1
|
Zhou Z, Sicairos B, Zhou J, Du Y. Proteomic Analysis Reveals Major Proteins and Pathways That Mediate the Effect of 17-β-Estradiol in Cell Division and Apoptosis in Breast Cancer MCF7 Cells. J Proteome Res 2024; 23:4835-4848. [PMID: 39392593 DOI: 10.1021/acs.jproteome.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite extensive research, the genes/proteins and pathways responsible for the physiological effects of estrogen remain elusive. In this study, we determined the effect of estrogen on global protein expression in breast cancer MCF7 cells using a proteomic method. The expression of 77 cytosolic, 74 nuclear, and 81 membrane/organelle proteins was significantly altered by 17-β-estradiol (E2). Protein enrichment analyses suggest that E2 may stimulate cell division primarily by promoting the G1 to S phase transition and advancing the G2/M checkpoint. The effect of E2 on cell survival was complex, as it could simultaneously enhance and inhibit apoptosis. Bioinformatics analysis suggests that E2 may enhance apoptosis by promoting the accumulation of the pore-forming protein Bax in the mitochondria and inhibit apoptosis by activating the PI3K/AKT/mTOR signaling pathway. We verified the activation of the PI3K signaling and the accumulation of Bax in the membrane/organelle fraction in E2-treated cells using immunoblotting. Treatment of MCF7 cells with E2 and the PI3K inhibitor Ly294002 significantly enhanced apoptosis compared to those treated with E2 alone, suggesting that combining estrogen with a PI3K inhibitor could be a promising strategy for treating ERα-positive breast cancer. Interestingly, many of the E2-upregulated proteins contained the HEAT, KH, and RRM domains.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Yu Q, Wu T, Xu W, Wei J, Zhao A, Wang M, Li M, Chi G. PTBP1 as a potential regulator of disease. Mol Cell Biochem 2024; 479:2875-2894. [PMID: 38129625 DOI: 10.1007/s11010-023-04905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which plays a key role in alternative splicing of precursor mRNA and RNA metabolism. PTBP1 is universally expressed in various tissues and binds to multiple downstream transcripts to interfere with physiological and pathological processes such as the tumor growth, body metabolism, cardiovascular homeostasis, and central nervous system damage, showing great prospects in many fields. The function of PTBP1 involves the regulation and interaction of various upstream molecules, including circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These regulatory systems are inseparable from the development and treatment of diseases. Here, we review the latest knowledge regarding the structure and molecular functions of PTBP1 and summarize its functions and mechanisms of PTBP1 in various diseases, including controversial studies. Furthermore, we recommend future studies on PTBP1 and discuss the prospects of targeting PTBP1 in new clinical therapeutic approaches.
Collapse
Affiliation(s)
- Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tongtong Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Singh H, Paithankar H, Poojari CS, Kaur K, Singh S, Shobhawat R, Singh P, Kumar A, Mithu VS. Structural insights to the RRM-domain of the glycine-rich RNA-binding protein from Sorghum bicolor and its role in cold stress tolerance in E. coli. Int J Biol Macromol 2024; 282:136668. [PMID: 39442831 DOI: 10.1016/j.ijbiomac.2024.136668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sorghum bicolor Glycine-rich RNA-binding protein (SbGRBP), exhibit the ability to bind both single-stranded and double-stranded DNA. The expression of SbGRBP is regulated by heat stress, with the protein localizing to the nucleus and cytosol. The present study delves into the structure and ssDNA binding ability of its truncated version (SbGRBP1-119) which lacks glycine rich domain (GR). This protein has the ability to bind ssDNA Using Nuclear Magnetic Resonance (NMR) spectroscopy, we have revealed the secondary structure of SbGRBP1-119, highlighting the typical configuration of GRBPs with four β-sheets and two α-helices. Notably, we found two additional α-helices at the N-terminal region that seem to interact with ssDNA, a novel observation for GRBPs. Key residues crucial for ssDNA binding were identified, suggesting a specific interaction with the oligonucleotide sequence 5'-TTCTGG-3'. Preliminary assays hinted that SbGRBP1-119 might bolster E. coli resilience to cold stress, indicating a potential chaperone-like role under stress conditions. This study sheds light on the structural basis of SbGRBP1-119's interaction with nucleic acids, deepening our understanding about the role of GRBPs' in RNA metabolism and regulation.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harshad Paithankar
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Chetan S Poojari
- Theoretical Physics and Centre for Biophysics, Saarland University, Saarbrücken, Germany
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Supreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Rahul Shobhawat
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
| | - Venus Singh Mithu
- Department of NMR-based Structural Biology, Max Planck Institute of Multidisciplinary Sciences, Am Faßberg 11, Göttingen, Germany.
| |
Collapse
|
4
|
Yan L, Jiao B, Duan P, Guo G, Zhang B, Jiao W, Zhang H, Wu H, Zhang L, Liang H, Xu J, Huang X, Wang Y, Zhou Y, Li Y. Control of grain size and weight by the RNA-binding protein EOG1 in rice and wheat. Cell Rep 2024; 43:114856. [PMID: 39427319 DOI: 10.1016/j.celrep.2024.114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/24/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Grain size is one of the important yield traits in crops. Understanding the molecular and genetic mechanisms of grain-size control is important for yield improvement. Here, we report that the enhancer of GS2AA (EOG1) encodes an RNA-binding protein, which can bind mRNAs of several grain-size genes and influence their abundance. The eog1-1 mutant produces large and heavy grains by promoting cell proliferation in the spikelet hull. OsGSK3 physically interacts with and phosphorylates EOG1, thereby influencing the stability of EOG1. Genetic analyses support that EOG1 and OsGSK3 share overlapped function in grain size and weight control but does so independently of GS2. Notably, genome editing of wheat homologs TaEOG1A/B/D causes large and heavy grains. Thus, our findings identify a genetic and molecular mechanism whereby the OsGSK3-EOG1 module regulates grain size and weight in rice, suggesting that this pathway has the potential for grain-size improvement in key crops.
Collapse
Affiliation(s)
- Li Yan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bingyang Jiao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Penggen Duan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Baolan Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjie Jiao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huilan Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Jinsong Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
5
|
Al-Khayri JM, Ravindran M, Banadka A, Vandana CD, Priya K, Nagella P, Kukkemane K. Amyotrophic Lateral Sclerosis: Insights and New Prospects in Disease Pathophysiology, Biomarkers and Therapies. Pharmaceuticals (Basel) 2024; 17:1391. [PMID: 39459030 PMCID: PMC11510162 DOI: 10.3390/ph17101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disorder marked by the gradual loss of motor neurons, leading to significant disability and eventual death. Despite ongoing research, there are still limited treatment options, underscoring the need for a deeper understanding of the disease's complex mechanisms and the identification of new therapeutic targets. This review provides a thorough examination of ALS, covering its epidemiology, pathology, and clinical features. It investigates the key molecular mechanisms, such as protein aggregation, neuroinflammation, oxidative stress, and excitotoxicity that contribute to motor neuron degeneration. The role of biomarkers is highlighted for their importance in early diagnosis and disease monitoring. Additionally, the review explores emerging therapeutic approaches, including inhibitors of protein aggregation, neuroinflammation modulators, antioxidant therapies, gene therapy, and stem cell-based treatments. The advantages and challenges of these strategies are discussed, with an emphasis on the potential for precision medicine to tailor treatments to individual patient needs. Overall, this review aims to provide a comprehensive overview of the current state of ALS research and suggest future directions for developing effective therapies.
Collapse
Affiliation(s)
- Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mamtha Ravindran
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed-to-be-University), Bangalore 560027, India; (M.R.); (A.B.); (C.D.V.); (K.P.)
| | - Akshatha Banadka
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed-to-be-University), Bangalore 560027, India; (M.R.); (A.B.); (C.D.V.); (K.P.)
| | - Chendanda Devaiah Vandana
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed-to-be-University), Bangalore 560027, India; (M.R.); (A.B.); (C.D.V.); (K.P.)
| | - Kushalva Priya
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed-to-be-University), Bangalore 560027, India; (M.R.); (A.B.); (C.D.V.); (K.P.)
| | - Praveen Nagella
- Department of Life Sciences, School of Sciences, Christ University, Bengaluru 560029, India;
| | - Kowshik Kukkemane
- Department of Life Sciences, School of Sciences, Christ University, Bengaluru 560029, India;
| |
Collapse
|
6
|
Liu C, Zhang L, Xia Y, Li K, Wu J, Zhang J. Identification, expression, and function analysis of Rbpms2 splicing variants in Japanese flounder gonad. Gen Comp Endocrinol 2024; 359:114628. [PMID: 39414089 DOI: 10.1016/j.ygcen.2024.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Rbpms2, an RNA-binding protein with multiple splicing (Rbpms), can interact with RNAs to involve oocyte development, thereby influencing female sex differentiation in vertebrates. Here, two splicing variants of the Rbpms2 gene from Japanese flounder (Paralichthys olivaceus) were identified, namely Rbpms2.1 and Rbpms2.2. The two variants exhibited 98.22 % amino acid homology, both featuring an RNA recognition motif (RRM) domain spanning positions 98-170 amino acids. They were relatively conserved throughout phylogenetic evolution. Differently, the C-terminal region of the Rbpms2.1 contains five additional sequential amino acids (-VRDQP-) compared to Rbpms2.2. The real-time qPCR results demonstrated that Rbpms2.1 and Rbpms2.2 had relatively abundant expression in the gonads of adult Japanese flounder, with higher expression levels in the ovary compared to the testis (P < 0.05). In situ hybridization results showed strong positive expression of Rbpms2 mRNA in oocytes at stages I-III during the V stage of ovarian development. In the testis atstage IV, the expression of Rbpms2 mRNA was mainly concentrated on primary spermatocytes. Importantly, Rbpms2 binding sites were found in the 3'UTR, 5'UTR, and ORF regions of the sex-related genes including dmrt1, sox9, amh, foxl2, and wnt4. siRNA interference and overexpression analysis of Rbpms2.1 and Rbpms2.2 in primary cells of the ovary and testis showed that Rbpms2 can repress the expression of male-related genes (dmrt1, sox9, and amh) and significantly promote the expression of female-related genes (foxl2 and wnt4). Our results revealed that Rbpms2 may play a critical role by targeting the sex-related genes in the gonad development of Japanese flounder.
Collapse
Affiliation(s)
- Cui Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Longsheng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - You Xia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Keqi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jikui Wu
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Junling Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
7
|
Pérez-Ropero G, Pérez-Ràfols A, Martelli T, Danielson UH, Buijs J. Unraveling the Bivalent and Rapid Interactions Between a Multivalent RNA Recognition Motif and RNA: A Kinetic Approach. Biochemistry 2024. [PMID: 39397705 DOI: 10.1021/acs.biochem.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The kinetics of the interaction between Musashi-1 (MSI1) and RNA have been characterized using surface plasmon resonance biosensor analysis. Truncated variants of human MSI1 encompassing the two homologous RNA recognition motifs (RRM1 and RRM2) in tandem (aa 1-200), and the two RRMs in isolation (aa 1-103 and aa 104-200, respectively) were produced. The proteins were injected over sensor surfaces with immobilized RNA, varying in sequence and length, and with one or two RRM binding motifs. The interactions of the individual RRMs with all RNA variants were well described by a 1:1 interaction model. The interaction between the MSI1 variant encompassing both RRM motifs was bivalent and rapid for all RNA variants. Due to difficulties in fitting this complex data using standard procedures, we devised a new method to quantify the interactions. It revealed that two RRMs in tandem resulted in a significantly longer residence time than a single RRM. It also showed that RNA with double UAG binding motifs and potential hairpin structures forms less stable bivalent complexes with MSI1 than the single UAG motif containing linear RNA. Substituting the UAG binding motif with a CAG sequence resulted in a reduction of the affinity of the individual RRMs, but for MSI1, this reduction was strongly enhanced, demonstrating the importance of bivalency for specificity. This study has provided new insights into the interaction between MSI1 and RNA and an understanding of how individual domains contribute to the overall interaction. It provides an explanation for why many RNA-binding proteins contain dual RRMs.
Collapse
Affiliation(s)
- Guillermo Pérez-Ropero
- Department of Chemistry - BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Ridgeview Instruments AB, Uppsala SE 752 37, Sweden
| | - Anna Pérez-Ràfols
- Department of Chemistry "Ugo Schiff″, Magnetic Resonance Center (CERM), University of Florence, Florence 50019, Italy
- Giotto Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland DD1 5EH, U.K
| | - Tommasso Martelli
- Department of Chemistry "Ugo Schiff″, Magnetic Resonance Center (CERM), University of Florence, Florence 50019, Italy
- Giotto Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
| | - U Helena Danielson
- Department of Chemistry - BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala University, Uppsala SE 751 23, Sweden
| | - Jos Buijs
- Ridgeview Instruments AB, Uppsala SE 752 37, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala SE 751 85, Sweden
| |
Collapse
|
8
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Chu LC, Christopoulou N, McCaughan H, Winterbourne S, Cazzola D, Wang S, Litvin U, Brunon S, Harker PJ, McNae I, Granneman S. pyRBDome: a comprehensive computational platform for enhancing RNA-binding proteome data. Life Sci Alliance 2024; 7:e202402787. [PMID: 39079742 PMCID: PMC11289467 DOI: 10.26508/lsa.202402787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
High-throughput proteomics approaches have revolutionised the identification of RNA-binding proteins (RBPome) and RNA-binding sequences (RBDome) across organisms. Yet, the extent of noise, including false positives, associated with these methodologies, is difficult to quantify as experimental approaches for validating the results are generally low throughput. To address this, we introduce pyRBDome, a pipeline for enhancing RNA-binding proteome data in silico. It aligns the experimental results with RNA-binding site (RBS) predictions from distinct machine-learning tools and integrates high-resolution structural data when available. Its statistical evaluation of RBDome data enables quick identification of likely genuine RNA-binders in experimental datasets. Furthermore, by leveraging the pyRBDome results, we have enhanced the sensitivity and specificity of RBS detection through training new ensemble machine-learning models. pyRBDome analysis of a human RBDome dataset, compared with known structural data, revealed that although UV-cross-linked amino acids were more likely to contain predicted RBSs, they infrequently bind RNA in high-resolution structures. This discrepancy underscores the limitations of structural data as benchmarks, positioning pyRBDome as a valuable alternative for increasing confidence in RBDome datasets.
Collapse
Affiliation(s)
- Liang-Cui Chu
- https://ror.org/01nrxwf90 Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- https://ror.org/01nrxwf90 Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Niki Christopoulou
- https://ror.org/01nrxwf90 Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- https://ror.org/01nrxwf90 Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Hugh McCaughan
- https://ror.org/01nrxwf90 Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- https://ror.org/01nrxwf90 Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Sophie Winterbourne
- https://ror.org/01nrxwf90 Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Davide Cazzola
- https://ror.org/01nrxwf90 Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | - Shichao Wang
- https://ror.org/01nrxwf90 Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- https://ror.org/01nrxwf90 Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Ulad Litvin
- https://ror.org/01nrxwf90 Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Salomé Brunon
- https://ror.org/01nrxwf90 Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | - Patrick Jb Harker
- https://ror.org/01nrxwf90 Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Iain McNae
- https://ror.org/01nrxwf90 Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Sander Granneman
- https://ror.org/01nrxwf90 Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- https://ror.org/01nrxwf90 Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Álvarez L, Haubrich K, Iselin L, Gillioz L, Ruscica V, Lapouge K, Augsten S, Huppertz I, Choudhury NR, Simon B, Masiewicz P, Lethier M, Cusack S, Rittinger K, Gabel F, Leitner A, Michlewski G, Hentze MW, Allain FHT, Castello A, Hennig J. The molecular dissection of TRIM25's RNA-binding mechanism provides key insights into its antiviral activity. Nat Commun 2024; 15:8485. [PMID: 39353916 PMCID: PMC11445558 DOI: 10.1038/s41467-024-52918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
TRIM25 is an RNA-binding ubiquitin E3 ligase with central but poorly understood roles in the innate immune response to RNA viruses. The link between TRIM25's RNA binding and its role in innate immunity has not been established. Thus, we utilized a multitude of biophysical techniques to identify key RNA-binding residues of TRIM25 and developed an RNA-binding deficient mutant (TRIM25-m9). Using iCLIP2 in virus-infected and uninfected cells, we identified TRIM25's RNA sequence and structure specificity, that it binds specifically to viral RNA, and that the interaction with RNA is critical for its antiviral activity.
Collapse
Affiliation(s)
- Lucía Álvarez
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Kevin Haubrich
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Louisa Iselin
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Laurent Gillioz
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Vincenzo Ruscica
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Karine Lapouge
- Protein expression and purification facility, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Sandra Augsten
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Ina Huppertz
- Director's Research, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Nila Roy Choudhury
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Infection Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK
| | - Bernd Simon
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Pawel Masiewicz
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Mathilde Lethier
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, Grenoble Cedex, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, Grenoble Cedex, France
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Frank Gabel
- Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut de Biologie Structurale, Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Gracjan Michlewski
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Infection Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK
| | - Matthias W Hentze
- Director's Research, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Frédéric H T Allain
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany.
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447, Bayreuth, Germany.
| |
Collapse
|
11
|
Masoumzadeh E, Latham MP. Human CSTF2 RNA Recognition Motif Domain Binds to a U-Rich RNA Sequence through a Multistep Binding Process. Biochemistry 2024; 63:2449-2462. [PMID: 39305233 PMCID: PMC11448763 DOI: 10.1021/acs.biochem.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
The RNA recognition motif (RRM) is a conserved and ubiquitous RNA-binding domain that plays essential roles in mRNA splicing, polyadenylation, transport, and stability. RRM domains exhibit remarkable diversity in binding partners, interacting with various sequences of single- and double-stranded RNA, despite their small size and compact fold. During pre-mRNA cleavage and polyadenylation, the RRM domain from CSTF2 recognizes U- or G/U-rich RNA sequences downstream from the cleavage and polyadenylation site to regulate the process. Given the importance of alternative cleavage and polyadenylation in increasing the diversity of mRNAs, the exact mechanism of binding of RNA to the RRM of CSTF2 remains unclear, particularly in the absence of a structure of this RRM bound to a native RNA substrate. Here, we performed a series of NMR titration and spin relaxation experiments, which were complemented by paramagnetic relaxation enhancement measurements and rigid-body docking, to characterize the interactions of the CSTF2 RRM with a U-rich ligand. Our results reveal a multistep binding process involving differences in ps-ns time scale dynamics and potential structural changes, particularly in the C-terminalα-helix. These results provide insights into how the CSTF2 RRM domain binds to U-rich RNA ligands and offer a greater understanding for the molecular basis of the regulation of pre-mRNA cleavage and polyadenylation.
Collapse
Affiliation(s)
- Elahe Masoumzadeh
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Michael P. Latham
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
- Department
of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Garg A, Shang R, Cvetanovic T, Lai EC, Joshua-Tor L. The structural landscape of Microprocessor-mediated processing of pri-let-7 miRNAs. Mol Cell 2024:S1097-2765(24)00741-X. [PMID: 39368465 DOI: 10.1016/j.molcel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
MicroRNA (miRNA) biogenesis is initiated upon cleavage of a primary miRNA (pri-miRNA) hairpin by the Microprocessor (MP), composed of the Drosha RNase III enzyme and its partner DGCR8. Multiple pri-miRNA sequence motifs affect MP recognition, fidelity, and efficiency. Here, we performed cryoelectron microscopy (cryo-EM) and biochemical studies of several let-7 family pri-miRNAs in complex with human MP. We show that MP has the structural plasticity to accommodate a range of pri-miRNAs. These structures revealed key features of the 5' UG sequence motif, more comprehensively represented as the "flipped U with paired N" (fUN) motif. Our analysis explains how cleavage of class-II pri-let-7 members harboring a bulged nucleotide generates a non-canonical precursor with a 1-nt 3' overhang. Finally, the MP-SRSF3-pri-let-7f1 structure reveals how SRSF3 contributes to MP fidelity by interacting with the CNNC motif and Drosha's Piwi/Argonaute/Zwille (PAZ)-like domain. Overall, this study sheds light on the mechanisms for flexible recognition, accurate cleavage, and regulated processing of different pri-miRNAs by MP.
Collapse
Affiliation(s)
- Ankur Garg
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA
| | - Todor Cvetanovic
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA
| | - Leemor Joshua-Tor
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
13
|
Qin M, Fan W, Li L, Xu T, Zhang H, Chen F, Man J, Kombe AJK, Zhang J, Shi Y, Yao X, Yang Z, Hou Z, Ruan K, Liu D. PRMT1 and TDRD3 promote stress granule assembly by rebuilding the protein-RNA interaction network. Int J Biol Macromol 2024; 277:134411. [PMID: 39097054 DOI: 10.1016/j.ijbiomac.2024.134411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Stress granules (SGs) are membrane-less organelles (MLOs) or cytosolic compartments formed upon exposure to environmental cell stress-inducing stimuli. SGs are based on ribonucleoprotein complexes from a set of cytoplasmic proteins and mRNAs, blocked in translation due to stress cell-induced polysome disassembly. Post-translational modifications (PTMs) such as methylation, are involved in SG assembly, with the methylation writer PRMT1 and its reader TDRD3 colocalizing to SGs. However, the role of this writer-reader system in SG assembly remains unclear. Here, we found that PRMT1 methylates SG constituent RNA-binding proteins (RBPs) on their RGG motifs. Besides, we report that TDRD3, as a reader of asymmetric dimethylarginines, enhances RNA binding to recruit additional RNAs and RBPs, lowering the percolation threshold and promoting SG assembly. Our study enriches our understanding of the molecular mechanism of SG formation by elucidating the functions of PRMT1 and TDRD3. We anticipate that our study will provide a new perspective for comprehensively understanding the functions of PTMs in liquid-liquid phase separation driven condensate assembly.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Linge Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Tian Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hanyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingwen Man
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhonghuai Hou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China.
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
14
|
Shukla C, Datta B. G-quadruplexes in long non-coding RNAs and their interactions with proteins. Int J Biol Macromol 2024; 278:134946. [PMID: 39187110 DOI: 10.1016/j.ijbiomac.2024.134946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cellular processes, with their dysregulation linked to various disease states. Among the structural motifs in lncRNAs, RNA G-quadruplexes (rG4s) have gained increasing attention due to their diverse roles in cellular function and disease pathogenesis. This review provides an updated and comprehensive overview of rG4s in lncRNAs, elucidating their formation, interaction with proteins, and distinctive roles in cellular processes. We discuss current methodologies for experimentally probing RNA G4s, including the use of specific small molecules, biomolecular ligands and fluorescent probes. The commonly found RNA G4-interacting protein domains are summarised along with potential strategies for disrupting lncRNA G4-protein interactions from a therapeutic perspective.
Collapse
Affiliation(s)
- Chinmayee Shukla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, Gujarat, India
| | - Bhaskar Datta
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, Gujarat, India; Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
15
|
Dolcemascolo R, Ruiz R, Baldanta S, Goiriz L, Heras-Hernández M, Montagud-Martínez R, Rodrigo G. Probing the orthogonality and robustness of the mammalian RNA-binding protein Musashi-1 in Escherichia coli. J Biol Eng 2024; 18:52. [PMID: 39350178 PMCID: PMC11443895 DOI: 10.1186/s13036-024-00448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
RNA recognition motifs (RRMs) are widespread RNA-binding protein domains in eukaryotes, which represent promising synthetic biology tools due to their compact structure and efficient activity. Yet, their use in prokaryotes is limited and their functionality poorly characterized. Recently, we repurposed a mammalian Musashi protein containing two RRMs as a translation regulator in Escherichia coli. Here, employing high-throughput RNA sequencing, we explored the impact of Musashi expression on the transcriptomic and translatomic profiles of E. coli, revealing certain metabolic interference, induction of post-transcriptional regulatory processes, and spurious protein-RNA interactions. Engineered Musashi protein mutants displayed compromised regulatory activity, emphasizing the importance of both RRMs for specific and sensitive RNA binding. We found that a mutation known to impede allosteric regulation led to similar translation control activity. Evolutionary experiments disclosed a loss of function of the synthetic circuit in about 40 generations, with the gene coding for the Musashi protein showing a stability comparable to other heterologous genes. Overall, this work expands our understanding of RRMs for post-transcriptional regulation in prokaryotes and highlight their potential for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Raúl Ruiz
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Sara Baldanta
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
- Pure and Applied Mathematics University Research Institute (IUMPA), Polytechnic University of Valencia, Valencia, 46022, Spain
| | - María Heras-Hernández
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, Paterna, 46980, Spain.
| |
Collapse
|
16
|
Fraga OT, Silva LAC, Silva JCF, Bevitori R, Silva FDA, Pereira WA, Reis PAB, Fontes EPB. Expansion and diversification of the Glycine max (Gm) ERD15-like subfamily of the PAM2-like superfamily. PLANTA 2024; 260:108. [PMID: 39333439 DOI: 10.1007/s00425-024-04538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
MAIN CONCLUSION Despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and diverge partially in stress signaling functions. The PAM2 motif represents a binding site for poly (A)-binding proteins (PABPs), often associated with RNA metabolism regulation. The PAM2-containing protein ERD15 stands out as a critical regulator of diverse stress responses in plants. Despite the relevance of the PAM2 motif, a comprehensive analysis of the PAM2 superfamily and ERD15-like subfamily in the plant kingdom is lacking. Here, we provide an extensive in silico analysis of the PAM2 superfamily and the ERD15-like subfamily in soybean, using Arabidopsis and rice sequences as prototypes. The Glycine max ERD15-like subfamily members were clustered in pairs, likely originating from DNA-based gene duplication, as the paralogs display high sequence conservation, similar exon/intron genome organization, and are undergoing purifying selection. Complementation analyses of an aterd15 mutant demonstrated that the plant ERD15-like subfamily members are functionally redundant in response to drought, osmotic stress, and dark-induced senescence. Nevertheless, the soybean members displayed differential expression profiles, biochemical activity, and subcellular localization, consistent with functional diversification. The expression profiles of Glyma04G138600 under salicylic acid (SA) and abscisic acid (ABA) treatments differed oppositely from those of the other GmERD15-like genes. Abiotic stress-induced coexpression analysis with soybean PABPs showed that Glyma04G138600 was clustered separately from other GmERD15s. In contrast to the AtERD15 stress-induced nuclear redistribution, Glyma04G138600 and Glyma02G260800 localized to the cytoplasm, while Glyma03G131900 fractionated between the cytoplasm and nucleus under normal and stress conditions. These data collectively indicate that despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and may diverge partially in stress signaling functions.
Collapse
Affiliation(s)
- Otto T Fraga
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Lucas A C Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - José Cleydson F Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Rosângela Bevitori
- Biotechnology Laboratory, Embrapa Rice and Beans, Rodovia GO-462, Km 12, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | - Fredy D A Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Welison A Pereira
- Department of Biology, Universidade Federal de Lavras, Lavras, 37200-900, Brazil
| | - Pedro A B Reis
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil.
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil.
| |
Collapse
|
17
|
Damberger F, Krepl M, Arora R, Beusch I, Maris C, Dorn G, Šponer J, Ravindranathan S, Allain FT. N-terminal domain of polypyrimidine-tract binding protein is a dynamic folding platform for adaptive RNA recognition. Nucleic Acids Res 2024; 52:10683-10704. [PMID: 39180402 PMCID: PMC11417363 DOI: 10.1093/nar/gkae713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The N-terminal RNA recognition motif domain (RRM1) of polypyrimidine tract binding protein (PTB) forms an additional C-terminal helix α3, which docks to one edge of the β-sheet upon binding to a stem-loop RNA containing a UCUUU pentaloop. Importantly, α3 does not contact the RNA. The α3 helix therefore represents an allosteric means to regulate the conformation of adjacent domains in PTB upon binding structured RNAs. Here we investigate the process of dynamic adaptation by stem-loop RNA and RRM1 using NMR and MD in order to obtain mechanistic insights on how this allostery is achieved. Relaxation data and NMR structure determination of the free protein show that α3 is partially ordered and interacts with the domain transiently. Stem-loop RNA binding quenches fast time scale dynamics and α3 becomes ordered, however microsecond dynamics at the protein-RNA interface is observed. MD shows how RRM1 binding to the stem-loop RNA is coupled to the stabilization of the C-terminal helix and helps to transduce differences in RNA loop sequence into changes in α3 length and order. IRES assays of full length PTB and a mutant with altered dynamics in the α3 region show that this dynamic allostery influences PTB function in cultured HEK293T cells.
Collapse
Affiliation(s)
- Fred F Damberger
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | - Rajika Arora
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Irene Beusch
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Georg Dorn
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | | | - Frédéric H-T Allain
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
19
|
Chen X, Wei Q, Yang Z, Chen X, Guo S, Jiang M, Wang M. Structural basis for RNA recognition by the C-terminal RRM domain of human RBM45. J Biol Chem 2024; 300:107640. [PMID: 39122006 PMCID: PMC11402289 DOI: 10.1016/j.jbc.2024.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
RBM45 is an RNA-binding protein with roles in neural development by regulating RNA splicing. Its dysfunction and aggregation are associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). RBM45 harbors three RRM domains that potentially bind RNA. While the recognitions of RNA by its N-terminal tandem RRM domains (RRM1 and RRM2) have been well understood, the RNA-binding property of its C-terminal RRM (RRM3) remains unclear. In this work, we identified that the RRM3 of the RBM45 sequence specifically binds RNA with a GACG sequence, similar but not identical to those recognized by the RRM1 and RRM2. Further, we determined the crystal structure of RBM45RRM3 in complex with a GACG sequence-containing single-stranded DNA. Our structural results, together with the RNA-binding assays of mutants at key amino acid residues, revealed the molecular mechanism by which RBM45RRM3 recognizes an RNA sequence. Our finding on the RNA-binding property of the individual RRM module of RBM45 provides the foundation for unraveling the RNA-binding characteristics of full-length RBM45 and for understanding the biological functions of RBM45.
Collapse
Affiliation(s)
- Xi Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China; School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Qinghao Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China; School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Zhongmei Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China; School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xiaolei Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China; School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Shuoxuan Guo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China; School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Meiyu Jiang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China; School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Mingzhu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China; School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
20
|
Garg A, Shang R, Cvetanovic T, Lai EC, Joshua-Tor L. The structural landscape of Microprocessor mediated pri- let-7 miRNA processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593372. [PMID: 38766155 PMCID: PMC11100773 DOI: 10.1101/2024.05.09.593372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
miRNA biogenesis is initiated upon cleavage of a primary miRNA (pri-miRNA) hairpin by the Microprocessor (MP), composed of the Drosha RNase III enzyme and its partner DGCR8. Multiple pri-miRNA sequence motifs affect MP recognition, fidelity, and efficiency. Here, we performed cryo-EM and biochemical studies of several let-7 family pri-miRNAs in complex with human MP. We show that MP has the structural plasticity to accommodate a range of pri-miRNAs. These structures revealed key features of the 5' UG sequence motif, more comprehensively represented as the "fUN" motif. Our analysis explains how cleavage of class-II pri-let-7 members harboring a bulged nucleotide generates a noncanonical precursor with a 1-nt 3' overhang. Finally, the MP-SRSF3-pri-let-7f1 structure reveals how SRSF3 contributes to MP fidelity by interacting with the CNNC-motif and Drosha's PAZ-like domain. Overall, this study sheds light on the mechanisms for flexible recognition, accurate cleavage, and regulated processing of different pri-miRNAs by MP.
Collapse
Affiliation(s)
- Ankur Garg
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
- Howard Hughes Medical Institute, Cold Spring Harbor laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
| | - Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA
| | - Todor Cvetanovic
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA
| | - Leemor Joshua-Tor
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
- Howard Hughes Medical Institute, Cold Spring Harbor laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724 USA
- Lead Contact
| |
Collapse
|
21
|
Guo H, Wang J, Huo X, Cui X, Zhang L, Qi X, Wu X, Liu J, Wang A, Liu J, Chen X, Zeng F, Guo H. Proteomic and Phosphoproteomic Analyses during Plant Regeneration Initiation in Cotton ( Gossypium hirsutum L.). Genes (Basel) 2024; 15:1079. [PMID: 39202437 PMCID: PMC11353933 DOI: 10.3390/genes15081079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Somatic embryogenesis (SE) is a biotechnological tool used to generate new individuals and is the preferred method for rapid plant regeneration. However, the molecular basis underlying somatic cell regeneration through SE is not yet fully understood, particularly regarding interactions between the proteome and post-translational modifications. Here, we performed association analysis of high-throughput proteomics and phosphoproteomics in three representative samples (non-embryogenic calli, NEC; primary embryogenic calli, PEC; globular embryos, GE) during the initiation of plant regeneration in cotton, a pioneer crop for genetic biotechnology applications. Our results showed that protein accumulation is positively regulated by phosphorylation during SE, as revealed by correlation analyses. Of the 1418 proteins that were differentially accumulated in the proteome and the 1106 phosphoproteins that were differentially regulated in the phosphoproteome, 115 proteins with 229 phosphorylation sites overlapped (co-differential). Furthermore, seven dynamic trajectory patterns of differentially accumulated proteins (DAPs) and the correlated differentially regulated phosphoproteins (DRPPs) pairs with enrichment features were observed. During the initiation of plant regeneration, functional enrichment analysis revealed that the overlapping proteins (DAPs-DRPPs) were considerably enriched in cellular nitrogen metabolism, spliceosome formation, and reproductive structure development. Moreover, 198 DRPPs (387 phosphorylation sites) were specifically regulated at the phosphorylation level and showed four patterns of stage-enriched phosphorylation susceptibility. Furthermore, enrichment annotation analysis revealed that these phosphoproteins were significantly enriched in endosomal transport and nucleus organization processes. During embryogenic differentiation, we identified five DAPs-DRPPs with significantly enriched characteristic patterns. These proteins may play essential roles in transcriptional regulation and signaling events that initiate plant regeneration through protein accumulation and/or phosphorylation modification. This study enriched the understanding of key proteins and their correlated phosphorylation patterns during plant regeneration, and also provided a reference for improving plant regeneration efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Huihui Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (H.G.); (J.W.); (X.H.); (X.C.); (L.Z.); (X.Q.); (X.W.); (J.L.); (A.W.); (J.L.); (X.C.); (F.Z.)
| |
Collapse
|
22
|
Sun W, Fang X, Zhang H, Lu Y, Wang P, Li J, Li M. Endogenous RBM4 prevents Ang II-induced cardiomyocyte hypertrophy via downregulating the expression of PTBP1. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39118568 DOI: 10.3724/abbs.2024103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Aberrant gene expression in cardiomyocyte has been revealed to be the fundamental essence of pathological cardiac hypertrophy. However, the detailed mechanisms are not fully understood. The underlying regulators of gene expression involved in cardiac hypertrophy remain to be further identified. Here, we report that the RNA-binding protein RNA-binding motif protein 4 (RBM4) functions as an endogenic protector that is able to fight against cardiomyocyte hypertrophy in vitro. Under pro-hypertrophic stimulation of angiotensin II (Ang II), the protein level of RBM4 in cardiomyocyte and myocardium is elevated. Knockdown of RBM4 can further aggravate cardiomyocyte hypertrophy, while over-expression of RBM4 represses cardiomyocyte hypertrophy. Mechanistically, RBM4 is localized in the nucleus and down-regulates the expression of polypyrimidine tract-binding protein 1 (PTBP1), which has been shown to aggravate cardiomyocyte hypertrophy. In addition, we suggest that the up-regulation of RBM4 in cardiomyocyte hypertrophy is caused by N6-methyladenosine (m6A). Ang II induces m6A methylation of RBM4 mRNA, which further enhances the YTH domain-containing family protein 1 (YTHDF1)-mediated translation of RBM4. Thus, our results reveal a novel pathway consisting of m6A, RBM4 and PTBP1, which is involved in cardiomyocyte hypertrophy.
Collapse
|
23
|
Aranda-Chan V, Cárdenas-Guerra RE, Otero-Pedraza A, Pacindo-Cabrales EE, Flores-Pucheta CI, Montes-Flores O, Arroyo R, Ortega-López J. Insights into Peptidyl-Prolyl cis- trans Isomerases from Clinically Important Protozoans: From Structure to Potential Biotechnological Applications. Pathogens 2024; 13:644. [PMID: 39204244 PMCID: PMC11357558 DOI: 10.3390/pathogens13080644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are present in a wide variety of microorganisms, including protozoan parasites such as Trypanosoma cruzi, Trypanosoma brucei, Trichomonas vaginalis, Leishmania major, Leishmania donovani, Plasmodium falciparum, Plasmodium vivax, Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, and Cryptosporidium hominis, all of which cause important neglected diseases. PPIases are classified as cyclophilins, FKBPs, or parvulins and play crucial roles in catalyzing the cis-trans isomerization of the peptide bond preceding a proline residue. This activity assists in correct protein folding. However, experimentally, the biological structure-function characterization of PPIases from these protozoan parasites has been poorly addressed. The recombinant production of these enzymes is highly relevant for this ongoing research. Thus, this review explores the structural diversity, functions, recombinant production, activity, and inhibition of protozoan PPIases. We also highlight their potential as biotechnological tools for the in vitro refolding of other recombinant proteins from these parasites. These applications are invaluable for the development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Verónica Aranda-Chan
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rosa Elena Cárdenas-Guerra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Alejandro Otero-Pedraza
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Esdras Enoc Pacindo-Cabrales
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico;
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| |
Collapse
|
24
|
Jiang X, Yu S, Huang Y, Huang J, Liu S, Yang D, Fu J, He H, Fu H. Identification of the RRM1 gene family in rice ( Oryza sativa) and its response to rice blast. PeerJ 2024; 12:e17668. [PMID: 39076776 PMCID: PMC11285362 DOI: 10.7717/peerj.17668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 07/31/2024] Open
Abstract
To better understand RNA-binding proteins in rice, a comprehensive investigation was conducted on the RRM1 gene family of rice. It encompassed genome-wide identification and exploration of its role in rice blast resistance. The physicochemical properties of the rice OsRRM1 gene family were analyzed. There genes were also analyzed for their conserved domains, motifs, location information, gene structure, phylogenetic trees, collinearity, and cis-acting elements. Furthermore, alterations in the expression patterns of selected OsRRM1 genes were assessed using quantitative real-time PCR (qRT-PCR). A total of 212 members of the OsRRM1 gene family were identified, which were dispersed across 12 chromosomes. These genes all exhibit multiple exons and introns, all of which encompass the conserved RRM1 domain and share analogous motifs. This observation suggests a high degree of conservation within the encoded sequence domain of these genes. Phylogenetic analysis revealed the existence of five subfamilies within the OsRRM1 gene family. Furthermore, investigation of the promoter region identified cis-regulatory elements that are involved in nucleic acid binding and interaction with multiple transcription factors. By employing GO and KEGG analyses, four RRM1 genes were tentatively identified as crucial contributors to plant immunity, while the RRM1 gene family was also found to have a significant involvement in the complex of alternative splicing. The qRT-PCR results revealed distinct temporal changes in the expression patterns of OsRRM1 genes following rice blast infection. Additionally, gene expression analysis indicates that the majority of OsRRM1 genes exhibited constitutive expressions. These findings enrich our understanding of the OsRRM1 gene family. They also provide a foundation for further research on immune mechanisms rice and the management of rice blast.
Collapse
Affiliation(s)
- Xinlei Jiang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Shangwei Yu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Yuhan Huang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Junying Huang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Shaochun Liu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Dewei Yang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, Fu Jian, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| |
Collapse
|
25
|
Wassmer E, Koppány G, Hermes M, Diederichs S, Caudron-Herger M. Refining the pool of RNA-binding domains advances the classification and prediction of RNA-binding proteins. Nucleic Acids Res 2024; 52:7504-7522. [PMID: 38917322 PMCID: PMC11260472 DOI: 10.1093/nar/gkae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
From transcription to decay, RNA-binding proteins (RBPs) influence RNA metabolism. Using the RBP2GO database that combines proteome-wide RBP screens from 13 species, we investigated the RNA-binding features of 176 896 proteins. By compiling published lists of RNA-binding domains (RBDs) and RNA-related protein family (Rfam) IDs with lists from the InterPro database, we analyzed the distribution of the RBDs and Rfam IDs in RBPs and non-RBPs to select RBDs and Rfam IDs that were enriched in RBPs. We also explored proteins for their content in intrinsically disordered regions (IDRs) and low complexity regions (LCRs). We found a strong positive correlation between IDRs and RBDs and a co-occurrence of specific LCRs. Our bioinformatic analysis indicated that RBDs/Rfam IDs were strong indicators of the RNA-binding potential of proteins and helped predicting new RBP candidates, especially in less investigated species. By further analyzing RBPs without RBD, we predicted new RBDs that were validated by RNA-bound peptides. Finally, we created the RBP2GO composite score by combining the RBP2GO score with new quality factors linked to RBDs and Rfam IDs. Based on the RBP2GO composite score, we compiled a list of 2018 high-confidence human RBPs. The knowledge collected here was integrated into the RBP2GO database at https://RBP2GO-2-Beta.dkfz.de.
Collapse
Affiliation(s)
- Elsa Wassmer
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gergely Koppány
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Malte Hermes
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, and German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Maïwen Caudron-Herger
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Bertin D, Babacci B, Brodovitch A, Dubrou C, Heim X, Mege JL, Bardin N. Deciphering the Reactivity of Autoantibodies Directed against the RNP-A, -C and 70 kDa Components of the U1-snRNP Complex: "Double or Nothing"? Biomedicines 2024; 12:1552. [PMID: 39062124 PMCID: PMC11275026 DOI: 10.3390/biomedicines12071552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Background: The positivity of anti-RNP autoantibodies as biological criteria for the diagnosis of mixed connective tissue disease (MCTD) has recently divided the rheumatology community. Autoantigenicity of the U1-snRNP complex tends to generate multiple autoantibodies against RNP-A, -C and -70 KDa or Sm proteins. The aim of this study is to identify the most informative autoantibodies in clinical practice, in particular, to contribute to differential diagnosis between MCTD and systemic lupus erythematosus (SLE). Methods: Sera from 74 patients positive for anti-RNP autoantibodies were selected over a period of one year of laboratory practice. Autoantibodies directed against extractable nuclear antigen, RNP proteins (A, C, 70 KDa) and 40 kDa fragments of RNP-70 KDa were investigated by using quantitative fluoroenzymatic assay and Western blot analysis. Results: Among the 74 patients, 40 patients were diagnosed with SLE, 20 with MCTD, six with another autoimmune disease, three with SARS-CoV-2 infection, three with cancer and two were healthy. No preferential clinical association of IgG or IgM autoantibodies directed against each of the RNP proteins was found between SLE and MCTD. In contrast, the proportion of autoantibodies directed against the RNP component within the U1-snRNP complex showed a significantly higher RNP index in patients with MCTD than in those with SLE (p = 0.011), with good performance (sensitivity: 69.2%, specificity: 88.9%). Conclusions: The analysis of the proportion of the different autoantibodies directed against the U1-snRNP complex is more informative than the analysis of each autoantibody separately. A follow-up of patients could be informative about the interest of the RNP index as a predictor of disease evolution.
Collapse
Affiliation(s)
- Daniel Bertin
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Benjamin Babacci
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Alexandre Brodovitch
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Cléa Dubrou
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Xavier Heim
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Jean Louis Mege
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
- Aix-Marseille Univ, CNRS, ADES UMR 7268, 13005 Marseille, France
| | - Nathalie Bardin
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| |
Collapse
|
27
|
Chakrabortty A, Mondal S, Bandyopadhyay S. Conformational Properties of Poly(A)-Binding Protein Complexed with Poly(A) RNA. J Phys Chem B 2024; 128:6449-6462. [PMID: 38941243 DOI: 10.1021/acs.jpcb.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Microscopic understanding of protein-RNA interactions is important for different biological activities, such as RNA transport, translation, splicing, silencing, etc. Polyadenine (Poly(A)) binding proteins (PABPs) make up a class of regulatory proteins that play critical roles in protecting the poly(A) tails of cellular mRNAs from nuclease degradation. In this work, we performed molecular dynamics simulations to investigate the conformational modifications of human PABP protein and poly(A) RNA that occur during complexation. It is demonstrated that the intermediate linker domain of the protein transforms from a disordered coil-like structure to a helical form during the recognition process, leading to the formation of the complex. On the other hand, disordered collapsed coil-like RNA on complexation has been found to transform into a rigid extended conformation. Importantly, the binding free energy calculation showed that the thermodynamic stability of the complex is primarily guided by favorable hydrophobic interactions between the protein and the RNA.
Collapse
Affiliation(s)
- Arun Chakrabortty
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| |
Collapse
|
28
|
Mochizuki M, Shibuya‐Takahashi R, Kanno S, Adachi S, Fujimori H, Nakazato A, Fujii K, Morita S, Saijoh S, Yamazaki T, Imai T, Asada Y, Yamaguchi K, Yasuda J, Shindo N, Sugamura K, Tamai K. CD271 mRNA/hnRNPA2B1 complex promotes proliferation and stemness in oral and head and neck squamous cell carcinoma. Cancer Sci 2024; 115:2346-2359. [PMID: 38710200 PMCID: PMC11247604 DOI: 10.1111/cas.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
RNAs, such as noncoding RNA, microRNA, and recently mRNA, have been recognized as signal transduction molecules. CD271, also known as nerve growth factor receptor, has a critical role in cancer, although the precise mechanism is still unclear. Here, we show that CD271 mRNA, but not CD271 protein, facilitates spheroid cell proliferation. We established CD271-/- cells lacking both mRNA and protein of CD271, as well as CD271 protein knockout cells lacking only CD271 protein, from hypopharyngeal and oral squamous cell carcinoma lines. Sphere formation was reduced in CD271-/- cells but not in CD271 protein knockout cells. Mutated CD271 mRNA, which is not translated to a protein, promoted sphere formation. CD271 mRNA bound to hnRNPA2B1 protein at the 3'-UTR region, and the inhibition of this interaction reduced sphere formation. In surgical specimens, the CD271 mRNA/protein expression ratio was higher in the cancerous area than in the noncancerous area. These data suggest CD271 mRNA has dual functions, encompassing protein-coding and noncoding roles, with its noncoding RNA function being predominant in oral and head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Mai Mochizuki
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | | | - Shin‐Ichiro Kanno
- IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
- Department of ProteomicsNational Cancer Center Research InstituteTokyoJapan
| | - Haruna Fujimori
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Akira Nakazato
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keitaro Fujii
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Shinkichi Morita
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterNatoriJapan
| | - Satoshi Saijoh
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Tomoko Yamazaki
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Takayuki Imai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterNatoriJapan
| | - Yukinori Asada
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterNatoriJapan
| | - Kazunori Yamaguchi
- Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Jun Yasuda
- Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Norihisa Shindo
- Cancer Chromosome Biology UnitMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kazuo Sugamura
- Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keiichi Tamai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| |
Collapse
|
29
|
Sprunger ML, Jackrel ME. The role of Matrin-3 in physiology and its dysregulation in disease. Biochem Soc Trans 2024; 52:961-972. [PMID: 38813817 PMCID: PMC11209761 DOI: 10.1042/bst20220585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The dysfunction of many RNA-binding proteins (RBPs) that are heavily disordered, including TDP-43 and FUS, are implicated in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These proteins serve many important roles in the cell, and their capacity to form biomolecular condensates (BMCs) is key to their function, but also a vulnerability that can lead to misregulation and disease. Matrin-3 (MATR3) is an intrinsically disordered RBP implicated both genetically and pathologically in ALS/FTD, though it is relatively understudied as compared with TDP-43 and FUS. In addition to binding RNA, MATR3 also binds DNA and is implicated in many cellular processes including the DNA damage response, transcription, splicing, and cell differentiation. It is unclear if MATR3 localizes to BMCs under physiological conditions, which is brought further into question due to its lack of a prion-like domain. Here, we review recent studies regarding MATR3 and its roles in numerous physiological processes, as well as its implication in a range of diseases.
Collapse
Affiliation(s)
- Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
30
|
Maroni P, Pesce NA, Lombardi G. RNA-binding proteins in bone pathophysiology. Front Cell Dev Biol 2024; 12:1412268. [PMID: 38966428 PMCID: PMC11222650 DOI: 10.3389/fcell.2024.1412268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Bone remodelling is a highly regulated process that maintains mineral homeostasis and preserves bone integrity. During this process, intricate communication among all bone cells is required. Indeed, adapt to changing functional situations in the bone, the resorption activity of osteoclasts is tightly balanced with the bone formation activity of osteoblasts. Recent studies have reported that RNA Binding Proteins (RBPs) are involved in bone cell activity regulation. RBPs are critical effectors of gene expression and essential regulators of cell fate decision, due to their ability to bind and regulate the activity of cellular RNAs. Thus, a better understanding of these regulation mechanisms at molecular and cellular levels could generate new knowledge on the pathophysiologic conditions of bone. In this Review, we provide an overview of the basic properties and functions of selected RBPs, focusing on their physiological and pathological roles in the bone.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Noemi Anna Pesce
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
31
|
Cao Y, Qiu G, Dong Y, Zhao W, Wang Y. Exploring the role of m 6 A writer RBM15 in cancer: a systematic review. Front Oncol 2024; 14:1375942. [PMID: 38915367 PMCID: PMC11194397 DOI: 10.3389/fonc.2024.1375942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
In the contemporary epoch, cancer stands as the predominant cause of premature global mortality, necessitating a focused exploration of molecular markers and advanced therapeutic strategies. N6-methyladenosine (m6A), the most prevalent mRNA modification, undergoes dynamic regulation by enzymes referred to as methyltransferases (writers), demethylases (erasers), and effective proteins (readers). Despite lacking methylation activity, RNA-binding motif protein 15 (RBM15), a member of the m6A writer family, assumes a crucial role in recruiting the methyltransferase complex (MTC) and binding to mRNA. Although the impact of m6A modifications on cancer has garnered widespread attention, RBM15 has been relatively overlooked. This review briefly outlines the structure and operational mechanism, and delineates the unique role of RBM15 in various cancers, shedding light on its molecular basis and providing a groundwork for potential tumor-targeted therapies.
Collapse
Affiliation(s)
- Yuan Cao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
- Shenyang 242 Hospital, Shenyang, Liaoning, China
| | - Yu Dong
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Wei Zhao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Rodríguez-Piña AL, Castaño de la Serna E, Jiménez-Bremont JF. The serine-arginine (SR) protein UmRrm75 from Ustilago maydis is a functional ortholog of yeast ScHrb1. Int Microbiol 2024; 27:819-830. [PMID: 37776379 DOI: 10.1007/s10123-023-00432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
The Basidiomycete fungus Ustilago maydis is a biotrophic pathogen of maize. The U. maydis UmRrm75 gene encodes an RNA-binding protein (RBP). In a previous study, we reported that ΔUmRrm75 null mutant strains accumulate H2O2, exhibit slow growth, and have decreased virulence in maize. Herein, we describe UmRrm75 as an ortholog of the ScHrb1, a serine-arginine (SR) protein identified in the yeast Saccharomyces cerevisiae, which plays a role in nuclear quality control, specifically in mRNA splicing and export processes. The yeast ScHrb1 mutant (ΔScHrb1) exhibits an increased sensitivity to elevated levels of boron. We noticed that the ΔScHrb1 displayed sensitivity to H2O2, which is consistent with previous findings in the ΔUmRrm75 mutant. We reversed the sensitivity phenotypes of boron and H2O2 by introducing the UmRrm75 gene into the ΔScHrb1 mutant. Furthermore, we generated complementary strains of U. maydis by expressing UmRrm75-GFP under its native promoter in the ∆UmRrm75 mutants. The UmRrm75-GFP/∆UmRrm75 complementary strains successfully recovered their growth capability under stressors, H2O2 and boron, resembling the parental strains FB2 and AB33. The subcellular localization experiments conducted in U. maydis revealed that the UmRrm75 protein is localized within the nucleus of both yeast and hyphae. The nuclear localization of the UmRrm75 protein remains unaltered even under conditions of heat or oxidative stress. This suggests that UmRrm75 might perform its RBP activity in the nucleus, as previously reported for ScHrb1. Our data contribute to understanding the role of the nuclear RBP UmRrm75 from the corn smut fungus U. maydis.
Collapse
Affiliation(s)
- Alma Laura Rodríguez-Piña
- Laboratorio de Biotecnología Molecular Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, San Luis Potosi, Mexico
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Merida, Yucatan, Mexico
| | - Enrique Castaño de la Serna
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Merida, Yucatan, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, San Luis Potosi, Mexico.
| |
Collapse
|
33
|
Fanara S, Schloesser M, Joris M, De Franco S, Vandevenne M, Kerff F, Hanikenne M, Motte P. The Arabidopsis SR45 splicing factor bridges the splicing machinery and the exon-exon junction complex. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2280-2298. [PMID: 38180875 DOI: 10.1093/jxb/erae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
The Arabidopsis splicing factor serine/arginine-rich 45 (SR45) contributes to several biological processes. The sr45-1 loss-of-function mutant exhibits delayed root development, late flowering, unusual numbers of floral organs, shorter siliques with decreased seed sets, narrower leaves and petals, and altered metal distribution. SR45 bears a unique RNA recognition motif (RRM) flanked by one serine/arginine-rich (RS) domain on both sides. Here, we studied the function of each SR45 domains by examining their involvement in: (i) the spatial distribution of SR45; (ii) the establishment of a protein-protein interaction network including spliceosomal and exon-exon junction complex (EJC) components; and (iii) the RNA binding specificity. We report that the endogenous SR45 promoter is active during vegetative and reproductive growth, and that the SR45 protein localizes in the nucleus. We demonstrate that the C-terminal arginine/serine-rich domain is a determinant of nuclear localization. We show that the SR45 RRM domain specifically binds purine-rich RNA motifs via three residues (H101, H141, and Y143), and is also involved in protein-protein interactions. We further show that SR45 bridges both mRNA splicing and surveillance machineries as a partner of EJC core components and peripheral factors, which requires phosphoresidues probably phosphorylated by kinases from both the CLK and SRPK families. Our findings provide insights into the contribution of each SR45 domain to both spliceosome and EJC assemblies.
Collapse
Affiliation(s)
- Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Marine Joris
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Simona De Franco
- InBioS-Center for Protein Engineering, Laboratory of Biological Macromolecules, University of Liège, 4000, Liège, Belgium
| | - Marylène Vandevenne
- InBioS-Center for Protein Engineering, Laboratory of Biological Macromolecules, University of Liège, 4000, Liège, Belgium
| | - Frédéric Kerff
- InBioS-Center for Protein Engineering, Laboratory of Crystallography, University of Liège, 4000, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, 4000, Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
34
|
Chen R, Glauninger H, Kahan DN, Shangguan J, Sachleben JR, Riback JA, Drummond DA, Sosnick TR. HDX-MS finds that partial unfolding with sequential domain activation controls condensation of a cellular stress marker. Proc Natl Acad Sci U S A 2024; 121:e2321606121. [PMID: 38513106 PMCID: PMC10990091 DOI: 10.1073/pnas.2321606121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/23/2024] Open
Abstract
Eukaryotic cells form condensates to sense and adapt to their environment [S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Nat. Rev. Mol. Cell Biol. 18, 285-298 (2017), H. Yoo, C. Triandafillou, D. A. Drummond, J. Biol. Chem. 294, 7151-7159 (2019)]. Poly(A)-binding protein (Pab1), a canonical stress granule marker, condenses upon heat shock or starvation, promoting adaptation [J. A. Riback et al., Cell 168, 1028-1040.e19 (2017)]. The molecular basis of condensation has remained elusive due to a dearth of techniques to probe structure directly in condensates. We apply hydrogen-deuterium exchange/mass spectrometry to investigate the mechanism of Pab1's condensation. Pab1's four RNA recognition motifs (RRMs) undergo different levels of partial unfolding upon condensation, and the changes are similar for thermal and pH stresses. Although structural heterogeneity is observed, the ability of MS to describe populations allows us to identify which regions contribute to the condensate's interaction network. Our data yield a picture of Pab1's stress-triggered condensation, which we term sequential activation (Fig. 1A), wherein each RRM becomes activated at a temperature where it partially unfolds and associates with other likewise activated RRMs to form the condensate. Subsequent association is dictated more by the underlying free energy surface than specific interactions, an effect we refer to as thermodynamic specificity. Our study represents an advance for elucidating the interactions that drive condensation. Furthermore, our findings demonstrate how condensation can use thermodynamic specificity to perform an acute response to multiple stresses, a potentially general mechanism for stress-responsive proteins.
Collapse
Affiliation(s)
- Ruofan Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Hendrik Glauninger
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
- Graduate Program in Biophysical Sciences, Division of Physical Sciences, University of Chicago, Chicago, IL60637
| | - Darren N. Kahan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
| | - Julia Shangguan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
| | | | - Joshua A. Riback
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
- Graduate Program in Biophysical Sciences, Division of Physical Sciences, University of Chicago, Chicago, IL60637
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
| | - Tobin R. Sosnick
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
| |
Collapse
|
35
|
Roca-Martínez J, Kang HS, Sattler M, Vranken W. Analysis of the inter-domain orientation of tandem RRM domains with diverse linkers: connecting experimental with AlphaFold2 predicted models. NAR Genom Bioinform 2024; 6:lqae002. [PMID: 38288375 PMCID: PMC10823583 DOI: 10.1093/nargab/lqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
The RNA recognition motif (RRM) is the most prevalent RNA binding domain in eukaryotes and is involved in most RNA metabolism processes. Single RRM domains have a limited RNA specificity and affinity and tend to be accompanied by other RNA binding domains, frequently additional RRMs that contribute to an avidity effect. Within multi-RRM proteins, the most common arrangement are tandem RRMs, with two domains connected by a variable linker. Despite their prevalence, little is known about the features that lead to specific arrangements, and especially the role of the connecting linker. In this work, we present a novel and robust way to investigate the relative domain orientation in multi-domain proteins using inter-domain vectors referenced to a stable secondary structure element. We apply this method to tandem RRM domains and cluster experimental tandem RRM structures according to their inter-domain and linker-domain contacts, and report how this correlates with their orientation. By extending our analysis to AlphaFold2 predicted structures, with particular attention to the inter-domain predicted aligned error, we identify new orientations not reported experimentally. Our analysis provides novel insights across a range of tandem RRM orientations that may help for the design of proteins with a specific RNA binding mode.
Collapse
Affiliation(s)
- Joel Roca-Martínez
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Hyun-Seo Kang
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, 85764 Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, 85747 Garching, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, 85764 Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, 85747 Garching, Germany
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
36
|
Phosuwan S, Nounjan N, Theerakulpisut P, Siangliw M, Charoensawan V. Comparative quantitative trait loci analysis framework reveals relationships between salt stress responsive phenotypes and pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1264909. [PMID: 38463565 PMCID: PMC10920293 DOI: 10.3389/fpls.2024.1264909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Soil salinity is a complex abiotic stress that involves several biological pathways. Hence, focusing on a specific or a few salt-tolerant phenotypes is unlikely to provide comprehensive insights into the intricate and interwinding mechanisms that regulate salt responsiveness. In this study, we develop a heuristic framework for systematically integrating and comprehensively evaluating quantitative trait loci (QTL) analyses from multiple stress-related traits obtained by different studies. Making use of a combined set of 46 salinity-related traits from three independent studies that were based on the same chromosome segment substitution line (CSSL) population of rice (Oryza sativa), we demonstrate how our approach can address technical biases and limitations from different QTL studies and calling methods. This allows us to compile a comprehensive list of trait-specific and multi-trait QTLs, as well as salinity-related candidate genes. In doing so, we discover several novel relationships between traits that demonstrate similar trends of phenotype scores across the CSSLs, as well as the similarities between genomic locations that the traits were mapped to. Finally, we experimentally validate our findings by expression analyses and functional validations of several selected candidate genes from multiple pathways in rice and Arabidopsis orthologous genes, including OsKS7 (ENT-KAURENE SYNTHASE 7), OsNUC1 (NUCLEOLIN 1) and OsFRO1 (FERRIC REDUCTASE OXIDASE 1) to name a few. This work not only introduces a novel approach for conducting comparative analyses of multiple QTLs, but also provides a list of candidate genes and testable hypotheses for salinity-related mechanisms across several biological pathways.
Collapse
Affiliation(s)
- Sunadda Phosuwan
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Noppawan Nounjan
- Biodiversity and Environmental Management Division, International College, Khon Kaen University, Khon Kaen, Thailand
| | - Piyada Theerakulpisut
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
37
|
Marshall LK, Fahrenbach AC, Thordarson P. RNA-Binding Peptides Inspired by the RNA Recognition Motif. ACS Chem Biol 2024; 19:243-248. [PMID: 38314708 DOI: 10.1021/acschembio.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
β-Hairpin peptides with RNA-binding sequences mimicking the central two β-strands of the RNA recognition motif (RRM) protein domain have been observed to bind in a 2:1 fashion to a series of RNA homooligonucleotides in aqueous solution (PBS buffer, pH 7.40) with binding energies (-27 to -35 kJ mol-1) similar to those of full-size protein RRMs. The peptides display mild selectivities with respect to the binding of the different homooligomers. Binding studies in 500 mM magnesium chloride suggest that the complex formation is not predominantly driven by Coulombic attraction. These peptides represent a starting point for further studies of non-Coulombic binding of RNA by peptides and proteins, which is important in the context of contemporary biology, potential therapeutic applications, and prebiotic peptide-RNA interactions.
Collapse
|
38
|
Dolcemascolo R, Heras-Hernández M, Goiriz L, Montagud-Martínez R, Requena-Menéndez A, Ruiz R, Pérez-Ràfols A, Higuera-Rodríguez RA, Pérez-Ropero G, Vranken WF, Martelli T, Kaiser W, Buijs J, Rodrigo G. Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria. eLife 2024; 12:RP91777. [PMID: 38363283 PMCID: PMC10942595 DOI: 10.7554/elife.91777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | - María Heras-Hernández
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Applied Mathematics, Polytechnic University of ValenciaValenciaSpain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | | | - Raúl Ruiz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Anna Pérez-Ràfols
- Giotto Biotech SRLSesto FiorentinoItaly
- Magnetic Resonance Center (CERM), Department of Chemistry Ugo Schiff, Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), University of FlorenceSesto FiorentinoItaly
| | - R Anahí Higuera-Rodríguez
- Dynamic Biosensors GmbHPlaneggGermany
- Department of Physics, Technical University of MunichGarchingGermany
| | - Guillermo Pérez-Ropero
- Ridgeview Instruments ABUppsalaSweden
- Department of Chemistry – BMC, Uppsala UniversityUppsalaSweden
| | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles – Vrije Universiteit BrusselBrusselsBelgium
| | | | | | - Jos Buijs
- Ridgeview Instruments ABUppsalaSweden
- Department of Immunology, Genetics, and Pathology, Uppsala UniversityUppsalaSweden
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
39
|
Kara H, Axer A, Muskett FW, Bueno-Alejo CJ, Paschalis V, Taladriz-Sender A, Tubasum S, Vega MS, Zhao Z, Clark AW, Hudson AJ, Eperon IC, Burley GA, Dominguez C. 2'- 19F labelling of ribose in RNAs: a tool to analyse RNA/protein interactions by NMR in physiological conditions. Front Mol Biosci 2024; 11:1325041. [PMID: 38419689 PMCID: PMC10899400 DOI: 10.3389/fmolb.2024.1325041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Protein-RNA interactions are central to numerous cellular processes. In this work, we present an easy and straightforward NMR-based approach to determine the RNA binding site of RNA binding proteins and to evaluate the binding of pairs of proteins to a single-stranded RNA (ssRNA) under physiological conditions, in this case in nuclear extracts. By incorporation of a 19F atom on the ribose of different nucleotides along the ssRNA sequence, we show that, upon addition of an RNA binding protein, the intensity of the 19F NMR signal changes when the 19F atom is located near the protein binding site. Furthermore, we show that the addition of pairs of proteins to a ssRNA containing two 19F atoms at two different locations informs on their concurrent binding or competition. We demonstrate that such studies can be done in a nuclear extract that mimics the physiological environment in which these protein-ssRNA interactions occur. Finally, we demonstrate that a trifluoromethoxy group (-OCF3) incorporated in the 2'ribose position of ssRNA sequences increases the sensitivity of the NMR signal, leading to decreased measurement times, and reduces the issue of RNA degradation in cellular extracts.
Collapse
Affiliation(s)
- Hesna Kara
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Alexander Axer
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Frederick W Muskett
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Carlos J Bueno-Alejo
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Vasileios Paschalis
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Andrea Taladriz-Sender
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Sumera Tubasum
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Marina Santana Vega
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Zhengyun Zhao
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J Hudson
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Ian C Eperon
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Glenn A Burley
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Cyril Dominguez
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
40
|
Avila-Lopez P, Lauberth SM. Exploring new roles for RNA-binding proteins in epigenetic and gene regulation. Curr Opin Genet Dev 2024; 84:102136. [PMID: 38128453 PMCID: PMC11245729 DOI: 10.1016/j.gde.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A significant portion of the human proteome comprises RNA-binding proteins (RBPs) that play fundamental roles in numerous biological processes. In the last decade, there has been a staggering increase in RBP identification and classification, which has fueled interest in the evolving roles of RBPs and RBP-driven molecular mechanisms. Here, we focus on recent insights into RBP-dependent regulation of the epigenetic and transcriptional landscape. We describe advances in methodologies that define the RNA-protein interactome and machine-learning algorithms that are streamlining RBP discovery and predicting new RNA-binding regions. Finally, we present how RBP dysregulation leads to alterations in tumor-promoting gene expression and discuss the potential for targeting these RBPs for the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Pedro Avila-Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
41
|
Li L, Li J, Liu K, Jiang C, Jin W, Ye J, Qin T, Luo B, Chen Z, Li J, Lv F, Li X, Wang H, Jin J, Deng Q, Wang S, Zhu J, Zou T, Liu H, Li S, Li P, Liang Y. DGW1, encoding an hnRNP-like RNA binding protein, positively regulates grain size and weight by interacting with GW6 mRNA. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:512-526. [PMID: 37862261 PMCID: PMC10826988 DOI: 10.1111/pbi.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
Grain size and weight determine rice yield. Although numerous genes and pathways involved in regulating grain size have been identified, our knowledge of post-transcriptional control of grain size remains elusive. In this study, we characterize a rice mutant, decreased grain width and weight 1 (dgw1), which produces small grains. We show that DGW1 encodes a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family protein and preferentially expresses in developing panicles, positively regulating grain size by promoting cell expansion in spikelet hulls. Overexpression of DGW1 increases grain weight and grain numbers, leading to a significant rise in rice grain yield. We further demonstrate that DGW1 functions in grain size regulation by directly binding to the mRNA of Grain Width 6 (GW6), a critical grain size regulator in rice. Overexpression of GW6 restored the grain size phenotype of DGW1-knockout plants. DGW1 interacts with two oligouridylate binding proteins (OsUBP1a and OsUBP1b), which also bind the GW6 mRNA. In addition, the second RRM domain of DGW1 is indispensable for its mediated protein-RNA and protein-protein interactions. In summary, our findings identify a new regulatory module of DGW1-GW6 that regulates rice grain size and weight, providing important insights into the function of hnRNP-like proteins in the regulation of grain size.
Collapse
Affiliation(s)
- Lingfeng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Jijin Li
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Keke Liu
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Chenglong Jiang
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Wenhu Jin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Jiangkun Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Tierui Qin
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Binjiu Luo
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Zeyu Chen
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Jinzhao Li
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Fuxiang Lv
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Xiaojun Li
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Haipeng Wang
- Neijiang Academy of Agricultural Science in Sichuan ProvinceNeijiangChina
| | - Jinghua Jin
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Qiming Deng
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Shiquan Wang
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Jun Zhu
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Ting Zou
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Huainian Liu
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| |
Collapse
|
42
|
Zhu K, Suskiewicz MJ, Chatrin C, Strømland Ø, Dorsey B, Aucagne V, Ahel D, Ahel I. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on nucleic acids. Nucleic Acids Res 2024; 52:801-815. [PMID: 38000390 PMCID: PMC10810221 DOI: 10.1093/nar/gkad1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although ubiquitylation had traditionally been considered limited to proteins, the discovery of non-proteinaceous substrates (e.g. lipopolysaccharides and adenosine diphosphate ribose (ADPr)) challenged this perspective. Our recent study showed that DTX2 E3 ligase efficiently ubiquitylates ADPr. Here, we show that the ADPr ubiquitylation activity is also present in another DELTEX family member, DTX3L, analysed both as an isolated catalytic fragment and the full-length PARP9:DTX3L complex, suggesting that it is a general feature of the DELTEX family. Since structural predictions show that DTX3L possesses single-stranded nucleic acids binding ability and given the fact that nucleic acids have recently emerged as substrates for ADP-ribosylation, we asked whether DELTEX E3s might catalyse ubiquitylation of an ADPr moiety linked to nucleic acids. Indeed, we show that DTX3L and DTX2 are capable of ubiquitylating ADP-ribosylated DNA and RNA synthesized by PARPs, including PARP14. Furthermore, we demonstrate that the Ub-ADPr-nucleic acids conjugate can be reversed by two groups of hydrolases, which remove either the whole adduct (e.g. SARS-CoV-2 Mac1 or PARP14 macrodomain 1) or just the Ub (e.g. SARS-CoV-2 PLpro). Overall, this study reveals ADPr ubiquitylation as a general function of the DELTEX family E3s and presents the evidence of reversible ubiquitylation of ADP-ribosylated nucleic acids.
Collapse
Affiliation(s)
- Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bryan W Dorsey
- Ribon Therapeutics, 35 Cambridgepark Dr., Suite 300, Cambridge MA 02140, USA
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Vembuli H, Gor R, Ramalingam S, Perales S, Rajasingh J. RNA binding proteins in cancer chemotherapeutic drug resistance. Front Cell Dev Biol 2024; 12:1308102. [PMID: 38328550 PMCID: PMC10847363 DOI: 10.3389/fcell.2024.1308102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Drug resistance has been a major obstacle in the quest for a cancer cure. Many chemotherapeutic treatments fail to overcome chemoresistance, resulting in tumor remission. The exact process that leads to drug resistance in many cancers has not been fully explored or understood. However, the discovery of RNA binding proteins (RBPs) has provided insight into various pathways and post-transcriptional gene modifications involved in drug tolerance. RBPs are evolutionarily conserved proteins, and their abnormal gene expression has been associated with cancer progression. Additionally, RBPs are aberrantly expressed in numerous neoplasms. RBPs have also been implicated in maintaining cancer stemness, epithelial-to-mesenchymal transition, and other processes. In this review, we aim to provide an overview of RBP-mediated mechanisms of drug resistance and their implications in cancer malignancy. We discuss in detail the role of major RBPs and their correlation with noncoding RNAs (ncRNAs) that are associated with the inhibition of chemosensitivity. Understanding and exploring the pathways of RBP-mediated chemoresistance will contribute to the development of improved cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Hemanathan Vembuli
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ravi Gor
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Selene Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Johnson Rajasingh
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
44
|
Silva DO, Fernandes Júnior GA, Fonseca LFS, Mota LFM, Bresolin T, Carvalheiro R, de Albuquerque LG. Genome-wide association study for stayability at different calvings in Nellore beef cattle. BMC Genomics 2024; 25:93. [PMID: 38254039 PMCID: PMC10804543 DOI: 10.1186/s12864-024-10020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUNDING Stayability, which may be defined as the probability of a cow remaining in the herd until a reference age or at a specific number of calvings, is usually measured late in the animal's life. Thus, if used as selection criteria, it will increase the generation interval and consequently might decrease the annual genetic gain. Measuring stayability at an earlier age could be a reasonable strategy to avoid this problem. In this sense, a better understanding of the genetic architecture of this trait at different ages and/or at different calvings is important. This study was conducted to identify possible regions with major effects on stayability measured considering different numbers of calvings in Nellore cattle as well as pathways that can be involved in its expression throughout the female's productive life. RESULTS The top 10 most important SNP windows explained, on average, 17.60% of the genetic additive variance for stayability, varying between 13.70% (at the eighth calving) and 21% (at the fifth calving). These SNP windows were located on 17 chromosomes (1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 27, and 28), and they harbored a total of 176 annotated genes. The functional analyses of these genes, in general, indicate that the expression of stayability from the second to the sixth calving is mainly affected by genetic factors related to reproductive performance, and nervous and immune systems. At the seventh and eighth calvings, genes and pathways related to animal health, such as density bone and cancer, might be more relevant. CONCLUSION Our results indicate that part of the target genomic regions in selecting for stayability at earlier ages (from the 2th to the 6th calving) would be different than selecting for this trait at later ages (7th and 8th calvings). While the expression of stayability at earlier ages appeared to be more influenced by genetic factors linked to reproductive performance together with an overall health/immunity, at later ages genetic factors related to an overall animal health gain relevance. These results support that selecting for stayability at earlier ages (perhaps at the second calving) could be applied, having practical implications in breeding programs since it could drastically reduce the generation interval, accelerating the genetic progress.
Collapse
Affiliation(s)
- Diogo Osmar Silva
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil.
| | - Gerardo Alves Fernandes Júnior
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Larissa Fernanda Simielli Fonseca
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Lúcio Flávio Macedo Mota
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Tiago Bresolin
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Roberto Carvalheiro
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Lucia Galvão de Albuquerque
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil.
- National Council for Scientific and Technological Development (CNPq), Brasília, Brazil.
- Present address: Departamento de Zootecnia, Via de acesso Paulo Donato Castellane s/n., São Paulo, Jaboticabal, CEP: 14884-900, Brazil.
| |
Collapse
|
45
|
Saha B, McNinch CM, Lu S, Ho MCW, De Carvalho SS, Barillas-Mury C. In-depth transcriptomic analysis of Anopheles gambiae hemocytes uncovers novel genes and the oenocytoid developmental lineage. BMC Genomics 2024; 25:80. [PMID: 38243165 PMCID: PMC10799387 DOI: 10.1186/s12864-024-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.
Collapse
Affiliation(s)
- Banhisikha Saha
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Colton M McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Margaret C W Ho
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephanie Serafim De Carvalho
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA.
| |
Collapse
|
46
|
Li B. Unwrap RAP1's Mystery at Kinetoplastid Telomeres. Biomolecules 2024; 14:67. [PMID: 38254667 PMCID: PMC10813129 DOI: 10.3390/biom14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Although located at the chromosome end, telomeres are an essential chromosome component that helps maintain genome integrity and chromosome stability from protozoa to mammals. The role of telomere proteins in chromosome end protection is conserved, where they suppress various DNA damage response machineries and block nucleolytic degradation of the natural chromosome ends, although the detailed underlying mechanisms are not identical. In addition, the specialized telomere structure exerts a repressive epigenetic effect on expression of genes located at subtelomeres in a number of eukaryotic organisms. This so-called telomeric silencing also affects virulence of a number of microbial pathogens that undergo antigenic variation/phenotypic switching. Telomere proteins, particularly the RAP1 homologs, have been shown to be a key player for telomeric silencing. RAP1 homologs also suppress the expression of Telomere Repeat-containing RNA (TERRA), which is linked to their roles in telomere stability maintenance. The functions of RAP1s in suppressing telomere recombination are largely conserved from kinetoplastids to mammals. However, the underlying mechanisms of RAP1-mediated telomeric silencing have many species-specific features. In this review, I will focus on Trypanosoma brucei RAP1's functions in suppressing telomeric/subtelomeric DNA recombination and in the regulation of monoallelic expression of subtelomere-located major surface antigen genes. Common and unique mechanisms will be compared among RAP1 homologs, and their implications will be discussed.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
47
|
Biedler JK, Aryan A, Qi Y, Wang A, Martinson EO, Hartman DA, Yang F, Sharma A, Morton KS, Potters M, Chen C, Dobson SL, Ebel GD, Kading RC, Paulson S, Xue RD, Strand MR, Tu Z. On the Origin and Evolution of the Mosquito Male-determining Factor Nix. Mol Biol Evol 2024; 41:msad276. [PMID: 38128148 PMCID: PMC10798136 DOI: 10.1093/molbev/msad276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.
Collapse
Affiliation(s)
- James K Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Azadeh Aryan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Aihua Wang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ellen O Martinson
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Daniel A Hartman
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Fan Yang
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Atashi Sharma
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katherine S Morton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Potters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chujia Chen
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics Bioinformatics and Computational Biology PhD program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Stephen L Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Rebekah C Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sally Paulson
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rui-De Xue
- Anastasia Mosquito Control District, St. Augustine, FL 32092, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics Bioinformatics and Computational Biology PhD program, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
48
|
Rozza R, Janoš P, Magistrato A. Assessing the Binding Mode of a Splicing Modulator Stimulating Pre-mRNA Binding to the Plastic U2AF2 Splicing Factor. J Chem Inf Model 2023; 63:7508-7517. [PMID: 37967032 DOI: 10.1021/acs.jcim.3c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
RNA recognition motifs (RRMs) play a pivotal role in RNA metabolism and the regulation of gene expression. Owing to their plasticity and fuzziness, targeting RRM/RNA interfaces with small molecules is a daunting challenge for drug discovery campaigns. The U2AF2 splicing factor, which recognizes the polypyrimidine (polyPy) sequence of premature messenger (pre-m)RNA, exhibits a dynamic architecture consisting of two RRMs joined by a disordered linker. An inhibitor, NSC-194308, was shown to enhance the binding of pre-mRNA to U2AF2, selectively triggering cell death in leukemia cell lines containing spliceosome mutations. The NSC-194308 binding mode remains elusive; yet, unraveling its knowledge may offer intriguing insights for effectively targeting U2AF2 and other flexible protein/protein/RNA interfaces with small molecules. To infer plausible NSC-194308 binding poses to U2AF2, here, we applied and benchmarked the performance of static and dynamic docking approaches, elucidating the molecular basis of the NSC-194308-induced pre-mRNA stabilization on U2AF2. We demonstrate that introducing dynamic effects is mandatory to assess the binding mode of the inhibitors when they target plastic and modular architectures, such as those formed by interacting RRMs. The latter are widespread across RNA binding proteins; therefore, this mechanism may be broadly applicable to discover new therapeutics aimed at selectively modulating the RNA function by targeting protein/protein/RNA interfaces.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy (CNR)-Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy (CNR)-Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)-Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| |
Collapse
|
49
|
Ma L, Tao X, Wang W, Jiao J, Pu Y, Yang G, Liu L, Fang Y, Wu J, Sun W. Genome-wide identification of RNA recognition motif (RRM1) in Brassica rapa and functional analysis of RNA-binding protein (BrRBP) under low-temperature stress. BMC PLANT BIOLOGY 2023; 23:621. [PMID: 38057714 DOI: 10.1186/s12870-023-04639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The RNA recognition motif (RRM) is primarily engaged in the processing of mRNA and rRNA following gene transcription as well as the regulation of RNA transport; it is critical in preserving RNA stability. RESULTS In this study, we identified 102 members of the RRM1 gene family in Brassica rapa, which were dispersed across 10 chromosomes with the ninth chromosome being the most extensively distributed. The RRM1 gene family members of Brassica rapa and Arabidopsis thaliana were grouped into 14 subclades (I-XIV) using phylogenetic analysis. Moreover, the results of transcriptome analysis and RT-qPCR indicated that the expression of Brapa05T000840 was upregulated in the cultivars 'Longyou 7' and 'Longyou 99' following exposure to cold stress at a temperature of 4 °C for 24 h. The levels of expression in the leaves and growth cones of the 'Longyou 7' variety were found to be significantly higher than those observed in the 'Longyou 99' variety under conditions of low temperature and NaCl stress. It illustrates the involvement of the RRM1 gene in the physiological response to both low temperature and salt stress. In addition, it was observed that the survival rate of transgenic BrRBP (Brapa05T000840) Arabidopsis thaliana plants was notably higher compared to that of wild-type plants when subjected to varying durations of low temperature treatment. Furthermore, the expression of the BrRBP gene in transgenic plants exhibited an upward trend as the duration of low temperature treatment increased, reaching its peak at 24 h. The in-vivo enzymatic activity of reactive oxygen species-scavenging enzymes were found to be significantly elevated in comparison to wild-type plants, suggesting that the BrRBP gene may enhance the cold tolerance of Arabidopsis thaliana. CONCLUSIONS This study offers a significant foundation for comprehending the regulation mechanism of the RRM1 gene family in winter Brassica rapa subjected to cold stress, as well as for finding key genes associated with cold resistance.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaolei Tao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jintang Jiao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
50
|
Villers J, Smith EM, DeLiberto AN, Arguello AE, Nyaanga J, Kleiner RE. Chemoproteomic Profiling of 8-Oxoguanosine-Sensitive RNA-Protein Interactions. Biochemistry 2023; 62:3411-3419. [PMID: 38010074 PMCID: PMC11031733 DOI: 10.1021/acs.biochem.3c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cellular nucleic acids are subject to assault by endogenous and exogenous agents that can perturb the flow of genetic information. Oxidative stress leads to the accumulation of 8-oxoguanine (8OG) in DNA and RNA. 8OG lesions on mRNA negatively impact translation, but their effect on global RNA-protein interactions is largely unknown. Here, we apply an RNA chemical proteomics approach to investigate the effect of 8OG on RNA-protein binding. We find proteins that bind preferentially to 8OG-modified RNA, including IGF2BP1-3 and hnRNPD, and proteins that are repelled by 8OG such as RBM4. We characterize these interactions using biochemical and biophysical assays to quantify the effect of 8OG on binding and show that a single 8OG abolishes the binding of RBM4 to its preferred CGG-containing substrate. Taken together, our work establishes the molecular consequences of 8OG on cellular RNA-protein binding and provides a framework for interrogating the role of RNA oxidation in biological systems.
Collapse
Affiliation(s)
- Jennifer Villers
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | - Joy Nyaanga
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|