1
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
2
|
Goyal A, Murkute SL, Bhowmik S, Prasad CP, Mohapatra P. Belling the "cat": Wnt/β-catenin signaling and its significance in future cancer therapies. Biochim Biophys Acta Rev Cancer 2024; 1879:189195. [PMID: 39413855 DOI: 10.1016/j.bbcan.2024.189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The WNT/β-catenin is among one of the most extensively studied cellular signaling pathways involved in the initiation and progression of several deadly cancers. It is now understood that the WNT/β-catenin signaling, during tumor progression operates in a very complex fashion beyond the earlier assumed simple WNT 'On' or 'Off' mode as it recruits numerous WNT ligands, receptors, transcriptional factors and also cross-talks with other signaling molecules including the noncanonical WNT regulators. WNT/β-catenin signaling molecules are often mutated in different cancers which makes them very challenging to inhibit and sometimes ranks them among the undruggable targets. Furthermore, due to the evolutionary conservation of this pathway, inhibiting WNT/β-catenin has caused significant toxicity in normal cells. These challenges are reflected in clinical trial data, where the use of WNT/β-catenin inhibitors as standalone treatments remains limited. In this review, we have highlighted the crucial functional associations of diverse WNT/β-catenin signaling regulators with cancer progression and the phenotypic switching of tumor cells. Next, we have shed light on the roles of WNT/β-catenin signaling in drug resistance, clonal evolution, tumor heterogeneity, and immune evasion. The present review also focuses on various classes of routine and novel WNT/β-catenin therapeutic regimes while addressing the challenges associated with targeting the regulators of this complex pathway. In the light of multiple case studies on WNT/β-catenin inhibitors, we also highlighted the challenges and opportunities for future clinical trial strategies involving these treatments. Additionally, we have proposed strategies for future WNT/β-catenin-based drug discovery trials, emphasizing the potential of combination therapies and AI/ML-driven prediction approaches. Overall, here we showcased the opportunities, possibilities, and potentialities of WNT/β-catenin signaling modulatory therapeutic regimes as promising precision cancer medicines for the future.
Collapse
Affiliation(s)
- Akansha Goyal
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Sujoy Bhowmik
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Purusottam Mohapatra
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India.
| |
Collapse
|
3
|
Tsukiyama T. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:449-465. [PMID: 38383910 PMCID: PMC11126518 DOI: 10.1007/s11626-024-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Wnt signaling plays a crucial role in embryonic development and homeostasis maintenance. Delicate and sensitive fine-tuning of Wnt signaling based on the proper timings and positions is required to balance cell proliferation and differentiation and maintain individual health. Therefore, homeostasis is broken by tissue hypoplasia or tumor formation once Wnt signal dysregulation disturbs the balance of cell proliferation. The well-known regulatory mechanism of Wnt signaling is the molecular reaction associated with the cytoplasmic accumulation of effector β-catenin. In addition to β-catenin, most Wnt effector proteins are also regulated by ubiquitin-dependent modification, both qualitatively and quantitatively. This review will explain the regulation of the whole Wnt signal in four regulatory phases, as well as the different ubiquitin ligases and the function of deubiquitinating enzymes in each phase. Along with the recent results, the mechanism by which RNF43 negatively regulates the surface expression of Wnt receptors, which has recently been well understood, will be detailed. Many RNF43 mutations have been identified in pancreatic and gastrointestinal cancers and examined for their functional alteration in Wnt signaling. Several mutations facilitate or activate the Wnt signal, reversing the RNF43 tumor suppressor function into an oncogene. RNF43 may simultaneously play different roles in classical multistep tumorigenesis, as both wild-type and mutant RNF43 suppress the p53 pathway. We hope that the knowledge obtained from further research in RNF43 will be applied to cancer treatment in the future despite the fully unclear function of RNF43.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, 15NW7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
4
|
Tran THN, Takada R, Krayukhina E, Maruno T, Mii Y, Uchiyama S, Takada S. Soluble Frizzled-related proteins promote exosome-mediated Wnt re-secretion. Commun Biol 2024; 7:254. [PMID: 38429359 PMCID: PMC10907715 DOI: 10.1038/s42003-024-05881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Wnt proteins are thought to be transported in several ways in the extracellular space. For instance, they are known to be carried by exosomes and by Wnt-carrier proteins, such as sFRP proteins. However, little is known about whether and/or how these two transport systems are related. Here, we show that adding sFRP1 or sFRP2, but not sFRP3 or sFRP4, to culture medium containing Wnt3a or Wnt5a increases re-secretion of exosome-loaded Wnt proteins from cells. This effect of sFRP2 is counteracted by heparinase, which removes sugar chains on heparan sulfate proteoglycans (HSPGs), but is independent of LRP5/6, Wnt co-receptors essential for Wnt signaling. Wnt3a and Wnt5a specifically dimerize with sFRP2 in culture supernatant. Furthermore, a Wnt3a mutant defective in heterodimerization with sFRP2 impairs the ability to increase exosome-mediated Wnt3a re-secretion. Based on these results, we propose that Wnt heterodimerization with its carrier protein, sFRP2, enhances Wnt accumulation at sugar chains on HSPGs on the cell surface, leading to increased endocytosis and exosome-mediated Wnt re-secretion. Our results suggest that the range of action of Wnt ligands is controlled by coordination of different transport systems.
Collapse
Affiliation(s)
- Thi Hong Nguyen Tran
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Ritsuko Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Elena Krayukhina
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Analytical Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo, 115-8543, Japan
| | - Takahiro Maruno
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Susumu Uchiyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
5
|
Láinez-González D, Alonso-Aguado AB, Alonso-Dominguez JM. Understanding the Wnt Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Feasible Key against Relapses. BIOLOGY 2023; 12:biology12050683. [PMID: 37237497 DOI: 10.3390/biology12050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Wnt signaling is a highly conserved pathway in evolution which controls important processes such as cell proliferation, differentiation and migration, both in the embryo and in the adult. Dysregulation of this pathway can favor the development of different types of cancer, such as acute myeloid leukemia and other hematological malignancies. Overactivation of this pathway may promote the transformation of pre-leukemic stem cells into acute myeloid leukemia stem cells, as well as the maintenance of their quiescent state, which confers them with self-renewal and chemoresistance capacity, favoring relapse of the disease. Although this pathway participates in the regulation of normal hematopoiesis, its requirements seem to be greater in the leukemic stem cell population. In this review, we explore the possible therapeutic targeting of Wnt to eradicate the LSCs of AML.
Collapse
Affiliation(s)
- Daniel Láinez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Ana Belén Alonso-Aguado
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Juan Manuel Alonso-Dominguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
6
|
Katanaev VL, Baldin A, Denisenko TV, Silachev DN, Ivanova AE, Sukhikh GT, Jia L, Ashrafyan LA. Cells of the tumor microenvironment speak the Wnt language. Trends Mol Med 2023; 29:468-480. [PMID: 37045723 DOI: 10.1016/j.molmed.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Wnt signaling plays numerous functions in cancer, from primary transformation and tumor growth to metastasis. In addition to these cancer cell-intrinsic functions, Wnt signaling emerges to critically control cross-communication among cancer cells and the tumor microenvironment (TME). Here, we summarize the evidence that not only multiple cancer cell types, but also cells constituting the TME 'speak the Wnt language'. Fibroblasts, macrophages, endothelia, and lymphocytes all use the Wnt language to convey messages to and from cancer cells and among themselves; these messages are important for tumor progression and fate. Decoding this language will advance our understanding of tumor biology and unveil novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Alexey Baldin
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Tatiana V Denisenko
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Denis N Silachev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia; Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna E Ivanova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Gennadiy T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Lev A Ashrafyan
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| |
Collapse
|
7
|
An itch for things remote: The journey of Wnts. Curr Top Dev Biol 2022; 150:91-128. [DOI: 10.1016/bs.ctdb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Gross JC. Extracellular WNTs: Trafficking, Exosomes, and Ligand-Receptor Interaction. Handb Exp Pharmacol 2021; 269:29-43. [PMID: 34505202 DOI: 10.1007/164_2021_531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
WNT signaling is a key developmental pathway in tissue organization. A recent focus of research is the secretion of WNT proteins from source cells. Research over the past decade on how WNTs are produced and released into the extracellular space has unravelled very specific control mechanisms in the early secretory pathway, specialized trafficking routes, and redundant forms of packaging for delivery to target cells. In this review I discuss the findings that WNT proteins have been found on extracellular vesicles (EVs) such as exosomes and possible functional implications. There is an ongoing debate in the WNT signaling field whether EV are relevant in vivo and can fulfill specific functions, also fueled by the general preconception of EV secretion as cellular garbage disposal. As part of the EV research community, I want to give an overview of what we know and don't know about WNT secretion on EVs and offer a more unifying model that can explain current discrepancies in observations regarding WNT secretion.
Collapse
Affiliation(s)
- Julia Christina Gross
- Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany. .,Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany. .,Health and Medical University Potsdam, Potsdam, Germany.
| |
Collapse
|
9
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
10
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
11
|
Sonavane PR, Willert K. Controlling Wnt Signaling Specificity and Implications for Targeting WNTs Pharmacologically. Handb Exp Pharmacol 2021; 269:3-28. [PMID: 34463853 DOI: 10.1007/164_2021_529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wnt signaling is critical for proper development of the embryo and for tissue homeostasis in the adult. Activation of this signaling cascade is initiated by binding of the secreted Wnts to their receptors. With the mammalian genome encoding multiple Wnts and Wnt receptors, a longstanding question in the field has been how Wnt-receptor specificities are achieved. Emerging from these studies is a picture of exquisite control over Wnt protein production, secretion, distribution, and receptor interactions, culminating in activation of downstream signaling cascades that control a myriad of biological processes. Here we discuss mechanisms by which Wnt protein activities are tuned and illustrate how the multiple layers of regulation can be leveraged for therapeutic interventions in disease.
Collapse
Affiliation(s)
- Pooja R Sonavane
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Abstract
Members of the Hedgehog family of morphogens mediate the intercellular communication necessary for the organisation and development of many animal tissues. They are modified by various lipid adducts, rendering them insoluble in hydrophilic environments and leading to the contentious question of how these molecules travel in the aqueous extracellular space. Seminal work carried out by Suzanne Eaton and her colleagues has shed light on how these morphogens can spread over long distances through their association with lipoprotein particles. In this Spotlight article, we discuss Suzanne's pioneering work and her contribution to our understanding of the transport and activity of morphogens, in particular Hedgehog. We also describe two other essential aspects of her work: the discovery and characterisation of endogenously present Hedgehog variants, as well as her proposition that, in addition to its role as a morphogen, Hedgehog acts as an endocrine hormone.
Collapse
Affiliation(s)
- Elodie Prince
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, 06108 Nice Cedex 2, France
| | - Julien Marcetteau
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, 06108 Nice Cedex 2, France
| | - Pascal P Thérond
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
13
|
Abstract
Lipids exert diverse functions in living organisms. They form cellular membranes, store and transport energy and play signalling roles. Some lipid species function in all of these processes, making them ideal candidates to coordinate metabolism with cellular homeostasis and animal development. This theme was central to Suzanne Eaton's research in the fruit fly, Drosophila Here, we discuss her work on membrane lipid homeostasis in changing environments and on functions for lipids in the Hedgehog signalling pathway. We further highlight lipoproteins as inter-organ carriers of lipids and lipid-linked morphogens, which communicate dietary and developmental signals throughout the organism.
Collapse
Affiliation(s)
- Wilhelm Palm
- Cell and Tumor Biology Program, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jonathan Rodenfels
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
14
|
Veerapathiran S, Teh C, Zhu S, Kartigayen I, Korzh V, Matsudaira PT, Wohland T. Wnt3 distribution in the zebrafish brain is determined by expression, diffusion and multiple molecular interactions. eLife 2020; 9:e59489. [PMID: 33236989 PMCID: PMC7725503 DOI: 10.7554/elife.59489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt3 proteins are lipidated and glycosylated signaling molecules that play an important role in zebrafish neural patterning and brain development. However, the transport mechanism of lipid-modified Wnts through the hydrophilic extracellular environment for long-range action remains unresolved. Here we determine how Wnt3 accomplishes long-range distribution in the zebrafish brain. First, we characterize the Wnt3-producing source and Wnt3-receiving target regions. Subsequently, we analyze Wnt3 mobility at different length scales by fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. We demonstrate that Wnt3 spreads extracellularly and interacts with heparan sulfate proteoglycans (HSPG). We then determine the binding affinity of Wnt3 to its receptor, Frizzled1 (Fzd1), using fluorescence cross-correlation spectroscopy and show that the co-receptor, low-density lipoprotein receptor-related protein 5 (Lrp5), is required for Wnt3-Fzd1 interaction. Our results are consistent with the extracellular distribution of Wnt3 by a diffusive mechanism that is modified by tissue morphology, interactions with HSPG, and Lrp5-mediated receptor binding, to regulate zebrafish brain development.
Collapse
Affiliation(s)
- Sapthaswaran Veerapathiran
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Cathleen Teh
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Shiwen Zhu
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Indira Kartigayen
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Paul T Matsudaira
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Thorsten Wohland
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
- Department of Chemistry, National University of SingaporeSingaporeSingapore
| |
Collapse
|
15
|
Dawes ML, Soeller C, Scholpp S. Studying molecular interactions in the intact organism: fluorescence correlation spectroscopy in the living zebrafish embryo. Histochem Cell Biol 2020; 154:507-519. [PMID: 33067656 PMCID: PMC7609432 DOI: 10.1007/s00418-020-01930-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Cell behaviour and function is determined through the interactions of a multitude of molecules working in concert. To observe these molecular dynamics, biophysical studies have been developed that track single interactions. Fluorescence correlation spectroscopy (FCS) is an optical biophysical technique that non-invasively resolves single molecules through recording the signal intensity at the femtolitre scale. However, recording the behaviour of these biomolecules using in vitro-based assays often fails to recapitulate the full range of variables in vivo that directly confer dynamics. Therefore, there has been an increasing interest in observing the state of these biomolecules within living organisms such as the zebrafish Danio rerio. In this review, we explore the advancements of FCS within the zebrafish and compare and contrast these findings to those found in vitro.
Collapse
Affiliation(s)
- Michael L Dawes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Christian Soeller
- Living Systems Institute, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
16
|
Rapetti-Mauss R, Berenguier C, Allegrini B, Soriani O. Interplay Between Ion Channels and the Wnt/β-Catenin Signaling Pathway in Cancers. Front Pharmacol 2020; 11:525020. [PMID: 33117152 PMCID: PMC7552962 DOI: 10.3389/fphar.2020.525020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence point out the important roles of ion channels in the physiopathology of cancers, so that these proteins are now considered as potential new therapeutic targets and biomarkers in this disease. Indeed, ion channels have been largely described to participate in many hallmarks of cancers such as migration, invasion, proliferation, angiogenesis, and resistance to apoptosis. At the molecular level, the development of cancers is characterised by alterations in transduction pathways that control cell behaviors. However, the interactions between ion channels and cancer-related signaling pathways are poorly understood so far. Nevertheless, a limited number of reports have recently addressed this important issue, especially regarding the interaction between ion channels and one of the main driving forces for cancer development: the Wnt/β-catenin signaling pathway. In this review, we propose to explore and discuss the current knowledge regarding the interplay between ion channels and the Wnt/β-catenin signaling pathway in cancers.
Collapse
|
17
|
Modzelewska K, Brown L, Culotti J, Moghal N. Sensory regulated Wnt production from neurons helps make organ development robust to environmental changes in C. elegans. Development 2020; 147:dev186080. [PMID: 32586974 DOI: 10.1242/dev.186080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/13/2020] [Indexed: 11/20/2022]
Abstract
Long-term survival of an animal species depends on development being robust to environmental variations and climate changes. We used C. elegans to study how mechanisms that sense environmental changes trigger adaptive responses that ensure animals develop properly. In water, the nervous system induces an adaptive response that reinforces vulval development through an unknown backup signal for vulval induction. This response involves the heterotrimeric G-protein EGL-30//Gαq acting in motor neurons. It also requires body-wall muscle, which is excited by EGL-30-stimulated synaptic transmission, suggesting a behavioral function of neurons induces backup signal production from muscle. We now report that increased acetylcholine during liquid growth activates an EGL-30-Rho pathway, distinct from the synaptic transmission pathway, that increases Wnt production from motor neurons. We also provide evidence that this neuronal Wnt contributes to EGL-30-stimulated vulval development, with muscle producing a parallel developmental signal. As diverse sensory modalities stimulate motor neurons via acetylcholine, this mechanism enables broad sensory perception to enhance Wnt-dependent development. Thus, sensory perception improves animal fitness by activating distinct neuronal functions that trigger adaptive changes in both behavior and developmental processes.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Louise Brown
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Joseph Culotti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Nadeem Moghal
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
18
|
Boucher P, Matz RL, Terrand J. atherosclerosis: gone with the Wnt? Atherosclerosis 2020; 301:15-22. [PMID: 32289618 DOI: 10.1016/j.atherosclerosis.2020.03.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis, a pathology affecting large and medium-sized arteries, is the major cause of cardiovascular morbidity/mortality in industrialized countries. During atherosclerosis, cells accumulate large amounts of cholesterol through the uptake of modified low-density lipoprotein particles to form foam cells. This accumulation forms the basis for the development of the disease and for a large spectrum of other diseases in various organs. Massive research efforts have yielded valuable information about the underlying molecular mechanisms of atherosclerosis. In particular, newer discoveries on the early stage of lesion formation, cholesterol accumulation, reverse cholesterol transport, and local inflammation in the vascular wall have opened unanticipated horizons of understanding and raised novel questions and therapeutic opportunities. In this review, we focus on Wnt signaling, which has received little attention so far, yet affects lysosomal function and signalling pathways that limit cholesterol accumulation. This occurs in different tissues and cell types, including smooth muscle cells, endothelial cells and macrophages in the arterial wall, and thus profoundly impacts on atherosclerotic disease development and progression.
Collapse
Affiliation(s)
- Philippe Boucher
- CNRS, UMR 7021, University of Strasbourg, 67401, Illkirch, France.
| | - Rachel L Matz
- CNRS, UMR 7021, University of Strasbourg, 67401, Illkirch, France
| | - Jérôme Terrand
- CNRS, UMR 7021, University of Strasbourg, 67401, Illkirch, France
| |
Collapse
|
19
|
Exocyst-mediated apical Wg secretion activates signaling in the Drosophila wing epithelium. PLoS Genet 2019; 15:e1008351. [PMID: 31527874 PMCID: PMC6764796 DOI: 10.1371/journal.pgen.1008351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/27/2019] [Accepted: 08/07/2019] [Indexed: 01/19/2023] Open
Abstract
Wnt proteins are secreted signaling factors that regulate cell fate specification and patterning decisions throughout the animal kingdom. In the Drosophila wing epithelium, Wingless (Wg, the homolog of Wnt1) is secreted from a narrow strip of cells at the dorsal-ventral boundary. However, the route of Wg secretion in polarized epithelial cells remains poorly understood and key proteins involved in this process are still unknown. Here, we performed an in vivo RNAi screen and identified members of the exocyst complex to be required for apical but not basolateral Wg secretion. Specifically blocking the apical Wg secretion leads to reduced downstream signaling. Using an in vivo ‘temporal-rescue’ assay, our results further indicate that apically secreted Wg activates target genes that require high signaling activity. In conclusion, our results demonstrate that the exocyst is required for an apical route of Wg secretion from polarized wing epithelial cells. Regulation of Wnt signaling and the production of Wnt ligands is crucial for proper development and homeostasis, as dysregulation leads to developmental defects and diseases such as cancer. This study addresses the question of how functional Wnt ligands are secreted by epithelial cells. By using the polarized epithelium of the developing Drosophila wing as a model system to study Wnt/Wg secretion, the authors performed a large-scale RNAi screen and identified proteins of the exocyst complex to be required for Wnt signaling. The study shows that exocyst complex preferentially regulates apical secretion of Wg proteins. Taken together, this study identifies routes and regulators for secretion of signaling-active Wnt proteins from polarized epithelial cells.
Collapse
|
20
|
Chaudhary V, Hingole S, Frei J, Port F, Strutt D, Boutros M. Robust Wnt signaling is maintained by a Wg protein gradient and Fz2 receptor activity in the developing Drosophila wing. Development 2019; 146:dev174789. [PMID: 31399474 PMCID: PMC6703709 DOI: 10.1242/dev.174789] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
Wnts are secreted proteins that regulate cell fate during development of all metazoans. Wnt proteins were proposed to spread over several cells to activate signaling directly at a distance. In the Drosophila wing epithelium, an extracellular gradient of the Wnt1 homolog Wingless (Wg) was observed extending over several cells away from producing cells. Surprisingly, however, it was also shown that a membrane-tethered Neurotactin-Wg fusion protein (NRT-Wg) can largely replace endogenous Wg, leading to proper patterning of the wing. Therefore, the functional range of Wg and whether Wg spreading is required for correct tissue patterning remains controversial. Here, by capturing secreted Wg on cells away from the source, we show that Wg acts over a distance of up to 11 cell diameters to induce signaling. Furthermore, cells located outside the reach of extracellular Wg depend on the Frizzled2 receptor to maintain signaling. Frizzled2 expression is increased in the absence of Wg secretion and is required to maintain signaling and cell survival in NRT-wg wing discs. Together, these results provide insight into the mechanisms by which robust Wnt signaling is achieved in proliferating tissues.
Collapse
Affiliation(s)
- Varun Chaudhary
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India
| | - Swapnil Hingole
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India
| | - Jana Frei
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Fillip Port
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Abstract
Wnt proteins are secreted glycoproteins that regulate multiple processes crucial to the development and tissue homeostasis of multicellular organisms, including tissue patterning, proliferation, cell fate specification, cell polarity and migration. To elicit these effects, Wnts act as autocrine as well as paracrine signalling molecules between Wnt-producing and Wnt-receiving cells. More than 40 years after the discovery of the Wg/Wnt pathway, it is still unclear how they are transported to fulfil their paracrine signalling functions. Several mechanisms have been proposed to mediate intercellular Wnt transport, including Wnt-binding proteins, lipoproteins, exosomes and cytonemes. In this Review, we describe the evidence for each proposed mechanism, and discuss how they may contribute to Wnt dispersal in tissue-specific and context-dependent manners, to regulate embryonic development precisely and maintain the internal steady state within a defined tissue.
Collapse
Affiliation(s)
- Daniel Routledge
- Living Systems Institute, Biosciences, College of Life and Environmental Science, University of Exeter, Exeter EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, Biosciences, College of Life and Environmental Science, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
22
|
Kaiser K, Gyllborg D, Procházka J, Salašová A, Kompaníková P, Molina FL, Laguna-Goya R, Radaszkiewicz T, Harnoš J, Procházková M, Potěšil D, Barker RA, Casado ÁG, Zdráhal Z, Sedláček R, Arenas E, Villaescusa JC, Bryja V. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat Commun 2019; 10:1498. [PMID: 30940800 PMCID: PMC6445127 DOI: 10.1038/s41467-019-09298-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.
Collapse
Affiliation(s)
- Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Daniel Gyllborg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jan Procházka
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v. v. i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - Alena Salašová
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
- Danish Research Institute of Translational Neuroscience, Department of Biomedicine, Aarhus University, Aarhus, C 8000, Denmark
| | - Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Francisco Lamus Molina
- Departamento de Anatomía y Radiología, Facultad de medicina, Universidad de Valladolid, Ramón y Cajal 5, 47005, Valladolid, Spain
| | - Rocio Laguna-Goya
- John van Geest Centre for Brain Repair and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Tomasz Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Michaela Procházková
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v. v. i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, 625 00, Brno, Czech Republic
| | - Roger A Barker
- John van Geest Centre for Brain Repair and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Ángel Gato Casado
- Departamento de Anatomía y Radiología, Facultad de medicina, Universidad de Valladolid, Ramón y Cajal 5, 47005, Valladolid, Spain
| | - Zbyněk Zdráhal
- Central European Institute of Technology, 625 00, Brno, Czech Republic
| | - Radislav Sedláček
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v. v. i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - Ernest Arenas
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - J Carlos Villaescusa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
- Psychiatric Stem Cell Group, Neurogenetics Unit, Center for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, 171 76, Sweden.
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
23
|
Kerdidani D, Chouvardas P, Arjo AR, Giopanou I, Ntaliarda G, Guo YA, Tsikitis M, Kazamias G, Potaris K, Stathopoulos GT, Zakynthinos S, Kalomenidis I, Soumelis V, Kollias G, Tsoumakidou M. Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nat Commun 2019; 10:1405. [PMID: 30926812 PMCID: PMC6441097 DOI: 10.1038/s41467-019-09370-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD)-derived Wnts increase cancer cell proliferative/stemness potential, but whether they impact the immune microenvironment is unknown. Here we show that LUAD cells use paracrine Wnt1 signaling to induce immune resistance. In TCGA, Wnt1 correlates strongly with tolerogenic genes. In another LUAD cohort, Wnt1 inversely associates with T cell abundance. Altering Wnt1 expression profoundly affects growth of murine lung adenocarcinomas and this is dependent on conventional dendritic cells (cDCs) and T cells. Mechanistically, Wnt1 leads to transcriptional silencing of CC/CXC chemokines in cDCs, T cell exclusion and cross-tolerance. Wnt-target genes are up-regulated in human intratumoral cDCs and decrease upon silencing Wnt1, accompanied by enhanced T cell cytotoxicity. siWnt1-nanoparticles given as single therapy or part of combinatorial immunotherapies act at both arms of the cancer-immune ecosystem to halt tumor growth. Collectively, our studies show that Wnt1 induces immunologically cold tumors through cDCs and highlight its immunotherapeutic targeting.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.,1st Department of Critical Care and Pulmonary Medicine, Medical School, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Panagiotis Chouvardas
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3012, Switzerland.,Department for BioMedical Research, University of Bern, Bern, 3012, Switzerland
| | - Ares Rocanin Arjo
- Integrative Biology of Human Dendritic Cells and T Cells, Institute Curie, Paris, 75005, France
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Giannoula Ntaliarda
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Georgios Kazamias
- Department of Histopathology, Evangelismos General Hospital, Athens, 10676, Greece
| | | | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, 81377, Germany
| | - Spyros Zakynthinos
- 1st Department of Critical Care and Pulmonary Medicine, Medical School, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Ioannis Kalomenidis
- 1st Department of Critical Care and Pulmonary Medicine, Medical School, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Vassili Soumelis
- Integrative Biology of Human Dendritic Cells and T Cells, Institute Curie, Paris, 75005, France
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Maria Tsoumakidou
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.
| |
Collapse
|
24
|
Chatterjee S, Sil PC. Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacol Res 2019; 142:251-261. [PMID: 30826456 DOI: 10.1016/j.phrs.2019.02.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/23/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Wnt pathway is an evolutionarily conserved signaling pathway determining patterning of animal embryos, cell fate, cell polarity, and a substantial role in the origin and maintenance of stem cells. It has been found to crosstalk with two other major developmental pathways, Hedgehog and Notch, in many embryological development cascades and in maintaining stemness of stem cells Research has shown that all the three pathways are potent in inducing tumorigenesis, driving tumor progression and aiding epithelial to mesenchymal transition in malignant cells, apart from maintaining cancer stem cells population inside the tumor tissue. Cancer stem cells are thought to aid in the process of tumor relapse, as they survive therapy by displaying drug resistance and then repopulating tumor tissues. Hence the role of these crosstalks in cancer is under intensive research. Inhibition of all the three pathways individually have resulted in tumor regression, but not optimally, as treatment failure and cancer relapse have been found to occur. Hence, instead of targeting a single pathway, targeting the crosstalk network could be a better alternative to conventional cancer treatment. Also, elimination of both tumor cells as well as cancer stem cells implies a reduced chance of relapse. Drugs developed to target these crosstalking networks, when used in combinatorial therapy, can potentially increase the efficacy of the therapy to a very large extent.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
25
|
Hosseini V, Dani C, Geranmayeh MH, Mohammadzadeh F, Nazari Soltan Ahmad S, Darabi M. Wnt lipidation: Roles in trafficking, modulation, and function. J Cell Physiol 2018; 234:8040-8054. [PMID: 30341908 DOI: 10.1002/jcp.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohammadzadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
26
|
Assembly of protein complexes restricts diffusion of Wnt3a proteins. Commun Biol 2018; 1:165. [PMID: 30320232 PMCID: PMC6179999 DOI: 10.1038/s42003-018-0172-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Members of the Wnt protein family play roles in many aspects of embryogenesis and homeostasis. Despite their biological significance, characteristics of Wnt proteins still remain unclear, mainly due to their insolubility after the removal of serum. Here we examine Wnt proteins in serum-containing media by using analytical ultracentrifugation with a fluorescence detection system. This analysis reveals that Wnt3a assembles into high-molecular-weight complexes that become dissociable by interaction with the extracellular domain of the Frizzled8 receptor or secreted Wnt-binding protein sFRP2. Cross-linking and single-particle analyses of Wnt3a fractionated by gel filtration chromatography show the homo-trimer to be the smallest form of the assembled Wnt3a complexes. Fluorescence correlation spectroscopy and immunohistochemistry reveal that the assembly of Wnt3a complexes restricted their diffusion and signaling range in Xenopus laevis embryos. Thus, we propose that the Wnt diffusion range can be controlled by a balance between the assembly of Wnt complexes and their dissociation. Ritsuko Takada et al. show that Wnt3a assembles into high molecular weight complexes that restrict the diffusion of Wnt within Xenopus embryos. These results suggest that Wnt diffusion in cells is controlled by a balance between higher order complex assembly and dissociation by Wnt-binding proteins.
Collapse
|
27
|
Grainger S, Willert K. Mechanisms of Wnt signaling and control. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1422. [PMID: 29600540 PMCID: PMC6165711 DOI: 10.1002/wsbm.1422] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/17/2023]
Abstract
The Wnt signaling pathway is a highly conserved system that regulates complex biological processes across all metazoan species. At the cellular level, secreted Wnt proteins serve to break symmetry and provide cells with positional information that is critical to the patterning of the entire body plan. At the organismal level, Wnt signals are employed to orchestrate fundamental developmental processes, including the specification of the anterior-posterior body axis, induction of the primitive streak and ensuing gastrulation movements, and the generation of cell and tissue diversity. Wnt functions extend into adulthood where they regulate stem cell behavior, tissue homeostasis, and damage repair. Disruption of Wnt signaling activity during embryonic development or in adults results in a spectrum of abnormalities and diseases, including cancer. The molecular mechanisms that underlie the myriad of Wnt-regulated biological effects have been the subject of intense research for over three decades. This review is intended to summarize our current understanding of how Wnt signals are generated and interpreted. This article is categorized under: Biological Mechanisms > Cell Signaling Developmental Biology > Stem Cell Biology and Regeneration.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| | - Karl Willert
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| |
Collapse
|
28
|
Pani AM, Goldstein B. Direct visualization of a native Wnt in vivo reveals that a long-range Wnt gradient forms by extracellular dispersal. eLife 2018; 7:38325. [PMID: 30106379 PMCID: PMC6143344 DOI: 10.7554/elife.38325] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022] Open
Abstract
Wnts are evolutionarily conserved signaling proteins with essential roles in development and disease that have often been thought to spread between cells and signal at a distance. However, recent studies have challenged this model, and whether long-distance extracellular Wnt dispersal occurs and is biologically relevant is debated. Understanding fundamental aspects of Wnt dispersal has been limited by challenges with observing endogenous ligands in vivo, which has prevented directly testing hypotheses. Here, we have generated functional, fluorescently tagged alleles for a C. elegans Wnt homolog and for the first time visualized a native, long-range Wnt gradient in a living animal. Live imaging of Wnt along with source and responding cell membranes provided support for free, extracellular dispersal. By limiting Wnt transfer between cells, we confirmed that extracellular spreading shapes a long-range gradient and is critical for neuroblast migration. These results provide direct evidence that Wnts spread extracellularly to regulate aspects of long-range signaling.
Collapse
Affiliation(s)
- Ariel M Pani
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, United States
| |
Collapse
|
29
|
Beaven R, Denholm B. Release and spread of Wingless is required to pattern the proximo-distal axis of Drosophila renal tubules. eLife 2018; 7:e35373. [PMID: 30095068 PMCID: PMC6086663 DOI: 10.7554/elife.35373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 01/06/2023] Open
Abstract
Wingless/Wnts are signalling molecules, traditionally considered to pattern tissues as long-range morphogens. However, more recently the spread of Wingless was shown to be dispensable in diverse developmental contexts in Drosophila and vertebrates. Here we demonstrate that release and spread of Wingless is required to pattern the proximo-distal (P-D) axis of Drosophila Malpighian tubules. Wingless signalling, emanating from the midgut, directly activates odd skipped expression several cells distant in the proximal tubule. Replacing Wingless with a membrane-tethered version that is unable to diffuse from the Wingless producing cells results in aberrant patterning of the Malpighian tubule P-D axis and development of short, deformed ureters. This work directly demonstrates a patterning role for a released Wingless signal. As well as extending our understanding about the functional modes by which Wnts shape animal development, we anticipate this mechanism to be relevant to patterning epithelial tubes in other organs, such as the vertebrate kidney.
Collapse
Affiliation(s)
- Robin Beaven
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Barry Denholm
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
30
|
Direct visualization of the Wntless-induced redistribution of WNT1 in developing chick embryos. Dev Biol 2018; 439:53-64. [PMID: 29715461 DOI: 10.1016/j.ydbio.2018.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Paracrine Wnt signals are critical regulators of cell proliferation, specification, and differentiation during embryogenesis. Consistent with the discovery that Wnt ligands are post-translationally modified with palmitoleate (a 16 carbon mono-unsaturated fatty acid), our studies show that the vast majority of bioavailable chick WNT1 (cWNT1) produced in stably transfected L cells is cell-associated. Thus, it seems unlikely that the WNT1 signal is propagated by diffusion alone. Unfortunately, the production and transport of vertebrate Wnt proteins has been exceedingly difficult to study as few antibodies are able to detect endogenous Wnt proteins and fixation is known to disrupt the architecture of cells and tissues. Furthermore, vertebrate Wnts have been extraordinarily refractory to tagging. To help overcome these obstacles, we have generated a number of tools that permit the detection of WNT1 in palmitoylation assays and the visualization of chick and zebrafish WNT1 in live cells and tissues. Consistent with previous studies in fixed cells, live imaging of cells and tissues with overexpressed cWNT1-moxGFP shows predominant localization of the protein to a reticulated network that is likely to be the endoplasmic reticulum. As PORCN and WLS are important upstream regulators of Wnt gradient formation, we also undertook the generation of mCherry-tagged variants of both proteins. While co-expression of PORCN-mCherry had no discernible effect on the localization of WNT1-moxGFP, co-expression of WLS-mCherry caused a marked redistribution of WNT1-moxGFP to the cell surface and cellular projections in cultured cells as well as in neural crest and surface ectoderm cells in developing chick embryos. Our studies further establish that the levels of WLS, and not PORCN, are rate limiting with respect to WNT1 trafficking.
Collapse
|
31
|
Parchure A, Vyas N, Mayor S. Wnt and Hedgehog: Secretion of Lipid-Modified Morphogens. Trends Cell Biol 2018; 28:157-170. [PMID: 29132729 PMCID: PMC6941938 DOI: 10.1016/j.tcb.2017.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/07/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Morphogens are signaling molecules produced by a localized source, specifying cell fate in a graded manner. The source secretes morphogens into the extracellular milieu to activate various target genes in an autocrine or paracrine manner. Here we describe various secreted forms of two canonical morphogens, the lipid-anchored Hedgehog (Hh) and Wnts, indicating the involvement of multiple carriers in the transport of these morphogens. These different extracellular secreted forms are likely to have distinct functions. Here we evaluate newly identified mechanisms that morphogens use to traverse the required distance to activate discrete paracrine signaling.
Collapse
Affiliation(s)
- Anup Parchure
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; Current address: Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Neha Vyas
- St John's Research Institute, St John's National Academy of Health Sciences, Bangalore 560034, India.
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India.
| |
Collapse
|
32
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
33
|
Wils LJ, Bijlsma MF. Epigenetic regulation of the Hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 2018; 121:23-44. [DOI: 10.1016/j.critrevonc.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
|
34
|
Abstract
Chronic diseases account for approximately 45% of all deaths in developed countries and are particularly prevalent in countries with the most sophisticated and robust public health systems. Chronic metabolic diseases, specifically lifestyle-related diseases pertaining to diet and exercise, continue to be difficult to treat clinically. The most prevalent of these chronic metabolic diseases include obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiovascular disease and will be the focus of this review. Wnt proteins are highly conserved glycoproteins best known for their role in development and homeostasis of tissues. Given the importance of Wnt signalling in homeostasis, aberrant Wnt signalling likely regulates metabolic processes and may contribute to the development of chronic metabolic diseases. Expression of Wnt proteins and dysfunctional Wnt signalling has been reported in multiple chronic diseases. It is interesting to speculate about an interrelationship between the Wnt signalling pathways as a potential pathological mechanism in chronic metabolic diseases. The aim of this review is to summarize reported findings on the contrasting roles of Wnt signalling in lifestyle-related chronic metabolic diseases; specifically, the contribution of Wnt signalling to lipid accumulation, fibrosis and chronic low-grade inflammation.
Collapse
Affiliation(s)
- Ian Ackers
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- OHF Fellow, Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Ramiro Malgor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Ramiro Malgor, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 202b Academic & Research Center, Athens, OH, 45701-2979 USA.
| |
Collapse
|
35
|
Lippert A, Janeczek AA, Fürstenberg A, Ponjavic A, Moerner WE, Nusse R, Helms JA, Evans ND, Lee SF. Single-Molecule Imaging of Wnt3A Protein Diffusion on Living Cell Membranes. Biophys J 2017; 113:2762-2767. [PMID: 29262368 PMCID: PMC5925569 DOI: 10.1016/j.bpj.2017.08.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 01/31/2023] Open
Abstract
Wnt proteins are secreted, hydrophobic, lipidated proteins found in all animals that play essential roles in development and disease. Lipid modification is thought to facilitate the interaction of the protein with its receptor, Frizzled, but may also regulate the transport of Wnt protein and its localization at the cell membrane. Here, by employing single-molecule fluorescence techniques, we show that Wnt proteins associate with and diffuse on the plasma membranes of living cells in the absence of any receptor binding. We find that labeled Wnt3A transiently and dynamically associates with the membranes of Drosophila Schneider 2 cells, diffuses with Brownian kinetics on flattened membranes and on cellular protrusions, and does not transfer between cells in close contact. In S2 receptor-plus (S2R+) cells, which express Frizzled receptors, membrane diffusion rate is reduced and membrane residency time is increased. These results provide direct evidence of Wnt3A interaction with living cell membranes, and represent, to our knowledge, a new system for investigating the dynamics of Wnt transport.
Collapse
Affiliation(s)
- Anna Lippert
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Alexandre Fürstenberg
- Department of Chemistry, Stanford University, Palo Alto, California; Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, Genève, Switzerland
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - W E Moerner
- Department of Chemistry, Stanford University, Palo Alto, California
| | - Roel Nusse
- Department of Developmental Biology, Stanford University, Palo Alto, California
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Chemistry, Stanford University, Palo Alto, California.
| |
Collapse
|
36
|
Naschberger A, Orry A, Lechner S, Bowler MW, Nurizzo D, Novokmet M, Keller MA, Oemer G, Seppi D, Haslbeck M, Pansi K, Dieplinger H, Rupp B. Structural Evidence for a Role of the Multi-functional Human Glycoprotein Afamin in Wnt Transport. Structure 2017; 25:1907-1915.e5. [PMID: 29153507 DOI: 10.1016/j.str.2017.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022]
Abstract
Afamin, a human plasma glycoprotein and putative transporter of hydrophobic molecules, has been shown to act as extracellular chaperone for poorly soluble, acylated Wnt proteins, forming a stable, soluble complex with functioning Wnt proteins. The 2.1-Å crystal structure of glycosylated human afamin reveals an almost exclusively hydrophobic binding cleft capable of harboring large hydrophobic moieties. Lipid analysis confirms the presence of lipids, and density in the primary binding pocket of afamin was modeled as palmitoleic acid, presenting the native O-acylation on serine 209 in human Wnt3a. The modeled complex between the experimental afamin structure and a Wnt3a homology model based on the XWnt8-Fz8-CRD fragment complex crystal structure is compelling, with favorable interactions comparable with the crystal structure complex. Afamin readily accommodates the conserved palmitoylated serine 209 of Wnt3a, providing a structural basis how afamin solubilizes hydrophobic and poorly soluble Wnt proteins.
Collapse
Affiliation(s)
- Andreas Naschberger
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria; Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andrew Orry
- MolSoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Stefan Lechner
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Didier Nurizzo
- Structural Biology Group, ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Mislav Novokmet
- Genos, Glycoscience Laboratory, Hondlova 2/11, 10000 Zagreb, Croatia
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Gregor Oemer
- Genos, Glycoscience Laboratory, Hondlova 2/11, 10000 Zagreb, Croatia
| | - Daniele Seppi
- Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kathrin Pansi
- Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hans Dieplinger
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria; k.-k. Hofkristallamt, San Diego, CA 92084, USA.
| |
Collapse
|
37
|
Pikkarainen T, Nurmi T, Sasaki T, Bergmann U, Vainio S. Role of the extracellular matrix-located Mac-2 binding protein as an interactor of the Wnt proteins. Biochem Biophys Res Commun 2017; 491:953-957. [PMID: 28756229 DOI: 10.1016/j.bbrc.2017.07.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
The Wnt proteins constitute a conserved family of secreted palmitoleate-containing signaling proteins that play important roles in development and tissue homeostasis. Their hydrophobic nature has raised the question of how the proteins are transported outside the cells. Accumulating evidence suggests that several different mechanisms, including transport by lipoprotein particles and exosomes, may contribute to this process. Here, we expressed epitope-tagged Wnt4 in HEK293 cells, and identified Mac-2 binding protein (Mac-2BP) as its binding partner in the serum-free conditioned medium. Serine-to-alanine substitution at the conserved fatty acid-conjugation site did not affect Mac-2BP binding. Subsequent studies showed that Mac-2BP may be a general Wnt interactor. It is found in the extracellular matrix (ECM) of various tissues, where it forms unusual oligomeric ring-like structures. Its functions appear to include interactions with cells and certain ECM components. Intriguingly, both Wnt signaling and Mac-2BP expression are upregulated in many types of cancer. Our studies on the four-domain Mac-2BP indicate a crucial role in Wnt binding for the C-terminal domain that bears no sequence similarity to any other protein. Mac-2BP may have a role in regulating the extracellular spreading and storage of the Wnts, thereby modulating their bioavailability and stability.
Collapse
Affiliation(s)
- Timo Pikkarainen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90220 Oulu, Finland.
| | - Tuomas Nurmi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90220 Oulu, Finland
| | - Takako Sasaki
- Department of Matrix Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90220 Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90220 Oulu, Finland
| |
Collapse
|
38
|
Kramer N, Schmöllerl J, Unger C, Nivarthi H, Rudisch A, Unterleuthner D, Scherzer M, Riedl A, Artaker M, Crncec I, Lenhardt D, Schwarz T, Prieler B, Han X, Hengstschläger M, Schüler J, Eferl R, Moriggl R, Sommergruber W, Dolznig H. Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene 2017; 36:5460-5472. [DOI: 10.1038/onc.2017.144] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 02/15/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
|
39
|
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36:1461-1473. [PMID: 27617575 PMCID: PMC5357762 DOI: 10.1038/onc.2016.304] [Citation(s) in RCA: 1761] [Impact Index Per Article: 251.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/07/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Wnt signaling is one of the key cascades regulating development and stemness, and has also been tightly associated with cancer. The role of Wnt signaling in carcinogenesis has most prominently been described for colorectal cancer, but aberrant Wnt signaling is observed in many more cancer entities. Here, we review current insights into novel components of Wnt pathways and describe their impact on cancer development. Furthermore, we highlight expanding functions of Wnt signaling for both solid and liquid tumors. We also describe current findings how Wnt signaling affects maintenance of cancer stem cells, metastasis and immune control. Finally, we provide an overview of current strategies to antagonize Wnt signaling in cancer and challenges that are associated with such approaches.
Collapse
Affiliation(s)
- T Zhan
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, Department Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany
- Heidelberg University, Department of Internal Medicine II, Medical Faculty Mannheim, Mannheim, Germany
| | - N Rindtorff
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, Department Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany
| | - M Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg University, Department Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
40
|
Takada S, Fujimori S, Shinozuka T, Takada R, Mii Y. Differences in the secretion and transport of Wnt proteins. J Biochem 2017; 161:1-7. [PMID: 28053142 DOI: 10.1093/jb/mvw071] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
During the last three decades, our understanding about Wnt signaling has progressed greatly, especially with regards to the molecular mechanism of intracellular transmission of this signaling, as well as its physiological roles. In parallel, the molecular nature of Wnt proteins has gradually but surely been clarified. Wnt proteins are post-translationaly modified with fatty acid and glycosaminoglycans, resulting in constraint of the 3D structure and behavior of the proteins. Specific binding proteins or extracellular vesicles, which appear to shield the lipid moiety from the aquatic environment, enable Wnt proteins to be transported in the extracellular space. Equally, Wnt-interacting proteins in the extracellular space, including heparan sulfate proteoglycan, are also involved in its spreading. Recent studies also show that intercellular transmission of Wnt proteins occurs by cell migration and extension of cell protrusions. Here, we will show the molecular and cellular bases of the trafficking of Wnt proteins and discuss questions that remain to be answered.
Collapse
Affiliation(s)
- Shinji Takada
- Okazaki Institute for Integrative Bioscience .,National Institute for Basic Biology, National Institutes of Natural Sciences.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| | - Sayumi Fujimori
- Okazaki Institute for Integrative Bioscience.,National Institute for Basic Biology, National Institutes of Natural Sciences
| | - Takuma Shinozuka
- Okazaki Institute for Integrative Bioscience.,National Institute for Basic Biology, National Institutes of Natural Sciences.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| | - Ritsuko Takada
- Okazaki Institute for Integrative Bioscience.,National Institute for Basic Biology, National Institutes of Natural Sciences
| | - Yusuke Mii
- Okazaki Institute for Integrative Bioscience.,National Institute for Basic Biology, National Institutes of Natural Sciences.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
41
|
Harada T, Yamamoto H, Kishida S, Kishida M, Awada C, Takao T, Kikuchi A. Wnt5b-associated exosomes promote cancer cell migration and proliferation. Cancer Sci 2016; 108:42-52. [PMID: 27762090 PMCID: PMC5276837 DOI: 10.1111/cas.13109] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/12/2016] [Accepted: 10/16/2016] [Indexed: 12/11/2022] Open
Abstract
Wnt5b is a member of the same family of proteins as Wnt5a, the overexpression of which is associated with cancer aggressiveness. Wnt5b is also suggested to be involved in cancer progression, however, details remain unclarified. We analyzed the biochemical properties of purified Wnt5b and the mode of secretion of Wnt5b by cancer cells. Wnt5b was glycosylated at three asparagine residues and lipidated at one serine residue, and these post-translational modifications of Wnt5b were essential for secretion. Purified Wnt5b showed Dvl2 phosphorylation and Rac activation abilities to a similar extent as Wnt5a. In cultured-cell conditioned medium, Wnt5b was detected in supernatant or precipitation fractions that were separated by centrifugation at 100 000 g. In PANC-1 pancreatic cancer cells, 55% of secreted endogenous Wnt5b was associated with exosomes. Exosomes from wild-type PANC-1 cells, but not those from Wnt5b-knockout PANC-1 cells, activated Wnt5b signaling in CHO cells and stimulated migration and proliferation of A549 lung adenocarcinoma cells, suggesting that endogenous, Wnt5b-associated exosomes are active. The exosomes were taken up by CHO cells and immunoelectron microscopy revealed that Wnt5b is indeed associated with exosomes. In Caco-2 colon cancer cells, most Wnt5b was recovered in precipitation fractions when Wnt5b was ectopically expressed (Caco-2/Wnt5b cells). Knockdown of TSG101, an exosome marker, decreased the secretion of Wnt5b-associated exosomes from Caco-2/Wnt5b cells and inhibited Wnt5b-dependent cell proliferation. Exosomes secreted from Caco-2/Wnt5b cells stimulated migration and proliferation of A549 cells. These results suggest that Wnt5b-associated exosomes promote cancer cell migration and proliferation in a paracrine manner.
Collapse
Affiliation(s)
- Takeshi Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Michiko Kishida
- Department of Biochemistry and Genetics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Chihiro Awada
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
42
|
Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer. Cancers (Basel) 2016; 8:cancers8090080. [PMID: 27589803 PMCID: PMC5040982 DOI: 10.3390/cancers8090080] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease.
Collapse
|
43
|
Langton PF, Kakugawa S, Vincent JP. Making, Exporting, and Modulating Wnts. Trends Cell Biol 2016; 26:756-765. [PMID: 27325141 DOI: 10.1016/j.tcb.2016.05.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Wnt proteins activate a conserved signalling pathway that controls development and tissue homeostasis in all metazoans. The intensity of Wnt signalling must be tightly controlled to avoid diseases caused by excess or ectopic signalling. Over the years, many proteins dedicated to Wnt function have been identified, including Porcupine, which appends a palmitoleate moiety that is essential for signalling activity. This lipid inevitably affects subcellular trafficking and solubility, as well as providing a target for post-translational modulation. We review here the life history of Wnts, starting with progression through the secretory pathway, continuing with release and spread in the extracellular space, and finishing with the various proteins that dampen or inactivate Wnts in the extracellular space.
Collapse
Affiliation(s)
- Paul F Langton
- The Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Satoshi Kakugawa
- Hakuhodo Medical Inc., 6-1-20 Akasaka Minato-ku, Tokyo 107-0052, Japan
| | - Jean-Paul Vincent
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK.
| |
Collapse
|
44
|
Rochard L, Monica SD, Ling ITC, Kong Y, Roberson S, Harland R, Halpern M, Liao EC. Roles of Wnt pathway genes wls, wnt9a, wnt5b, frzb and gpc4 in regulating convergent-extension during zebrafish palate morphogenesis. Development 2016; 143:2541-7. [PMID: 27287801 DOI: 10.1242/dev.137000] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
The Wnt signaling pathway is crucial for tissue morphogenesis, participating in cellular behavior changes, notably during the process of convergent-extension. Interactions between Wnt-secreting and receiving cells during convergent-extension remain elusive. We investigated the role and genetic interactions of Wnt ligands and their trafficking factors Wls, Gpc4 and Frzb in the context of palate morphogenesis in zebrafish. We describe that the chaperon Wls and its ligands Wnt9a and Wnt5b are expressed in the ectoderm, whereas juxtaposed chondrocytes express Frzb and Gpc4. Using wls, gpc4, frzb, wnt9a and wnt5b mutants, we genetically dissected the Wnt signals operating between secreting ectoderm and receiving chondrocytes. Our analysis delineates that non-canonical Wnt signaling is required for cell intercalation, and that wnt5b and wnt9a are required for palate extension in the anteroposterior and transverse axes, respectively.
Collapse
Affiliation(s)
- Lucie Rochard
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Stefanie D Monica
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Irving T C Ling
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Yawei Kong
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Sara Roberson
- Department of Embryology, Carnegie Institution for Science, and Department of Biology, Johns Hopkins University, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Richard Harland
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Marnie Halpern
- Department of Embryology, Carnegie Institution for Science, and Department of Biology, Johns Hopkins University, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| |
Collapse
|
45
|
Resh MD. Fatty acylation of proteins: The long and the short of it. Prog Lipid Res 2016; 63:120-31. [PMID: 27233110 DOI: 10.1016/j.plipres.2016.05.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 12/22/2022]
Abstract
Long, short and medium chain fatty acids are covalently attached to hundreds of proteins. Each fatty acid confers distinct biochemical properties, enabling fatty acylation to regulate intracellular trafficking, subcellular localization, protein-protein and protein-lipid interactions. Myristate and palmitate represent the most common fatty acid modifying groups. New insights into how fatty acylation reactions are catalyzed, and how fatty acylation regulates protein structure and function continue to emerge. Myristate is typically linked to an N-terminal glycine, but recent studies reveal that lysines can also be myristoylated. Enzymes that remove N-terminal myristoyl-glycine or myristate from lysines have now been identified. DHHC proteins catalyze S-palmitoylation, but the mechanisms that regulate substrate recognition by individual DHHC family members remain to be determined. New studies continue to reveal thioesterases that remove palmitate from S-acylated proteins. Another area of rapid expansion is fatty acylation of the secreted proteins hedgehog, Wnt and Ghrelin, by Hhat, Porcupine and GOAT, respectively. Understanding how these membrane bound O-acyl transferases recognize their protein and fatty acyl CoA substrates is an active area of investigation, and is punctuated by the finding that these enzymes are potential drug targets in human diseases.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10075, United States.
| |
Collapse
|
46
|
Mihara E, Hirai H, Yamamoto H, Tamura-Kawakami K, Matano M, Kikuchi A, Sato T, Takagi J. Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin. eLife 2016; 5. [PMID: 26902720 PMCID: PMC4775226 DOI: 10.7554/elife.11621] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/18/2016] [Indexed: 01/16/2023] Open
Abstract
Wnt plays important role during development and in various diseases. Because Wnts are lipidated and highly hydrophobic, they can only be purified in the presence of detergents, limiting their use in various in vitro and in vivo assays. We purified N-terminally tagged recombinant Wnt3a secreted from cells and accidentally discovered that Wnt3a co-purified with a glycoprotein afamin derived from the bovine serum included in the media. Wnt3a forms a 1:1 complex with afamin, which remains soluble in aqueous buffer after isolation, and can induce signaling in various cellular systems including the intestical stem cell growth assay. By co-expressing with afamin, biologically active afamin-Wnt complex can be easily obtained in large quantity. As afamin can also solubilize Wnt5a, Wnt3, and many more Wnt subtypes, afamin complexation will open a way to put various Wnt ligands and their signaling mechanisms under a thorough biochemical scrutiny that had been difficult for years. DOI:http://dx.doi.org/10.7554/eLife.11621.001 The Wnt signaling pathway helps animal cells to communicate with each other to coordinate the formation of tissues and organs. The pathway relies on a protein called Wnt that is released from cells and binds to a receptor protein called Frizzled on the surface of other cells to trigger changes in gene activation. Defects in the Wnt signaling pathway contribute to cancer and other diseases. Great progress has been made in understanding Wnt signaling, but certain types of experiments have been hindered because it has been difficult to isolate pure Wnt proteins. This is partly because Wnt proteins are attached to a fatty molecule that is important for their activity but also makes these proteins “hydrophobic,” or repelled by water. Hydrophobic proteins have a strong tendency to clump or aggregate when they are isolated from cells, which reduces the biological activity of proteins. Adding detergents to the aggregates can break them apart, but can also hinder the proteins’ activities and cannot be used in all experiments. Previous research has shown that mammalian cells grown in the presence of blood serum can produce Wnt proteins that do not aggregate. Blood serum is a complex mixture of different molecules obtained from blood and is commonly added to cells grown in the laboratory. However, adding serum can have also undesirable effects and it is not understood why serum stops Wnt proteins forming aggregates. Using biochemical methods, Mihara et al. have now identified the component in blood serum that prevents Wnt proteins from aggregating. The experiments showed that a protein in the blood serum called afamin binds tightly to Wnt proteins. Furthermore, the complex between afamin and Wnt was biologically active, and could bind to the Frizzled receptor and trigger an appropriate response in cells. Mihara et al. then generated cells that produced both afamin and Wnt and used them to purify large amounts of biologically active Wnt/afamin complexes. This method avoids the potentially undesirable effects of using detergents or serum, and will therefore likely be useful for future experiments and therapeutic applications. Further work is also needed to understand why afamin binds to Wnt proteins and whether this is important for Wnt signaling. DOI:http://dx.doi.org/10.7554/eLife.11621.002
Collapse
Affiliation(s)
- Emiko Mihara
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Japan
| | - Hidenori Hirai
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Japan
| | - Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keiko Tamura-Kawakami
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Japan
| | - Mami Matano
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
47
|
Abstract
ABSTRACT
Wnt signaling regulates a broad variety of processes during embryonic development and disease. A hallmark of the Wnt signaling pathway is the formation of concentration gradients by Wnt proteins across responsive tissues, which determines cell fate in invertebrates and vertebrates. To fulfill its paracrine function, trafficking of the Wnt morphogen from an origin cell to a recipient cell must be tightly regulated. A variety of models have been proposed to explain the extracellular transport of these lipid-modified signaling proteins in the aqueous extracellular space; however, there is still considerable debate with regard to which mechanisms allow the precise distribution of ligand in order to generate a morphogenetic gradient within growing tissue. Recent evidence suggests that Wnt proteins are distributed along signaling filopodia during vertebrate and invertebrate embryogenesis. Cytoneme-mediated transport has profound impact on our understanding of how Wnt signaling propagates through tissues and allows the formation of a precise ligand distribution in the recipient tissue during embryonic growth. In this Commentary, we review extracellular trafficking mechanisms for Wnt proteins and discuss the growing evidence of cytoneme-based Wnt distribution in development and stem cell biology. We will also discuss their implication for Wnt signaling in the formation of the Wnt morphogenetic gradient during tissue patterning.
Collapse
Affiliation(s)
- Eliana Stanganello
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe 76021, Germany
| | - Steffen Scholpp
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe 76021, Germany
| |
Collapse
|
48
|
Abstract
Wnt proteins act as potent morphogens in various aspects of embryonic development and adult tissue homeostasis. However, in addition to its physiological importance, aberrant Wnt signaling has been linked to the onset and progression of different types of cancer. On the cellular level, the secretion of Wnt proteins involves trafficking of lipid-modified Wnts from the endoplasmic reticulum (ER) to Golgi and further compartments via the Wnt cargo receptor evenness interrupted. Others and we have recently shown that Wnt proteins are secreted on extracellular vesicles (EVs) such as microvesicles and exosomes. Although more details about specific regulation of Wnt secretion steps are emerging, it remains largely unknown how Wnt proteins are channeled into different release pathways such as lipoprotein particles, EVs and cytonemes. Here, we describe protocols to purify and quantify Wnts from the supernatant of cells by either assessing total Wnt proteins in the supernatant or monitoring Wnt proteins on EVs. Purified Wnts from the supernatant as well as total cellular protein content can be investigated by immunoblotting. Additionally, the relative activity of canonical Wnts in the supernatant can be assessed by a dual-luciferase Wnt reporter assay. Quantifying the amount of secreted Wnt proteins and their activity in the supernatant of cells allows the investigation of intracellular trafficking events that regulate Wnt secretion and the role of extracellular modulators of Wnt spreading.
Collapse
Affiliation(s)
- Kathrin Glaeser
- Division Signaling and Functional Genomics and Heidelberg University, Department for Cell and Molecular Biology, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics and Heidelberg University, Department for Cell and Molecular Biology, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Julia Christina Gross
- Haematology and Oncology and Developmental Biochemistry, University Medicine Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
49
|
Teh C, Sun G, Shen H, Korzh V, Wohland T. Modulating the expression level of secreted Wnt3 influences cerebellum development in zebrafish transgenics. Development 2015; 142:3721-33. [PMID: 26395493 DOI: 10.1242/dev.127589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/28/2015] [Indexed: 12/13/2022]
Abstract
The boundaries of brain regions are associated with the tissue-specific secretion of ligands from different signaling pathways. The dynamics of these ligands in vivo and the impact of its disruption remain largely unknown. Using light and fluorescence microscopy for the overall imaging of the specimen and fluorescence correlation spectroscopy (FCS) to determine Wnt3 dynamics, we demonstrated that Wnt3 regulates cerebellum development during embryogenesis using zebrafish wnt3 transgenics with either tissue-specific expression of an EGFP reporter or a functionally active fusion protein, Wnt3EGFP. The results suggest a state of dynamic equilibrium of Wnt3EGFP mobility in polarized neuroepithelial-like progenitors in the dorsal midline and cerebellar progenitors on the lateral side. Wnt3EGFP is secreted from the cerebellum as shown by measurements of its mobility in the ventricular cavity. The importance of Wnt secretion in brain patterning was validated with the Porcn inhibitor Wnt-C59 (C59), which, when applied early, reduced membrane-bound and secreted fractions of Wnt3EGFP and led to a malformed brain characterized by the absence of epithalamus, optic tectum and cerebellum. Likewise, interference with Wnt secretion later on during cerebellar development negatively impacted cerebellar growth and patterning. Our work, supported by quantitative analysis of protein dynamics in vivo, highlights the importance of membrane-localized and secreted Wnt3 during cerebellum development.
Collapse
Affiliation(s)
- Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673 Singapore
| | - Guangyu Sun
- Department of Chemistry, National University of Singapore, 117543 Singapore Center for Bioimaging Sciences, National University of Singapore, 117557 Singapore
| | - Hongyuan Shen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673 Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673 Singapore Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, 117543 Singapore Center for Bioimaging Sciences, National University of Singapore, 117557 Singapore Department of Biological Sciences, National University of Singapore, 117543 Singapore
| |
Collapse
|
50
|
Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal 2015; 27:1380-91. [PMID: 25843779 PMCID: PMC4437805 DOI: 10.1016/j.cellsig.2015.03.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
Wnt signaling pathways and microRNAs (miRNAs) are critical regulators of development. Aberrant Wnt signaling pathways and miRNA levels lead to developmental defects and diverse human pathologies including but not limited to cancer. Wnt signaling pathways regulate a plethora of cellular processes during embryonic development and maintain homeostasis of adult tissues. A majority of Wnt signaling components are regulated by miRNAs which are small noncoding RNAs that are expressed in both animals and plants. In animal cells, miRNAs fine tune gene expression by pairing primarily to the 3'untranslated region of protein coding mRNAs to repress target mRNA translation and/or induce target degradation. miRNA-mediated regulation of signaling transduction pathways is important in modulating dose-sensitive response of cells to signaling molecules. This review discusses components of the Wnt signaling pathways that are regulated by miRNAs in the context of development and diseases. A fundamental understanding of miRNA functions in Wnt signaling transduction pathways may yield new insight into crosstalks of regulatory mechanisms essential for development and disease pathophysiology leading to novel therapeutics.
Collapse
Affiliation(s)
- Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Priya Nigam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Senel S Tektas
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erica Selva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|