1
|
Mukherjee S, Chopra A, Karmakar S, Bhat SG. Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecular mechanisms. Crit Rev Microbiol 2025; 51:187-217. [PMID: 38602474 DOI: 10.1080/1040841x.2024.2339260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.
Collapse
Affiliation(s)
- Sayantan Mukherjee
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Sciences, Division of Periodontology, College of Dental Surgery, Iman Abdulrahman Bin Faizal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Agger AE, Samara A, Geng T, Olstad OK, Reseland JE. Mimicking and in vitro validating chronic inflammation in human gingival fibroblasts. Arch Oral Biol 2025; 169:106113. [PMID: 39447377 DOI: 10.1016/j.archoralbio.2024.106113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE The aim of this study was to identify and validate in vitro conditions that may mimic the translational, cytokine and chemokine profiles observed in human inflamed gingiva in vivo. DESIGN Primary human gingiva fibroblast cells (HFIB-G) were cultured under serum starvation conditions (0 - 10 %), supplemented with increasing lipopolysaccharide (LPS) concentrations (0.1, 1, or 10 µg/ml) from two bacterial strains E. coli and P. gingivalis and 0.1, 1, or 10 ng/ml recombinant interleukin 1β (IL-1β), alone or in combinations. The levels of cytokines/chemokines were measured in the cell culture medium by Luminex, and gene expression was quantified by Affymetrix microarrays at 24, 48 and 72 h. RESULTS Inflammation markers were not elevated after stimulation with P. gingivalis LPS, while E. coli LPS and IL-1β individually increased the secretion of interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) to the cell culture medium. IL-1β administration also increased the secretion of several factors, including tumor necrosis factor (TNFα). However, the combination of 1 µg/ml E. coli LPS, 1 ng/ml IL-1β and serum starvation led to increased secretion of IL-6, TNFα, in addition to other factors found in inflamed tissue. Gene expression analyses revealed that this combination not only enhanced the expression interleukins/chemokines genes but also T helper cell signaling and matrix metalloproteinases. CONCLUSION Serum reduction in cell culture medium together with the administration of E. coli LPS and IL-1β resulted in gene expression and secreted cytokine/chemokine profiles similar to that found in vivo during chronic inflammation.
Collapse
Affiliation(s)
- Anne Eriksson Agger
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway; FUTURE, Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway.
| | - Athina Samara
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway; FUTURE, Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway.
| | - Tianxiang Geng
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.
| | | | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway; FUTURE, Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Uçan Yarkaç F, Babayiğit O, Gokturk O. Associations between immune-inflammatory markers, age, and periodontal status: a cross-sectional study. Odontology 2024; 112:1296-1306. [PMID: 38443702 DOI: 10.1007/s10266-024-00907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
Since periodontal disease is associated with many systemic diseases, it is important to evaluate its effects on host responses in elderly individuals. To this end, this study investigated salivary interleukin (IL)-17, IL-18, toll-like receptor (TLR) 2, TLR4, and tumor necrosis factor-alpha (TNF-α) levels in patient groups with different periodontal health statuses and immunologically evaluated the relationship between age and periodontal health status. A total of 60 individuals aged 18-40 years (young individuals) and 60 individuals aged 65 years or older (elderly individuals) were included in this study. According to periodontal disease status, the patients were divided into periodontally healthy, gingivitis, and periodontitis subgroups. Clinical periodontal parameters, including probing depth (PD), clinical attachment level (CAL), plaque index (PI), and gingival index (GI), were recorded. Saliva samples were collected and analyzed using ELISA to determine the levels of IL-17, IL-18, TLR2, TLR4, and TNF-α. Higher clinical periodontal parameter (PD, CAL, PI, and GI) and inflammatory marker (IL-17, IL-18, TNF-α, TLR2, and TLR4) levels were found in patients with periodontitis than those in periodontally healthy individuals and patients with gingivitis (P < 0.05). Salivary inflammatory marker levels were significantly higher in elderly individuals than those in young individuals in all subgroups (P < 0.05). A positive correlation was found between inflammatory marker levels and clinical periodontal parameters, but there was no correlation between TLR2 and PI or GI. This study suggests a significant increase in host response to periodontal disease as the disease progresses, with the levels of cytokines and TLR expression exhibiting an increasing trend with age. Increased IL-17, IL-18, TLR2, TLR4, and TNF-α levels in elderly individuals in all periodontal health subgroups might suggest the role of these cytokines and TLR pathway in the pathogenesis of periodontal diseases.
Collapse
Affiliation(s)
- Fatma Uçan Yarkaç
- Department of Periodontology, Necmettin Erbakan University Faculty of Dentistry, Konya, Turkey
| | - Osman Babayiğit
- Department of Periodontology, Necmettin Erbakan University Faculty of Dentistry, Konya, Turkey.
| | | |
Collapse
|
4
|
Walther K, Gröger S, Vogler JAH, Wöstmann B, Meyle J. Inflammation indices in association with periodontitis and cancer. Periodontol 2000 2024; 96:281-315. [PMID: 39317462 PMCID: PMC11579835 DOI: 10.1111/prd.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Inflammation is a complex physiological process that plays a pivotal role in many if not all pathological conditions, including infectious as well as inflammatory diseases, like periodontitis and autoimmune disorders. Inflammatory response to periodontal biofilms and tissue destruction in periodontitis is associated with the release of inflammatory mediators. Chronic inflammation can promote the development of cancer. Persistence of inflammatory mediators plays a crucial role in this process. Quantification and monitoring of the severity of inflammation in relation to cancer is essential. Periodontitis is mainly quantified based on the severity and extent of attachment loss and/or pocket probing depth, in addition with bleeding on probing. In recent years, studies started to investigate inflammation indices in association with periodontal diseases. To date, only few reviews have been published focusing on the relationship between blood cell count, inflammation indices, and periodontitis. This review presents a comprehensive overview of different systemic inflammation indices, their methods of measurement, and the clinical applications in relation to periodontitis and cancer. This review outlines the physiological basis of inflammation and the underlying cellular and molecular mechanisms of the parameters described. Key inflammation indices are commonly utilized in periodontology such as the neutrophil to lymphocyte ratio. Inflammation indices like the platelet to lymphocyte ratio, platelet distribution width, plateletcrit, red blood cell distribution width, lymphocyte to monocyte ratio, delta neutrophil index, and the systemic immune inflammation index are also used in hospital settings and will be discussed. The clinical roles and limitations, relationship to systemic diseases as well as their association to periodontitis and treatment response are described.
Collapse
Affiliation(s)
- Kay‐Arne Walther
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Prosthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | - Sabine Gröger
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Orthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | | | - Bernd Wöstmann
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Prosthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | - Jörg Meyle
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Periodontology, Dental ClinicUniversity of BernBernSwitzerland
| |
Collapse
|
5
|
Hsiao PY, Huang RY, Huang LW, Chu CL, Dyke TV, Mau LP, Cheng CD, Sung CE, Weng PW, Wu YC, Shieh YS, Cheng WC. MyD88 exacerbates inflammation-induced bone loss by modulating dynamic equilibrium between Th17/Treg cells and subgingival microbiota dysbiosis. J Periodontol 2024; 95:764-777. [PMID: 38523602 DOI: 10.1002/jper.23-0561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND This study aimed to investigate the contribution of myeloid differentiation primary-response gene 88 (MyD88) on the differentiation of T helper type 17 (Th17) and regulatory T (Treg) cells and the emerging subgingival microbiota dysbiosis in Porphyromonas gingivalis-induced experimental periodontitis. METHODS Alveolar bone loss, infiltrated inflammatory cells, immunostained cells for tartrate-resistant acid phosphatase (TRAP), the receptor activator of nuclear factor-kB ligand (RANKL), and osteoprotegerin (OPG) were quantified by microcomputerized tomography and histological staining between age- and sex-matched homozygous littermates (wild-type [WT, Myd88+/+] and Myd88-/- on C57BL/6 background). The frequencies of Th17 and Treg cells in cervical lymph nodes (CLNs) and spleen were determined by flow cytometry. Cytokine expression in gingival tissues, CLNs, and spleens were studied by quantitative polymerase chain reaction (qPCR). Analysis of the composition of the subgingival microbiome and functional annotation of prokaryotic taxa (FAPROTAX) analysis were performed. RESULTS P. gingivalis-infected Myd88-/- mice showed alleviated bone loss, TRAP+ osteoclasts, and RANKL/OPG ratio compared to WT mice. A significantly higher percentage of Foxp3+CD4+ T cells in infected Myd88-/- CLNs and a higher frequency of RORγt+CD4+ T cells in infected WT mice was noted. Increased IL-10 and IL-17a expressions in gingival tissue at D14-D28 then declined in WT mice, whereas an opposite pattern was observed in Myd88-/- mice. The Myd88-/- mice exhibited characteristic increases in gram-positive species and species having probiotic properties, while gram-negative, anaerobic species were noted in WT mice. FAPROTAX analysis revealed increased aerobic chemoheterotrophy in Myd88-/- mice, whereas anaerobic chemoheterotrophy was noted in WT mice after P. gingivalis infection. CONCLUSIONS MyD88 plays an important role in inflammation-induced bone loss by modulating the dynamic equilibrium between Th17/Treg cells and dysbiosis in P. gingivalis-induced experimental periodontitis.
Collapse
Affiliation(s)
- Po-Yan Hsiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Lin-Wei Huang
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Thomas Van Dyke
- Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Lian-Ping Mau
- Department of Periodontics, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chiao Wu
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Kinane DF, Lappin DF, Culshaw S. The role of acquired host immunity in periodontal diseases. Periodontol 2000 2024. [PMID: 38641953 DOI: 10.1111/prd.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
The aim of this narrative review is to relate the contribution of European researchers to the complex topic of the host immune system in periodontal disease, focusing on acquired immunity. Other chapters in this volume will address the genetics and autoantibody responses and other forms of immunity to periodontal disease. While the contribution of European authors is the focus, global literature is included in this descriptive narrative for contextual clarity, albeit many with European co-authors. The topic is relatively intense and is thus broken down into sections outlined below, tackled as descriptive narratives to enhance understanding. Any attempt at a systematic or scoping review was quickly abandoned given the descriptive nature and marked variation of approach in almost all publications. Even the most uniform area of this acquired periodontal immunology literature, antibody responses to putative pathogens in periodontal diseases, falls short of common structures and common primary outcome variables one would need and expect in clinical studies, where randomized controlled clinical trials (RCTs) abound. Addressing 'the host's role' in immunity immediately requires a discussion of host susceptibility, which necessitates consideration of genetic studies (covered elsewhere in the volume and superficially covered here).
Collapse
|
7
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
8
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Fawzy El-Sayed KM, Cosgarea R, Sculean A, Doerfer C. Can vitamins improve periodontal wound healing/regeneration? Periodontol 2000 2024; 94:539-602. [PMID: 37592831 DOI: 10.1111/prd.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Periodontitis is a complex inflammatory disorder of the tooth supporting structures, associated with microbial dysbiosis, and linked to a number if systemic conditions. Untreated it can result in an irreversible damage to the periodontal structures and eventually teeth loss. Regeneration of the lost periodontium requires an orchestration of a number of biological events on cellular and molecular level. In this context, a set of vitamins have been advocated, relying their beneficial physiological effects, to endorse the biological regenerative events of the periodontium on cellular and molecular levels. The aim of the present article is to elaborate on the question whether or not vitamins improve wound healing/regeneration, summarizing the current evidence from in vitro, animal and clinical studies, thereby shedding light on the knowledge gap in this field and highlighting future research needs. Although the present review demonstrates the current heterogeneity in the available evidence and knowledge gaps, findings suggest that vitamins, especially A, B, E, and CoQ10, as well as vitamin combinations, could exert positive attributes on the periodontal outcomes in adjunct to surgical or nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Christof Doerfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
10
|
Mazurek-Mochol M, Serwin K, Bonsmann T, Kozak M, Piotrowska K, Czerewaty M, Safranow K, Pawlik A. Expression of Interleukin 17A and 17B in Gingival Tissue in Patients with Periodontitis. J Clin Med 2023; 12:4614. [PMID: 37510729 PMCID: PMC10380614 DOI: 10.3390/jcm12144614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Periodontitis (PD) is a chronic inflammatory disease that is initiated by oral microorganisms. The pathogens induce the production of cytokines, such as interleukin (IL)-17, which enhances the inflammatory response and progression of the disease. The aim of this study was to examine the expression and localization in gingival tissue of IL-17A and IL-17B in patients with periodontitis. This study included 14 patients with periodontal disease and 14 healthy subjects without periodontal disease as a control group. There were no statistically significant differences in the expression of IL-17A mRNA between patients with periodontitis and control subjects. The expression of IL-17B mRNA was statistically significantly lower in patients with periodontitis in comparison with healthy subjects (p < 0.048). The expression of IL-17A correlated significantly with the approximal plaque index. The IL-17B expression in gingival tissue correlated with the clinical attachment level. This correlation reached borderline statistical significance (p = 0.06). In immunohistochemical analysis, we have shown the highest expression of IL-17 protein in inflamed connective tissue, epithelium, and granulation tissue from gingival biopsy specimens from patients with periodontitis. In biopsy specimens from healthy individuals, no IL-17 was found in the epithelium, while an expression of IL-17 was found in the connective tissue. The results of our study confirm the involvement of IL-17 in the pathogenesis of periodontitis. Our results suggest that an increase in IL-17 protein expression in the gingival tissue of patients with periodontitis occurs at the post-translational stage.
Collapse
Affiliation(s)
| | - Karol Serwin
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Tobias Bonsmann
- Department of Periodontology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Małgorzata Kozak
- Department of Dental Prosthetics, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Michał Czerewaty
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
11
|
Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res 2023; 11:26. [PMID: 37217496 DOI: 10.1038/s41413-023-00257-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from "classical osteoclasts" has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.
Collapse
Affiliation(s)
- Emilie Hascoët
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Frédéric Blanchard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | | | - Jérôme Guicheux
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
| | - Philippe Lesclous
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexandra Cloitre
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| |
Collapse
|
12
|
Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol 2022; 12:1026457. [PMID: 36467726 PMCID: PMC9712990 DOI: 10.3389/fcimb.2022.1026457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
The association between periodontal disease and systemic disease has become a research hotspot. Porphyromonas gingivalis (P. gingivalis), a crucial periodontal pathogen, affects the development of systemic diseases. The pathogenicity of P. gingivalis is largely linked to interference with the host's immunity. This review aims to discover the role of P. gingivalis in the modulation of the host's adaptive immune system through a large number of virulence factors and the manipulation of cellular immunological responses (mainly mediated by T cells). These factors may affect the cause of large numbers of systemic diseases, such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's disease. The point of view of adaptive immunity may provide a new idea for treating periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
13
|
Huang D, Zhang C, Wang P, Li X, Gao L, Zhao C. JMJD3 Promotes Porphyromonas gingivalis Lipopolysaccharide-Induced Th17-Cell Differentiation by Modulating the STAT3-RORc Signaling Pathway. DNA Cell Biol 2022; 41:778-787. [PMID: 35867069 PMCID: PMC9416562 DOI: 10.1089/dna.2022.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immune response mediated by Th17 cells is essential in the pathogenesis of periodontitis. Emerging evidence has demonstrated that lipopolysaccharide from Porphyromonas gingivalis (Pg-LPS) could promote Th17-cell differentiation directly, while the downstream signaling remains elusive. This study was aimed to explore the role of JMJD3 (a JmjC family histone demethylase) and signal transducers and activators of transcription 3 (STAT3) in Th17-cell differentiation triggered by Pg-LPS and clarify the interaction between them. We found that the expression of JMJD3 and STAT3 was significantly increased under Th17-polarizing conditions. Pg-LPS could promote Th17-cell differentiation from CD4+ T cells, with an increased expression of JMJD3 and STAT3 compared to the culture without Pg-LPS. The coimmunoprecipitation results showed that the interactions of JMJD3 and STAT3, STAT3 and retinoid-related orphan nuclear receptor γt (RORγt) were enhanced following Pg-LPS stimulation during Th17-cell differentiation. Further blocking assays were performed and the results showed that inhibition of STAT3 or JMJD3 both suppressed the Th17-cell differentiation, JMJD3 inhibitor could reduce the expression of STAT3 and p-STAT3, while JMJD3 expression was not affected when STAT3 was inhibited. Taken together, this study found that JMJD3 could promote Pg-LPS induced Th17-cell differentiation by modulating the STAT3-RORc signaling pathway.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Immunopathogenesis and distinct role of Th17 in Periodontitis: A review. J Oral Biosci 2022; 64:193-201. [PMID: 35489583 DOI: 10.1016/j.job.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Periodontitis is a multifactorial inflammatory disease mediated by the host immune response to dental plaque. Periodontitis is characterized by periodontal bone loss and loss of tooth support. Several studies have corroborated the infiltration of T lymphocytes in periodontitis and correlated the infiltration with chronic inflammation in a dysregulated T cell-mediated immune response. The complexity of the disease has prompted multiple studies aiming to understand T cell-mediated pathogenesis. HIGHLIGHT Recent findings have demonstrated the pivotal role of helper T cells in many autoimmune diseases, such as rheumatoid arthritis, which has been conventionally correlated with periodontal bone loss. In contrast, the roles of helper T subsets, Th1, Th2, and particularly Th17, have not been explored. Th17-mediated pathogenesis is a significant aspect of the progression and therapy of periodontitis. CONCLUSION In this review, we highlight the complex role of Th17 in the underlying pro-inflammatory cascades mediated by a repertoire of Th17-released molecules and their role in aggravated inflammation in periodontitis. We also summarize recent therapeutics targeting Th17 and related molecules, primarily to ameliorate inflammation and maintain periodontal care.
Collapse
|
15
|
Cai W, Marouf N, Said KN, Tamimi F. Nature of the Interplay Between Periodontal Diseases and COVID-19. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.735126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is mostly a mild condition, however, in some patients, it could progress into a severe and even fatal disease. Recent studies have shown that COVID-19 infection and severity could be associated with the presence of periodontitis, one of the most prevalent chronic diseases. This association could be explained by the fact that periodontitis and COVID-19 share some common risk factors that included chronic diseases, such as diabetes and hypertension as well as conditions such as age, sex, and genetic variants. Another possible explanation could be the systemic inflammation and the aspiration of periodontopathogens seen in patients with periodontitis, which could have a synergism with the virus or compromise the reaction of the body against COVID-19. This narrative review explores the nature of these associations, the evidence behind them, and their implications.
Collapse
|
16
|
Porphyromonas gingivalis exacerbates ulcerative colitis via Porphyromonas gingivalis peptidylarginine deiminase. Int J Oral Sci 2021; 13:31. [PMID: 34593756 PMCID: PMC8484350 DOI: 10.1038/s41368-021-00136-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/09/2022] Open
Abstract
Ulcerative Colitis (UC) has been reported to be related to Porphyromonas gingivalis (P. gingivalis). Porphyromonas gingivalis peptidylarginine deiminase (PPAD), a virulence factor released by P. gingivalis, is known to induce inflammatory responses. To explore the pathological relationships between PPAD and UC, we used homologous recombination technology to construct a P. gingivalis strain in which the PPAD gene was deleted (Δppad) and a Δppad strain in which the PPAD gene was restored (comΔppad). C57BL/6 mice were orally gavaged with saline, P. gingivalis, Δppad, or comΔppad twice a week for the entire 40 days (days 0-40), and then, UC was induced by dextran sodium sulfate (DSS) solution for 10 days (days 31-40). P. gingivalis and comΔppad exacerbated DDS-induced colitis, which was determined by assessing the parameters of colon length, disease activity index, and histological activity index, but Δppad failed to exacerbate DDS-induced colitis. Flow cytometry and ELISA revealed that compared with Δppad, P. gingivalis, and comΔppad increased T helper 17 (Th17) cell numbers and interleukin (IL)-17 production but decreased regulatory T cells (Tregs) numbers and IL-10 production in the spleens of mice with UC. We also cocultured P. gingivalis, Δppad, or comΔppad with T lymphocytes in vitro and found that P. gingivalis and comΔppad significantly increased Th17 cell numbers and decreased Treg cell numbers. Immunofluorescence staining of colon tissue paraffin sections also confirmed these results. The results suggested that P. gingivalis exacerbated the severity of UC in part via PPAD.
Collapse
|
17
|
Huang N, Dong H, Luo Y, Shao B. Th17 Cells in Periodontitis and Its Regulation by A20. Front Immunol 2021; 12:742925. [PMID: 34557201 PMCID: PMC8453085 DOI: 10.3389/fimmu.2021.742925] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a prevalent chronic disease that results in loss of periodontal ligament and bone resorption. Triggered by pathogens and prolonged inflammation, periodontitis is modulated by the immune system, especially pro-inflammatory cells, such as T helper (Th) 17 cells. Originated from CD4+ Th cells, Th17 cells play a central role for they drive and regulate periodontal inflammation. Cytokines secreted by Th17 cells are also major players in the pathogenesis of periodontitis. Given the importance of Th17 cells, modulators of Th17 cells are of great clinical potential and worth of discussion. This review aims to provide an overview of the current understanding of the effect of Th17 cells on periodontitis, as well as a brief discussion of current and potential therapies targeting Th17 cells. Lastly, we highlight this article by summarizing the causal relationship between A20 (encoded by TNFAIP3), an anti-inflammatory molecule, and Th17 cell differentiation.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqi Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
SELMAN AE, GÖRGÜLÜ NG, DOĞAN B. Salivary Levels of IL-21 as a Potential Marker of Stage III Grade C Periodontitis. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.989487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Ilango P, Kumar D, Mahalingam A, Thanigaimalai A, Reddy VK. Evidence revealing the role of T cell regulators (Tregs) in periodontal diseases: A review. J Indian Soc Periodontol 2021; 25:278-282. [PMID: 34393396 PMCID: PMC8336777 DOI: 10.4103/jisp.jisp_308_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 01/27/2023] Open
Abstract
Periodontitis is an inflammatory disease of the periodontium, which is a reflection of the overgrowth of oral commensals. This alteration in the oral microbiota initiates inflammation of the gingiva, which when left untreated, terminates with the resorption of the alveolar bone that may lead to a poor and hopeless prognosis. With upcoming trends in modulating the host's immunity, the role of regulatory T-cells has gained importance. These T-cells defend against inflammation and autoimmunity as they suppress both. However, in both the conditions, the regulatory cells are invariably reduced in number. Novel methods to enhance the function of Tregs have made their way in dentistry, as a promising approach to cure periodontitis. This article discusses various significant tests and trials of Tregs in the recent years.
Collapse
Affiliation(s)
- Paavai Ilango
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Dhanapriya Kumar
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Arulpari Mahalingam
- Department of Pedodontics, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Abirami Thanigaimalai
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Vineela Katam Reddy
- Department of Periodontics, Indira Gandhi Dental College and Hospital, Puducherry, India
| |
Collapse
|
20
|
Zhang C, Xu C, Gao L, Li X, Zhao C. Porphyromonas gingivalis lipopolysaccharide promotes T-hel per17 cell differentiation by upregulating Delta-like ligand 4 expression on CD14 + monocytes. PeerJ 2021; 9:e11094. [PMID: 33981487 PMCID: PMC8074840 DOI: 10.7717/peerj.11094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022] Open
Abstract
Backgroud To investigate the effect and mechanism of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) on Th17 cell differentiation mediated by CD14+ monocytes. Methods P. gingivalis LPS-activated CD14+ monocytes were co-cultured with CD4+T cells in different cell ratios. An indirect co-culture system was also established using transwell chambers. Furthermore, anti- Delta-like ligand 4 (Dll-4) antibody was used to investigate the role of Dll-4 in Th17 cell response. The mRNA expression was analyzed using quantitative reverse transcription-polymerase chain reaction, and secreted cytokines in culture supernatant were detected using enzyme-linked immunosorbent assay. Flow cytometry was used to determine the frequencies of Th17 cells. IL-17 protein expression levels were determined using western blotting assay. Results P. gingivalis LPS increased the expressions of interleukin (IL)-1β, IL-6, IL-23 and transforming growth factor (TGF)-β in CD14+ monocytes. Th17 cell frequency upregulated, which is not solely cytokine-dependent but rather requires cell-cell contact with activated monocytes, particularly in the 1:10 cell ratio. Furthermore, P. gingivalis LPS increased t he expression of Dll-4 on CD14+ monocytes, whereas the anti- Dll-4 a ntibody decreased the response of Th17 cells. The results suggest that P. gingivalis LPS enhances Th17 cell response via Dll-4 upregulation on CD14+ monocytes.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chenrong Xu
- Department of Periodontology, Guangdong Provincial Hospital of Stomatology, Stomatological Hospital of Southern Medical University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Hatasa M, Yoshida S, Takahashi H, Tanaka K, Kubotsu Y, Ohsugi Y, Katagiri T, Iwata T, Katagiri S. Relationship between NAFLD and Periodontal Disease from the View of Clinical and Basic Research, and Immunological Response. Int J Mol Sci 2021; 22:3728. [PMID: 33918456 PMCID: PMC8038294 DOI: 10.3390/ijms22073728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontal disease is an inflammatory disease caused by pathogenic oral microorganisms that leads to the destruction of alveolar bone and connective tissues around the teeth. Although many studies have shown that periodontal disease is a risk factor for systemic diseases, such as type 2 diabetes and cardiovascular diseases, the relationship between nonalcoholic fatty liver disease (NAFLD) and periodontal disease has not yet been clarified. Thus, the purpose of this review was to reveal the relationship between NAFLD and periodontal disease based on epidemiological studies, basic research, and immunology. Many cross-sectional and prospective epidemiological studies have indicated that periodontal disease is a risk factor for NAFLD. An in vivo animal model revealed that infection with periodontopathic bacteria accelerates the progression of NAFLD accompanied by enhanced steatosis. Moreover, the detection of periodontopathic bacteria in the liver may demonstrate that the bacteria have a direct impact on NAFLD. Furthermore, Porphyromonas gingivalis lipopolysaccharide induces inflammation and accumulation of intracellular lipids in hepatocytes. Th17 may be a key molecule for explaining the relationship between periodontal disease and NAFLD. In this review, we attempted to establish that oral health is essential for systemic health, especially in patients with NAFLD.
Collapse
Affiliation(s)
- Masahiro Hatasa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Sumiko Yoshida
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (K.T.); (Y.K.)
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (K.T.); (Y.K.)
| | - Yoshihito Kubotsu
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (K.T.); (Y.K.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Takaharu Katagiri
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan;
- Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| |
Collapse
|
22
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
23
|
Feng YK, Wu QL, Peng YW, Liang FY, You HJ, Feng YW, Li G, Li XJ, Liu SH, Li YC, Zhang Y, Pei Z. Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice. J Neuroinflammation 2020; 17:347. [PMID: 33213462 PMCID: PMC7677837 DOI: 10.1186/s12974-020-02027-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background The R1441G mutation in the leucine-rich repeat kinase 2 (LRRK2) gene results in late-onset Parkinson’s disease (PD). Peripheral inflammation and gut microbiota are closely associated with the pathogenesis of PD. Chronic periodontitis is a common type of peripheral inflammation, which is associated with PD. Porphyromonas gingivalis (Pg), the most common bacterium causing chronic periodontitis, can cause alteration of gut microbiota. It is not known whether Pg-induced dysbiosis plays a role in the pathophysiology of PD. Methods In this study, live Pg were orally administrated to animals, three times a week for 1 month. Pg-derived lipopolysaccharide (LPS) was used to stimulate mononuclear cells in vitro. The effects of oral Pg administration on the gut and brain were evaluated through behaviors, morphology, and cytokine expression. Results Dopaminergic neurons in the substantia nigra were reduced, and activated microglial cells were increased in R1441G mice given oral Pg. In addition, an increase in mRNA expression of tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) as well as protein level of α-synuclein together with a decrease in zonula occludens-1 (Zo-1) was detected in the colon in Pg-treated R1441G mice. Furthermore, serum interleukin-17A (IL-17A) and brain IL-17 receptor A (IL-17RA) were increased in Pg-treated R1441G mice. Conclusions These findings suggest that oral Pg-induced inflammation may play an important role in the pathophysiology of LRRK2-associated PD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02027-5.
Collapse
Affiliation(s)
- Yu-Kun Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.,Department of Neurology, Hainan General Hospital; Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Qiong-Li Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Wen Peng
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng-Yin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Hua-Jing You
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yi-Wei Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Ge Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Xue-Jiao Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Shu-Hua Liu
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Yong-Chao Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Yu Zhang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
24
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, Darby IB, O'Brien-Simpson NM. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis. Cytokine 2020; 138:155340. [PMID: 33144024 DOI: 10.1016/j.cyto.2020.155340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Periodontitis is a chronic inflammatory disease with a complex underlying immunopathology. Cytokines, as molecular mediators of inflammation, play a role in all stages of disease progression. T helper 17 (Th17) cells are thought to play a role in periodontitis. Th17 cell development and maintenance requires a pro-inflammatory cytokine milieu, with many of the cytokines implicated in the pathogenesis of periodontitis. Serum and saliva are easily accessible biofluids which can represent the systemic and local environment to promote the development of Th17 cells. Here we review human clinical studies that investigate IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in serum and saliva in periodontitis. We highlight their putative role in the pathogenesis of periodontitis and place them within a wider context of animal and other clinical studies.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | - Eric C Reynolds
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
25
|
Saxena S, Venugopal R, Chandrayan Rao R, Yuwanati MB, Awasthi H, Jain M. Association of chronic periodontitis and type 2 diabetes mellitus with salivary Del-1 and IL-17 levels. J Oral Biol Craniofac Res 2020; 10:529-534. [PMID: 32874883 PMCID: PMC7452335 DOI: 10.1016/j.jobcr.2020.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/12/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Chronic periodontitis (CP) and Type 2 diabetes mellitus (T2DM) are chronic diseases affecting the humans and have interrelationship in their pathogenesis. Monitoring the progress with biomarker in these disease is important from treatment outcome point of view. We investigated the association of salivary developmental endothelial locus-1 (Del-1) and interleukin-17 (IL-17) levels in CP and T2DM. METHODS Saliva was collected from 17 healthy and 68 patients (divided into 4 groups based on presence or absence of CP and T2DM). Periodontal parameters were recorded at the time of visit. Del-1 and IL-17 levels in unstimulated salivary samples were determined using enzyme-linked immunosorbent assay. RESULTS Study found the lower levels of salivary Del-1 and higher levels of IL-17 in CP (2.23 ± 2.10 ng/mL, 56.54 ± 19.79 ng/mL), CCDM ((1.97 ± 1.36 ng/mL, 74.74 ± 17.79 ng/mL) and CUDM (1.02 ± 0.52 ng/mL, 63.84 ± 24.72 ng/mL) as compared to healthy individuals (6.54 ± 2.07; 24.47 ± 8.23 ng/mL) (p < 0.001). Del-1 and IL-17 levels were correlating with inflammatory state in CP and presence of T2DM aggravate the severity of disease in CP. An inverse correlation between salivary Del-1 & IL-17 levels was also seen. Furthermore, we also observed that the combination of T2DM and CP (CCDM and CUDM) increases the salivary IL-17 levels and decreases Del-1 levels. CONCLUSIONS There is an upregulation of salivary IL-17 and downregulation of salivary Del-1 with increase in severity of periodontal disease as well as T2DM. Furthermore, the presence of T2DM in chronic periodontitis patients can aggravate the inflammation related periodontal destruction.
Collapse
Affiliation(s)
- Somil Saxena
- People's College of Dental Sciences and Research Centre, People's University, Bhopal, India
| | - Ranganath Venugopal
- AECS Maaruti College of Dental Sciences and Research Centre, Bangalore, India
| | | | - Monal B. Yuwanati
- People's College of Dental Sciences and Research Centre, People's University, Bhopal, India
| | - Harshita Awasthi
- AECS Maaruti College of Dental Sciences and Research Centre, Bangalore, India
| | - Megha Jain
- People's College of Dental Sciences and Research Centre, People's University, Bhopal, India
| |
Collapse
|
26
|
Medara N, Lenzo JC, Walsh KA, Darby IB, O'Brien-Simpson NM, Reynolds EC. T helper 17 cell-related cytokines in serum and saliva during management of periodontitis. Cytokine 2020; 134:155186. [PMID: 32717609 DOI: 10.1016/j.cyto.2020.155186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
AIM T helper (Th)17 cells are implicated in the pathogenesis of periodontitis. This study investigated the effect of periodontal management on fifteen Th17-related cytokines in serum and saliva in periodontitis patients. MATERIALS AND METHODS Periodontal parameters, serum and saliva were collected from 40 healthy controls and 54 periodontitis subjects before treatment, and 3-, 6- and 12-months post-treatment. Cytokine concentrations of IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α were determined by Luminex assay. RESULTS IL-1β, IL-6, sCD40L and TNF-α in serum, and IL-1β, IL-6, IL-25 and IL-31 in saliva were significantly higher at baseline compared to health and decreased with treatment. In contrast, serum IL-31 was significantly lower at baseline compared to health and increased with treatment. In addition, salivary IL-10, IL-17A, IL-17F, IL-23, IL-33, IFN-γ and TNF-α also displayed treatment-related reduction. Correlation networks showed that cytokines in saliva displayed a higher number of correlations compared to serum in periodontitis. CONCLUSION Treatment generally decreased cytokine concentrations except for serum IL-31 which showed a treatment-related increase. Serum cytokine concentrations may not be reflective of salivary cytokines. Saliva may be a better medium for cytokine detection compared to serum. Serum IL-31 and salivary IL-1β, IL-6, IL-10 and TNF-α were significant predictors for mean probing depth and may be potential biomarkers of interest in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Eric C Reynolds
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
27
|
Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:45-84. [PMID: 32085888 DOI: 10.1016/bs.apcsb.2019.12.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
Collapse
Affiliation(s)
- Weizhe Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Wei Zhou
- Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, Pudong, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
28
|
Bunte K, Beikler T. Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2019; 20:ijms20143394. [PMID: 31295952 PMCID: PMC6679067 DOI: 10.3390/ijms20143394] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Innate immunity represents the semi-specific first line of defense and provides the initial host response to tissue injury, trauma, and pathogens. Innate immunity activates the adaptive immunity, and both act highly regulated together to establish and maintain tissue homeostasis. Any dysregulation of this interaction can result in chronic inflammation and autoimmunity and is thought to be a major underlying cause in the initiation and progression of highly prevalent immune-mediated inflammatory diseases (IMIDs) such as psoriasis, rheumatoid arthritis, inflammatory bowel diseases among others, and periodontitis. Th1 and Th2 cells of the adaptive immune system are the major players in the pathogenesis of IMIDs. In addition, Th17 cells, their key cytokine IL-17, and IL-23 seem to play pivotal roles. This review aims to provide an overview of the current knowledge about the differentiation of Th17 cells and the role of the IL-17/IL-23 axis in the pathogenesis of IMIDs. Moreover, it aims to review the association of these IMIDs with periodontitis and briefly discusses the therapeutic potential of agents that modulate the IL-17/IL-23 axis.
Collapse
Affiliation(s)
- Kübra Bunte
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
29
|
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol 2019; 10:208. [PMID: 30837987 PMCID: PMC6383680 DOI: 10.3389/fimmu.2019.00208] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular Phenotype and Apoptosis: The function of epithelial tissues is the protection of the organism from chemical, microbial, and physical challenges which is indispensable for viability. To fulfill this task, oral epithelial cells follow a strongly regulated scheme of differentiation that results in the formation of structural proteins that manage the integrity of epithelial tissues and operate as a barrier. Oral epithelial cells are connected by various transmembrane proteins with specialized structures and functions. Keratin filaments adhere to the plasma membrane by desmosomes building a three-dimensional matrix. Cell-Cell Contacts and Bacterial Influence: It is known that pathogenic oral bacteria are able to affect the expression and configuration of cell-cell junctions. Human keratinocytes up-regulate immune-modulatory receptors upon stimulation with bacterial components. Periodontal pathogens including P. gingivalis are able to inhibit oral epithelial innate immune responses through various mechanisms and to escape from host immune reaction, which supports the persistence of periodontitis and furthermore is able to affect the epithelial barrier function by altering expression and distribution of cell-cell interactions including tight junctions (TJs) and adherens junctions (AJs). In the pathogenesis of periodontitis a highly organized biofilm community shifts from symbiosis to dysbiosis which results in destructive local inflammatory reactions. Cellular Receptors: Cell-surface located toll like receptors (TLRs) and cytoplasmatic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) belong to the pattern recognition receptors (PRRs). PRRs recognize microbial parts that represent pathogen-associated molecular patterns (PAMPs). A multimeric complex of proteins known as inflammasome, which is a subset of NLRs, assembles after activation and proceeds to pro-inflammatory cytokine release. Cytokine Production and Release: Cytokines and bacterial products may lead to host cell mediated tissue destruction. Keratinocytes are able to produce diverse pro-inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α. Infection by pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) can induce a differentiated production of these cytokines. Immuno-modulation, Bacterial Infection, and Cancer Cells: There is a known association between bacterial infection and cancer. Bacterial components are able to up-regulate immune-modulatory receptors on cancer cells. Interactions of bacteria with tumor cells could support malignant transformation an environment with deficient immune regulation. The aim of this review is to present a set of molecular mechanisms of oral epithelial cells and their reactions to a number of toxic influences.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
30
|
Dutzan N, Abusleme L. T Helper 17 Cells as Pathogenic Drivers of Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:107-117. [PMID: 31732938 DOI: 10.1007/978-3-030-28524-1_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T helper 17 (Th17) cells were first described as a T helper subset involved in the pathogenesis of experimental autoimmune inflammation. Since then, these cells have been described as orchestrators of immunopathology in several human inflammatory conditions including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. More recently, the crucial role of Th17 cells in the regulation of immunity and protection of barrier sites has been unveiled. In the present work, we review the available evidence regarding Th17 cells in health and disease with a focus on the oral mucosa and their role in periodontitis pathogenesis. Recent mechanistic studies in animal models have demonstrated that interleukin-17A (IL-17A) and Th17 cells are critical mediators for alveolar bone destruction during periodontal inflammation. Observations in a cohort of patients with naturally occurring impaired Th17 cell differentiation supported these findings. However, interventional studies are needed to conclusively implicate Th17 cells in the immunopathogenesis of human alveolar bone and tissue destruction that characterize periodontitis.
Collapse
Affiliation(s)
- Nicolas Dutzan
- Oral Mucosal Immunology Section, Craniofacial and Translational Research Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile.
| | - Loreto Abusleme
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile.,Oral Microbial Ecology Section, Craniofacial and Translational Research Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
31
|
Cheng WC, Saleh F, Abuaisha Karim B, Hughes FJ, Taams LS. Comparative analysis of immune cell subsets in peripheral blood from patients with periodontal disease and healthy controls. Clin Exp Immunol 2018; 194:380-390. [PMID: 30120837 DOI: 10.1111/cei.13205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by the colonization of teeth by the bacterial plaque biofilm and the resultant host immune responses in adjacent periodontal tissues. Disease severity can vary dramatically between patients with periodontitis, with some subjects displaying inflammation without bony destruction (gingivitis), while others experience chronic progressive or rapidly aggressive gingival connective tissue damage and bone loss. To determine whether peripheral immune dysregulation is associated with periodontitis, we performed extensive analysis of immune cell subsets in peripheral blood from patients with chronic or aggressive periodontitis versus periodontally healthy control subjects. Peripheral blood mononuclear cells (PBMC) from patients with chronic periodontitis or aggressive periodontitis and from periodontally healthy controls were analysed by 8-10-colour flow cytometry for the frequencies of various lymphocyte subsets, including interleukin (IL)-17-, interferon (IFN)-γ-, tumour necrosis factor (TNF)-α- and IL-10-producing cells, and the frequencies and phenotype of monocytes. Cytokine levels in serum from the different groups were determined by Luminex assay. We found no significant differences in the frequencies of major immune cell populations [CD4+ T cells, CD8+ T cells, γδ T cells, CD4+ CD45RO+ CD25+ CD127low regulatory T cells (Tregs ), CD19+ B cells, CD14+ monocytes] or of cytokine-producing T cells, or in the phenotype of CD14+ monocytes in peripheral blood from these patient cohorts. Additionally, no significant differences were observed in serum levels of prototypical inflammatory cytokines. These results suggest that the local gingival inflammatory response is not reflected by obvious changes in major blood immune cell subset frequencies.
Collapse
Affiliation(s)
- W-C Cheng
- Department of Periodontology, Dental Institute, King's College London, London, UK.,Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK.,Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - F Saleh
- Department of Periodontology, Dental Institute, King's College London, London, UK
| | - B Abuaisha Karim
- Department of Periodontology, Dental Institute, King's College London, London, UK
| | - F J Hughes
- Department of Periodontology, Dental Institute, King's College London, London, UK
| | - L S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
32
|
Interleukin-17 and interleukin-23 levels in gingival crevicular fluid of patients with chronic and aggressive periodontitis. Cent Eur J Immunol 2018; 43:76-80. [PMID: 29736149 PMCID: PMC5927176 DOI: 10.5114/ceji.2018.74876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
Introduction Interleukin-17 is a pro-inflammatory cytokine with a wide range of protective and destructive effects in periodontitis. The role of IL-23 is stabilisation and expansion of Th-17. The aim of this study was to assess whether patients with aggressive and chronic periodontitis exhibit different gingival crevicular fluid (GCF) concentrations of IL-17 and IL-23 compared with clinically healthy subjects. Material and methods GCF samples were obtained from 32 patients: 10 with chronic periodontitis (CP), 12 with aggressive periodontitis (AgP), and 10 healthy controls (HC). IL-23 and IL-17 concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Comparison of study groups was performed with ANOVA and Tukey HSD tests. Spearman's correlation coefficient was used to assess correlations between the variables. Results IL-17 concentration was significantly higher in the healthy group compared to the AgP and CP groups (p < 0.001), but there were no significant differences between the CP and AgP groups. IL-23 levels in the healthy group were significantly higher than that in the AgP group (p < 0.001). Cytokine concentrations did not correlate significantly with probing depths and clinical attachment levels. Conclusions Gingival crevicular fluid concentrations of IL-17 and IL-23 were significantly higher in the healthy group compared to periodontitis groups.
Collapse
|
33
|
de Aquino SG, Talbot J, Sônego F, Turato WM, Grespan R, Avila-Campos MJ, Cunha FQ, Cirelli JA. The aggravation of arthritis by periodontitis is dependent of IL-17 receptor A activation. J Clin Periodontol 2017; 44:881-891. [PMID: 28498497 DOI: 10.1111/jcpe.12743] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 01/22/2023]
Abstract
AIM To evaluate whether Porphyromonas gingivalis-induced periodontitis aggravates the antigen-induced arthritis (AIA) model, and whether this effect is dependent on the Th17/IL-17 signalling pathway. MATERIALS AND METHODS Antigen-induced arthritis was triggered by local injection of methylated bovine serum albumin into the knee joint of previously immunized C57BL/6 wild-type (WT) and IL-17 receptor A (IL-17RA)-knockout mice. Periodontal disease in naïve or arthritic mice was induced by oral infection with P. gingivalis. Animals were sacrificed 7, 15 and 30 days after infection. Alveolar bone loss, joint histopathology, articular hyperalgesia and joint cytokine production were assessed, in addition to the proportion of Th17 and Treg cells isolated from the inguinal lymph nodes. RESULTS No influence of experimentally-induced arthritis was found on the alveolar bone resorption induced by P. gingivalis. However, mice with experimentally-induced arthritis that were exposed to P. gingivalis presented higher joint damage and Th17 frequencies when compared to non-infected mice. The aggravation of arthritis by periodontitis was accompanied by increased TNF and IL-17 production and articular neutrophil infiltration, whereas arthritis aggravation and changes in neutrophil infiltration were absent in IL-17RA-deficient mice. CONCLUSION The effects of P. gingivalis-induced periodontitis on arthritis are dependent on Th17 expansion and IL-17RA signalling, which lead to increased neutrophil infiltration into the joints.
Collapse
Affiliation(s)
- Sabrina G de Aquino
- Department of Diagnosis and Oral Surgery, School of Dentistry at Araraquara, Univ. Estadual Paulista - UNESP, Araraquara, Brazil.,Department of Clinical and Social Dentistry, Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Jhimmy Talbot
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Fabiane Sônego
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Walter M Turato
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Renata Grespan
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil.,Department of Physiology, Biological and Health Science Center, Federal University of Sergipe, Aracajú, Brazil
| | - Mario J Avila-Campos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Oral Surgery, School of Dentistry at Araraquara, Univ. Estadual Paulista - UNESP, Araraquara, Brazil
| |
Collapse
|
34
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Holmstrup P, Damgaard C, Olsen I, Klinge B, Flyvbjerg A, Nielsen CH, Hansen PR. Comorbidity of periodontal disease: two sides of the same coin? An introduction for the clinician. J Oral Microbiol 2017; 9:1332710. [PMID: 28748036 PMCID: PMC5508374 DOI: 10.1080/20002297.2017.1332710] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence has suggested an independent association between periodontitis and a range of comorbidities, for example cardiovascular disease, type 2 diabetes, rheumatoid arthritis, osteoporosis, Parkinson’s disease, Alzheimer’s disease, psoriasis, and respiratory infections. Shared inflammatory pathways are likely to contribute to this association, but distinct causal mechanisms remain to be defined. Some of these comorbid conditions may improve by periodontal treatment, and a bidirectional relationship may exist, where, for example, treatment of diabetes can improve periodontal status. The present article presents an overview of the evidence linking periodontitis with selected systemic diseases and calls for increased cooperation between dentists and medical doctors to provide optimal screening, treatment, and prevention of both periodontitis and its comorbidities.
Collapse
Affiliation(s)
- Palle Holmstrup
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Björn Klinge
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claus Henrik Nielsen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Riis Hansen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Cardiology Department, Herlev and Gentofte Hospital, Hellerup, Denmark
| |
Collapse
|
36
|
Mahabady S, Tjokro N, Aharonian S, Zadeh HH, Chen C, Allayee H, Sedghizadeh PP. The in vivo T helper type 17 and regulatory T cell immune responses to Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2017; 32:490-499. [PMID: 28544588 DOI: 10.1111/omi.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 12/01/2022]
Abstract
The periodontal pathogen Aggregatibacter actinomycetemcomitans is known to elicit a systemic immune response in the infected host, and occasionally causes non-oral infections. Detailed information on its immunopathological responses and the involvement of bacterial virulence factors remains to be elucidated. The aim of this study was to assess the systemic immune response to A. actinomycetemcomitans oral infection. We used an animal model that simulates systemic dissemination of the bacteria by injecting live wild-type (WT) D7S-1 and a double knockout mutant of leukotoxin and cytolethal distending toxin (ΔltxΔcdt) A. actinomycetemcomitans strains in rat oral mucosa. Draining lymph nodes were examined for regulatory T (Treg) and T helper type 17 (Th17) cell subsets and their associated mediators. An increase in the proportion of Th17 cells and a decrease in Treg cells over the experimental period of 3 weeks were similarly observed for rats challenged with WT and ΔltxΔcdt. Significant upregulation and downregulation of proinflammatory cytokines in the Th17 gene pathway was noted, as well as several qualitative differences between WT and ΔltxΔcdt. Furthermore, we observed differential fold regulation in key genes associated with a proinflammatory response in ΔltxΔcdt-inoculated rats relative to D7S-1 group. This suggests that although the knockout of these two virulence factors (ΔltxΔcdt) may suppress certain proinflammatory genes, it causes similar over-expression of other genes compared with D7S-1, indicating a common factor that still remains in the pathogenicity of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- S Mahabady
- Laboratory for Immunoregulation & Tissue Engineering, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - N Tjokro
- Division of Periodontology, Diagnostic Sciences and Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - S Aharonian
- Laboratory for Immunoregulation & Tissue Engineering, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - H H Zadeh
- Laboratory for Immunoregulation & Tissue Engineering, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - C Chen
- Division of Periodontology, Diagnostic Sciences and Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - H Allayee
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P P Sedghizadeh
- Division of Periodontology, Diagnostic Sciences and Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Okada K, Fujimura T, Kikuchi T, Aino M, Kamiya Y, Izawa A, Iwamura Y, Goto H, Okabe I, Miyake E, Hasegawa Y, Mogi M, Mitani A. Effect of interleukin (IL)-35 on IL-17 expression and production by human CD4 + T cells. PeerJ 2017; 5:e2999. [PMID: 28229025 PMCID: PMC5314955 DOI: 10.7717/peerj.2999] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Background Interleukin (IL)-17 produced by mainly T helper 17 (Th17) cells may play an important destructive role in chronic periodontitis (CP). Thus, anti-inflammatory cytokines, such as IL-35, might have a beneficial effect in periodontitis by inhibiting differentiation of Th17 cells. Th17 differentiation is regulated by the retinoic acid receptor-related orphan receptor (ROR) α (encoded by RORA) and RORγt (encoded by RORC). However, the role of IL-35 in periodontitis is not clear and the effect of IL-35 on the function of Th17 cells is still incompletely understood. Therefore, we investigated the effects of IL-35 on Th17 cells. Methods Peripheral blood mononuclear cells (PBMCs) were sampled from three healthy volunteers and three CP patients and were analyzed by flow cytometry for T cell population. Th17 cells differentiated by a cytokine cocktail (recombinant transforming growth factor-β, rIL-6, rIL-1β, anti-interferon (IFN)-γ, anti-IL-2 and anti-IL-4) from PBMCs were cultured with or without rIL-35. IL17A (which usually refers to IL-17), RORA and RORCmRNA expression was analyzed by quantitative polymerase chain reaction, and IL-17A production was determined by enzyme-linked immunosorbent assay. Results The proportion of IL-17A+CD4+ slightly increased in CP patients compared with healthy controls, however, there were no significant differences in the percentage of IL-17A+CD4+ as well as IFN-γ+CD4+ and Foxp3+CD4+ T cells between healthy controls and CP patients. IL17A, RORA and RORC mRNA expression was significantly increased in Th17 cells induced by the cytokine cocktail, and the induction was significantly inhibited by addition of rIL-35 (1 ng/mL). IL-17A production in Th17 cells was significantly inhibited by rIL-35 addition (1 ng/mL). Discussion The present study suggests that IL-35 could directly suppress IL-17 expression via RORα and RORγt inhibition and might play an important role in inflammatory diseases such as periodontitis.
Collapse
Affiliation(s)
- Kosuke Okada
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Takeki Fujimura
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Makoto Aino
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Yosuke Kamiya
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Ario Izawa
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Yuki Iwamura
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Hisashi Goto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Iichiro Okabe
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Eriko Miyake
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Makio Mogi
- Department of Integrative Education of Pharmacy, School of Pharmacy, Aichi Gakuin University , Nagoya , Aichi , Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University , Nagoya , Aichi , Japan
| |
Collapse
|
38
|
Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000 2017; 69:142-59. [PMID: 26252407 DOI: 10.1111/prd.12083] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (also known as interleukin-17A) is a key cytokine that links T-cell activation to neutrophil mobilization and activation. As such, interleukin-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of interleukin-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of interleukin-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, interleukin-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis and other diseases involving bone immunopathology. Systemic treatments with anti-interleukin-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis; however, their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered interleukin-17 blockers, are required to implicate conclusivelyinterleukin-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease.
Collapse
|
39
|
Liukkonen J, Gürsoy UK, Pussinen PJ, Suominen AL, Könönen E. Salivary Concentrations of Interleukin (IL)-1β, IL-17A, and IL-23 Vary in Relation to Periodontal Status. J Periodontol 2016; 87:1484-1491. [DOI: 10.1902/jop.2016.160146] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Bakır B, Yetkin Ay Z, Büyükbayram Hİ, Kumbul Doğuç D, Bayram D, Candan İA, Uskun E. Effect of Curcumin on Systemic T Helper 17 Cell Response; Gingival Expressions of Interleukin-17 and Retinoic Acid Receptor-Related Orphan Receptor γt; and Alveolar Bone Loss in Experimental Periodontitis. J Periodontol 2016; 87:e183-e191. [DOI: 10.1902/jop.2016.150722] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Cheng WC, van Asten SD, Burns LA, Evans HG, Walter GJ, Hashim A, Hughes FJ, Taams LS. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol 2016; 46:2211-21. [PMID: 27334899 PMCID: PMC5031191 DOI: 10.1002/eji.201545871] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022]
Abstract
The Th17/IL‐17 pathway is implicated in the pathogenesis of periodontitis (PD), however the mechanisms are not fully understood. We investigated the mechanism by which the periodontal pathogens Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa) promote a Th17/IL‐17 response in vitro, and studied IL‐17+ CD4+ T‐cell frequencies in gingival tissue and peripheral blood from patients with PD versus periodontally healthy controls. Addition of Pg or Aa to monocyte/CD4+ T‐cell co‐cultures promoted a Th17/IL‐17 response in vitro in a dose‐ and time‐dependent manner. Pg or Aa stimulation of monocytes resulted in increased CD40, CD54 and HLA‐DR expression, and enhanced TNF‐α, IL‐1β, IL‐6 and IL‐23 production. Mechanistically, IL‐17 production in Pg‐stimulated co‐cultures was partially dependent on IL‐1β, IL‐23 and TLR2/TLR4 signalling. Increased frequencies of IL‐17+ cells were observed in gingival tissue from patients with PD compared to healthy subjects. No differences were observed in IL‐17+ CD4+ T‐cell frequencies in peripheral blood. In vitro, Pg induced significantly higher IL‐17 production in anti‐CD3 mAb‐stimulated monocyte/CD4+ T‐cell co‐cultures from patients with PD compared to healthy controls. Our data suggest that periodontal pathogens can activate monocytes, resulting in increased IL‐17 production by human CD4+ T cells, a process that appears enhanced in patients with PD.
Collapse
Affiliation(s)
- Wan-Chien Cheng
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK.,Department of Periodontology, Dental Institute, King's College London, London, UK.,Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Saskia D van Asten
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Lachrissa A Burns
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Hayley G Evans
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Gina J Walter
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Ahmed Hashim
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francis J Hughes
- Department of Periodontology, Dental Institute, King's College London, London, UK
| | - Leonie S Taams
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK.
| |
Collapse
|
42
|
Mahanonda R, Champaiboon C, Subbalekha K, Sa-Ard-Iam N, Rattanathammatada W, Thawanaphong S, Rerkyen P, Yoshimura F, Nagano K, Lang NP, Pichyangkul S. Human Memory B Cells in Healthy Gingiva, Gingivitis, and Periodontitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:715-25. [PMID: 27335500 DOI: 10.4049/jimmunol.1600540] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/23/2016] [Indexed: 01/12/2023]
Abstract
The presence of inflammatory infiltrates with B cells, specifically plasma cells, is the hallmark of periodontitis lesions. The composition of these infiltrates in various stages of homeostasis and disease development is not well documented. Human tissue biopsies from sites with gingival health (n = 29), gingivitis (n = 8), and periodontitis (n = 21) as well as gingival tissue after treated periodontitis (n = 6) were obtained and analyzed for their composition of B cell subsets. Ag specificity, Ig secretion, and expression of receptor activator of NF-κB ligand and granzyme B were performed. Although most of the B cell subsets in healthy gingiva and gingivitis tissues were CD19(+)CD27(+)CD38(-) memory B cells, the major B cell component in periodontitis was CD19(+)CD27(+)CD38(+)CD138(+)HLA-DR(low) plasma cells, not plasmablasts. Plasma cell aggregates were observed at the base of the periodontal pocket and scattered throughout the gingiva, especially apically toward the advancing front of the lesion. High expression of CXCL12, a proliferation-inducing ligand, B cell-activating factor, IL-10, IL-6, and IL-21 molecules involved in local B cell responses was detected in both gingivitis and periodontitis tissues. Periodontitis tissue plasma cells mainly secreted IgG specific to periodontal pathogens and also expressed receptor activator of NF-κB ligand, a bone resorption cytokine. Memory B cells resided in the connective tissue subjacent to the junctional epithelium in healthy gingiva. This suggested a role of memory B cells in maintaining periodontal homeostasis.
Collapse
Affiliation(s)
- Rangsini Mahanonda
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chantrakorn Champaiboon
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Keskanya Subbalekha
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Saranya Thawanaphong
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pimprapa Rerkyen
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan; and
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan; and
| | - Niklaus P Lang
- Department of Periodontology, University of Berne, Berne 3012, Switzerland
| | - Sathit Pichyangkul
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
43
|
Avadhani AV, Parachuru VPB, Milne T, Seymour GJ, Rich AM. Multiple cells express interleukin 17 in oral squamous cell carcinoma. J Oral Pathol Med 2016; 46:39-45. [PMID: 27294336 DOI: 10.1111/jop.12465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Interleukin (IL)-17 is a pro-inflammatory cytokine with pro- and antitumour effects. The aim of this study was to investigate the presence and potential sources of IL-17 in oral squamous cell carcinoma (OSCC). METHODS Immunohistochemistry was used to label and compare IL-17+ cells in the tissue sections of OSCC and inflammatory controls (IC), n = 14 for both. In OSCC, the comparison was made between the number of IL-17+ cells in the tumoral islands (TI), tumour-stroma interface (TS) and more distant stroma (DS). Cells expressing IL-17 were identified using double-labelling immunofluorescence and examined using laser scanning microscopy. The production of IL-17 from tumour cells was determined in the culture supernatants of OSCC cell lines, SCC4, SCC15 and SCC25, using sandwich ELISA. RESULTS Significantly more IL-17+ cells were observed in OSCC compared with IC (Mann-Whitney, P < 0.0001). In OSCC, the numbers of IL-17+ cells were not significantly different in three compartments, TI, TS and DS (one-way ANOVA, P > 0.05). However, the TI had significantly fewer IL-17+ cells than the combined stroma (both TS and DS together, Mann-Whitney, P < 0.01). Laser scanning microscopy revealed helper T cells, cytotoxic T cells, macrophages and mast cells co-expressed IL-17. ELISA experiments did not detect IL-17 in the supernatants of OSCC cell lines. CONCLUSIONS Although the tumour cells themselves did not express IL-17, a range of cell types did, suggesting multiple cellular sources for IL-17 in OSCC. The spatial distribution of IL-17+ cells suggests specific interactions with cells within the tumour microenvironment, implying that IL-17+ cells are likely to play a role in the pathogenesis of OSCC.
Collapse
Affiliation(s)
- Avadhoot V Avadhani
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Venkata P B Parachuru
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Trudy Milne
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Gregory J Seymour
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Alison M Rich
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
44
|
Campbell L, Millhouse E, Malcolm J, Culshaw S. T cells, teeth and tissue destruction - what do T cells do in periodontal disease? Mol Oral Microbiol 2015; 31:445-456. [DOI: 10.1111/omi.12144] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 01/12/2023]
Affiliation(s)
- L. Campbell
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - E. Millhouse
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - J. Malcolm
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - S. Culshaw
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
45
|
Periodontal Disease-Induced Atherosclerosis and Oxidative Stress. Antioxidants (Basel) 2015; 4:577-90. [PMID: 26783845 PMCID: PMC4665422 DOI: 10.3390/antiox4030577] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 01/22/2023] Open
Abstract
Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.
Collapse
|
46
|
Gonzales JR. T- and B-cell subsets in periodontitis. Periodontol 2000 2015; 69:181-200. [DOI: 10.1111/prd.12090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
|
47
|
Jia R, Hashizume-Takizawa T, Du Y, Yamamoto M, Kurita-Ochiai T. Aggregatibacter actinomycetemcomitans induces Th17 cells in atherosclerotic lesions. Pathog Dis 2015; 73:ftu027. [PMID: 25743474 DOI: 10.1093/femspd/ftu027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Th17 cells have been linked to the pathogenesis of several chronic inflammatory and autoimmune diseases. However, the role of Th17 cells and IL-17 in atherosclerosis remains poorly understood. We previously reported that Aggregatibacter actinomycetemcomitans (Aa) bacteremia accelerated atherosclerosis accompanied by inflammation in apolipoprotein E-deficient spontaneously hyperlipidemic (Apoe(shl)) mice. In this study, we investigated whether Aa promotes the Th17 inducing pathway in Aa-challenged Apoe(shl) mice. Mice were intravenously injected with live Aa HK1651 or vehicles. Time-course analysis of splenic IL-17(+)CD4(+) cell frequencies, the proximal aorta lesion area, serum IL-17, IL-6, TGF-β and IL-1β levels, the mRNA expression of Th17-related molecules such as IL-1β, IL-6, IL17RA, STAT3, IL-21, IL-23, TGF-β and RORγt, Th17-related microRNA levels and the levels of AIM-2, Mincle and NLRP3 were examined. Challenge with Aa time dependently induced tropism of Th17 cells in the spleen and increase in atheromatous lesions in the aortic sinus of Apoe(shl) mice. Serum IL-17, IL-6, TGF-β and IL-1β levels were significantly enhanced by Aa. The gene expression of IL-1β, IL-6, IL-17RA, IL-21, IL-23, TGF-β, STAT3, RORγt, AIM-2, Mincle and NLRP3 was also time dependently stimulated in the aorta of Aa-challenged mice. Furthermore, Aa challenge significantly increased the expression of miR-146b and miR-155 in the aorta. Based on the results, it seems that Aa stimulates Th17 induction that affects the progression of Aa-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Ru Jia
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan Stomatology Hospital, Tongji University, Shanghai, China
| | - Tomomi Hashizume-Takizawa
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan
| | - Yuan Du
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan Department of Stomatology, College of Tianjin Medical University, Tianjin, China
| | - Masafumi Yamamoto
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan
| | - Tomoko Kurita-Ochiai
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo-shi, Chiba 271-8587, Japan
| |
Collapse
|
48
|
Isaza-Guzmán DM, Cardona-Vélez N, Gaviria-Correa DE, Martínez-Pabón MC, Castaño-Granada MC, Tobón-Arroyave SI. Association study between salivary levels of interferon (IFN)-gamma, interleukin (IL)-17, IL-21, and IL-22 with chronic periodontitis. Arch Oral Biol 2015; 60:91-9. [PMID: 25285903 DOI: 10.1016/j.archoralbio.2014.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate if the salivary levels of IL-17, IL-21, IL-22, and its ratio regarding salivary IFN-γ may be linked with the periodontal clinical status. DESIGN One hundred and five chronic periodontitis (CP) subjects and 44 healthy controls (HC) were recruited. Periodontal status was assessed based on full-mouth clinical periodontal measurements. Cytokine salivary levels were analyzed by ELISA. The association between the analytes with CP was analyzed using a binary logistic regression model. RESULTS A statistically significant increase in salivary levels of IFN-γ and IFN-γ/IL-22 ratio in CP group could be detected, but there was no significant domination of any Th17 cytokine that could be of predictive value for health/disease status. Univariate and binary logistic regression analyses revealed a strong and independent association of IFN-γ salivary levels and IFN-γ/IL-22 ratio with disease status. An interaction effect of ageing on IFN-γ levels also could be noted. CONCLUSION While salivary levels of IFN-γ and IFN-γ/IL-22 ratio may act as strong/independent indicators of the amount and extent of periodontal breakdown, the low detection frequency of Th17 cytokines in saliva samples make these determinations useless for the detection of disease presence and/or its severity.
Collapse
Affiliation(s)
- D M Isaza-Guzmán
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - N Cardona-Vélez
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - D E Gaviria-Correa
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - M C Martínez-Pabón
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - M C Castaño-Granada
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - S I Tobón-Arroyave
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia.
| |
Collapse
|
49
|
|
50
|
Ji S, Choi YS, Choi Y. Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis? J Periodontal Res 2014; 50:570-85. [DOI: 10.1111/jre.12248] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 12/22/2022]
Affiliation(s)
- S. Ji
- Department of Periodontology Anam Hospital Korea University Seoul Korea
| | - Y. S. Choi
- Department of Immunology and Molecular Microbiology and Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| | - Y. Choi
- Department of Immunology and Molecular Microbiology and Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| |
Collapse
|