1
|
Boffa MB, Koschinsky ML. Lipoprotein(a) and cardiovascular disease. Biochem J 2024; 481:1277-1296. [PMID: 39302109 DOI: 10.1042/bcj20240037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Elevated plasma levels of lipoprotein(a) (Lp(a)) are a prevalent, independent, and causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve disease. Lp(a) consists of a lipoprotein particle resembling low density lipoprotein and the covalently-attached glycoprotein apolipoprotein(a) (apo(a)). Novel therapeutics that specifically and potently lower Lp(a) levels are currently in advanced stages of clinical development, including in large, phase 3 cardiovascular outcomes trials. However, fundamental unanswered questions remain concerning some key aspects of Lp(a) biosynthesis and catabolism as well as the true pathogenic mechanisms of the particle. In this review, we describe the salient biochemical features of Lp(a) and apo(a) and how they underlie the disease-causing potential of Lp(a), the factors that determine plasma Lp(a) concentrations, and the mechanism of action of Lp(a)-lowering drugs.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Marlys L Koschinsky
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Bayati A, McPherson PS. Alpha-synuclein, autophagy-lysosomal pathway, and Lewy bodies: Mutations, propagation, aggregation, and the formation of inclusions. J Biol Chem 2024; 300:107742. [PMID: 39233232 PMCID: PMC11460475 DOI: 10.1016/j.jbc.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Research into the pathophysiology of Parkinson's disease (PD) is a fast-paced pursuit, with new findings about PD and other synucleinopathies being made each year. The involvement of various lysosomal proteins, such as TFEB, TMEM175, GBA, and LAMP1/2, marks the rising awareness about the importance of lysosomes in PD and other neurodegenerative disorders. This, along with recent developments regarding the involvement of microglia and the immune system in neurodegenerative diseases, has brought about a new era in neurodegeneration: the role of proinflammatory cytokines on the nervous system, and their downstream effects on mitochondria, lysosomal degradation, and autophagy. More effort is needed to understand the interplay between neuroimmunology and disease mechanisms, as many of the mechanisms remain enigmatic. α-synuclein, a key protein in PD and the main component of Lewy bodies, sits at the nexus between lysosomal degradation, autophagy, cellular stress, neuroimmunology, PD pathophysiology, and disease progression. This review revisits some fundamental knowledge about PD while capturing some of the latest trends in PD research, specifically as it relates to α-synuclein.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Zhang LZ, Du RJ, Wang D, Qin J, Yu C, Zhang L, Zhu HD. Enteral Route Nanomedicine for Cancer Therapy. Int J Nanomedicine 2024; 19:9889-9919. [PMID: 39351000 PMCID: PMC11439897 DOI: 10.2147/ijn.s482329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
With the in-depth knowledge of the pathological and physiological characteristics of the intestinal barrier-portal vein/intestinal lymphatic vessels-systemic circulation axis, oral targeted drug delivery is frequently being renewed. With many advantages, such as high safety, convenient administration, and good patient compliance, many researchers have begun to explore targeted drug delivery from intravenous injections to oral administration. Over the past few decades, the fields of materials science and nanomedicine have produced various drug delivery platforms that hold great potential in overcoming the multiple barriers associated with oral drug delivery. However, the oral transport of particles into the systemic circulation is extremely difficult due to immune rejection and biochemical invasion in the intestine, which limits absorption and entry into the bloodstream. The feasibility of the oral delivery of targeted drugs to sites outside the gastrointestinal tract (GIT) is unknown. This article reviews the biological barriers to drug absorption, the in vivo fate and transport mechanisms of drug carriers, the theoretical basis for oral administration, and the impact of carrier structural evolution on oral administration to achieve this goal. Finally, this article reviews the characteristics of different nano-delivery systems that can enhance the bioavailability of oral therapeutics and highlights their applications in the efficient creation of oral anticancer nanomedicines.
Collapse
Affiliation(s)
- Lin-Zhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Rui-Jie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Juan Qin
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Hai-Dong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Driscoll MK, Welf ES, Weems A, Sapoznik E, Zhou F, Murali VS, García-Arcos JM, Roh-Johnson M, Piel M, Dean KM, Fiolka R, Danuser G. Proteolysis-free amoeboid migration of melanoma cells through crowded environments via bleb-driven worrying. Dev Cell 2024; 59:2414-2428.e8. [PMID: 38870943 PMCID: PMC11421976 DOI: 10.1016/j.devcel.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
In crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move. To examine how they do so, we visualized amoeboid human melanoma cells in dense environments and found that they carve tunnels via bleb-driven degradation of extracellular matrix components without the need for proteolytic degradation. Interactions between adhesions and collagen at the cell front induce a signaling cascade that promotes bleb enlargement via branched actin polymerization. Large blebs abrade collagen, creating feedback between extracellular matrix structure, cell morphology, and polarization that enables both path generation and persistent movement.
Collapse
Affiliation(s)
- Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Sapoznik
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Felix Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Minna Roh-Johnson
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Matthieu Piel
- Institut Curie, UMR144, CNRS, PSL University, Paris, France
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Paul M, Hong F, Falet H, Kim H. Gelsolin regulates receptor-mediated and fluid-phase endocytosis in platelets. J Thromb Haemost 2024; 22:2601-2607. [PMID: 38777258 DOI: 10.1016/j.jtha.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Endocytosis is the process by which platelets incorporate extracellular molecules into their secretory granules. Endocytosis is mediated by the actin cytoskeleton in nucleated cells; however, the endocytic mechanisms in platelets are undefined. OBJECTIVES To better understand platelet endocytosis, we studied gelsolin (Gsn), an actin-severing protein that promotes actin assembly. METHODS Mouse platelets from Gsn-null (Gsn-/-) and wild-type (WT) controls were used. The uptake of fluorescent cargo molecules was compared as a measure of their endocytic efficiency. Receptor-mediated endocytosis was measured by the uptake of fibrinogen and transferrin; fluid-phase endocytosis was monitored by the uptake of fluorescent dextrans. RESULTS Adenosine diphosphate (ADP)-stimulated WT platelets readily internalized both receptor-mediated and fluid-phase cargoes. In contrast, Gsn-/- platelets showed a severe defect in the endocytosis of both types of cargo. The treatment of WT platelets with the actin-disrupting drugs cytochalasin D and jasplakinolide also reduced endocytosis. Notably, the individual and combined effects of Gsn deletion and drug treatment were similar for both receptor-mediated and fluid-phase endocytosis, indicating that Gsn mediates endocytosis via its action on the actin cytoskeleton. CONCLUSION Our study demonstrates that Gsn plays a key role in the uptake of bioactive mediators by platelets.
Collapse
Affiliation(s)
- Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Felix Hong
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hervé Falet
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Wang X, Liao Y, Abdullah SW, Wu J, Zhang Y, Ren M, Dong H, Bai M, Sun S, Guo H. FGFR1-mediated enhancement of foot-and-mouth disease virus entry. Vet Microbiol 2024; 298:110237. [PMID: 39217891 DOI: 10.1016/j.vetmic.2024.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Foot-and-mouth disease virus (FMDV), a member of picornavirus, can enter into host cell via macropinocytosis. Although it is known that receptor tyrosine kinases (RTKs) play a crucial role in FMDV macropinocytic entry, the specific RTK responsible for regulating this process and the intricacies of RTK-mediated downstream signaling remain to be elucidated. Here, we conducted a screening of RTK inhibitors to assess their efficacy against FMDV. Our findings revealed that two compounds specifically targeting fibroblast growth factor receptor 1 (FGFR1) and FMS-like tyrosine kinase 3 (FLT3) significantly disrupted FMDV entry. Furthermore, additional evaluation through gene knockdown and overexpression confirmed the promotion effect of FGFR1 and FLT3 on FMDV entry. Interestingly, we discovered that the increasement of FMDV entry facilitated by FGFR1 and FLT3 can be ascribed to increased macropinocytic uptake. Additionally, in-depth mechanistic study demonstrated that FGFR1 interacts with FMDV VP3 and undergoes phosphorylation during FMDV entry. Furthermore, the FGFR1 inhibitor inhibited FMDV-induced activation of p21-activated kinase 1 (PAK1) on Thr212 and Thr423 sites. Consistent with these findings, the ectopic expression of FGFR1 resulted in a concomitant increase in phosphorylation level of PAK1 on Thr212 and Thr423 sites. Taken together, our findings represent the initial exploration of FGFR1's involvement in FMDV macropinocytic entry, providing novel insights with potential implications for the development of antiviral strategies.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (Gembloux Agro-Bio Tech), University of Liège (ULg), Avenue de l'Hôpital, 11, Liège 4000, Belgium
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Manyuan Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| |
Collapse
|
7
|
Oh S, Lee J, Choi HJ, Kim S, Sapuru V, Kim M, Hite RK. Discovery of Selective Inhibitors for the Lysosomal Parkinson's Disease Channel TMEM175. J Am Chem Soc 2024; 146:23230-23239. [PMID: 39116214 PMCID: PMC11513884 DOI: 10.1021/jacs.4c05623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
TMEM175 is a lysosomal potassium and proton channel that is associated with the development of Parkinson's disease. Advances in understanding the physiological roles of TMEM175 have been hampered by the absence of selective inhibitors, and studies involving genetic perturbations have yielded conflicting results. Here, we report the discovery and characterization of the first reported TMEM175-selective inhibitors, 2-phenylpyridin-4-ylamine (2-PPA), and AP-6. Cryo-EM structures of human TMEM175 bound by 2-PPA and AP-6 reveal that they act as pore blockers, binding at distinct sites in the pore and occluding the ion permeation pathway. Acute inhibition of TMEM175 by 2-PPA or AP-6 increases the level of lysosomal macromolecule catabolism, thereby accelerating macropinocytosis and other digestive processes. These inhibitors may serve as valuable tools to study the roles of TMEM175 in regulating lysosomal function and provide useful templates for future therapeutic development in Parkinson's disease.
Collapse
Affiliation(s)
- SeCheol Oh
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, New York 10065, USA
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Republic of Korea
| | - Ho Jeong Choi
- Department of Chemistry, Chungbuk National University, Republic of Korea
| | - Songwon Kim
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, New York 10065, USA
| | - Vinay Sapuru
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, New York 10065, USA
- Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY, 10065, USA
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Republic of Korea
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, New York 10065, USA
| |
Collapse
|
8
|
Sandvig K, Iversen TG, Skotland T. Entry of nanoparticles into cells and tissues: status and challenges. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1017-1029. [PMID: 39161463 PMCID: PMC11331539 DOI: 10.3762/bjnano.15.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
In this article we discuss how nanoparticles (NPs) of different compositions may interact with and be internalized by cells, and the consequences of that for cellular functions. A large number of NPs are made with the intention to improve cancer treatment, the goal being to increase the fraction of injected drug delivered to the tumor and thereby improve the therapeutic effect and decrease side effects. Thus, we discuss how NPs are delivered to tumors and some challenges related to investigations of biodistribution, pharmacokinetics, and excretion. Finally, we discuss requirements for bringing NPs into clinical use and aspects when it comes to usage of complex and slowly degraded or nondegradable NPs.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, 0379 Oslo, Norway
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, 0379 Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, 0379 Oslo, Norway
| |
Collapse
|
9
|
Brambillasca S, Cera MR, Andronache A, Dey SK, Fagá G, Fancelli D, Frittoli E, Pasi M, Robusto M, Varasi M, Scita G, Mercurio C. Novel selective inhibitors of macropinocytosis-dependent growth in pancreatic ductal carcinoma. Biomed Pharmacother 2024; 177:116991. [PMID: 38906021 PMCID: PMC11287759 DOI: 10.1016/j.biopha.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Macropinocytosis is a cellular process that enables cells to engulf extracellular material, such as nutrients, growth factors, and even whole cells. It is involved in several physiological functions as well as pathological conditions. In cancer cells, macropinocytosis plays a crucial role in promoting tumor growth and survival under nutrient-limited conditions. In particular KRAS mutations have been identified as main drivers of macropinocytosis in pancreatic, breast, and non-small cell lung cancers. We performed a high-content screening to identify inhibitors of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC)-derived cells, aiming to prevent nutrient scavenging of PDAC tumors. The screening campaign was conducted in a well-known pancreatic KRAS-mutated cell line (MIAPaCa-2) cultured under nutrient deprivation and using FITC-dextran to precisely quantify macropinocytosis. We assembled a collection of 3584 small molecules, including drugs approved by the Food and Drug Administration (FDA), drug-like molecules against molecular targets, kinase-targeted compounds, and molecules designed to hamper protein-protein interactions. We identified 28 molecules that inhibited macropinocytosis, with potency ranging from 0.4 to 29.9 μM (EC50). A few of them interfered with other endocytic pathways, while 11 compounds did not and were therefore considered specific "bona fide" macropinocytosis inhibitors and further characterized. Four compounds (Ivermectin, Tyrphostin A9, LY2090314, and Pyrvinium Pamoate) selectively hampered nutrient scavenging in KRAS-mutated cancer cells. Their ability to impair albumin-dependent proliferation was replicated both in different 2D cell culture systems and 3D organotypic models. These findings provide a new set of compounds specifically targeting macropinocytosis, which could have therapeutic applications in cancer and infectious diseases.
Collapse
Affiliation(s)
- Silvia Brambillasca
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Maria Rosaria Cera
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Adrian Andronache
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sumit Kumar Dey
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giovanni Fagá
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Daniele Fancelli
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Maurizio Pasi
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Ciro Mercurio
- Experimental Therapeutics Program, IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
10
|
Wang C, Ji L, Wang J, Zhang J, Qiu L, Chen S, Ni X. Amifostine loaded lipid-calcium carbonate nanoparticles as an oral drug delivery system for radiation protection. Biomed Pharmacother 2024; 177:117029. [PMID: 38991305 DOI: 10.1016/j.biopha.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Amifostine (AMF) as the first-line radiation protection drug, usually suffered from low compliance and short half-life upon clinical applications. The development of oral drug delivery system (DDS) for AMF is a promising solution. However, the inherent shortages of AMF present significant challenges in the design of suitable oral DDS. Here in this study, we utilized the ability of calcium ions to bind with AMF and prepared AMF loaded calcium carbonate (CC) core, CC/AMF, using phase transferred coprecipitation method. We further modified the CC/AMF using phospholipids to prepare AMF loaded lipid-calcium carbonate (LCC) hybrid nanoparticles (LCC/AMF) via a thin-film dispersion method. LCC/AMF combines the oral advantages of lipid nanoparticles with the drug-loading capabilities of CC, which was shown as uniform nano-sized formulation with decent stability in aqueous solution. With favorable intestinal transport and absorption effects, it effectively enhances the in vivo radiation protection efficacy of AMF through oral administration. More importantly, we further investigated the cellular accumulation profile and intracellular transport mechanism of LCC/AMF using MDCK and Caco-2 cell lines as models. This research not only alters the current administration method of AMF to enhance its convenience and compliance, but also provides insights and guidance for the development of more suitable oral DDS for AMF in the future.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| | - Shaoqing Chen
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| | - Xinye Ni
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
11
|
Bannunah A, Cavanagh R, Shubber S, Vllasaliu D, Stolnik S. Difference in Endocytosis Pathways Used by Differentiated Versus Nondifferentiated Epithelial Caco-2 Cells to Internalize Nanosized Particles. Mol Pharm 2024; 21:3603-3612. [PMID: 38864426 PMCID: PMC11220748 DOI: 10.1021/acs.molpharmaceut.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Understanding the internalization of nanosized particles by mucosal epithelial cells is essential in a number of areas including viral entry at mucosal surfaces, nanoplastic pollution, as well as design and development of nanotechnology-type medicines. Here, we report our comparative study on pathways of cellular internalization in epithelial Caco-2 cells cultured in vitro as either a polarized, differentiated cell layer or as nonpolarized, nondifferentiated cells. The study reveals a number of differences in the extent that endocytic processes are used by cells, depending on their differentiation status and the nature of applied nanoparticles. In polarized cells, actin-driven and dynamin-independent macropinocytosis plays a prominent role in the internalization of both positively and negatively charged nanoparticles, contrary to its modest contribution in nonpolarized cells. Clathrin-mediated cellular entry plays a prominent role in the endocytosis of positive nanoparticles and cholesterol inhibition in negative nanoparticles. However, in nonpolarized cells, dynamin-dependent endocytosis is a major pathway in the internalization of both positive and negative nanoparticles. Cholesterol depletion affects both nonpolarized and polarized cells' internalization of positive and negative nanoparticles, which, in addition to the effect of cholesterol-binding inhibitors on the internalization of negative nanoparticles, indicates the importance of membrane cholesterol in endocytosis. The data collectively provide a new contribution to understanding endocytic pathways in epithelial cells, particularly pointing to the importance of the cell differentiation stage and the nature of the cargo.
Collapse
Affiliation(s)
- Azzah Bannunah
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Robert Cavanagh
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Saif Shubber
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Driton Vllasaliu
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London,
Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
| | - Snow Stolnik
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
12
|
Tang T, Sun J, Li C. The role of Phafin proteins in cell signaling pathways and diseases. Open Life Sci 2024; 19:20220896. [PMID: 38947768 PMCID: PMC11211877 DOI: 10.1515/biol-2022-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Membrane-associated proteins are important membrane readers that mediate and facilitate the signaling and trafficking pathways in eukaryotic membrane-bound compartments. The protein members in the Phafin family are membrane readers containing two phosphoinositide recognition domains: the Pleckstrin Homology domain and the FYVE (Fab1, YOTB, Vac1, and early endosome antigen 1) domain. Phafin proteins, categorized into two subfamilies, Phafin1 and Phafin2, associate with cellular membranes through interactions involving membrane-embedded phosphoinositides and phosphoinositide-binding domains. These membrane-associated Phafin proteins play pivotal roles by recruiting binding partners and forming complexes, which contribute significantly to apoptotic, autophagic, and macropinocytotic pathways. Elevated expression levels of Phafin1 and Phafin2 are observed in various cancers. A recent study highlights a significant increase in Phafin1 protein levels in the lungs of idiopathic pulmonary fibrosis patients compared to normal subjects, suggesting a crucial role for Phafin1 in the pathogenesis of pulmonary fibrosis. Additionally, phosphatidylinositol-3-phosphate-binding 2 (Pib2), a close relative of the Phafin1 protein, functions as an amino acid sensor activating the TOCR1 pathway in yeasts. This review focuses on delineating the involvement of Phafin proteins in cellular signaling and their implications in diseases and briefly discusses the latest research findings concerning Pib2.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jing Sun
- Department of Biostatistics and Epidemiology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
13
|
Wu Y, Hu X, Wei Z, Lin Q. Cellular Regulation of Macropinocytosis. Int J Mol Sci 2024; 25:6963. [PMID: 39000072 PMCID: PMC11241348 DOI: 10.3390/ijms25136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Interest in macropinocytosis has risen in recent years owing to its function in tumorigenesis, immune reaction, and viral infection. Cancer cells utilize macropinocytosis to acquire nutrients to support their uncontrolled proliferation and energy consumption. Macropinocytosis, a highly dynamic endocytic and vesicular process, is regulated by a series of cellular signaling pathways. The activation of small GTPases in conjunction with phosphoinositide signaling pivotally regulates the process of macropinocytosis. In this review, we summarize important findings about the regulation of macropinocytosis and provide information to increase our understanding of the regulatory mechanism underlying it.
Collapse
Affiliation(s)
| | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (X.H.); (Z.W.)
| |
Collapse
|
14
|
Nakamura J, Shiohama Y, Röth D, Haruta T, Yamashita Y, Mitsuzono T, Mochizuki C, Kalkum M, Nakamura M. Size and Surface Properties of Functionalized Organosilica Particles Impact Cell-Particle Interactions Including Mitochondrial Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30980-30996. [PMID: 38857433 DOI: 10.1021/acsami.4c06455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Understanding of the interactions between macrophages and multifunctional nanoparticles is important for development of novel macrophage-based immunotherapies. Here, we investigated the effects of fluorescent thiol-organosilica particle size and surface properties on cell-particle interactions, including mitochondrial activity, using the mouse macrophage cell line J774A.1. Three different sizes of thiol-organosilica particles (150, 400, and 680 nm in diameter) containing fluorescein (OS/F150, OS/F400, and OS/F680) and particles surface functionalized with polyethylenimine (PEI) (OS/F150PEI, OS/F400PEI, and OS/F680PEI) were prepared. Flow cytometric analysis, time-lapse imaging, and single-cell analysis of particle uptake and mitochondrial activity of J774A.1 cells demonstrated variations in uptake and kinetics depending on the particle size and surface as well as on each individual cell. Cells treated with OS/F150 and OS/F150PEI showed higher uptake and mitochondrial activity than those treated with other particles. The interaction between endosomes and mitochondria was observed using 3D fluorescent imaging and was characterized by the involvement of iron transport into mitochondria by iron-containing proteins adsorbed on the particle surface. Scanning electron microscopy of the cells treated with the particles revealed alterations in cell membrane morphology, depending on particle size and surface. We performed correlative light and electron microscopy combined with time-lapse and 3D imaging to develop an integrated correlation analysis of particle uptake, mitochondrial activity, and cell membrane morphology in single macrophages. These cell-specific characteristics of macrophages against functional particles and their evaluation methods are crucial for understanding the immunological functions of individual macrophages and developing novel immunotherapies.
Collapse
Affiliation(s)
- Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yasuo Shiohama
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Daniel Röth
- Department of Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Tomohiro Haruta
- EM application group, EM business unit, JEOL Ltd., Akishima, Tokyo JP 196-8558, Japan
| | - Yukari Yamashita
- Department of Organ Anatomy and Nanomedicine, School of Medicine, Facuelty of Medicine and Health Sciences, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Tomohiro Mitsuzono
- Department of Organ Anatomy and Nanomedicine, School of Medicine, Facuelty of Medicine and Health Sciences, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Markus Kalkum
- Department of Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
15
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Yoshie S, Kuriyama M, Maekawa M, Xu W, Niidome T, Futaki S, Hirose H. ATP2B4 is an essential gene for epidermal growth factor-induced macropinocytosis in A431 cells. Genes Cells 2024; 29:512-520. [PMID: 38597132 DOI: 10.1111/gtc.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Macropinocytosis (MPC) is a large-scale endocytosis pathway that involves actin-dependent membrane ruffle formation and subsequent ruffle closure to generate macropinosomes for the uptake of fluid-phase cargos. MPC is categorized into two types: constitutive and stimuli-induced. Constitutive MPC in macrophages relies on extracellular Ca2+ sensing by a calcium-sensing receptor. However, the link between stimuli-induced MPC and Ca2+ remains unclear. Here, we find that both intracellular and extracellular Ca2+ are required for epidermal growth factor (EGF)-induced MPC in A431 human epidermoid carcinoma cells. Through investigation of mammalian homologs of coelomocyte uptake defective (CUP) genes, we identify ATP2B4, encoding for a Ca2+ pump called the plasma membrane calcium ATPase 4 (PMCA4), as a Ca2+-related regulator of EGF-induced MPC. Knockout (KO) of ATP2B4, as well as depletion of extracellular/intracellular Ca2+, inhibited ruffle closure and macropinosome formation, without affecting ruffle formation. We demonstrate the importance of PMCA4 activity itself, independent of interactions with other proteins via its C-terminus known as a PDZ domain-binding motif. Additionally, we show that ATP2B4-KO reduces EGF-stimulated Ca2+ oscillation during MPC. Our findings suggest that EGF-induced MPC requires ATP2B4-dependent Ca2+ dynamics.
Collapse
Affiliation(s)
- Shunsuke Yoshie
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Wei Xu
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
17
|
Chiu J, Krupa JM, Seah C, Pasternak SH. Small GTPases control macropinocytosis of amyloid precursor protein and cleavage to amyloid-β. Heliyon 2024; 10:e31077. [PMID: 38799759 PMCID: PMC11126852 DOI: 10.1016/j.heliyon.2024.e31077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The overproduction of the toxic peptide amyloid-beta (Aβ) generated from the cleavage of amyloid precursor protein (APP) is proposed to be a critical event in the development of Alzheimer's disease. Evidence suggests that the cleavage of APP occurs after its internalization from the cell surface. Previously, we identified a novel pathway for APP internalization, which trafficks cell surface APP directly to lysosomes by macropinocytosis, leading to its processing into Aβ. We also demonstrated that ADP-ribosylation factor 6 (Arf6) is required for the macropinocytosis of APP. Here, we characterized the roles of Arf6's downstream effectors Rac1, Cdc42 and RhoA. Both pharmacological inhibition and siRNA knockdown of these proteins reduced the amount of APP colocalized with LAMP1-labeled lysosomes without affecting APP transport to early endosomes. Decreases in the production of both Aβ40 and Aβ42 were also observed by ELISA in response to inhibitor treatment. These findings together demonstrate that Rac1, Cdc42 and RhoA are components of the mechanism regulating the macropinocytosis of APP and targeting these components can reduce the production of Aβ.
Collapse
Affiliation(s)
- Justin Chiu
- Department of Physiology and Pharmacology, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jordan M. Krupa
- Neuroscience Program, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Claudia Seah
- Robarts Research Institute, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen H. Pasternak
- Department of Physiology and Pharmacology, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Neuroscience Program, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Cárdenas M, Michelson S, Galleguillos C, Vásquez-Martínez Y, Cortez-San Martin M. Modulation of infectious Salmon Anaemia virus infection by clathrin-mediated endocytosis and macropinocytosis inhibitors. Res Vet Sci 2024; 171:105223. [PMID: 38520841 DOI: 10.1016/j.rvsc.2024.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Infectious salmon anaemia virus (ISAV) is a pathogen that causes disease and large mortality in farm-raised Salmo salar L., being considered as a major problem in the salmon industry. However, despite its relevance, there are still numerous knowledge gaps on virus entry and early stages of infection. Previous studies suggested that virus entry into cells occurs via endocytosis, with no description of specific mechanisms. However, it remains unknown if the endocytosis induced by ISAV is a clathrin-dependent or clathrin-independent process. This study aimed to identify cellular mechanisms allowing ISAV entry into Atlantic Salmon head kidney (ASK) cells. Our results showed that ISAV can be found in coated pits and membrane ruffles, the latter being induced by a rearrangement of actin filaments promoted by ISAV infection. Additionally, it was determined that ISAV stimulate the uptake of extracellular fluid in a multiplicity of infection (MOI)-dependent manner. When the clathrin-mediated endocytic pathway was pharmacologically inhibited, ISAV infection was significantly reduced but not entirely inhibited. Similarly, when the Na+/H+ exchanger (NHE), a key component of macropinocytosis, was inhibited, ISAV infection was negatively affected. Our results suggest that ISAV enters cells via both clathrin-mediated endocytosis and most likely macropinocytosis.
Collapse
Affiliation(s)
- Matías Cárdenas
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - Sofía Michelson
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Claudia Galleguillos
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Yesseny Vásquez-Martínez
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Medicine School, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Marcelo Cortez-San Martin
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Peerapen P, Putpeerawit P, Boonmark W, Thongboonkerd V. Resveratrol inhibits calcium oxalate crystal growth, reduces adhesion to renal cells and induces crystal internalization into the cells, but promotes crystal aggregation. Curr Res Food Sci 2024; 8:100740. [PMID: 38694557 PMCID: PMC11061250 DOI: 10.1016/j.crfs.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Resveratrol is a natural phenolic compound that belongs to stilbenoid group found in diverse plants. Health benefits and therapeutic potentials of resveratrol have been widely recognized in various diseases. In kidney stone disease, it can alleviate oxalate-induced hyperproduction of free radicals in renal epithelial cells. Nevertheless, its direct effects on calcium oxalate (CaOx) crystal, which is the major stone component, remained unclear. This study therefore addressed the direct effects of resveratrol (at 1, 10 or 100 μM) on each step of CaOx kidney stone formation. The results revealed that resveratrol had no significant effects on CaOx crystallization. However, resveratrol significantly decreased CaOx crystal growth and adhesion to renal epithelial cells at all concentrations, and induced crystal internalization into the cells (a process related to crystal degradation by endolysosomes) in a concentration-dependent manner. On the other hand, resveratrol promoted crystal aggregation. These data indicate that resveratrol serves as a dual modulator on CaOx stone formation. While it inhibits CaOx stone development by reducing crystal growth and adhesion to renal cells and by inducing crystal internalization into the cells, resveratrol promotes crystal aggregation, which is one of the mechanisms leading to kidney stone formation.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pattaranit Putpeerawit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
20
|
Tsutsumi R, Ueberheide B, Liang FX, Neel BG, Sakai R, Saito Y. Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation. Nat Commun 2024; 15:2843. [PMID: 38565573 PMCID: PMC10987504 DOI: 10.1038/s41467-024-46971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
| | - Beatrix Ueberheide
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Proteomics Laboratory, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Department of Neurology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Feng-Xia Liang
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
- Microscopy Laboratory, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Benjamin G Neel
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Ryuichi Sakai
- Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| |
Collapse
|
21
|
Wang B, Pei J, Xu S, Liu J, Yu J. A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. J Exp Clin Cancer Res 2024; 43:74. [PMID: 38459595 PMCID: PMC10921613 DOI: 10.1186/s13046-024-02994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Glutamine metabolism plays a pivotal role in cancer progression, immune cell function, and the modulation of the tumor microenvironment. Dysregulated glutamine metabolism has been implicated in cancer development and immune responses, supported by mounting evidence. Cancer cells heavily rely on glutamine as a critical nutrient for survival and proliferation, while immune cells require glutamine for activation and proliferation during immune reactions. This metabolic competition creates a dynamic tug-of-war between cancer and immune cells. Targeting glutamine transporters and downstream enzymes involved in glutamine metabolism holds significant promise in enhancing anti-tumor immunity. A comprehensive understanding of the intricate molecular mechanisms underlying this interplay is crucial for developing innovative therapeutic approaches that improve anti-tumor immunity and patient outcomes. In this review, we provide a comprehensive overview of recent advances in unraveling the tug-of-war of glutamine metabolism between cancer and immune cells and explore potential applications of basic science discoveries in the clinical setting. Further investigations into the regulation of glutamine metabolism in cancer and immune cells are expected to yield valuable insights, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
22
|
Skokan TD, Hobmayer B, McKinley KL, Vale RD. Mechanical stretch regulates macropinocytosis in Hydra vulgaris. Mol Biol Cell 2024; 35:br9. [PMID: 38265917 PMCID: PMC10916863 DOI: 10.1091/mbc.e22-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Cells rely on a diverse array of engulfment processes to sense, exploit, and adapt to their environments. Among these, macropinocytosis enables indiscriminate and rapid uptake of large volumes of fluid and membrane, rendering it a highly versatile engulfment strategy. Much of the molecular machinery required for macropinocytosis has been well established, yet how this process is regulated in the context of organs and organisms remains poorly understood. Here, we report the discovery of extensive macropinocytosis in the outer epithelium of the cnidarian Hydra vulgaris. Exploiting Hydra's relatively simple body plan, we developed approaches to visualize macropinocytosis over extended periods of time, revealing constitutive engulfment across the entire body axis. We show that the direct application of planar stretch leads to calcium influx and the inhibition of macropinocytosis. Finally, we establish a role for stretch-activated channels in inhibiting this process. Together, our approaches provide a platform for the mechanistic dissection of constitutive macropinocytosis in physiological contexts and highlight a potential role for macropinocytosis in responding to cell surface tension.
Collapse
Affiliation(s)
- Taylor D. Skokan
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
| | - Bert Hobmayer
- Department of Zoology and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Kara L. McKinley
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Ronald D. Vale
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147
| |
Collapse
|
23
|
Da J, Di X, Xie Y, Li J, Zhang L, Liu Y. Recent advances in nanomedicine for metabolism-targeted cancer therapy. Chem Commun (Camb) 2024; 60:2442-2461. [PMID: 38321983 DOI: 10.1039/d3cc05858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metabolism denotes the sum of biochemical reactions that maintain cellular function. Different from most normal differentiated cells, cancer cells adopt altered metabolic pathways to support malignant properties. Typically, almost all cancer cells need a large number of proteins, lipids, nucleotides, and energy in the form of ATP to support rapid division. Therefore, targeting tumour metabolism has been suggested as a generic and effective therapy strategy. With the rapid development of nanotechnology, nanomedicine promises to have a revolutionary impact on clinical cancer therapy due to many merits such as targeting, improved bioavailability, controllable drug release, and potentially personalized treatment compared to conventional drugs. This review comprehensively elucidates recent advances of nanomedicine in targeting important metabolites such as glucose, glutamine, lactate, cholesterol, and nucleotide for effective cancer therapy. Furthermore, the challenges and future development in this area are also discussed.
Collapse
Affiliation(s)
- Jun Da
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - XinJia Di
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YuQi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - JiLi Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - LiLi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YanLan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
24
|
Peng Y, Yang Z, Sun H, Li J, Lan X, Liu S. Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. Aging Dis 2024:AD.2024.0206-1. [PMID: 38421835 DOI: 10.14336/ad.2024.0206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nanomaterials (NMs) have emerged as promising tools for disease diagnosis and therapy due to their unique physicochemical properties. To maximize the effectiveness and design of NMs-based medical applications, it is essential to comprehend the complex mechanisms of cellular uptake, subcellular localization, and cellular retention. This review illuminates the various pathways that NMs take to get from the extracellular environment to certain intracellular compartments by investigating the various mechanisms that underlie their interaction with cells. The cellular uptake of NMs involves complex interactions with cell membranes, encompassing endocytosis, phagocytosis, and other active transport mechanisms. Unique uptake patterns across cell types highlight the necessity for customized NMs designs. After internalization, NMs move through a variety of intracellular routes that affect where they are located subcellularly. Understanding these pathways is pivotal for enhancing the targeted delivery of therapeutic agents and imaging probes. Furthermore, the cellular retention of NMs plays a critical role in sustained therapeutic efficacy and long-term imaging capabilities. Factors influencing cellular retention include nanoparticle size, surface chemistry, and the cellular microenvironment. Strategies for prolonging cellular retention are discussed, including surface modifications and encapsulation techniques. In conclusion, a comprehensive understanding of the mechanisms governing cellular uptake, subcellular localization, and cellular retention of NMs is essential for advancing their application in disease diagnosis and therapy. This review provides insights into the intricate interplay between NMs and biological systems, offering a foundation for the rational design of next-generation nanomedicines.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Zhang Y, Liu W, He F, Liu YJ, Jiang H, Hao C, Wang W. Myosin 9 and N-glycans jointly regulate human papillomavirus entry. J Biol Chem 2024; 300:105660. [PMID: 38242322 PMCID: PMC10865405 DOI: 10.1016/j.jbc.2024.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
Persistent high-risk HPV infection is closely associated with cervical cancer development, and there is no drug targeting HPV on the market at present, so it is particularly important to understand the interaction mechanism between HPV and the host which may provide the novel strategies for treating HPV diseases. HPV can hijack cell surface heparan sulfate proteoglycans (HSPGs) as primary receptors. However, the secondary entry receptors for HPV remain elusive. We identify myosin-9 (NMHC-IIA) as a host factor that interacts with HPV L1 protein and mediates HPV internalization. Efficient HPV entry required myosin-9 redistribution to the cell surface regulated by HPV-hijacked MEK-MLCK signaling. Myosin-9 maldistribution by ML-7 or ML-9 significantly inhibited HPV pseudoviruses infection in vitro and in vivo. Meanwhile, N-glycans, especially the galactose chains, may act as the decoy receptors for HPV, which can block the interaction of HPV to myosin-9 and influence the way of HPV infection. Taken together, we identify myosin-9 as a novel functional entry receptor for high-risk HPV both in vitro and in vivo, and unravel the new roles of myosin-9 and N-glycans in HPV entry, which provides the possibilities for host targets of antiviral drugs.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Fujie He
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yan-Jun Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Sanya Oceanographic Institute, Ocean University of China, Sanya, China.
| |
Collapse
|
26
|
Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H. Nominally identical microplastic models differ greatly in their particle-cell interactions. Nat Commun 2024; 15:922. [PMID: 38297000 PMCID: PMC10830523 DOI: 10.1038/s41467-024-45281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Moritz Lehmann
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Thomas Witzmann
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Anja Caspari
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Günter K Auernhammer
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
27
|
Ghosh S, Lee SJ, Hsu JC, Chakraborty S, Chakravarty R, Cai W. Cancer Brachytherapy at the Nanoscale: An Emerging Paradigm. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:4-26. [PMID: 38274040 PMCID: PMC10806911 DOI: 10.1021/cbmi.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024]
Abstract
Brachytherapy is an established treatment modality that has been globally utilized for the therapy of malignant solid tumors. However, classic therapeutic sealed sources used in brachytherapy must be surgically implanted directly into the tumor site and removed after the requisite period of treatment. In order to avoid the trauma involved in the surgical procedures and prevent undesirable radioactive distribution at the cancerous site, well-dispersed radiolabeled nanomaterials are now being explored for brachytherapy applications. This emerging field has been coined "nanoscale brachytherapy". Despite present-day advancements, an ongoing challenge is obtaining an advanced, functional nanomaterial that concurrently incorporates features of high radiolabeling yield, short labeling time, good radiolabeling stability, and long tumor retention time without leakage of radioactivity to the nontargeted organs. Further, attachment of suitable targeting ligands to the nanoplatforms would widen the nanoscale brachytherapy approach to tumors expressing various phenotypes. Molecular imaging using radiolabeled nanoplatforms enables noninvasive visualization of cellular functions and biological processes in vivo. In vivo imaging also aids in visualizing the localization and retention of the radiolabeled nanoplatforms at the tumor site for the requisite time period to render safe and effective therapy. Herein, we review the advancements over the last several years in the synthesis and use of functionalized radiolabeled nanoplatforms as a noninvasive substitute to standard brachytherapy sources. The limitations of present-day brachytherapy sealed sources are analyzed, while highlighting the advantages of using radiolabeled nanoparticles (NPs) for this purpose. The recent progress in the development of different radiolabeling methods, delivery techniques and nanoparticle internalization mechanisms are discussed. The preclinical studies performed to date are summarized with an emphasis on the current challenges toward the future translation of nanoscale brachytherapy in routine clinical practices.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sophia J. Lee
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jessica C. Hsu
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Sudipta Chakraborty
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Rubel Chakravarty
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Weibo Cai
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
28
|
Putar D, Čizmar A, Chao X, Šimić M, Šoštar M, Ćutić T, Mijanović L, Smolko A, Tu H, Cosson P, Weber I, Cai H, Filić V. IqgC is a potent regulator of macropinocytosis in the presence of NF1 and its loading to macropinosomes is dependent on RasG. Open Biol 2024; 14:230372. [PMID: 38263885 PMCID: PMC10806400 DOI: 10.1098/rsob.230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024] Open
Abstract
RasG is a major regulator of macropinocytosis in Dictyostelium discoideum. Its activity is under the control of an IQGAP-related protein, IqgC, which acts as a RasG-specific GAP (GTPase activating protein). IqgC colocalizes with the active Ras at the macropinosome membrane during its formation and for some time after the cup closure. However, the loss of IqgC induces only a minor enhancement of fluid uptake in axenic cells that already lack another RasGAP, NF1. Here, we show that IqgC plays an important role in the regulation of macropinocytosis in the presence of NF1 by restricting the size of macropinosomes. We further provide evidence that interaction with RasG is indispensable for the recruitment of IqgC to forming macropinocytic cups. We also demonstrate that IqgC interacts with another small GTPase from the Ras superfamily, Rab5A, but is not a GAP for Rab5A. Since mammalian Rab5 plays a key role in early endosome maturation, we hypothesized that IqgC could be involved in macropinosome maturation via its interaction with Rab5A. Although an excessive amount of Rab5A reduces the RasGAP activity of IqgC in vitro and correlates with IqgC dissociation from endosomes in vivo, the physiological significance of the Rab5A-IqgC interaction remains elusive.
Collapse
Affiliation(s)
- Darija Putar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Anja Čizmar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Marija Šimić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tamara Ćutić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lucija Mijanović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Smolko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Hui Tu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Xie Q, Hao Y, Li N, Song H, Chen X, Zhou Z, Wang J, Zhang Y, Li H, Han P, Wang X. Cellular Uptake of Engineered Extracellular Vesicles: Biomechanisms, Engineered Strategies, and Disease Treatment. Adv Healthc Mater 2024; 13:e2302280. [PMID: 37812035 DOI: 10.1002/adhm.202302280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Extracellular vesicles (EVs), lipid-enclosed nanosized membrane vesicles, are regarded as new vehicles and therapeutic agents in intercellular communication. During internal circulation, if EVs are not effectively taken up by recipient cells, they will be cleared as "cellular waste" and unable to deliver therapeutic components. It can be seen that cells uptake EVs are the prerequisite premise for sharing intercellular biological information. However, natural EVs have a low rate of absorption by their recipient cells, off-target delivery, and rapid clearance from circulation, which seriously reduces the utilization rate. Affecting the uptake rate of EVs through engineering technologies is essential for therapeutic applications. Engineering strategies for customizing EV uptake can potentially overcome these limitations and enable desirable therapeutic uses of EVs. In this review, the mechanism and influencing factors of natural EV uptake will be described in detail. Targeting each EV uptake mechanism, the strategies of engineered EVs and their application in diseases will be emphatically discussed. Finally, the future challenges and perspectives of engineered EVs are presented multidimensionally.
Collapse
Affiliation(s)
- Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Zilan Zhou
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210000, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| |
Collapse
|
30
|
Morofuji R, Kudo K, Honda T, Kinugasa S, Matsuo T, Okabe K. Enhancing Corneal Drug Penetration Using Penetratin for Ophthalmic Suspensions. Biol Pharm Bull 2024; 47:1033-1042. [PMID: 38797668 DOI: 10.1248/bpb.b24-00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.
Collapse
Affiliation(s)
- Ryo Morofuji
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Kazuhiro Kudo
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Takahiro Honda
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Shino Kinugasa
- Division of Materials Science, Nara Institute of Science and Technology
| | - Takamasa Matsuo
- Division of Materials Science, Nara Institute of Science and Technology
| | - Komei Okabe
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| |
Collapse
|
31
|
Ahmed W, Huang S, Chen L. Engineered exosomes derived from stem cells: a new brain-targeted strategy. Expert Opin Drug Deliv 2024; 21:91-110. [PMID: 38258509 DOI: 10.1080/17425247.2024.2306877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION Using engineered exosomes produced from stem cells is an experimental therapeutic approach for treating brain diseases. According to reports, preclinical research has demonstrated notable neurogenesis and angiogenesis effects using modified stem cell-derived exosomes. These biological nanoparticles have a variety of anti-apoptotic, anti-inflammatory, and antioxidant properties that make them very promising for treating nervous system disorders. AREAS COVERED This review examines different ways to enhance the delivery of modified stem cell-derived exosomes, how they infiltrate the blood-brain barrier (BBB), and how they facilitate their access to the brain. We would also like to determine whether these nanoparticles have the most significant transmission rates through BBB when targeting brain lesions. EXPERT OPINION Using engineered stem cell-derived exosomes for treating brain disorders has generated considerable attention toward clinical research and application. However, stem cell-derived exosomes lack consistency, and their mechanisms of action are uncertain. Therefore, upcoming research needs to prioritize examining the underlying mechanisms and strategies via which these nanoparticles combat neurological disorders.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Songze Huang
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Luo H, Birjandi AA, Ren F, Sun T, Sharpe PT, Sun H, An Z. Advances in oral mesenchymal stem cell-derived extracellular vesicles in health and disease. Genes Dis 2024; 11:346-357. [PMID: 37588220 PMCID: PMC10425856 DOI: 10.1016/j.gendis.2023.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 08/18/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-size vesicles secreted naturally by all cells into the extracellular space and have been recognized as important cell-cell mediators in multicellular organisms. EVs contain nucleic acids, proteins, lipids, and other cellular components, regulating many basic biological processes and playing an important role in regenerative medicine and diseases. EVs can be traced to their cells of origin and exhibit a similar function. Moreover, EVs demonstrate low immunogenicity, good biocompatibility, and fewer side effects, compared to their parent cells. Mesenchymal stem cells (MSCs) are one of the most important resource cells for EVs, with a great capacity for self-renewal and multipotent differentiation, and play an essential role in stem cell therapy. The mechanism of MSC therapy was thought to be attributed to the differentiation of MSCs after targeted migration, as previously noted. However, emerging evidence shows the previously unknown role of MSC-derived paracrine factors in stem cell therapy. Especially EVs derived from oral tissue MSCs (OMSC-EVs), show more advantages than those of all other MSCs in tissue repair and regeneration, due to their lower invasiveness and easier accessibility for sample collection. Here, we systematically review the biogenesis and biological characteristics of OMSC-EVs, as well as the role of OMSC-EVs in intercellular communication. Furthermore, we discuss the potential therapeutic roles of OMSC-EVs in oral and systemic diseases. We highlight the current challenges and future directions of OMSC-EVs to focus more attention on clinical translation. We aim to provide valuable insights for the explorative clinical application of OMSC-EVs.
Collapse
Affiliation(s)
- Huanyu Luo
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Anahid Ahmadi Birjandi
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Feilong Ren
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Tianmeng Sun
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Paul T. Sharpe
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Hongchen Sun
- Department of Oral Pathology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Zhengwen An
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
33
|
Szatmári T, Balázs K, Csordás IB, Sáfrány G, Lumniczky K. Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles. Strahlenther Onkol 2023; 199:1191-1213. [PMID: 37347291 DOI: 10.1007/s00066-023-02098-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
In the past decades, plenty of evidence has gathered pointing to the role of extracellular vesicles (EVs) secreted by irradiated cells in the development of radiation-induced non-targeted effects. EVs are complex natural structures composed of a phospholipid bilayer which are secreted by virtually all cells and carry bioactive molecules. They can travel certain distances in the body before being taken up by recipient cells. In this review we discuss the role and fate of EVs in tumor cells and highlight the importance of DNA specimens in EVs cargo in the context of radiotherapy. The effect of EVs depends on their cargo, which reflects physiological and pathological conditions of donor cell types, but also depends on the mode of EV uptake and mechanisms involved in the route of EV internalization. While the secretion and cargo of EVs from irradiated cells has been extensively studied in recent years, their uptake is much less understood. In this review, we will focus on recent knowledge regarding the EV uptake of cancer cells and the effect of radiation in this process.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary.
| | - Katalin Balázs
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Ilona Barbara Csordás
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Géza Sáfrány
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| |
Collapse
|
34
|
Yao R, Wang M, Zhao Y, Ji Q, Feng X, Bai L, Bao L, Wang Y, Hao H, Li X, Wang Z. Chlorogenic acid enhances PPARγ-mediated lipogenesis through preventing Lipin 1 nuclear translocation in Staphylococcus aureus-exposed bovine mammary epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159396. [PMID: 37717905 DOI: 10.1016/j.bbalip.2023.159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Chlorogenic acid (CGA) as one of the most ubiquitously dietary polyphenolic compounds, has been reported to have various antimicrobial effects and exhibit strong anti-inflammatory ability. Staphylococcus aureus is a gram-positive bacterium that can induce mastitis. However, the mechanism through which S. aureus infection affects lipid synthesis and whether CGA have protective effect on S. aureus reduced lipid synthesis is not fully understood. In this study, the internalization of S. aureus reduced intracellular lipid droplet formation, decreased the levels of intracellular triacylglycerol, total cholesterol and 7 types of fatty acid and downregulated the expression of lipogenic genes FAS, ACC, and DGAT1 in bovine mammary epithelial cells (BMECs). In addition, we found that S. aureus intracellular infection attenuated mTORC1 activation resulting in Lipin 1 nuclear localization. Remarkablely, S. aureus infection-mediated repression of lipid synthesis related to the mTORC1 signaling and Lipin 1 nuclear localization can be alleviated by CGA. Thus, our findings provide a novel mechanism by which lipid synthesis is regulated under S. aureus infection and the protective effects of CGA on lipid synthesis in BMECs.
Collapse
Affiliation(s)
- Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Manshulin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yue Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiang Ji
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Hohhot No. 1 High School, Hohhot 010030, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lili Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010070, China; Inner Mongolia SaiKexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
35
|
Resnik N, Višnjar T, Smrkolj T, Kreft ME, Romih R, Zupančič D. Selective targeting of lectins and their macropinocytosis in urothelial tumours: translation from in vitro to ex vivo. Histochem Cell Biol 2023; 160:435-452. [PMID: 37535087 PMCID: PMC10624759 DOI: 10.1007/s00418-023-02224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Urinary bladder cancer can be treated by intravesical application of therapeutic agents, but the specific targeting of cancer urothelial cells and the endocytotic pathways of the agents are not known. During carcinogenesis, the superficial urothelial cells exhibit changes in sugar residues on the apical plasma membranes. This can be exploited for selective targeting from the luminal side of the bladder. Here we show that the plant lectins Jacalin (from Artocarpus integrifolia), ACA (from Amaranthus caudatus) and DSA (from Datura stramonium) selectively bind to the apical plasma membrane of low- (RT4) and high-grade (T24) cancer urothelial cells in vitro and urothelial tumours ex vivo. The amount of lectin binding was significantly different between RT4 and T24 cells. Endocytosis of lectins was observed only in cancer urothelial cells and not in normal urothelial cells. Transmission electron microscopy analysis showed macropinosomes, endosome-like vesicles and multivesicular bodies filled with lectins in RT4 and T24 cells and also in cells of urothelial tumours ex vivo. Endocytosis of Jacalin and ACA in cancer cells was decreased in vitro after addition of inhibitor of macropinocytosis 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and increased after stimulation of macropinocytosis with epidermal growth factor (EGF). Clathrin, caveolin and flotillin did not colocalise with lectins. These results confirm that the predominant mechanism of lectin endocytosis in cancer urothelial cells is macropinocytosis. Therefore, we propose that lectins in combination with conjugated therapeutic agents are promising tools for improved intravesical therapy by targeting cancer cells.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Tanja Višnjar
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tomaž Smrkolj
- Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
36
|
Bichet MC, Adderley J, Avellaneda-Franco L, Magnin-Bougma I, Torriero-Smith N, Gearing LJ, Deffrasnes C, David C, Pepin G, Gantier MP, Lin RCY, Patwa R, Moseley GW, Doerig C, Barr JJ. Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival. PLoS Biol 2023; 21:e3002341. [PMID: 37883333 PMCID: PMC10602308 DOI: 10.1371/journal.pbio.3002341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism.
Collapse
Affiliation(s)
- Marion C. Bichet
- School of Biological Sciences, Monash University, Clayton, Australia
- ACTALIA, Food Safety Department, Saint-Lô, France
- University of Lorraine, CNRS, LCPME, Vandœuvre-lès-Nancy, France
| | - Jack Adderley
- School of Health and Biomedical Science, RMIT University, Bundoora, Australia
| | | | | | | | - Linden J. Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Celine Deffrasnes
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Cassandra David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Genevieve Pepin
- Medical Biology Department, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Ruby CY Lin
- Centre for Infectious Diseases and Microbiology; The Westmead Institute for Medical Research, Westmead, Australia
| | - Ruzeen Patwa
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Christian Doerig
- School of Health and Biomedical Science, RMIT University, Bundoora, Australia
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
37
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
38
|
Chen H, Hu Y, Yang G, Li P, Yin J, Feng X, Wu Q, Zhang J, Xiao B, Sui Z. Macropinocytosis in Gracilariopsis lemaneiformis (Rhodophyta). FRONTIERS IN PLANT SCIENCE 2023; 14:1225675. [PMID: 37822336 PMCID: PMC10562585 DOI: 10.3389/fpls.2023.1225675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
Macropinocytosis is an endocytic process that plays an important role in animal development and disease occurrence but until now has been rarely reported in organisms with cell walls. We investigated the properties of endocytosis in a red alga, Gracilariopsis lemaneiformis. The cells non-selectively internalized extracellular fluid into large-scale endocytic vesicles (1.94 ± 0.51 μm), and this process could be inhibited by 5-(N-ethyl-N-isopropyl) amiloride, an macropinocytosis inhibitor. Moreover, endocytosis was driven by F-actin, which promotes formation of ruffles and cups from the cell surface and facilitates formation of endocytotic vesicles. After vesicle formation, endocytic vesicles could be acidified and acquire digestive function. These results indicated macropinocytosis in G. lemaneiformis. Abundant phosphatidylinositol kinase and small GTPase encoding genes were found in the genome of this alga, while PI3K, Ras, and Rab5, the important participators of traditional macropinocytosis, seem to be lacked. Such findings provide a new insight into endocytosis in organisms with cell walls and facilitate further research into the core regulatory mechanisms and evolution of macropinocytosis.
Collapse
Affiliation(s)
- Haihong Chen
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yiyi Hu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Guanpin Yang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Institutes of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Pingping Li
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Jingru Yin
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoqing Feng
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Qiong Wu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Jingyu Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Baoheng Xiao
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| |
Collapse
|
39
|
Ye T, Shan P, Zhang H. Progress in the discovery and development of small molecule methuosis inducers. RSC Med Chem 2023; 14:1400-1409. [PMID: 37593581 PMCID: PMC10429883 DOI: 10.1039/d3md00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
Current cancer chemotherapies rely mainly on the induction of apoptosis of tumor cells, while drug resistance arising from conventional chemicals has always been a big challenge. In recent years, more and more new types of cell deaths including methuosis have been extensively investigated and recognized as potential alternative targets for future cancer treatment. Methuosis is usually caused by excessive accumulation of macropinosomes owing to ectopic activation of macropinocytosis, which can be triggered by external stimuli such as chemical agents. Increasing reports demonstrate that many small molecule compounds could specifically induce methuosis in tumor cells while showing little or no effect on normal cells. This finding raises the possibility of targeting tumor cell methuosis as an effective strategy for the prevention of cancer. Based on fast-growing studies lately, we herein provide a comprehensive overview on the overall research progress of small molecule methuosis inducers. Promisingly, previous efforts and experiences will facilitate the development of next-generation anticancer therapies.
Collapse
Affiliation(s)
- Tao Ye
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao Shandong 266031 P.R. China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| |
Collapse
|
40
|
Tsutsumi R, Ueberheide B, Liang FX, Neel BG, Sakai R, Saito Y. Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550235. [PMID: 37546742 PMCID: PMC10402005 DOI: 10.1101/2023.07.23.550235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Kitasato University School of Medicine; Sagamihara 252-0374, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University; Sendai 980-8578, Miyagi, Japan
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
| | - Beatrix Ueberheide
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
- Proteomics Laboratory, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology and Department of Neurology, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
| | - Feng-Xia Liang
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
- Microscopy Laboratory, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA.Paste the full affiliation list here
| | - Benjamin G. Neel
- Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health; New York, NY 10016, USA
| | - Ryuichi Sakai
- Kitasato University School of Medicine; Sagamihara 252-0374, Kanagawa, Japan
| | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University; Sendai 980-8578, Miyagi, Japan
| |
Collapse
|
41
|
Porello I, Cellesi F. Intracellular delivery of therapeutic proteins. New advancements and future directions. Front Bioeng Biotechnol 2023; 11:1211798. [PMID: 37304137 PMCID: PMC10247999 DOI: 10.3389/fbioe.2023.1211798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Achieving the full potential of therapeutic proteins to access and target intracellular receptors will have enormous benefits in advancing human health and fighting disease. Existing strategies for intracellular protein delivery, such as chemical modification and nanocarrier-based protein delivery approaches, have shown promise but with limited efficiency and safety concerns. The development of more effective and versatile delivery tools is crucial for the safe and effective use of protein drugs. Nanosystems that can trigger endocytosis and endosomal disruption, or directly deliver proteins into the cytosol, are essential for successful therapeutic effects. This article aims to provide a brief overview of the current methods for intracellular protein delivery to mammalian cells, highlighting current challenges, new developments, and future research opportunities.
Collapse
|
42
|
Liu LZ, Liu L, Shi ZH, Bian XL, Si ZR, Wang QQ, Xiang Y, Zhang Y. Amphibian pore-forming protein βγ-CAT drives extracellular nutrient scavenging under cell nutrient deficiency. iScience 2023; 26:106598. [PMID: 37128610 PMCID: PMC10148134 DOI: 10.1016/j.isci.2023.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Nutrient acquisition is essential for animal cells. βγ-CAT is a pore-forming protein (PFP) and trefoil factor complex assembled under tight regulation identified in toad Bombina maxima. Here, we reported that B. maxima cells secreted βγ-CAT under glucose, glutamine, and pyruvate deficiency to scavenge extracellular proteins for their nutrient supply and survival. AMPK signaling positively regulated the expression and secretion of βγ-CAT. The PFP complex selectively bound extracellular proteins and promoted proteins uptake through endolysosomal pathways. Elevated intracellular amino acids, enhanced ATP production, and eventually prolonged cell survival were observed in the presence of βγ-CAT and extracellular proteins. Liposome assays indicated that high concentration of ATP negatively regulated the opening of βγ-CAT channels. Collectively, these results uncovered that βγ-CAT is an essential element in cell nutrient scavenging under cell nutrient deficiency by driving vesicular uptake of extracellular proteins, providing a new paradigm for PFPs in cell nutrient acquisition and metabolic flexibility.
Collapse
Affiliation(s)
- Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhi-Hong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ru Si
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qi-Quan Wang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yang Xiang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
- Corresponding author
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Corresponding author
| |
Collapse
|
43
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
44
|
Gan Y, Wang C, Chen Y, Hua L, Fang H, Li S, Chai S, Xu Y, Zhang J, Gu Y. Tubeimoside-2 Triggers Methuosis in Hepatocarcinoma Cells through the MKK4-p38α Axis. Pharmaceutics 2023; 15:pharmaceutics15041093. [PMID: 37111582 PMCID: PMC10142215 DOI: 10.3390/pharmaceutics15041093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Liver cancer, consisting mainly of hepatocellular carcinoma, is the third leading cause of cancer-related mortality worldwide. Despite advances in targeted therapies, these approaches remain insufficient in meeting the pressing clinical demands. Here, we present a novel alternative that calls for a non-apoptotic program to solve the current dilemma. Specifically, we identified that tubeimoside 2 (TBM-2) could induce methuosis in hepatocellular carcinoma cells, a recently recognized mode of cell death characterized by pronounced vacuolization, necrosis-like membrane disruption, and no response to caspase inhibitors. Further proteomic analysis revealed that TBM-2-driven methuosis is facilitated by the hyperactivation of the MKK4-p38α axis and the boosted lipid metabolism, especially cholesterol biosynthesis. Pharmacological interventions targeting either the MKK4-p38α axis or cholesterol biosynthesis effectively suppress TBM-2-induced methuosis, highlighting the pivotal role of these mechanisms in TBM-2-mediated cell death. Moreover, TBM-2 treatment effectively suppressed tumor growth by inducing methuosis in a xenograft mouse model of hepatocellular carcinoma. Taken together, our findings provide compelling evidence of TBM-2's remarkable tumor-killing effects by inducing methuosis, both in vitro and in vivo. TBM-2 represents a promising avenue for the development of innovative and effective therapies for hepatocellular carcinoma, one that may ultimately offer significant clinical benefits for patients with this devastating disease.
Collapse
Affiliation(s)
- Yichao Gan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chen Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yunyun Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linxin Hua
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hui Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shu Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shoujie Chai
- Department of Oncology, Ningbo First Hospital, Ningbo 315010, China
| | - Yang Xu
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Gu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou 310058, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
| |
Collapse
|
45
|
Lau NCH, Yam JWP. From Exosome Biogenesis to Absorption: Key Takeaways for Cancer Research. Cancers (Basel) 2023; 15:cancers15071992. [PMID: 37046653 PMCID: PMC10093369 DOI: 10.3390/cancers15071992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are mediators of intercellular communication in normal physiology and diseases. While many studies have emerged on the function of exosomal cargoes, questions remain regarding the origin of these exosomes. The packaging and secretion of exosomes in different contexts modify exosomal composition, which may in turn impact delivery, uptake and cargo function in recipient cells. A mechanistic understanding of exosome biology is therefore crucial to investigating exosomal function in complex biological systems and to the development of novel therapeutic approaches. Here, we outline the steps in exosome biogenesis, including endosome formation, MVB formation, cargo sorting and extracellular release, as well as exosome absorption, including targeting, interaction with recipient cells and the fate of internalized exosomes. In addition to providing a framework of exosome dynamics, we summarize current evidence on major pathways and regulatory mechanisms. We also highlight the various mechanisms observed in cancer and point out directions to improve study design in exosome biology. Further research is needed to illuminate the relationship between exosome biogenesis and function, which will aid the development of translational applications.
Collapse
Affiliation(s)
- Nicolas Cheuk Hang Lau
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-22552681
| |
Collapse
|
46
|
Ramesh D, Bakkannavar S, Bhat VR, Sharan K. Extracellular vesicles as novel drug delivery systems to target cancer and other diseases: Recent advancements and future perspectives. F1000Res 2023; 12:329. [PMID: 37868300 PMCID: PMC10589634 DOI: 10.12688/f1000research.132186.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles produced into the extracellular space by cells. Apoptotic bodies (ApoBD), microvesicles (MVs), and exosomes are examples of EVs, which act as essential regulators in cell-cell communication in both normal and diseased conditions. Natural cargo molecules such as miRNA, messenger RNA, and proteins are carried by EVs and transferred to nearby cells or distant cells through the process of circulation. Different signalling cascades are then influenced by these functionally active molecules. The information to be delivered to the target cells depends on the substances within the EVs that also includes synthesis method. EVs have attracted interest as potential delivery vehicles for therapies due to their features such as improved circulation stability, biocompatibility, reduced immunogenicity, and toxicity. Therefore, EVs are being regarded as potent carriers of therapeutics that can be used as a therapeutic agent for diseases like cancer. This review focuses on the exosome-mediated drug delivery to cancer cells and the advantages and challenges of using exosomes as a carrier molecule.
Collapse
Affiliation(s)
- Divya Ramesh
- Forensic Medicine and Toxicology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Shankar Bakkannavar
- Forensic Medicine and Toxicology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Vinutha R Bhat
- Biochemistry, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Radiotherapy Oncology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| |
Collapse
|
47
|
Paul D, Stern O, Vallis Y, Dhillon J, Buchanan A, McMahon H. Cell surface protein aggregation triggers endocytosis to maintain plasma membrane proteostasis. Nat Commun 2023; 14:947. [PMID: 36854675 PMCID: PMC9974993 DOI: 10.1038/s41467-023-36496-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
The ability of cells to manage consequences of exogenous proteotoxicity is key to cellular homeostasis. While a plethora of well-characterised machinery aids intracellular proteostasis, mechanisms involved in the response to denaturation of extracellular proteins remain elusive. Here we show that aggregation of protein ectodomains triggers their endocytosis via a macroendocytic route, and subsequent lysosomal degradation. Using ERBB2/HER2-specific antibodies we reveal that their cross-linking ability triggers specific and fast endocytosis of the receptor, independent of clathrin and dynamin. Upon aggregation, canonical clathrin-dependent cargoes are redirected into the aggregation-dependent endocytosis (ADE) pathway. ADE is an actin-driven process, which morphologically resembles macropinocytosis. Physical and chemical stress-induced aggregation of surface proteins also triggers ADE, facilitating their degradation in the lysosome. This study pinpoints aggregation of extracellular domains as a trigger for rapid uptake and lysosomal clearance which besides its proteostatic function has potential implications for the uptake of pathological protein aggregates and antibody-based therapies.
Collapse
Affiliation(s)
- David Paul
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Omer Stern
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yvonne Vallis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jatinder Dhillon
- AstraZeneca, R&D BioPharma, Antibody Discovery & Protein Engineering, Granta Park, Cambridge, CB21 6GH, UK
| | - Andrew Buchanan
- AstraZeneca, R&D BioPharma, Antibody Discovery & Protein Engineering, Granta Park, Cambridge, CB21 6GH, UK
| | - Harvey McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
48
|
Wu W, Ding Q, Zhou Z, Kuang W, Jiang L, Liu P, Ai W, Zhu W. Transcellular Transport Behavior of the Intact Polymeric Mixed Micelles with Different Polymeric Ratios. AAPS PharmSciTech 2023; 24:69. [PMID: 36792796 DOI: 10.1208/s12249-022-02454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 02/17/2023] Open
Abstract
In order to better promote the application of the polymeric mixed micelles (PMMs) in oral delivery, in addition to focusing on the improvement of micellar structural stability, it is necessary to obtain the absorption characteristics of the intact micellar particles. In this work, the transport behavior across Caco-2 cells of FS/PMMs composed of Pluronic F127 and Solutol HS15 was tracked by encapsulating an environment-responsive probe into the particles. The specific property of the probe is the water-initiated aggregation-caused quenching (ACQ) ability, by which integral particles can be identified accurately. The influence of polymeric ratios (FS) on the transcellular behavior of FS/PMMs was explored and the single pass intestinal perfusion experiment was used to further illustrate it. Moreover, pharmacokinetics parameters were detected to analyze the relationship among FS ratios, transport behavior, and pharmacokinetic parameters. FS ratios were found to hardly affect the endocytosis pathways and intracellular itinerary of FS/PMMs, but do affect the proportion of each path. FS/PMMs with high HS15 content, namely System-I, were found to primarily undergo receptor-mediated endocytosis pathway and be less susceptible to lysosomal degradation, which would lead to more absorption and higher Cmax and AUC than drug suspension. In contrast, despite System-II with high F127 content cannot contribute to drug plasma concentration, it can prolong the in vivo retention time. These findings provided evidence for the role of polymeric ratios in modulating the transcellular absorption and pharmacokinetic parameters of the drug-loaded PMMs, and would be a step forward in helping PMMs' design to enhance oral drug delivery.
Collapse
Affiliation(s)
- Wenting Wu
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Quan Ding
- Key Laboratory of Modern Chinese Medicine Preparations Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhiwei Zhou
- Key Laboratory of Modern Chinese Medicine Preparations Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenliang Kuang
- Key Laboratory of Modern Chinese Medicine Preparations Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lipeng Jiang
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Peng Liu
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Weiping Ai
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| | - Weifeng Zhu
- Institute of Modern Chinese Medicine Pharmaceutical Industry, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
49
|
Sisin NNT, Rahman WN. Potentials of Bismuth-Based Nanoparticles and Baicalein Natural Compounds as Radiosensitizers in Cancer Radiotherapy: a Review. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-022-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
Delon LC, Faria M, Jia Z, Johnston S, Gibson R, Prestidge CA, Thierry B. Capturing and Quantifying Particle Transcytosis with Microphysiological Intestine-on-Chip Models. SMALL METHODS 2023; 7:e2200989. [PMID: 36549695 DOI: 10.1002/smtd.202200989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Understanding the intestinal transport of particles is critical in several fields ranging from optimizing drug delivery systems to capturing health risks from the increased presence of nano- and micro-sized particles in human environment. While Caco-2 cell monolayers grown on permeable supports are the traditional in vitro model used to probe intestinal absorption of dissolved molecules, they fail to recapitulate the transcytotic activity of polarized enterocytes. Here, an intestine-on-chip model is combined with in silico modeling to demonstrate that the rate of particle transcytosis is ≈350× higher across Caco-2 cell monolayers exposed to fluid shear stress compared to Caco-2 cells in standard "static" configuration. This relates to profound phenotypical alterations and highly polarized state of cells grown under mechanical stimulation and it is shown that transcytosis in the microphysiological model is energy-dependent and involves both clathrin and macropinocytosis mediated endocytic pathways. Finally, it is demonstrated that the increased rate of transcytosis through cells exposed to flow is explained by a higher rate of internal particle transport (i.e., vesicular cellular trafficking and basolateral exocytosis), rather than a change in apical uptake (i.e., binding and endocytosis). Taken together, the findings have important implications for addressing research questions concerning intestinal transport of engineered and environmental particles.
Collapse
Affiliation(s)
- Ludivine C Delon
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhengyang Jia
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Stuart Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rachel Gibson
- School of Allied Health Science and Practice, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5050, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|