1
|
Villalobos JA, Cahoon RE, Cahoon EB, Wallace IS. Glucosylceramides impact cellulose deposition and cellulose synthase complex motility in Arabidopsis. Glycobiology 2024; 34:cwae035. [PMID: 38690785 DOI: 10.1093/glycob/cwae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.
Collapse
Affiliation(s)
- Jose A Villalobos
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Rebecca E Cahoon
- Department of Biochemistry & Center for Plant Science Innovation, University of Nebraska, 1901 Vine St. Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry & Center for Plant Science Innovation, University of Nebraska, 1901 Vine St. Lincoln, NE 68588, USA
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd. Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Science Building Athens, GA 30602, USA
| |
Collapse
|
2
|
Biran A, Santos TCB, Dingjan T, Futerman AH. The Sphinx and the egg: Evolutionary enigmas of the (glyco)sphingolipid biosynthetic pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159462. [PMID: 38307322 DOI: 10.1016/j.bbalip.2024.159462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
In eukaryotes, the de novo synthesis of sphingolipids (SLs) consists of multiple sequential steps which are compartmentalized between the endoplasmic reticulum and the Golgi apparatus. Studies over many decades have identified the enzymes in the pathway, their localization, topology and an array of regulatory mechanisms. However, little is known about the evolutionary forces that underly the generation of this complex pathway or of its anteome, i.e., the metabolic pathways that converge on the SL biosynthetic pathway and are essential for its activity. After briefly describing the pathway, we discuss the mechanisms by which the enzymes of the SL biosynthetic pathway are targeted to their different subcellular locations, how the pathway per se may have evolved, including its compartmentalization, and the relationship of the pathway to eukaryogenesis. We discuss the circular interdependence of the evolution of the SL pathway, and comment on whether current Darwinian evolutionary models are able to provide genuine mechanistic insight into how the pathway came into being.
Collapse
Affiliation(s)
- Assaf Biran
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Yang C, Wang LY, Li YK, Lin JT, Chen DK, Yao N. Arabidopsis Leaf Chloroplasts Have a Specific Sphingolipidome. PLANTS (BASEL, SWITZERLAND) 2024; 13:299. [PMID: 38276756 PMCID: PMC10818918 DOI: 10.3390/plants13020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Sphingolipids are ubiquitous in eukaryotes and certain prokaryotes, where they serve as vital components of biological membranes and bioactive molecules. Chloroplasts have complex membrane structures that play crucial roles in photosynthesis, but their specific sphingolipidome remains unreported. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to analyze the sphingolipidome of purified Arabidopsis thaliana chloroplasts. We detected 92 chloroplast sphingolipids. The chloroplast sphingolipidome differed from total leaf (TL) samples, with a higher content of free long-chain bases and hydroxyceramides and a greater proportion of complex sphingolipids with 16C fatty acid (FA) forms. Notably, chloroplast glucosylceramides were predominantly the d18:1 h16:0 and t18:1 h16:0 forms rather than the 24C FA form found in TL and other cellular structures. Comparing the sphingolipidomes of different cellular structures underscores the inhomogeneity of the intracellular distribution of sphingolipids. This provides a robust reference for further elucidating the function of sphingolipids in plant cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (C.Y.); (L.-Y.W.); (J.-T.L.); (D.-K.C.)
| |
Collapse
|
4
|
Stroppa N, Onelli E, Moreau P, Maneta-Peyret L, Berno V, Cammarota E, Ambrosini R, Caccianiga M, Scali M, Moscatelli A. Sterols and Sphingolipids as New Players in Cell Wall Building and Apical Growth of Nicotiana tabacum L. Pollen Tubes. PLANTS (BASEL, SWITZERLAND) 2022; 12:8. [PMID: 36616135 PMCID: PMC9824051 DOI: 10.3390/plants12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Pollen tubes are tip-growing cells that create safe routes to convey sperm cells to the embryo sac for double fertilization. Recent studies have purified and biochemically characterized detergent-insoluble membranes from tobacco pollen tubes. These microdomains, called lipid rafts, are rich in sterols and sphingolipids and are involved in cell polarization in organisms evolutionarily distant, such as fungi and mammals. The presence of actin in tobacco pollen tube detergent-insoluble membranes and the preferential distribution of these domains on the apical plasma membrane encouraged us to formulate the intriguing hypothesis that sterols and sphingolipids could be a "trait d'union" between actin dynamics and polarized secretion at the tip. To unravel the role of sterols and sphingolipids in tobacco pollen tube growth, we used squalestatin and myriocin, inhibitors of sterol and sphingolipid biosynthesis, respectively, to determine whether lipid modifications affect actin fringe morphology and dynamics, leading to changes in clear zone organization and cell wall deposition, thus suggesting a role played by these lipids in successful fertilization.
Collapse
Affiliation(s)
- Nadia Stroppa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Patrick Moreau
- CNRS, Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, 71 Avenue Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Lilly Maneta-Peyret
- CNRS, Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, 71 Avenue Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Valeria Berno
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132 Milan, Italy
| | - Eugenia Cammarota
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Monica Scali
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandra Moscatelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
5
|
Li G, Wang Q, Meng Q, Wang G, Xu F, Chen Q, Liu F, Hu Y, Luo M. Overexpression of a ceramide synthase gene, GhCS1, inhibits fiber cell initiation and elongation by promoting the synthesis of ceramides containing dihydroxy LCB and VLCFA. FRONTIERS IN PLANT SCIENCE 2022; 13:1000348. [PMID: 36119591 PMCID: PMC9478514 DOI: 10.3389/fpls.2022.1000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Cotton is an important natural fiber crop worldwide. Cotton fiber cell is regarded as an ideal material for studying the growth and development of plant cells. Sphingolipids are important components of biomembrane and bioactive molecules which participate in many processes such as plant growth, development regulation, stimulus sensing, and stress response. However, the functions of sphingolipids in the cotton fiber development are still unclear. In the present study, we identified a cotton ceramide synthase gene, GhCS1, which is predominantly expressed in fiber cell. The GhCS1 is located in the endoplasmic reticulum and has the conserved domains of ceramide synthase. Overexpression of GhCS1 gene inhibited both vegetative and reproductive growth in cotton. Importantly, the fiber cell initiation and elongation were severely inhibited when compared with control. Comparison of the sphingolipid profile in the 0-DPA (days past anthesis) ovule (with fiber cell) between control and transgenic cotton plants showed that the content of sphingosines (Sph) decreased significantly in transgenic ovules, whereas the content of phyto-sphingosines (Phyto-Sph) had no change. Meanwhile, the content of ceramide containing Sph and very-long-chain fatty acid (VLCFA) increased significantly in transgenic ovules, while ceramide containing Phyto-Sph and long-chain fatty acids (LCFA)/VLCFA significantly decreased. These results indicated that GhCS1 was a functional ceramide synthase, which preferentially used Sph and VLCFA as substrates and was different from the Arabidopsis ceramide synthase AtLOH1/AtLOH3, which preferentially used Phyto-Sph and VLCFA as substrates, and also different from AtLOH2, which preferentially used Sph and LCFA as substrates. It is suggested that GhCS1 might be a new ceramide synthase gene in the plant, play some roles in the development of fiber cells and cotton plants.
Collapse
Affiliation(s)
- Guiming Li
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Qiaoling Wang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Qian Meng
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Guanhua Wang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Qian Chen
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Fang Liu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Yulin Hu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Sphingolipids at Plasmodesmata: Structural Components and Functional Modulators. Int J Mol Sci 2022; 23:ijms23105677. [PMID: 35628487 PMCID: PMC9145688 DOI: 10.3390/ijms23105677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodesmata (PD) are plant-specific channels connecting adjacent cells to mediate intercellular communication of molecules essential for plant development and defense. The typical PD are organized by the close apposition of the plasma membrane (PM), the desmotubule derived from the endoplasmic reticulum (ER), and spoke-like elements linking the two membranes. The plasmodesmal PM (PD-PM) is characterized by the formation of unique microdomains enriched with sphingolipids, sterols, and specific proteins, identified by lipidomics and proteomics. These components modulate PD to adapt to the dynamic changes of developmental processes and environmental stimuli. In this review, we focus on highlighting the functions of sphingolipid species in plasmodesmata, including membrane microdomain organization, architecture transformation, callose deposition and permeability control, and signaling regulation. We also briefly discuss the difference between sphingolipids and sterols, and we propose potential unresolved questions that are of help for further understanding the correspondence between plasmodesmal structure and function.
Collapse
|
7
|
Wattelet-Boyer V, Le Guédard M, Dittrich-Domergue F, Maneta-Peyret L, Kriechbaumer V, Boutté Y, Bessoule JJ, Moreau P. Lysophosphatidic acid acyltransferases: a link with intracellular protein trafficking in Arabidopsis root cells? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1327-1343. [PMID: 34982825 DOI: 10.1093/jxb/erab504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Phosphatidic acid (PA) and lysophosphatidic acid acyltransferases (LPAATs) might be critical for the secretory pathway. Four extra-plastidial LPAATs (LPAAT2, 3, 4, and 5) were identified in Arabidopsis thaliana. These AtLPAATs display a specific enzymatic activity converting lysophosphatidic acid to PA and are located in the endomembrane system. We investigate a putative role for AtLPAATs 3, 4, and 5 in the secretory pathway of root cells through genetical (knockout mutants), biochemical (activity inhibitor, lipid analyses), and imaging (live and immuno-confocal microscopy) approaches. Treating a lpaat4;lpaat5 double mutant with the LPAAT inhibitor CI976 produced a significant decrease in primary root growth. The trafficking of the auxin transporter PIN2 was disturbed in this lpaat4;lpaat5 double mutant treated with CI976, whereas trafficking of H+-ATPases was unaffected. The lpaat4;lpaat5 double mutant is sensitive to salt stress, and the trafficking of the aquaporin PIP2;7 to the plasma membrane in the lpaat4;lpaat5 double mutant treated with CI976 was reduced. We measured the amounts of neo-synthesized PA in roots, and found a decrease in PA only in the lpaat4;lpaat5 double mutant treated with CI976, suggesting that the protein trafficking impairment was due to a critical PA concentration threshold.
Collapse
Affiliation(s)
- Valérie Wattelet-Boyer
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Marina Le Guédard
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- LEB Aquitaine Transfert-ADERA, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Franziska Dittrich-Domergue
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Lilly Maneta-Peyret
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Yohann Boutté
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
| | - Jean-Jacques Bessoule
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- LEB Aquitaine Transfert-ADERA, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Patrick Moreau
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140 Villenave d'Ornon, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
8
|
Liu NJ, Hou LP, Bao JJ, Wang LJ, Chen XY. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. PLANT COMMUNICATIONS 2021; 2:100214. [PMID: 34746760 PMCID: PMC8553973 DOI: 10.1016/j.xplc.2021.100214] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 06/26/2021] [Indexed: 05/08/2023]
Abstract
Sphingolipids, which comprise membrane systems together with other lipids, are ubiquitous in cellular organisms. They show a high degree of diversity across plant species and vary in their structures, properties, and functions. Benefiting from the development of lipidomic techniques, over 300 plant sphingolipids have been identified. Generally divided into free long-chain bases (LCBs), ceramides, glycosylceramides (GlcCers) and glycosyl inositol phosphoceramides (GIPCs), plant sphingolipids exhibit organized aggregation within lipid membranes to form raft domains with sterols. Accumulating evidence has revealed that sphingolipids obey certain trafficking and distribution rules and confer unique properties to membranes. Functional studies using sphingolipid biosynthetic mutants demonstrate that sphingolipids participate in plant developmental regulation, stimulus sensing, and stress responses. Here, we present an updated metabolism/degradation map and summarize the structures of plant sphingolipids, review recent progress in understanding the functions of sphingolipids in plant development and stress responses, and review sphingolipid distribution and trafficking in plant cells. We also highlight some important challenges and issues that we may face during the process of studying sphingolipids.
Collapse
Affiliation(s)
- Ning-Jing Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- Corresponding author
| | - Li-Pan Hou
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing-Jing Bao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Gömann J, Herrfurth C, Zienkiewicz K, Haslam TM, Feussner I. Sphingolipid Δ4-desaturation is an important metabolic step for glycosylceramide formation in Physcomitrium patens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5569-5583. [PMID: 34111292 PMCID: PMC8318264 DOI: 10.1093/jxb/erab238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/22/2021] [Indexed: 05/24/2023]
Abstract
Glycosylceramides are abundant membrane components in vascular plants and are associated with cell differentiation, organogenesis, and protein secretion. Long-chain base (LCB) Δ4-desaturation is an important structural feature for metabolic channeling of sphingolipids into glycosylceramide formation in plants and fungi. In Arabidopsis thaliana, LCB Δ4-unsaturated glycosylceramides are restricted to pollen and floral tissue, indicating that LCB Δ4-desaturation has a less important overall physiological role in A. thaliana. In the bryophyte Physcomitrium patens, LCB Δ4-desaturation is a feature of the most abundant glycosylceramides of the gametophyte generation. Metabolic changes in the P. patens null mutants for the sphingolipid Δ4-desaturase (PpSD4D) and the glycosylceramide synthase (PpGCS), sd4d-1 and gcs-1, were determined by ultra-performance liquid chromatography coupled with nanoelectrospray ionization and triple quadrupole tandem mass spectrometry analysis. sd4d-1 plants lacked unsaturated LCBs and the most abundant glycosylceramides. gcs-1 plants lacked all glycosylceramides and accumulated hydroxyceramides. While sd4d-1 plants mostly resembled wild-type plants, gcs-1 mutants were impaired in growth and development. These results indicate that LCB Δ4-desaturation is a prerequisite for the formation of the most abundant glycosylceramides in P. patens. However, loss of unsaturated LCBs does not affect plant viability, while blockage of glycosylceramide synthesis in gcs-1 plants causes severe plant growth and development defects.
Collapse
Affiliation(s)
- Jasmin Gömann
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Tegan M Haslam
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Liquid chromatography-tandem mass spectrometry with a new separation mode for rapid profiling of the Z/E isomers of plant glucosylceramides. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122807. [PMID: 34147952 DOI: 10.1016/j.jchromb.2021.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 11/27/2022]
Abstract
Plant glucosylceramide (GlcCer) is characterized by various long-chain bases (LCBs) containing a Z/E isomeric unsaturated bond at the Δ8 position. The isomer ratio of GlcCer is highly diversified among plant species and is involved in tolerance to membrane fluidity-associated stresses such as chilling and aluminum toxicity. Therefore, a plant GlcCer isomer-selective quantitative method is required, allowing further sphingolipidomic studies for crop breeding. We here report a new technique for rapid determination of the Z/E isomers of plant GlcCer. A Cholester column contains cholesteryl groups as the hydrophobic stationary phase and separated the GlcCer isomers more efficiently than a conventional C18 column. We also investigated various mobile phases and column temperatures. The optimized column, solvent, and temperature conditions provided comprehensive profiles of the Z/E ratios of GlcCer in crude extracts of plant materials in less than 20 min. This high-throughput method will facilitate the large-scale profiling of plant GlcCer isomers.
Collapse
|
11
|
Carmona-Salazar L, Cahoon RE, Gasca-Pineda J, González-Solís A, Vera-Estrella R, Treviño V, Cahoon EB, Gavilanes-Ruiz M. Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species. PLANT PHYSIOLOGY 2021; 186:624-639. [PMID: 33570616 PMCID: PMC8154057 DOI: 10.1093/plphys/kiab064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 05/04/2023]
Abstract
Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.
Collapse
Affiliation(s)
- Laura Carmona-Salazar
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán. 04510, Cd. de México, México
| | - Rebecca E Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Jaime Gasca-Pineda
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, UNAM, 54090, Estado de México, México
| | - Ariadna González-Solís
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Cuernavaca, Morelos, México
| | - Victor Treviño
- Tecnológico de Monterrey, Escuela de Medicina, 64710 Monterrey, Nuevo León, México
| | - Edgar B Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Marina Gavilanes-Ruiz
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán. 04510, Cd. de México, México
- Author for communication:
| |
Collapse
|
12
|
De Coninck T, Gistelinck K, Janse van Rensburg HC, Van den Ende W, Van Damme EJM. Sweet Modifications Modulate Plant Development. Biomolecules 2021; 11:756. [PMID: 34070047 PMCID: PMC8158104 DOI: 10.3390/biom11050756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Plant development represents a continuous process in which the plant undergoes morphological, (epi)genetic and metabolic changes. Starting from pollination, seed maturation and germination, the plant continues to grow and develops specialized organs to survive, thrive and generate offspring. The development of plants and the interplay with its environment are highly linked to glycosylation of proteins and lipids as well as metabolism and signaling of sugars. Although the involvement of these protein modifications and sugars is well-studied, there is still a long road ahead to profoundly comprehend their nature, significance, importance for plant development and the interplay with stress responses. This review, approached from the plants' perspective, aims to focus on some key findings highlighting the importance of glycosylation and sugar signaling for plant development.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| | - Koen Gistelinck
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| | - Henry C. Janse van Rensburg
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; (H.C.J.v.R.); (W.V.d.E.)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; (H.C.J.v.R.); (W.V.d.E.)
| | - Els J. M. Van Damme
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| |
Collapse
|
13
|
Alsiyabi A, Solis AG, Cahoon EB, Saha R. Dissecting the regulatory roles of ORM proteins in the sphingolipid pathway of plants. PLoS Comput Biol 2021; 17:e1008284. [PMID: 33507896 PMCID: PMC7872301 DOI: 10.1371/journal.pcbi.1008284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/09/2021] [Accepted: 12/14/2020] [Indexed: 01/05/2023] Open
Abstract
Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple functional and regulatory roles. Different sphingolipid species confer rigidity to the membrane structure, facilitate trafficking of secretory proteins, and initiate programmed cell death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing evidence has pointed to orosomucoid proteins (ORMs) playing a major regulatory role and potentially interacting with a number of components in the pathway, including both enzymes and sphingolipids. However, experimental exploration of new regulatory interactions is time consuming and often infeasible. In this work, a computational approach was taken to address this challenge. A metabolic network of the sphingolipid pathway in plants was reconstructed. The steady-state rates of reactions in the network were then determined through measurements of growth and cellular composition of the different sphingolipids in Arabidopsis seedlings. The Ensemble modeling framework was modified to accurately account for activation mechanisms and subsequently used to generate sets of kinetic parameters that converge to the measured steady-state fluxes in a thermodynamically consistent manner. In addition, the framework was appended with an additional module to automate screening the parameters and to output models consistent with previously reported network responses to different perturbations. By analyzing the network's response in the presence of different combinations of regulatory mechanisms, the model captured the experimentally observed repressive effect of ORMs on serine palmitoyltransferase (SPT). Furthermore, predictions point to a second regulatory role of ORM proteins, namely as an activator of class II (or LOH1 and LOH3) ceramide synthases. This activating role was found to be modulated by the concentration of free ceramides, where an accumulation of these sphingolipid species dampened the activating effect of ORMs on ceramide synthase. The predictions pave the way for future guided experiments and have implications in engineering crops with higher biotic stress tolerance.
Collapse
Affiliation(s)
- Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ariadna Gonzalez Solis
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Edgar B. Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
14
|
Dai GY, Yin J, Li KE, Chen DK, Liu Z, Bi FC, Rong C, Yao N. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49930-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Dai GY, Yin J, Li KE, Chen DK, Liu Z, Bi FC, Rong C, Yao N. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. J Biol Chem 2019; 295:717-728. [PMID: 31819005 DOI: 10.1074/jbc.ra119.011274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/01/2019] [Indexed: 11/06/2022] Open
Abstract
Cellular membranes contain many lipids, some of which, such as sphingolipids, have important structural and signaling functions. The common sphingolipid glucosylceramide (GlcCer) is present in plants, fungi, and animals. As a major plant sphingolipid, GlcCer is involved in the formation of lipid microdomains, and the regulation of GlcCer is key for acclimation to stress. Although the GlcCer biosynthetic pathway has been elucidated, little is known about GlcCer catabolism, and a plant GlcCer-degrading enzyme (glucosylceramidase (GCD)) has yet to be identified. Here, we identified AtGCD3, one of four Arabidopsis thaliana homologs of human nonlysosomal glucosylceramidase, as a plant GCD. We found that recombinant AtGCD3 has a low Km for the fluorescent lipid C6-NBD GlcCer and preferentially hydrolyzes long acyl-chain GlcCer purified from Arabidopsis leaves. Testing of inhibitors of mammalian glucosylceramidases revealed that a specific inhibitor of human β-glucosidase 2, N-butyldeoxynojirimycin, inhibits AtGCD3 more effectively than does a specific inhibitor of human β-glucosidase 1, conduritol β-epoxide. We also found that Glu-499 and Asp-647 in AtGCD3 are vital for GCD activity. GFP-AtGCD3 fusion proteins mainly localized to the plasma membrane or the endoplasmic reticulum membrane. No obvious growth defects or changes in sphingolipid contents were observed in gcd3 mutants. Our results indicate that AtGCD3 is a plant glucosylceramidase that participates in GlcCer catabolism by preferentially hydrolyzing long-acyl-chain GlcCers.
Collapse
Affiliation(s)
- Guang-Yi Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai-En Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang-Cheng Bi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chan Rong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog Lipid Res 2018; 73:1-27. [PMID: 30465788 DOI: 10.1016/j.plipres.2018.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022]
Abstract
The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nelson Laurent
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
17
|
Rugen MD, Vernet MMJL, Hantouti L, Soenens A, Andriotis VME, Rejzek M, Brett P, van den Berg RJBHN, Aerts JMFG, Overkleeft HS, Field RA. A chemical genetic screen reveals that iminosugar inhibitors of plant glucosylceramide synthase inhibit root growth in Arabidopsis and cereals. Sci Rep 2018; 8:16421. [PMID: 30401902 PMCID: PMC6219604 DOI: 10.1038/s41598-018-34749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/19/2018] [Indexed: 01/11/2023] Open
Abstract
Iminosugars are carbohydrate mimics that are useful as molecular probes to dissect metabolism in plants. To analyse the effects of iminosugar derivatives on germination and seedling growth, we screened a library of 390 N-substituted iminosugar analogues against Arabidopsis and the small cereal Eragrostis tef (Tef). The most potent compound identified in both systems, N-5-(adamantane-1-yl-ethoxy)pentyl- L-ido-deoxynojirimycin (L-ido-AEP-DNJ), inhibited root growth in agar plate assays by 92% and 96% in Arabidopsis and Tef respectively, at 10 µM concentration. Phenocopying the effect of L-ido-AEP-DNJ with the commercial inhibitor (PDMP) implicated glucosylceramide synthase as the target responsible for root growth inhibition. L-ido-AEP-DNJ was twenty-fold more potent than PDMP. Liquid chromatography-mass spectrometry (LC-MS) analysis of ceramide:glucosylceramide ratios in inhibitor-treated Arabidopsis seedlings showed a decrease in the relative quantity of the latter, confirming that glucosylceramide synthesis is perturbed in inhibitor-treated plants. Bioinformatic analysis of glucosylceramide synthase indicates gene conservation across higher plants. Previous T-DNA insertional inactivation of glucosylceramide synthase in Arabidopsis caused seedling lethality, indicating a role in growth and development. The compounds identified herein represent chemical alternatives that can overcome issues caused by genetic intervention. These inhibitors offer the potential to dissect the roles of glucosylceramides in polyploid crop species.
Collapse
Affiliation(s)
- Michael D Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mathieu M J L Vernet
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Laila Hantouti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Amalia Soenens
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Vasilios M E Andriotis
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- School of Natural and Environmental Sciences, Devonshire Building, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard J B H N van den Berg
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Hermen S Overkleeft
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
18
|
Enrique Gomez R, Joubès J, Valentin N, Batoko H, Satiat-Jeunemaître B, Bernard A. Lipids in membrane dynamics during autophagy in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1287-1299. [PMID: 29140451 DOI: 10.1093/jxb/erx392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Autophagy is a critical pathway for plant adaptation to stress. Macroautophagy relies on the biogenesis of a specialized membrane named the phagophore that maturates into a double membrane vesicle. Proteins and lipids act synergistically to promote membrane structure and functions, yet research on autophagy has mostly focused on autophagy-related proteins while knowledge of supporting lipids in the formation of autophagic membranes remains scarce. This review expands on studies in plants with examples from other organisms to present and discuss our current understanding of lipids in membrane dynamics associated with the autophagy pathway in plants.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| | - Jérôme Joubès
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| | - Nicolas Valentin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Henri Batoko
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, Louvain-la-Neuve, Belgium
| | - Béatrice Satiat-Jeunemaître
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Amélie Bernard
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| |
Collapse
|
19
|
Aguilera-Herce J, Zarkani AA, Schikora A, Ramos-Morales F. Dual Expression of the Salmonella Effector SrfJ in Mammalian Cells and Plants. Front Microbiol 2017; 8:2410. [PMID: 29270156 PMCID: PMC5723671 DOI: 10.3389/fmicb.2017.02410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
SrfJ is an effector of the Salmonella pathogenicity island 2-encoded type III secretion system. Salmonella enterica serovar Typhimurium expresses srfJ under two disparate sets of conditions: media with low Mg2+ and low pH, imitating intravacuolar conditions, and media with myo-inositol (MI), a carbohydrate that can be used by Salmonella as sole carbon source. We investigated the molecular basis for this dual regulation. Here, we provide evidence for the existence of two distinct promoters that control the expression of srfJ. A proximal promoter, PsrfJ, responds to intravacuolar signals and is positively regulated by SsrB and PhoP and negatively regulated by RcsB. A second distant promoter, PiolE, is negatively regulated by the MI island repressor IolR. We also explored the in vivo activity of these promoters in different hosts. Interestingly, our results indicate that the proximal promoter is specifically active inside mammalian cells whereas the distant one is expressed upon Salmonella colonization of plants. Importantly, we also found that inappropriate expression of srfJ leads to reduced proliferation inside macrophages whereas lack of srfJ expression increases survival and decreases activation of defense responses in plants. These observations suggest that SrfJ is a relevant factor in the interplay between Salmonella and hosts of different kingdoms.
Collapse
Affiliation(s)
- Julia Aguilera-Herce
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Azhar A. Zarkani
- Julius Kühn-Institut – Bundesforschungsinstitut für Kulturpflanzen, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Brunswick, Germany
| | - Adam Schikora
- Julius Kühn-Institut – Bundesforschungsinstitut für Kulturpflanzen, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Brunswick, Germany
| | | |
Collapse
|
20
|
Robles-Martinez L, Mendez TL, Apodaca J, Das S. Glucosylceramide transferase in Giardia preferentially catalyzes the synthesis of galactosylceramide during encystation. Mol Biochem Parasitol 2016; 211:75-83. [PMID: 27840079 DOI: 10.1016/j.molbiopara.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022]
Abstract
The stage differentiation from trophozoite to cyst (i.e., encystation) is an essential step for Giardia to survive outside its human host and spread the infection via the fecal-oral route. We have previously shown that Giardia expresses glucosylceramide transferase 1 (GlcT1) enzyme, the activity of which is elevated during encystation. We have also reported that blocking the activity of gGlcT1 interferes with the biogenesis of encystation-specific vesicles (ESVs) and cyst viability in Giardia. To further understand the role of this enzyme and how it regulates encystation, we overexpressed, knocked down, and rescued the giardial GlcT1 (gGlcT1) gene and measured its enzymatic activity in live parasites as well as in isolated membrane fractions using NBD-ceramide and UDP-glucose or UDP-galactose. We observed that gGlcT1 is able to catalyze the synthesis of both glucosylceramide (GlcCer) and galactosylceramide (GalCer), however the synthesis of GalCer is 2-3 fold higher than of GlcCer. Although both activities follow Michaelis-Menten kinetics, the bindings of UDP-glucose and UDP-galactose with the enzyme appear to be non-competitive and independent of each other. The modulation of gGlcT1 synthesis concomitantly influenced the expression cyst-wall protein (CWP) and overall encystation. We propose that gGlcT1 is a unique enzyme and that Giardia uses this enzyme to synthesize both GlcCer and GalCer to facilitate the process of encystation/cyst production.
Collapse
Affiliation(s)
- Leobarda Robles-Martinez
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| | - Tavis L Mendez
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| | - Jennifer Apodaca
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| | - Siddhartha Das
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| |
Collapse
|
21
|
Ishikawa T, Ito Y, Kawai-Yamada M. Molecular characterization and targeted quantitative profiling of the sphingolipidome in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:681-693. [PMID: 27454201 DOI: 10.1111/tpj.13281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/10/2016] [Accepted: 07/21/2016] [Indexed: 05/05/2023]
Abstract
Recent advances in comprehensive metabolite profiling techniques, the foundation of metabolomics, is facilitating our understanding of the functions, regulation and complex networks of various metabolites in organisms. Here, we report a quantitative metabolomics technique for complex plant sphingolipids, composed of various polar head groups as well as structural isomers of hydrophobic ceramide moieties. Rice (Oryza sativa L.) was used as an experimental model of monocotyledonous plants and has been demonstrated to possess a highly complex sphingolipidome including hundreds of molecular species with a wide range of abundance. We established a high-throughput scheme for lipid preparation and mass spectrometry-based characterization of complex sphingolipid structures, which provided basic information to create a comprehensive theoretical library for targeted quantitative profiling of complex sphingolipids in rice. The established sphingolipidomic approach combined with multivariate analyses of the large dataset obtained clearly showed that different classes of rice sphingolipids, particularly including subclasses of glycosylinositol phosphoceramide with various sugar-chain head groups, are distributed with distinct quantitative profiles in various rice tissues, indicating tissue-dependent metabolism and biological functions of the lipid classes and subclasses. The sphingolipidomic analysis also highlighted that disruption of a lipid-associated gene causes a typical sphingolipidomic change in a gene-dependent manner. These results clearly support the utility of the sphingolipidomic approach in application to wide screening of sphingolipid-metabolic phenotypes as well as deeper investigation of metabolism and biological functions of complex sphingolipid species in plants.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Yukihiro Ito
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| |
Collapse
|
22
|
Michaelson LV, Napier JA, Molino D, Faure JD. Plant sphingolipids: Their importance in cellular organization and adaption. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1329-1335. [PMID: 27086144 PMCID: PMC4970446 DOI: 10.1016/j.bbalip.2016.04.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Louise V Michaelson
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Johnathan A Napier
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Diana Molino
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, Paris, France.
| | - Jean-Denis Faure
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France; Agro Paris Tech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France.
| |
Collapse
|
23
|
de Marcos Lousa C, Soubeyrand E, Bolognese P, Wattelet-Boyer V, Bouyssou G, Marais C, Boutté Y, Filippini F, Moreau P. Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2627-2639. [PMID: 26962210 PMCID: PMC4861013 DOI: 10.1093/jxb/erw094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SNARE proteins are central elements of the machinery involved in membrane fusion of eukaryotic cells. In animals and plants, SNAREs have diversified to sustain a variety of specific functions. In animals, R-SNARE proteins called brevins have diversified; in contrast, in plants, the R-SNARE proteins named longins have diversified. Recently, a new subfamily of four longins named 'phytolongins' (Phyl) was discovered. One intriguing aspect of Phyl proteins is the lack of the typical SNARE motif, which is replaced by another domain termed the 'Phyl domain'. Phytolongins have a rather ubiquitous tissue expression in Arabidopsis but still await intracellular characterization. In this study, we found that the four phytolongins are distributed along the secretory pathway. While Phyl2.1 and Phyl2.2 are strictly located at the endoplasmic reticulum network, Phyl1.2 associates with the Golgi bodies, and Phyl1.1 locates mainly at the plasma membrane and partially in the Golgi bodies and post-Golgi compartments. Our results show that export of Phyl1.1 from the endoplasmic reticulum depends on the GTPase Sar1, the Sar1 guanine nucleotide exchange factor Sec12, and the SNAREs Sec22 and Memb11. In addition, we have identified the Y48F49 motif as being critical for the exit of Phyl1.1 from the endoplasmic reticulum. Our results provide the first characterization of the subcellular localization of the phytolongins, and we discuss their potential role in regulating the secretory pathway.
Collapse
Affiliation(s)
- Carine de Marcos Lousa
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Faculty of Clinical and Applied Sciences, School of Biomedical Sciences, Leeds Beckett University, Portland Building 611, Leeds Beckett University City Campus, LS1 3HE, Leeds, UK
| | - Eric Soubeyrand
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Paolo Bolognese
- Molecular Biology and Bioinformatics Unit, Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Valerie Wattelet-Boyer
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Guillaume Bouyssou
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Claireline Marais
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Yohann Boutté
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Francesco Filippini
- Molecular Biology and Bioinformatics Unit, Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Patrick Moreau
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
24
|
Lipids in pollen - They are different. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1315-1328. [PMID: 27033152 DOI: 10.1016/j.bbalip.2016.03.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/15/2016] [Accepted: 03/20/2016] [Indexed: 01/01/2023]
Abstract
During evolution, the male gametophyte of Angiosperms has been severely reduced to the pollen grain, consisting of a vegetative cell containing two sperm cells. This vegetative cell has to deliver the sperm cells from the stigma through the style to the ovule. It does so by producing a pollen tube and elongating it to many centimeters in length in some species, requiring vast amounts of fatty acid and membrane lipid synthesis. In order to optimize this polar tip growth, a unique lipid composition in the pollen has evolved. Pollen tubes produce extraplastidial galactolipids and store triacylglycerols in lipid droplets, probably needed as precursors of glycerolipids or for acyl editing. They also possess special sterol and sphingolipid moieties that might together form microdomains in the membranes. The individual lipid classes, the proteins involved in their synthesis as well as the corresponding Arabidopsis knockout mutant phenotypes are discussed in this review. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
|
25
|
De Bigault Du Granrut A, Cacas JL. How Very-Long-Chain Fatty Acids Could Signal Stressful Conditions in Plants? FRONTIERS IN PLANT SCIENCE 2016; 7:1490. [PMID: 27803703 PMCID: PMC5067520 DOI: 10.3389/fpls.2016.01490] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/20/2016] [Indexed: 05/18/2023]
Abstract
Although encountered in minor amounts in plant cells, very-long-chain fatty acids exert crucial functions in developmental processes. When their levels are perturbed by means of genetic approaches, marked phenotypic consequences that range from severe growth retardation to embryo lethality was indeed reported. More recently, a growing body of findings has also accumulated that points to a potential role for these lipids as signals in governing both biotic and abiotic stress outcomes. In the present work, we discuss the latter theory and explore the ins and outs of very-long-chain fatty acid-based signaling in response to stress, with an attempt to reconcile two supposedly antagonistic parameters: the insoluble nature of fatty acids and their signaling function. To explain this apparent dilemma, we provide new interpretations of pre-existing data based on the fact that sphingolipids are the main reservoir of very-long-chain fatty acids in leaves. Thus, three non-exclusive, molecular scenarii that involve these lipids as membrane-embedded and free entities are proposed.
Collapse
Affiliation(s)
- Antoine De Bigault Du Granrut
- UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Centre Institut National de la Recherche Agronomique de Versailles-Grignon, Institut Jean-Pierre BourginVersailles, France
| | - Jean-Luc Cacas
- UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Centre Institut National de la Recherche Agronomique de Versailles-Grignon, Institut Jean-Pierre BourginVersailles, France
- Département Sciences de la Vie et Santé, AgroParisTech, UFR de Physiologie VégétaleParis, France
- *Correspondence: Jean-Luc Cacas ;
| |
Collapse
|
26
|
Abstract
Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Athen N Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA.
| |
Collapse
|
27
|
Ishikawa T, Aki T, Yanagisawa S, Uchimiya H, Kawai-Yamada M. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress. PLANT PHYSIOLOGY 2015; 169:1333-43. [PMID: 26297139 PMCID: PMC4587443 DOI: 10.1104/pp.15.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/17/2015] [Indexed: 05/22/2023]
Abstract
BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihiko Aki
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirofumi Uchimiya
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
28
|
Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, Boyle DL, Cahoon RE, Schrick K, Cahoon EB. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:188-201. [PMID: 26313010 PMCID: PMC4765501 DOI: 10.1111/tpj.13000] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 05/03/2023]
Abstract
Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated 'gcs-1') were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development.
Collapse
Affiliation(s)
- Joseph Msanne
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- School of Natural Resources, 807 Hardin Hall, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ming Chen
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kyle D. Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Amanda M. Bradley
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth S. Mays
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Janet M. Paper
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel L. Boyle
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Rebecca E. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kathrin Schrick
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
- Corresponding Authors: Edgar B. Cahoon, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68506, USA, Phone: +1 402 472 5611, . Kathrin Schrick, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, Phone: +1 785 532 6360,
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Corresponding Authors: Edgar B. Cahoon, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68506, USA, Phone: +1 402 472 5611, . Kathrin Schrick, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, Phone: +1 785 532 6360,
| |
Collapse
|
29
|
Moscatelli A, Gagliardi A, Maneta-Peyret L, Bini L, Stroppa N, Onelli E, Landi C, Scali M, Idilli AI, Moreau P. Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.). Biol Open 2015; 4:378-99. [PMID: 25701665 PMCID: PMC4359744 DOI: 10.1242/bio.201410249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pollen tubes are the vehicle for sperm cell delivery to the embryo sac during fertilisation of Angiosperms. They provide an intriguing model for unravelling mechanisms of growing to extremes. The asymmetric distribution of lipids and proteins in the pollen tube plasma membrane modulates ion fluxes and actin dynamics and is maintained by a delicate equilibrium between exocytosis and endocytosis. The structural constraints regulating polarised secretion and asymmetric protein distribution on the plasma membrane are mostly unknown. To address this problem, we investigated whether ordered membrane microdomains, namely membrane rafts, might contribute to sperm cell delivery. Detergent insoluble membranes, rich in sterols and sphingolipids, were isolated from tobacco pollen tubes. MALDI TOF/MS analysis revealed that actin, prohibitins and proteins involved in methylation reactions and in phosphoinositide pattern regulation are specifically present in pollen tube detergent insoluble membranes. Tubulins, voltage-dependent anion channels and proteins involved in membrane trafficking and signalling were also present. This paper reports the first evidence of membrane rafts in Angiosperm pollen tubes, opening new perspectives on the coordination of signal transduction, cytoskeleton dynamics and polarised secretion.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Assunta Gagliardi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Lilly Maneta-Peyret
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| | - Luca Bini
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nadia Stroppa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Claudia Landi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Monica Scali
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P. A. Mattioli 4, 53100 Siena, Italy
| | - Aurora Irene Idilli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy Present address: Institute of Biophysics, National Research Council and FBK, 38123 Trento, Italy
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| |
Collapse
|
30
|
Boutté Y, Moreau P. Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:22-29. [PMID: 25233477 DOI: 10.1016/j.pbi.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 05/11/2023]
Abstract
Membrane lipids are crucial bricks for cell and organelle compartmentalization and their physical properties and interactions with other membrane partners (lipids or proteins) reveal lipids as key actors of the regulation of membrane morphodynamics in many cellular functions and especially in the secretory/retrograde pathways. Studies on membrane models have indicated diverse mechanisms by which membranes bend. Moreover, in vivo studies also indicate that membrane curvature can play crucial roles in the regulation of endomembrane morphodynamics, organelle morphology and transport vesicle formation. A role for enzymes of lipid metabolism and lipid-protein interactions will be discussed as crucial mechanisms in the regulation of membrane morphodynamics in the secretory/retrograde pathways.
Collapse
Affiliation(s)
- Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France.
| |
Collapse
|
31
|
Krüger F, Krebs M, Viotti C, Langhans M, Schumacher K, Robinson DG. PDMP induces rapid changes in vacuole morphology in Arabidopsis root cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:529-40. [PMID: 23230024 PMCID: PMC3542044 DOI: 10.1093/jxb/ers345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
PDMP (D-L-threo-1-phenyl-2-decanoyl amino-3-morpholino-1-propanol) is a well-known inhibitor of glucosylceramide synthase (GCS), a key enzyme in sphingolipid biosynthesis. Through the resultant increase in ceramides which interact with mTOR and Beclin1 (Atg6), this drug is also known to induce macroautophagy in mammalian cells. This study investigated the response of Arabidopsis root cells to PDMP, and what are probably numerous tightly packed small vacuoles in the control cells appear to fuse to form a single globular-shaped vacuole. However, during this fusion process, cytoplasm channels between the individual vacuoles become trapped in deep invaginations of the tonoplast. In both optical sections in the confocal laser scanning microscope and in ultrathin sections in the electron microscope, these invaginations have the appearance of cytoplasmic inclusions in the vacuole lumen. These changes in vacuole morphology are rapid (occurring within minutes after application of PDMP) and are independent of ongoing protein synthesis. The tonoplast invaginations remain visible for hours, but after 24h almost all disappear. Experiments designed to examine whether ceramide levels might be the cause of the PDMP effect have not proved conclusive. On the other hand, this study has been able to rule out the release of Ca(2+) ions from intracellular stores as a contributing factor.
Collapse
Affiliation(s)
- Falco Krüger
- Department of Plant Developmental Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- * These authors contributed equally to this manuscript.
| | - Melanie Krebs
- Department of Plant Developmental Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- * These authors contributed equally to this manuscript.
| | - Corrado Viotti
- Department of Plant Developmental Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Markus Langhans
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Karin Schumacher
- Department of Plant Developmental Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- * These authors contributed equally to this manuscript.
| |
Collapse
|
32
|
Cacas JL, Melser S, Domergue F, Joubès J, Bourdenx B, Schmitter JM, Mongrand S. Rapid nanoscale quantitative analysis of plant sphingolipid long-chain bases by GC-MS. Anal Bioanal Chem 2012; 403:2745-55. [DOI: 10.1007/s00216-012-6060-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
|
33
|
Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau-Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S. Lipids of plant membrane rafts. Prog Lipid Res 2012; 51:272-99. [PMID: 22554527 DOI: 10.1016/j.plipres.2012.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen M, Markham JE, Cahoon EB. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:769-81. [PMID: 22023480 DOI: 10.1111/j.1365-313x.2011.04829.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants contain a large diversity of sphingolipid structures, arising in part from C4 hydroxylation and Δ4 and Δ8 desaturation of the component long-chain bases (LCBs). Typically, 85-90% of sphingolipid LCBs in Arabidopsis leaves contain a cis or transΔ8 double bond produced by sphingoid LCB Δ8 desaturase (SLD). To understand the metabolic and physiological significance of Δ8 unsaturation, studies were performed using mutants of the Arabidopsis SLD genes AtSLD1 and AtSLD2. Our studies revealed that both genes are constitutively expressed, the corresponding polypeptides are ER-localized, and expression of these genes in Saccharomyces cerevisiae yields mixtures of cis/transΔ8 desaturation products, predominantly as trans isomers. Consistent in part with the higher expression of AtSLD1 in Arabidopsis plants, AtSLD1 T-DNA mutants showed large reductions in Δ8 unsaturated LCBs in all organs examined, whereas AtSLD2 mutants showed little change in LCB unsaturation. Double mutants of AtSLD1 and AtSLD2 showed no detectable LCB Δ8 unsaturation. Comprehensive analysis of sphingolipids in rosettes of these mutants revealed a 50% reduction in glucosylceramide levels and a corresponding increase in glycosylinositolphosphoceramides that were restored by complementation with a wild-type copy of AtSLD1. Double sld1 sld2 mutants lacked apparent growth phenotypes under optimal conditions, but displayed altered responses to certain stresses, including prolonged exposure to low temperatures. These results are consistent with a role for LCB Δ8 unsaturation in selective channeling of ceramides for the synthesis of complex sphingolipids and the physiological performance of Arabidopsis.
Collapse
Affiliation(s)
- Ming Chen
- Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, USA
| | | | | |
Collapse
|
35
|
Islam MN, Jacquemot MP, Coursol S, Ng CKY. Sphingosine in plants--more riddles from the Sphinx? THE NEW PHYTOLOGIST 2012; 193:51-57. [PMID: 22070536 DOI: 10.1111/j.1469-8137.2011.03963.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
• Sphingolipids are emerging as important mediators of cellular and developmental processes in plants, and advances in lipidomics have yielded a wealth of information on the composition of plant sphingolipidomes. Studies using Arabidopsis thaliana showed that the dihydroxy long-chain base (LCB) is desaturated at carbon position 8 (d18:1(Δ8)). This raised important questions on the role(s) of sphingosine (d18:1(Δ4)) and sphingosine-1-phosphate (d18:1(Δ4)-P) in plants, as these LCBs appear to be absent in A. thaliana. • Here, we surveyed 21 species from various phylogenetic groups to ascertain the position of desaturation of the d18:1 LCB, in order to gain further insights into the prevalence of d18:1(Δ4) and d18:1(Δ8) in plants. • Our results showed that d18:1(Δ8) is common in gymnosperms, whereas d18:1(Δ4) is widespread within nonseed land plants and the Poales, suggesting that d18:1(Δ4) is evolutionarily more ancient than d18:1(Δ8) in Viridiplantae. Additionally, phylogenetic analysis indicated that the sphingolipid Δ4-desaturases from Viridiplantae form a monophyletic group, with Angiosperm sequences falling into two distinct clades, the Eudicots and the Poales. • We propose that efforts to elucidate the role(s) of d18:1(Δ4) and d18:1(Δ4)-P should focus on genetically tractable Viridiplantae species where the d18:1 LCB is desaturated at carbon position 4.
Collapse
Affiliation(s)
- M Nurul Islam
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Sylvie Coursol
- INRA, UMR 320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Carl K-Y Ng
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
36
|
Nimrichter L, Rodrigues ML. Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials. Front Microbiol 2011; 2:212. [PMID: 22025918 PMCID: PMC3198225 DOI: 10.3389/fmicb.2011.00212] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 01/09/2023] Open
Abstract
The first work reporting synthesis of glucosylceramide (cerebrin, GlcCer) by yeasts was published in 1930. During approximately 70 years members of this class of glycosphingolipids (GSL) were considered merely structural components of plasma membrane in fungi. However, in the last decade GlcCer was reported to be involved with fungal growth, differentiation, virulence, immunogenicity, and lipid raft architecture in at least two human pathogens. Fungal GlcCer are structurally distinct from their mammalian counterparts and enriched at the cell wall, which makes this molecule an effective target for antifungal activity of specific ligands (peptides and antibodies to GlcCer). Therefore, GSL are promising targets for new drugs to combat fungal diseases. This review discusses the most recent information on biosynthesis and role of GlcCer in fungal pathogens.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | |
Collapse
|
37
|
Carmona-Salazar L, El Hafidi M, Enríquez-Arredondo C, Vázquez-Vázquez C, González de la Vara LE, Gavilanes-Ruíz M. Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues. Anal Biochem 2011; 417:220-7. [PMID: 21723848 DOI: 10.1016/j.ab.2011.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 11/25/2022]
Abstract
Microdomains, or lipid rafts, are transient membrane regions enriched in sphingolipids and sterols that have only recently, but intensively, been studied in plants. In this work, we report a detailed, easy-to-follow, and fast procedure to isolate detergent-resistant membranes (DRMs) from purified plasma membranes (PMs) that was used to obtain DRMs from Phaseolus vulgaris and Nicotiana tabacum leaves and germinating Zea mays embryos. Characterized according to yield, ultrastructure, and sterol composition, these DRM preparations showed similarities to analogous preparations from other eukaryotic cells. Isolation of DRMs from germinating maize embryos reveals the presence of microdomains at very early developmental stages of plants.
Collapse
Affiliation(s)
- Laura Carmona-Salazar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México DF 04510, Mexico
| | | | | | | | | | | |
Collapse
|
38
|
Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB, Arondel V. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A 2011; 108:12527-32. [PMID: 21709233 PMCID: PMC3145713 DOI: 10.1073/pnas.1106502108] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information.
Collapse
Affiliation(s)
- Fabienne Bourgis
- Université de Bordeaux Ségalen, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, F-33000 Bordeaux, France
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, F-33000 Bordeaux, France
| | - Aruna Kilaru
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824
| | - Xia Cao
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Georges-Frank Ngando-Ebongue
- Centre de Recherches sur le Palmier à Huile de la Dibamba, Institut de Recherche Agricole pour le Développement, BP243 Douala, Cameroon; and
| | - Noureddine Drira
- Laboratoire de Biotechnologie Végétale, Faculté des Sciences de Sfax, Sfax 3038, Tunisia
| | - John B. Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Vincent Arondel
- Université de Bordeaux Ségalen, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, F-33000 Bordeaux, France
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, F-33000 Bordeaux, France
| |
Collapse
|
39
|
Abstract
The combination of carbohydrate and lipid generates unusual molecules in which the two distinctive halves of the glycoconjugate influence the function of each other. Membrane glycolipids can act as primary receptors for carbohydrate binding proteins to mediate transmembrane signaling despite restriction to the outer bilayer leaflet. The extensive heterogeneity of the lipid moiety plays a significant, but still largely unknown, role in glycosphingolipid function. Potential interplay between glycolipids and their fatty acid isoforms, together with their preferential interaction with cholesterol, generates a complex mechanism for the regulation of their function in cellular physiology.
Collapse
Affiliation(s)
- Clifford A Lingwood
- Research Institute, Hospital for Sick Children, Molecular Structure and Function, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
40
|
Aubert A, Marion J, Boulogne C, Bourge M, Abreu S, Bellec Y, Faure JD, Satiat-Jeunemaitre B. Sphingolipids involvement in plant endomembrane differentiation: the BY2 case. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:958-71. [PMID: 21205030 DOI: 10.1111/j.1365-313x.2011.04481.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sphingolipids play an essential role in the functioning of the secretory pathway in eukaryotic organisms. Their importance in the functional organization of plant cells has not been studied in any detail before. The sphingolipid synthesis inhibitor fumonisin B1 (FB1), a mycotoxin acting as a specific inhibitor of ceramide synthase, was tested for its effects on cell growth, cell polarity, cell shape, cell cycle and on the ultrastructure of BY2 cells. We used cell lines expressing different GFP-tagged markers for plant cell compartments, as well as a Golgi marker fused to the photoconvertible protein Kaede. Light and electron microscopy, combined with flow cytometry, were applied to analyse the morphodynamics and architecture of compartments of the secretory pathway. The results indicate that FB1 treatment had severe effects on cell growth and cell shape, and induced a delay in cell division processes. The cell changes were accompanied by the formation of the endoplasmic reticulum (ER)-derived tubular aggregates (FB1-induced compartments), together with an inhibition of cargo transport from the ER to the Golgi apparatus. A change in polar localization of the auxin transporter PIN1 was also observed, but endocytic processes were little affected. Electron microscopy studies confirmed that molecular FB1 targets were distinct from brefeldin A (BFA) targets. We propose that the reported effects of inhibition of ceramide biosynthesis reflect the importance of sphingolipids during cell growth and establishment of cell polarity in higher plant cells, notably through their contribution to the functional organization of the ER or its differentiation into distinct compartments.
Collapse
Affiliation(s)
- Anne Aubert
- Laboratoire Dynamique de la Compartimentation Cellulaire, CNRS UPR2355/IFR87, Institut des Sciences du Végétal, Centre de Recherche de Gif (FRC3115), 91198, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schoberer J, Strasser R. Sub-compartmental organization of Golgi-resident N-glycan processing enzymes in plants. MOLECULAR PLANT 2011; 4:220-8. [PMID: 21307368 PMCID: PMC3063520 DOI: 10.1093/mp/ssq082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/17/2010] [Indexed: 05/17/2023]
Abstract
In all eukaryotes, the Golgi apparatus is the main site of protein glycosylation. It is widely accepted that the glycosidases and glycosyltransferases involved in N-glycan processing are found concentrated within the Golgi stack where they provide their function. This means that enzymes catalyzing early steps in the processing pathway are located mainly at the cis-side, whereas late-acting enzymes mostly locate to the trans-side of the stacks, creating a non-uniform distribution along the cis-trans axis of the Golgi. There is compelling evidence that the information for their sorting to specific Golgi cisternae depends on signals encoded in the proteins themselves as well as on the trafficking machinery that recognizes these signals and it is believed that cisternal sub-compartmentalization is achieved and maintained by a combination of retention and retrieval mechanisms. Yet, the signals, mechanism(s), and molecular factors involved are still unknown. Here, we address recent findings and summarize the current understanding of this fundamental process in plant cell biology.
Collapse
Affiliation(s)
- Jennifer Schoberer
- School of Life Sciences, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- To whom correspondence should be addressed. E-mail , fax +43 1 47654 6392, tel. +43 1 47654 6700
| |
Collapse
|
42
|
Melser S, Molino D, Batailler B, Peypelut M, Laloi M, Wattelet-Boyer V, Bellec Y, Faure JD, Moreau P. Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways. PLANT CELL REPORTS 2011; 30:177-193. [PMID: 21120657 DOI: 10.1007/s00299-010-0954-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
The role of lipids as molecular actors of protein transport and organelle morphology in plant cells has progressed over the last years through pharmacological and genetic investigations. The manuscript is reviewing the roles of various lipid families in membrane dynamics and trafficking in eukaryotic cells, and summarizes some of the related physicochemical properties of the lipids involved. The article also focuses on the specific requirements of the sphingolipid glucosylceramide (GlcCer) in Golgi morphology and protein transport through the plant secretory pathway. The use of a specific inhibitor of plant glucosylceramide synthase and selected Arabidopsis thaliana RNAi lines stably expressing several markers of the plant secretory pathway, establishes specific steps sensitive to GlcCer biosynthesis. Collectively, data of the literature demonstrate the existence of links between protein trafficking, organelle morphology, and lipid metabolism/homeostasis in eukaryotic cells including plant cells.
Collapse
Affiliation(s)
- Su Melser
- Laboratoire de Biogenèse Membranaire, UMR 5200 Université Bordeaux 2-CNRS, Université Bordeaux 2, case 92, 146 rue Léo-Saignat, 33076 Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sánchez-Rangel D, Plasencia J. The role of sphinganine analog mycotoxins on the virulence of plant pathogenic fungi. TOXIN REV 2010. [DOI: 10.3109/15569543.2010.515370] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|