC11026706 DOI: 10.3389/fmicb.2024.1384146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Chronic coronary syndrome (CCS) has a high mortality rate, and dyslipidemia is a major risk factor. Atherosclerosis, a cause of CCS, is influenced by gut microbiota dysbiosis and its metabolites. The objective of this study was to study the diversity and composition of gut microbiota and related clinical parameters among CCS patients undergoing coronary angiography and dyslipidemia patients in comparison to healthy volunteers in Thailand. CCS patients had more risk factors and higher inflammatory markers, high-sensitivity C-reactive protein (hs-CRP) than others. The alpha diversity was lower in dyslipidemia and CCS patients than in the healthy group. A significant difference in the composition of gut microbiota was observed among the three groups. The relative abundance of Proteobacteria, Fusobacteria, Enterobacteriaceae, Prevotella, and Streptococcus was significantly increased while Roseburia, Ruminococcus, and Faecalibacterium were lower in CCS patients. In CCS patients, Lachnospiraceae, Peptostreptococcaceae, and Pediococcus were positively correlated with hs-CRP. In dyslipidemia patients, Megasphaera was strongly positively correlated with triglyceride (TG) level and negatively correlated with high-density lipoprotein cholesterol (HDL-C). The modification of gut microbiota was associated with changes in clinical parameters involved in the development of coronary artery disease (CAD) in CCS patients.
Collapse
Affiliation(s)
- Wongsakorn Luangphiphat
- Innovative Anatomy Program, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
- Division of Cardiology, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Mod Gut Co., Ltd., Bangkok, Thailand
| | - Viroj Muangsillapasart
- Division of Cardiology, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Damrong Sukitpunyaroj
- Division of Cardiology, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Eric Eeckhout
- Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Malai Taweechotipatr
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
- Clinical Research Center, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Thailand
| |
Collapse
|
3
|
Huang X, Xie M, Lu X, Mei F, Song W, Liu Y, Chen L. The Roles of Periodontal Bacteria in Atherosclerosis. Int J Mol Sci 2023; 24:12861. [PMID: 37629042 PMCID: PMC10454115 DOI: 10.3390/ijms241612861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory vascular disease that constitutes a major underlying cause of cardiovascular diseases (CVD) and stroke. Infection is a contributing risk factor for AS. Epidemiological evidence has implicated individuals afflicted by periodontitis displaying an increased susceptibility to AS and CVD. This review concisely outlines several prevalent periodontal pathogens identified within atherosclerotic plaques, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. We review the existing epidemiological evidence elucidating the association between these pathogens and AS-related diseases, and the diverse mechanisms for which these pathogens may engage in AS, such as endothelial barrier disruption, immune system activation, facilitation of monocyte adhesion and aggregation, and promotion of foam cell formation, all of which contribute to the progression and destabilization of atherosclerotic plaques. Notably, the intricate interplay among bacteria underscores the complex impact of periodontitis on AS. In conclusion, advancing our understanding of the relationship between periodontal pathogens and AS will undoubtedly offer invaluable insights and potential therapeutic avenues for the prevention and management of AS.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
4
|
Gomes BPFA, Berber VB, Chiarelli-Neto VM, Aveiro E, Chapola RC, Passini MRZ, Lopes EM, Chen T, Paster BJ. Microbiota present in combined endodontic-periodontal diseases and its risks for endocarditis. Clin Oral Investig 2023; 27:4757-4771. [PMID: 37401984 DOI: 10.1007/s00784-023-05104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION Infective endocarditis (IE) is an inflammatory disease usually caused by bacteria that enter the bloodstream and establish infections in the inner linings or valves of the heart, including blood vessels. Despite the availability of modern antimicrobial and surgical treatments, IE continues to cause substantial morbidity and mortality. Oral microbiota is considered one of the most significant risk factors for IE. The objective of this study was to evaluate the microbiota present in root canal (RC) and periodontal pocket (PP) clinical samples in cases with combined endo-periodontal lesions (EPL) to detect species related to IE using NGS. METHODS Microbial samples were collected from 15 RCs and their associated PPs, also from 05 RCs with vital pulp tissues (negative control, NC). Genomic studies associated with bioinformatics, combined with structuring of a database (genetic sequences of bacteria reported for infective endocarditis), allowed for the assessment of the microbial community at both sites. Functional prediction was conducted using PICRUSt2. RESULTS Parvimonas, Streptococcus, and Enterococcus were the major genera detected in the RCs and PPs. A total of 79, 96, and 11 species were identified in the RCs, PPs, and NCs, respectively. From them, a total of 34 species from RCs, 53 from PPs, and 2 from NCs were related to IE. Functional inference demonstrated that CR and PP microbiological profiles may not be the only risk factors for IE but may also be associated with systemic diseases, including myocarditis, human cytomegalovirus infection, bacterial invasion of epithelial cells, Huntington's disease, amyotrophic lateral sclerosis, and hypertrophic cardiomyopathy. Additionally, it was possible to predict antimicrobial resistance variants for broad-spectrum drugs, including ampicillin, tetracycline, and macrolides. CONCLUSION Microorganisms present in the combined EPL may not be the only risk factor for IE but also for systemic diseases. Antimicrobial resistance variants for broad-spectrum drugs were inferred based on PICRUSt-2. State-of-the-art sequencing combined with bioinformatics has proven to be a powerful tool for conducting studies on microbial communities and could considerably assist in the diagnosis of serious infections. CLINICAL RELEVANCE Few studies have investigated the microbiota in teeth compromised by combined endo-periodontal lesions (EPL), but none have correlated the microbiological findings to any systemic condition, particularly IE, using NGS techniques. In such cases, the presence of apical periodontitis and periodontal disease can increase IE risk in susceptible patients.
Collapse
Affiliation(s)
- Brenda P F A Gomes
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil.
| | - Vanessa B Berber
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Vito M Chiarelli-Neto
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Emelly Aveiro
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Rafaela C Chapola
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Maicon R Z Passini
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Erica M Lopes
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Tsute Chen
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | - Bruce J Paster
- Microbiology Department, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
5
|
Li Y, Zou C, Li J, Wang W, Guo Y, Zhao L, Jiang C, Zhao P, An X. Upper respiratory tract microbiota is associated with small airway function and asthma severity. BMC Microbiol 2023; 23:13. [PMID: 36639753 PMCID: PMC9837891 DOI: 10.1186/s12866-023-02757-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Characteristics of airway microbiota might influence asthma status or asthma phenotype. Identifying the airway microbiome can help to investigate its role in the development of asthma phenotypes or small airway function. METHODS Bacterial microbiota profiles were analyzed in induced sputum from 31 asthma patients and 12 healthy individuals from Beijing, China. Associations between small airway function and airway microbiomes were examined. RESULTS Composition of sputum microbiota significantly changed with small airway function in asthma patients. Two microbiome-driven clusters were identified and characterized by small airway function and taxa that had linear relationship with small airway functions were identified. CONCLUSIONS Our findings confirm that airway microbiota was associated with small airway function in asthma patients.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081 China
| | - Congying Zou
- Department of Surgery, Beijing ChaoYang Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Jieying Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No.8, Gongtinan Road, Chaoyang District, Beijing, 100020 China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No.8, Gongtinan Road, Chaoyang District, Beijing, 100020 China
| | - Yue Guo
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No.8, Gongtinan Road, Chaoyang District, Beijing, 100020 China
| | - Lifang Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No.8, Gongtinan Road, Chaoyang District, Beijing, 100020 China
| | - Chunguo Jiang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No.8, Gongtinan Road, Chaoyang District, Beijing, 100020 China
| | - Peng Zhao
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Xingqin An
- State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081 China
| |
Collapse
|
6
|
Sun W, Huang S, Yang X, Luo Y, Liu L, Wu D. The oral microbiome of patients with ischemic stroke predicts their severity and prognosis. Front Immunol 2023; 14:1171898. [PMID: 37138888 PMCID: PMC10150016 DOI: 10.3389/fimmu.2023.1171898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Background and objectives Stroke is a common group of cerebrovascular diseases that can lead to brain damage or death. Several studies have shown a close link between oral health and stroke. However, the oral microbiome profiling of ischemic stroke (IS) and its potential clinical implication are unclear. This study aimed to describe the oral microbiota composition of IS, the high risk of IS, and healthy individuals and to profile the relationship between microbiota and IS prognosis. Methods This observational study recruited three groups: IS, high-risk IS (HRIS), and healthy control (HC) individuals. Clinical data and saliva were collected from participants. The modified Rankin scale score after 90 days was used to assess the prognosis of stroke. Extracted DNA from saliva and performed 16S ribosomal ribonucleic acid (rRNA) gene amplicon sequencing. Sequence data were analyzed using QIIME2 and R packages to evaluate the association between the oral microbiome and stroke. Results A total of 146 subjects were enrolled in this study according to the inclusion criteria. Compared with HC, HRIS and IS demonstrated a progressive increase trend in Chao1, observed species richness, and Shannon and Simpson diversity index. On the basis of permutational multivariate analysis of variance, the data indicate a great variation in the saliva microbiota composition between HC and HRIS (F = 2.40, P < 0.001), HC and IS (F = 5.07, P < 0.001), and HRIS and IS (F = 2.79, P < 0.001). The relative abundance of g_Streptococcus, g_Prevotella, g_Veillonella, g_Fusobacterium, and g_Treponema was higher in HRIS and IS compared with that in HC. Furthermore, we constructed the predictive model by differential genera to effectively distinguish patients with IS with poor 90-day prognoses from those with good (area under the curve = 79.7%; 95% CI, 64.41%-94.97%; p < 0.01). Discussion In summary, the oral salivary microbiome of HRIS and IS subjects have a higher diversity, and the differential bacteria have some predictive value for the severity and prognosis of IS. Oral microbiota may be used as potential biomarkers in patients with IS.
Collapse
Affiliation(s)
- Wenbo Sun
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Shengwen Huang
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Xiaoli Yang
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yufan Luo
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Luqiong Liu
- Department of General Medicine, Shaoxing People’s Hospital, Zhejiang University, Shaoxing, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Danhong Wu,
| |
Collapse
|
7
|
The Stockholm Study: Over 30 years’ Observation of the Effect of Oral Infections on Systemic Health. Dent J (Basel) 2022; 10:dj10040068. [PMID: 35448062 PMCID: PMC9030271 DOI: 10.3390/dj10040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
The Stockholm Studies are a series of investigations started in 1985 and still ongoing. Out of 105,798 inhabitants, aged 30 and 40 years and living in the greater Stockholm area in Sweden, 3273 subjects were randomly selected. Of them, 1676 were clinically examined focusing on oral health. The subjects were then followed up using national population and health registers in order to study associations between oral health parameters and systemic health outcomes and finally death. The 35 years of observation provides unique possibilities to analyze, for example, how periodontitis links to a number of systemic health issues. The results have consequently provided numerous new associations and confirmed earlier observations on how poor oral health is associated with heart diseases and cancer.
Collapse
|
8
|
Periodontopathic Microbiota and Atherosclerosis: Roles of TLR-Mediated Inflammation Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9611362. [PMID: 35295717 PMCID: PMC8920700 DOI: 10.1155/2022/9611362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease with a high prevalence worldwide, contributing to a series of adverse cardiovascular and cerebrovascular diseases. Periodontal disease induced by pathogenic periodontal microbiota has been well established as an independent factor of atherosclerosis. Periodontal microorganisms have been detected in atherosclerotic plaques. The high-risk microbiota dwelling in the subgingival pocket can stimulate local and systematic host immune responses and inflammatory cascade reactions through various signaling pathways, resulting in the development and progression of atherosclerosis. One often-discussed pathway is the Toll-like receptor-nuclear factor-κB (TLR-NF-κB) signaling pathway that plays a central role in the transduction of inflammatory mediators and the release of proinflammatory cytokines. This narrative review is aimed at summarizing and updating the latest literature on the association between periodontopathic microbiota and atherosclerosis and providing possible therapeutic ideas for clinicians regarding atherosclerosis prevention and treatment.
Collapse
|
9
|
Arleevskaya M, Takha E, Petrov S, Kazarian G, Novikov A, Larionova R, Valeeva A, Shuralev E, Mukminov M, Bost C, Renaudineau Y. Causal risk and protective factors in rheumatoid arthritis: A genetic update. J Transl Autoimmun 2021; 4:100119. [PMID: 34522877 PMCID: PMC8424591 DOI: 10.1016/j.jtauto.2021.100119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
The characterization of risk and protective factors in complex diseases such as rheumatoid arthritis (RA) has evolved from epidemiological studies, which test association, to the use of Mendelian randomization approaches, which test direct relationships. Indeed, direct associations with the mucosal origin of RA are retrieved with periodontal disease (Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans predominantly), interstitial lung involvement, tobacco smoking and air pollutants. Next, factors directly associated with an acquired immune response include genetic factors (HLA DRB1, PTPN22), capacity to produce anti-modified protein antibodies (AMPA), and relatives with a history of autoimmune diseases. Finally, factors can be also classified according to their direct capacity to interfere with the IL-6/CRP/sIL-IL6R proinflammatory pathway as risk factor (body fat, cardiometabolic factors, type 2 diabetes, depressive syndrome) or either as protective factors by controlling of sIL-6R levels (higher education level, and intelligence). Although some co-founders have been characterized (e.g. vitamin D, physical activity, cancer) the direct association with sex-discrepancy, pregnancy, and infections among other factors remains to be better explored.
Collapse
Affiliation(s)
- M Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - E Takha
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia
| | - S Petrov
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia.,Institute of Environmental Sciences, Kazan (Volga Region) Federal University, Kazan, Russia
| | - G Kazarian
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia
| | - A Novikov
- Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Science, Russia
| | - R Larionova
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - A Valeeva
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia
| | - E Shuralev
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia.,Institute of Environmental Sciences, Kazan (Volga Region) Federal University, Kazan, Russia.,Kazan State Academy of Veterinary Medicine Named After N.E. Bauman, Kazan, Russia
| | - M Mukminov
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia.,Institute of Environmental Sciences, Kazan (Volga Region) Federal University, Kazan, Russia
| | - C Bost
- CHU Toulouse, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France
| | - Y Renaudineau
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia.,CHU Toulouse, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France
| |
Collapse
|
10
|
Yu W, Lu L, Ji X, Qian Q, Lin X, Wang H. Recent Advances on Possible Association Between the Periodontal Infection of Porphyromonas gingivalis and Central Nervous System Injury. J Alzheimers Dis 2021; 84:51-59. [PMID: 34487050 DOI: 10.3233/jad-215143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic periodontitis caused by Porphyromonas gingivalis (P. gingivalis) infection generally lasts for a lifetime. The long-term existence and development of P. gingivalis infection gradually aggravate the accumulation of inflammatory signals and toxic substances in the body. Recent evidence has revealed that P. gingivalis infection may be relevant to some central nervous system (CNS) diseases. The current work collects information and tries to explore the possible relationship between P. gingivalis infection and CNS diseases, including the interaction or pathways between peripheral infection and CNS injury, and the underlying neurotoxic mechanisms.
Collapse
Affiliation(s)
- Wenlei Yu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Linjie Lu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xintong Ji
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qiwei Qian
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaohan Lin
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huanhuan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
11
|
Kurilenko N, Fatkhullina AR, Mazitova A, Koltsova EK. Act Locally, Act Globally-Microbiota, Barriers, and Cytokines in Atherosclerosis. Cells 2021; 10:cells10020348. [PMID: 33562334 PMCID: PMC7915371 DOI: 10.3390/cells10020348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is characterized by the formation and progressive growth of atherosclerotic plaques in the wall of arteries. Atherosclerosis is a major predisposing factor for stroke and heart attack. Various immune-mediated mechanisms are implicated in the disease initiation and progression. Cytokines are key mediators of the crosstalk between innate and adaptive immune cells as well as non-hematopoietic cells in the aortic wall and are emerging players in the regulation of atherosclerosis. Progression of atherosclerosis is always associated with increased local and systemic levels of pro-inflammatory cytokines. The role of cytokines within atherosclerotic plaque has been extensively investigated; however, the cell-specific role of cytokine signaling, particularly the role of cytokines in the regulation of barrier tissues tightly associated with microbiota in the context of cardiovascular diseases has only recently come to light. Here, we summarize the knowledge about the function of cytokines at mucosal barriers and the interplay between cytokines, barriers, and microbiota and discuss their known and potential implications for atherosclerosis development.
Collapse
Affiliation(s)
- Natalia Kurilenko
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | | | - Aleksandra Mazitova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | - Ekaterina K. Koltsova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
- Correspondence:
| |
Collapse
|
12
|
Abstract
Atherosclerotic plaque development depends on chronic inflammation of the arterial wall. A dysbiotic gut microbiota can cause low-grade inflammation, and microbiota composition was linked to cardiovascular disease risk. However, the role of this environmental factor in atherothrombosis remains undefined. To analyze the impact of gut microbiota on atherothrombosis, we rederived low-density lipoprotein receptor-deficient (Ldlr-/- ) mice as germfree (GF) and kept these mice for 16 weeks on an atherogenic high-fat Western diet (HFD) under GF isolator conditions and under conventionally raised specific-pathogen-free conditions (CONV-R). In spite of reduced diversity of the cecal gut microbiome, caused by atherogenic HFD, GF Ldlr-/- mice and CONV-R Ldlr-/- mice exhibited atherosclerotic lesions of comparable sizes in the common carotid artery. In contrast to HFD-fed mice, showing no difference in total cholesterol levels, CONV-R Ldlr-/- mice fed control diet (CD) had significantly reduced total plasma cholesterol, very-low-density lipoprotein (VLDL), and LDL levels compared with GF Ldlr-/- mice. Myeloid cell counts in blood as well as leukocyte adhesion to the vessel wall at the common carotid artery of GF Ldlr-/- mice on HFD were diminished compared to CONV-R Ldlr-/- controls. Plasma cytokine profiling revealed reduced levels of the proinflammatory chemokines CCL7 and CXCL1 in GF Ldlr-/- mice, whereas the T-cell-related interleukin 9 (IL-9) and IL-27 were elevated. In the atherothrombosis model of ultrasound-induced rupture of the common carotid artery plaque, thrombus area was significantly reduced in GF Ldlr-/- mice relative to CONV-R Ldlr-/- mice. Ex vivo, this atherothrombotic phenotype was explained by decreased adhesion-dependent platelet activation and thrombus growth of HFD-fed GF Ldlr-/- mice on type III collagen.IMPORTANCE Our results demonstrate a functional role for the commensal microbiota in atherothrombosis. In a ferric chloride injury model of the carotid artery, GF C57BL/6J mice had increased occlusion times compared to colonized controls. Interestingly, in late atherosclerosis, HFD-fed GF Ldlr-/- mice had reduced plaque rupture-induced thrombus growth in the carotid artery and diminished ex vivo thrombus formation under arterial flow conditions.
Collapse
|
13
|
Özavci V, Erbas G, Parin U, Yüksel HT, Kirkan Ş. Molecular detection of feline and canine periodontal pathogens. Vet Anim Sci 2019; 8:100069. [PMID: 32734086 PMCID: PMC7386636 DOI: 10.1016/j.vas.2019.100069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023] Open
Abstract
It is concluded that the feline oral flora is highly diverse than canine oral flora. Porphyromonas gingivalis, Prevotella nigrescens and Porphyromonas gulae were the dominant species in cats and dogs. T. forsythia, C. ochracea, and C. sputigena in cats and T. forsythia, C. ochracea, C. sputigena T. denticola and, E. corrodens, in dogs showed that the prevalence was lower than 10%. E. corrodens in cats and, P. intermedia, A. actinomycetemcomitans, and C. rectus in dogs were also isolated from the swab samples with less than 30% percentage. A balanced diet for cats and dogs should be provided to reduce the formation of residues in the oral flora. Daily rinsing with antiseptic solutions may also be helpful against the development of periodontal pathogens.
Periodontal disease is the most common infectious disease of cats and dogs which are strongly associated with periodontal pathogens. The primary etiologic factor in the formation of periodontal disease is microbial dental plaque accumulation on teeth. In our research, we aimed to investigate the presence of periodontal disease-related bacterial species in dental plaques of cats and dogs. Specimens collected from 50 cats and 51 dogs with periodontal disease examined in terms of periodontal pathogens by polymerase chain reaction (PCR) using primers directed to 16S rRNA and tdpA genes. Our findings indicate the presence of periodontal disease-related pathogens, especially Porphyromonas gingivalis (cats 96%, dogs 88%), Prevotella nigrescens (cats 90%, dogs 57%) and, Porphyromonas gulae (cats 70%, dogs 39%). In addition, the prevalence of Tannerella forthysia (cats 2%, dogs 4%) well-known pathogen in cats and dogs were isolated with an extremely low percentage. Furthermore, our results suggest that the feline oral cavity microbiota has considerably more diversity than dogs. Consequently, daily oral hygiene practices may become essential for controlling the pathogenic bacteria which have clinical importance and in preventing the propagation of microorganisms in the oral cavity of cats and dogs.
Collapse
Affiliation(s)
- Volkan Özavci
- Department of Microbiology, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat, Turkey
- Corresponding author.
| | - Göksel Erbas
- Department of Microbiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Uğur Parin
- Department of Microbiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Hafize Tuğba Yüksel
- Department of Microbiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Şükrü Kirkan
- Department of Microbiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
14
|
Tong C, Wang YH, Chang YC. Increased Risk of Carotid Atherosclerosis in Male Patients with Chronic Periodontitis: A Nationwide Population-Based Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2635. [PMID: 31344786 PMCID: PMC6696079 DOI: 10.3390/ijerph16152635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Abstract
Carotid artery stenosis is a narrowing or constriction of any part of the carotid arteries, usually caused by atherosclerosis. However, no studies have specifically evaluated the association between carotid atherosclerosis (CA) and chronic periodontitis (CP). This study was to investigate the role of CP in increasing the subsequent risk of CA in the overall Taiwanese population. We carried out this retrospective cohort study, employing data derived from the National Health Insurance Research Database. A total of 72,630 patients who were newly diagnosed with CP from 2001 to 2012 were selected. For a propensity-matched control group, 72,630 healthy patients without CP were picked at random, matched according to age, sex, and index year from the general population. Cox proportional hazard regression analysis, which included sex, age, and comorbidities, was adopted to assess the hazard ratio (HR) of CA between the CP cohort and non-CP cohort. The average ages of the CP and non-CP groups were 44.02 ± 14.63 years and 44.15 ± 14.41 years, respectively. The follow up durations were 8.65 and 8.59 years for CP and non-CP groups, respectively. The results demonstrated that 305 and 284 patients with newly diagnosed CA were found in the CP cohort and non-CP cohort, respectively. There was no significant difference of developing CA in the CP cohort compared with the non-CP cohort (adjusted HR) 1.01, 95% confidence interval (CI, 0.86-1.19). However, multivariate Cox regression analysis indicated that the male group had significantly higher incidence risk of CA (log rank p = 0.046). In conclusion, this nationwide retrospective cohort study indicated that male patients with CP exhibited a significantly higher risk of CA than those without CP.
Collapse
Affiliation(s)
- Ching Tong
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Division of Endodontics & Periodontology, Department of Stomatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
15
|
Li X, Sun Y, An Y, Wang R, Lin H, Liu M, Li S, Ma M, Xiao C. Air pollution during the winter period and respiratory tract microbial imbalance in a healthy young population in Northeastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:972-979. [PMID: 31126003 DOI: 10.1016/j.envpol.2018.12.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 05/03/2023]
Abstract
In order to investigate the relationship between air pollution and the respiratory tract microbiota, 114 healthy volunteers aged 18-21 years were selected during the winter heating period in Northeast China; 35 from a lightly polluted region (group A), 40 from a moderately polluted region (group B) and 39 from a heavily polluted region (group C). Microbial genome DNA was extracted from throat swab samples to study the oral flora composition of the volunteers by amplifying and sequencing the V3 regions of prokaryotic 16S rRNA. Lung function tests were also performed. The relative abundance of Bacteroidetes and Fusobacteria were significantly lower and Firmicutes Proteonacteria and Actinobacteria higher in participants from polluted regions. Within bacteria classes, Bacterioida abundance was lower and Clostridia abundance higher in polluted areas, which was also reflected in the order of abundance. In samples from region C, the abundance of Prevotellaceae, Veillonellaceae, Porphyromonadaceae, Fusobacteriaceae Paraprevollaceae and Flavobacteriaceae were lowest among the 3 regions studied, whereas the abundance of Lachnospiraceae and Ruminococcaceae were the highest. From group A to group C, the relative class abundances of Prevotella, Veillonella, Fusobacterium, Camphylobacter and Capnocytophaga Porphyromonas, Peptostreptococcus and Moraxella became lower in polluted areas. Pulmonary function correlated with air pollution and the oropharyngeal microbiota differed within regions of high, medium and low air pollution. Thus, during the winter heating period in Northeast China, the imbalance of the oropharyngeal microbiota might be caused by air pollution and is likely associated with impairment of lung function in young people.
Collapse
Affiliation(s)
- Xinming Li
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning, 110034, China
| | - Ye Sun
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning, 110034, China
| | - Yunhe An
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27, West Sanhuan North Road, Haidian District, Beijing, 100089, China
| | - Ran Wang
- Department of Respiratory Medicine, Central Hospital affiliated to Shenyang Medical College, No. 5 South Seven West Road, Tiexi District, Shenyang, Liaoning, 110024, China
| | - Hong Lin
- Department of Environmental Forecasting, Shenyang Environmental Monitoring Center, No.98 Quanyun Third Road, Hunnan District, Shenyang, 110000, China
| | - Min Liu
- Department of Environmental Forecasting, Shenyang Environmental Monitoring Center, No.98 Quanyun Third Road, Hunnan District, Shenyang, 110000, China
| | - Shuyin Li
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning, 110034, China
| | - Mingyue Ma
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning, 110034, China
| | - Chunling Xiao
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning, 110034, China.
| |
Collapse
|
16
|
Bai Y, Lang EJM, Nazmi AR, Parker EJ. Domain cross-talk within a bifunctional enzyme provides catalytic and allosteric functionality in the biosynthesis of aromatic amino acids. J Biol Chem 2019; 294:4828-4842. [PMID: 30670586 DOI: 10.1074/jbc.ra118.005220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Because of their special organization, multifunctional enzymes play crucial roles in improving the performance of metabolic pathways. For example, the bacterium Prevotella nigrescens contains a distinctive bifunctional protein comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS), catalyzing the first reaction of the biosynthetic pathway of aromatic amino acids, and a chorismate mutase (CM), functioning at a branch of this pathway leading to the synthesis of tyrosine and phenylalanine. In this study, we characterized this P. nigrescens enzyme and found that its two catalytic activities exhibit substantial hetero-interdependence and that the separation of its two distinct catalytic domains results in a dramatic loss of both DAH7PS and CM activities. The protein displayed a unique dimeric assembly, with dimerization solely via the CM domain. Small angle X-ray scattering (SAXS)-based structural analysis of this protein indicated a DAH7PS-CM hetero-interaction between the DAH7PS and CM domains, unlike the homo-association between DAH7PS domains normally observed for other DAH7PS proteins. This hetero-interaction provides a structural basis for the functional interdependence between the two domains observed here. Moreover, we observed that DAH7PS is allosterically inhibited by prephenate, the product of the CM-catalyzed reaction. This allostery was accompanied by a striking conformational change as observed by SAXS, implying that altering the hetero-domain interaction underpins the allosteric inhibition. We conclude that for this C-terminal CM-linked DAH7PS, catalytic function and allosteric regulation appear to be delivered by a common mechanism, revealing a distinct and efficient evolutionary strategy to utilize the functional advantages of a bifunctional enzyme.
Collapse
Affiliation(s)
- Yu Bai
- From the Maurice Wilkins Centre, Ferrier Research Institute, Victoria University of Wellington, Wellington 6012 and
| | - Eric J M Lang
- the Maurice Wilkins Centre, Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8041, New Zealand
| | - Ali Reza Nazmi
- the Maurice Wilkins Centre, Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8041, New Zealand
| | - Emily J Parker
- From the Maurice Wilkins Centre, Ferrier Research Institute, Victoria University of Wellington, Wellington 6012 and .,the Maurice Wilkins Centre, Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
17
|
van den Munckhof ICL, Kurilshikov A, Ter Horst R, Riksen NP, Joosten LAB, Zhernakova A, Fu J, Keating ST, Netea MG, de Graaf J, Rutten JHW. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev 2018; 19:1719-1734. [PMID: 30144260 DOI: 10.1111/obr.12750] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A hallmark of obesity is chronic low-grade inflammation, which plays a major role in the process of atherosclerotic cardiovascular disease (ACVD). Gut microbiota is one of the factors influencing systemic immune responses, and profound changes have been found in its composition and metabolic function in individuals with obesity. This systematic review assesses the association between the gut microbiota and markers of low-grade inflammation in humans. We identified 14 studies which were mostly observational and relatively small (n = 10 to 471). The way in which the microbiome is analysed differed extensively between these studies. Lower gut microbial diversity was associated with higher white blood cell counts and high sensitivity C-reactive protein (hsCRP) levels. The abundance of Bifidobacterium, Faecalibacterium, Ruminococcus and Prevotella were inversely related to different markers of low-grade inflammation such as hsCRP and interleukin (IL)-6. In addition, this review speculates on possible mechanisms through which the gut microbiota can affect low-grade inflammation and thereby ACVD. We discuss the associations between the microbiome and the inflammasome, the innate immune system, bile acids, gut permeability, the endocannabinoid system and TMAO. These data reinforce the importance of human research into the gut microbiota as potential diagnostic and therapeutic strategy to prevent ACVD.
Collapse
Affiliation(s)
- I C L van den Munckhof
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Ter Horst
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - A Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - J Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - S T Keating
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - J de Graaf
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Kiouptsi K, Reinhardt C. Contribution of the commensal microbiota to atherosclerosis and arterial thrombosis. Br J Pharmacol 2018; 175:4439-4449. [PMID: 30129122 DOI: 10.1111/bph.14483] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
The commensal gut microbiota is an environmental factor that has been implicated in the development of cardiovascular disease. The development of atherosclerotic lesions is largely influenced not only by the microbial-associated molecular patterns of the gut microbiota but also by the meta-organismal trimethylamine N-oxide pathway. Recent studies have described a role for the gut microbiota in platelet activation and arterial thrombosis. This review summarizes the results from gnotobiotic mouse models and clinical data that linked microbiota-induced pattern recognition receptor signalling with atherogenesis. Based on recent insights, we here provide an overview of how the gut microbiota could affect endothelial cell function and platelet activation, to promote arterial thrombosis. LINKED ARTICLES: This article is part of a themed section on When Pharmacology Meets the Microbiome: New Targets for Therapeutics? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.24/issuetoc.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany.,German Center for Cardiovascular Research, Partner Site RheinMain, Mainz, Germany
| |
Collapse
|
19
|
Corrêa JD, Calderaro DC, Ferreira GA, Mendonça SMS, Fernandes GR, Xiao E, Teixeira AL, Leys EJ, Graves DT, Silva TA. Subgingival microbiota dysbiosis in systemic lupus erythematosus: association with periodontal status. MICROBIOME 2017; 5:34. [PMID: 28320468 PMCID: PMC5359961 DOI: 10.1186/s40168-017-0252-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/07/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Periodontitis results from the interaction between a subgingival biofilm and host immune response. Changes in biofilm composition are thought to disrupt homeostasis between the host and subgingival bacteria resulting in periodontal damage. Chronic systemic inflammatory disorders have been shown to affect the subgingival microbiota and clinical periodontal status. However, this relationship has not been examined in subjects with systemic lupus erythematosus (SLE). The objective of our study was to investigate the influence of SLE on the subgingival microbiota and its connection with periodontal disease and SLE activity. METHODS We evaluated 52 patients with SLE compared to 52 subjects without SLE (control group). Subjects were classified as without periodontitis and with periodontitis. Oral microbiota composition was assessed by amplifying the V4 region of 16S rRNA gene from subgingival dental plaque DNA extracts. These amplicons were examined by Illumina MiSeq sequencing. RESULTS SLE patients exhibited higher prevalence of periodontitis which occurred at a younger age compared to subjects of the control group. More severe forms of periodontitis were found in SLE subjects that had higher bacterial loads and decreased microbial diversity. Bacterial species frequently detected in periodontal disease were observed in higher proportions in SLE patients, even in periodontal healthy sites such as Fretibacterium, Prevotella nigrescens, and Selenomonas. Changes in the oral microbiota were linked to increased local inflammation, as demonstrated by higher concentrations of IL-6, IL-17, and IL-33 in SLE patients with periodontitis. CONCLUSIONS SLE is associated with differences in the composition of the microbiota, independently of periodontal status.
Collapse
Affiliation(s)
- Jôice Dias Corrêa
- Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | | | | | - Gabriel R. Fernandes
- René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais Brazil
| | - E. Xiao
- Penn Dental School, University of Pennsylvania, Philadelphia, PA USA
| | - Antônio Lúcio Teixeira
- University Hospital, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Eugene J. Leys
- College of Dentistry, The Ohio State University, Columbus, OH USA
| | - Dana T. Graves
- Penn Dental School, University of Pennsylvania, Philadelphia, PA USA
| | - Tarcília Aparecida Silva
- Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
- Departamento de Patologia e Cirurgia Odontológica, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31.270-901 Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
20
|
Cao C, Luo X, Ji X, Wang Y, Zhang Y, Zhang P, Zhong L. Osteopontin regulates the proliferation of rat aortic smooth muscle cells in response to gingipains treatment. Mol Cell Probes 2017; 33:51-56. [PMID: 28302392 DOI: 10.1016/j.mcp.2017.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The present study aimed to explore the possible effects of osteopontin (OPN) in the proliferation of rat aortic smooth muscle cells (RASMCs) stimulated by gingipains. METHODS The proliferation of RASMCs in response to active gingipains treatment was evaluated by CCK-8 assay. OPN siRNA was designed, constructed and transfected into RASMCs at different concentrations. The cell cycle of RASMCs was analyzed by flow cytometry. OPN, α-SMA and calponin expression were examined by real-time PCR and western blot analysis. RESULTS Gingipains promoted the proliferation of RASMCs and OPN expression. With siRNA-mediated OPN expression knockdown, the cell cycle of RASMCs was blocked in the G0/G1 phase. Furthermore, the expression of specific differentiation markers, α-SMA and calponin, also decreased. CONCLUSIONS These results demonstrate that OPN has an impact on the proliferation and differentiation of RASMCs stimulated by gingipains.
Collapse
Affiliation(s)
- Chong Cao
- Department of Periodontology, Caochong Dental Clinic, Urumqi 830054, China
| | - Xin Luo
- Department of Pharmacology, The Basic Medical Sciences College of Xinjiang Medical University, Urumqi 830054, China
| | - Xiaowei Ji
- Department of Periodontology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yao Wang
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Yuan Zhang
- Medical College of Hangzhou Normal University, Hangzhou 311121, China; Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Pengtao Zhang
- Medical College of Hangzhou Normal University, Hangzhou 311121, China; Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Liangjun Zhong
- Medical College of Hangzhou Normal University, Hangzhou 311121, China; Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China.
| |
Collapse
|
21
|
Liu L, Zhang Q, Lin J, Ma L, Zhou Z, He X, Jia Y, Chen F. Investigating Oral Microbiome Profiles in Children with Cleft Lip and Palate for Prognosis of Alveolar Bone Grafting. PLoS One 2016; 11:e0155683. [PMID: 27191390 PMCID: PMC4871547 DOI: 10.1371/journal.pone.0155683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/03/2016] [Indexed: 11/29/2022] Open
Abstract
In this study, we sought to investigate the oral microbiota structure of children with cleft lip and palate (CLP) and explore the pre-operative oral bacterial composition related to the prognosis of alveolar bone grafting. In total, 28 patients (19 boys, 9 girls) with CLP who were scheduled to undergo alveolar bone grafting for the first time were recruited. According to the clinical examination of operative sites at the third month after the operation, the individuals were divided into a non-inflammation group (n = 15) and an inflammation group (n = 13). In all, 56 unstimulated saliva samples were collected before and after the operation. The v3-v4 hypervariable regions of the 16S rRNA gene were sequenced using an Illumina MiSeq sequencing platform. Based on the beta diversity of the operational taxonomic units (OTUs) in the inflammation and non-inflammation samples, the microbial variation in the oral cavity differed significantly between the two groups before and after the operation (P < 0.05). Analysis of the relative abundances of pre-operative OTUs revealed 26 OTUs with a relative abundance higher than 0.01%, reflecting a significant difference of the relative abundance between groups (P < 0.05). According to a principal component analysis of the pre-operative samples, the inflammation-related OTUs included Tannerella sp., Porphyromonas sp., Gemella sp., Moraxella sp., Prevotella nigrescens, and Prevotella intermedia, most of which were enriched in the inflammation group and showed a significant positive correlation. A cross-validated random forest model based on the 26 different OTUs before the operation was able to fit the post-operative status of grafted sites and yielded a good classification result. The sensitivity and specificity of this classified model were 76.9% and 86.7%, respectively. These findings show that the oral microbiota profile before alveolar bone grafting may be related to the risk of post-operative inflammation at grafted sites.
Collapse
Affiliation(s)
- Luwei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Lian Ma
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Zhibo Zhou
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Xuesong He
- School of Dentistry, University of California Los Angeles, Los Angeles, United States of America
| | - Yilin Jia
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- * E-mail: (YJ); (FC)
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- * E-mail: (YJ); (FC)
| |
Collapse
|
22
|
Zhang B, Sirsjö A, Khalaf H, Bengtsson T. Transcriptional profiling of human smooth muscle cells infected with gingipain and fimbriae mutants of Porphyromonas gingivalis. Sci Rep 2016; 6:21911. [PMID: 26907358 PMCID: PMC4764818 DOI: 10.1038/srep21911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/01/2016] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is considered to be involved in the development of atherosclerosis. However, the role of different virulence factors produced by P. gingivalis in this process is still uncertain. The aim of this study was to investigate the transcriptional profiling of human aortic smooth muscle cells (AoSMCs) infected with wild type, gingipain mutants or fimbriae mutants of P. gingivalis. AoSMCs were exposed to wild type (W50 and 381), gingipain mutants (E8 and K1A), or fimbriae mutants (DPG-3 and KRX-178) of P. gingivalis. We observed that wild type P. gingivalis changes the expression of a considerable larger number of genes in AoSMCs compare to gingipain and fimbriae mutants, respectively. The results from pathway analysis revealed that the common differentially expressed genes for AoSMCs infected by 3 different wild type P. gingivalis strains were enriched in pathways of cancer, cytokine-cytokine receptor interaction, regulation of the actin cytoskeleton, focal adhesion, and MAPK signaling pathway. Disease ontology analysis showed that various strains of P. gingivalis were associated with different disease profilings. Our results suggest that gingipains and fimbriae, especially arginine-specific gingipain, produced by P. gingivalis play important roles in the association between periodontitis and other inflammatory diseases, including atherosclerosis.
Collapse
Affiliation(s)
- Boxi Zhang
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Allan Sirsjö
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Torbjörn Bengtsson
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
23
|
Periodontal disease and carotid atherosclerosis: A meta-analysis of 17,330 participants. Int J Cardiol 2016; 203:1044-51. [DOI: 10.1016/j.ijcard.2015.11.092] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
|
24
|
Polysaccharide utilization locus and CAZYme genome repertoires reveal diverse ecological adaptation of Prevotella species. Syst Appl Microbiol 2015; 38:453-61. [PMID: 26415759 DOI: 10.1016/j.syapm.2015.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 01/01/2023]
Abstract
The results of metagenomic studies have clearly established that bacteria of the genus Prevotella represent one of the important groups found in the oral cavity and large intestine of man, and they also dominate the rumen. They belong to the Bacteroidetes, a phylum well-known for its polysaccharide degrading potential that stems from the outer membrane-localized enzyme/binding protein complexes encoded in polysaccharide utilization loci (PULs). Dozens of Prevotella species have been described, primarily from the oral cavity, and many of them occur simultaneously at the same sites, but research on their ecological adaptation has been neglected. Therefore, in this study, the repertoires of PULs and carbohydrate acting enzymes (CAZYmes) found in Prevotella genomes were analyzed and it was concluded that the Prevotella species were widely heterogeneous in this respect and displayed several distinct adaptations with regard to the number, source and nature of the substrates apparently preferred for growth.
Collapse
|
25
|
Specific Inflammatory Stimuli Lead to Distinct Platelet Responses in Mice and Humans. PLoS One 2015; 10:e0131688. [PMID: 26148065 PMCID: PMC4493099 DOI: 10.1371/journal.pone.0131688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/05/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction Diverse and multi-factorial processes contribute to the progression of cardiovascular disease. These processes affect cells involved in the development of this disease in varying ways, ultimately leading to atherothrombosis. The goal of our study was to compare the differential effects of specific stimuli – two bacterial infections and a Western diet – on platelet responses in ApoE-/- mice, specifically examining inflammatory function and gene expression. Results from murine studies were verified using platelets from participants of the Framingham Heart Study (FHS; n = 1819 participants). Methods Blood and spleen samples were collected at weeks 1 and 9 from ApoE-/- mice infected with Porphyromonas gingivalis or Chlamydia pneumoniae and from mice fed a Western diet for 9 weeks. Transcripts based on data from a Western diet in ApoE-/- mice were measured in platelet samples from FHS using high throughput qRT-PCR. Results At week 1, both bacterial infections increased circulating platelet-neutrophil aggregates. At week 9, these cells individually localized to the spleen, while Western diet resulted in increased platelet-neutrophil aggregates in the spleen only. Microarray analysis of platelet RNA from infected or Western diet-fed mice at week 1 and 9 showed differential profiles. Genes, such as Serpina1a, Ttr, Fgg, Rpl21, and Alb, were uniquely affected by infection and diet. Results were reinforced in platelets obtained from participants of the FHS. Conclusion Using both human studies and animal models, results demonstrate that variable sources of inflammatory stimuli have the ability to influence the platelet phenotype in distinct ways, indicative of the diverse function of platelets in thrombosis, hemostasis, and immunity.
Collapse
|
26
|
André CB, Gomes BPFA, Duque TM, Stipp RN, Chan DCN, Ambrosano GMB, Giannini M. Dentine bond strength and antimicrobial activity evaluation of adhesive systems. J Dent 2015; 43:466-75. [PMID: 25624119 DOI: 10.1016/j.jdent.2015.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/01/2015] [Accepted: 01/07/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. METHODS Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. RESULTS Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30 min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. CONCLUSIONS Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10 min. CLINICAL SIGNIFICANCE Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity.
Collapse
Affiliation(s)
- Carolina Bosso André
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | | | - Thais Mageste Duque
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - Rafael Nobrega Stipp
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - Daniel Chi Ngai Chan
- Department of Restorative Dentistry, School of Dentistry, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-7456, USA
| | - Glaucia Maria Bovi Ambrosano
- Department of Social Dentistry, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - Marcelo Giannini
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil.
| |
Collapse
|
27
|
Carramolino-Cuéllar E, Tomás I, Jiménez-Soriano Y. Relationship between the oral cavity and cardiovascular diseases and metabolic syndrome. Med Oral Patol Oral Cir Bucal 2014; 19:e289-94. [PMID: 24121926 PMCID: PMC4048119 DOI: 10.4317/medoral.19563] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/20/2013] [Indexed: 12/17/2022] Open
Abstract
The components of the human body are closely interdependent; as a result, disease conditions in some organs or components can influence the development of disease in other body locations. The effect of oral health upon health in general has been investigated for decades by many epidemiological studies. In this context, there appears to be a clear relationship between deficient oral hygiene and different systemic disorders such as cardiovascular disease and metabolic syndrome. The precise relationship between them is the subject of ongoing research, and a variety of theories have been proposed, though most of them postulate the mediation of an inflammatory response. This association between the oral cavity and disease in general requires further study, and health professionals should be made aware of the importance of adopting measures destined to promote correct oral health.
The present study conducts a Medline search with the purpose of offering an update on the relationship between oral diseases and cardiovascular diseases, together with an evaluation of the bidirectional relationship between metabolic syndrome and periodontal disease.
Most authors effectively describe a moderate association between the oral cavity and cardiovascular diseases, though they also report a lack of scientific evidence that oral alterations constitute an independent cause of cardiovascular diseases, or that their adequate treatment can contribute to prevent such diseases.
In the case of metabolic syndrome, obesity and particularly diabetes mellitus may be associated to an increased susceptibility to periodontitis. However, it is not clear whether periodontal treatment is able to improve the systemic conditions of these patients.
Key words:Cardiovascular diseases, periodontitis, metabolic syndrome, obesity, diabetes mellitus.
Collapse
|
28
|
Kizildag A, Arabaci T, Dogan GE. Relationship between periodontitis and cardiovascular diseases: A literature review. World J Stomatol 2014; 3:1-9. [DOI: 10.5321/wjs.v3.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/14/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
Periodontitis and cardiovascular disease have a complex etiology and genetics and share some common risk factors (i.e., smoking, age, diabetes, etc.). In recent years, the relationship between periodontal disease and cardiovascular disease has been investigated extensively. This research mostly focused on the fact that periodontitis is an independent risk factor for cardiovascular disease. Our aim in this article is to investigate the etiological relationship between periodontal disease and cardiovascular disease and the mechanisms involved in this association. According to the current literature, it is concluded that there is a strong relationship between these chronic disorders.
Collapse
|
29
|
Jha HC, Mittal A. Impact of viral and bacterial infections in coronary artery disease patients. World J Transl Med 2013; 2:49-55. [DOI: 10.5528/wjtm.v2.i3.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/03/2013] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis is becoming an alarming disease for the existence of healthy human beings in the 21st century. There are a growing number of agents, either modernized life style generated, competitive work culture related or infection with some bacterial or viral agents, documented every year. These infectious agents do not have proper diagnostics or detection availability in many poor and developing countries. Hence, as active medical researchers, we summarize some aspects of infectious agents and their related mechanisms in this review which may be beneficial for new beginners in this field and update awareness in the field of cardiovascular biology.
Collapse
|
30
|
Mäntylä P, Buhlin K, Paju S, Persson GR, Nieminen MS, Sinisalo J, Pussinen PJ. Subgingival Aggregatibacter actinomycetemcomitans associates with the risk of coronary artery disease. J Clin Periodontol 2013; 40:583-90. [PMID: 23521427 DOI: 10.1111/jcpe.12098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 12/22/2022]
Abstract
AIM We investigated the association between angiographically verified coronary artery disease (CAD) and subgingival Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola. MATERIALS AND METHODS The cross-sectional study population (n = 445) comprised 171 (38.4%) patients with Stable CAD, 158 (35.5%) with acute coronary syndrome (ACS) and 116 (26.1%) with no significant CAD (No CAD). All patients participated in clinical and radiological oral health examinations. Pooled subgingival bacterial samples were analysed by checkerboard DNA-DNA hybridization assays. RESULTS In all study groups, the presence of P. gingivalis, T. forsythia and T. denticola indicated a significant (p ≤ 0.001) linear association with the extent of alveolar bone loss (ABL), but A. actinomycetemcomitans did not (p = 0.074). With a threshold level of bacterial cells 1 × 10(5) A. actinomycetemcomitans was significantly more prevalent in the Stable CAD group (42.1%) compared to the No CAD group (30.2%) (p = 0.040). In a multi-adjusted logistic regression analysis using this threshold, A. actinomycetemcomitans positivity associated with Stable CAD (OR 1.83, 95% CI 1.00-3.35, p = 0.049), but its level or levels of other bacteria did not. CONCLUSIONS The presence of subgingival A. actinomycetemcomitans associates with an almost twofold risk of Stable CAD independently of alveolar bone loss.
Collapse
Affiliation(s)
- Päivi Mäntylä
- Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
31
|
Hyvärinen K, Mäntylä P, Buhlin K, Paju S, Nieminen MS, Sinisalo J, Pussinen PJ. A common periodontal pathogen has an adverse association with both acute and stable coronary artery disease. Atherosclerosis 2012; 223:478-84. [PMID: 22704805 DOI: 10.1016/j.atherosclerosis.2012.05.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/04/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the association between angiographically verified coronary artery disease (CAD) and salivary levels of four major periodontal pathogens. METHODS The study population (n = 492) was composed of 179 (36.4%) patients with stable CAD, 166 (33.7%) with acute coronary syndrome (ACS), and 119 (24.2%) showing no pathological findings by coronary angiography. All patients were subjected to a detailed oral health examination. The saliva samples were analyzed for lipopolysaccharide activity as well as for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, and Tannerella forsythia by quantitative PCR. Serum antibodies levels against A. actinomycetemcomitans were analyzed. RESULTS The level of bacterial burden was linearly associated with alveolar bone loss (p < 0.001) and bleeding on probing (p = 0.015). The median salivary levels of A. actinomycetemcomitans in pathogen-positive patients were significantly higher in the "Stable CAD" (p = 0.014) and the "ACS" (p = 0.044) groups when compared to "No significant CAD" patients. In logistic regression models, a 10-fold increase in the salivary A. actinomycetemcomitans levels was associated with a risk for stable CAD and ACS with odds ratios (ORs) of 7.47 (95% confidence interval [CI]: 1.57-35.5, p = 0.012) and 4.31 (95% CI: 1.06-17.5, p = 0.041), respectively. The OR for the association of IgA-class antibody levels against A. actinomycetemcomitans with ACS risk was 3.13 (95% CI: 1.38-7.12, p = 0.006)/log(10) unit increase. CONCLUSIONS High salivary levels of A. actinomycetemcomitans and systemic exposure to the bacterium were associated with increased risk for CAD. These findings emphasize the importance of oral microbiota in cardiovascular risk assessment and therapeutics.
Collapse
Affiliation(s)
- Kati Hyvärinen
- Institute of Dentistry, P.O. Box 63, Biomedicum 1, 00014, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|