1
|
Khozoei S, Mahdavi AH, Rabiee F, Ghaedi K. Synergistic effects of punicic acid and alpha lipoic acid ameliorate inflammatory and metabolic genes expression in C2C12 myoblast cells under oxidative stress condition. Cell Biochem Funct 2023; 41:1403-1411. [PMID: 37987234 DOI: 10.1002/cbf.3875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Inflammation is a reaction of the immune system to infection and injury; in fact, it positioned at the center of metabolic disorders, particularly obesity, type 2 diabetes, and cardiovascular diseases. Thus play a major role not only in their development, but also exerts as a crucial linking factor among those diseases. In this regard, one of the strategies for tackling this problem is application of antioxidants to treat such diseases. The present study was performed to evaluate the synergistic effects of punicic acid (PUA) and alpha-lipoic acid (ALA) as antioxidants and radical scavenging reagents on the expression of some inflammatory and metabolism-related genes under oxidative stress in the muscle cells. The experimental treatments consisted of a range of 20, 40, 80, 160, and 320 µM of PUA, and 5, 25, 50, 100, and 200 µM of ALA with a 200 µM concentration of H2 O2 as an oxidative stress inducer. Accordingly, fatty acid treatments were applied for 24 h, and H2 O2 was treated for 1 h. Our results indicated that the simultaneous treatment of PUA and ALA at optimal concentrations (80 and 50 µM, respectively) decreased the expression of inflammation genes and increased the expression of regulatory genes (Pparγ, Pgc-1α) related to metabolism (p < .05). Unexpectedly, H2 O2 treatment increased the Fndc5 expression (p < .05). Maximal upregulation of Pparγ, Pgc-1α were obtained when fatty acids combination (PUA and ALA) were used in the culture of H2 O2 treated cells (p < .05). Therefore, our findings suggest that the simultaneous use of PUA and ALA fatty acids could reduce oxidative stress, and the expression of inflammatory genes, thereby improving the cell metabolism.
Collapse
Affiliation(s)
- Shiva Khozoei
- Department of Animal Science, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Farzaneh Rabiee
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan (UI), Isfahan, Iran
| |
Collapse
|
2
|
Lobato TB, Gennari-Felipe M, Pauferro JRB, Correa IS, Santos BF, Dias BB, de Oliveira Borges JC, dos Santos CS, de Sousa Santos ES, de Araújo MJL, Ferreira LA, Pereira SA, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges L, Cury-Boaventura MF, Vinolo MAR, Pithon-Curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Front Microbiol 2022; 13:1037469. [PMID: 36406408 PMCID: PMC9670542 DOI: 10.3389/fmicb.2022.1037469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 03/27/2024] Open
Abstract
Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for pro-inflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Matheus Gennari-Felipe
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Ilana Souza Correa
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Ferreira Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Belmiro Dias
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - João Carlos de Oliveira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Camila Soares dos Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Maria Janaína Leite de Araújo
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Liliane Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Sara Araujo Pereira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Leandro Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Renata Gorjão
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| |
Collapse
|
3
|
Avram VF, Merce AP, Hâncu IM, Bătrân AD, Kennedy G, Rosca MG, Muntean DM. Impairment of Mitochondrial Respiration in Metabolic Diseases: An Overview. Int J Mol Sci 2022; 23:8852. [PMID: 36012137 PMCID: PMC9408127 DOI: 10.3390/ijms23168852] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction has emerged as a central pathomechanism in the setting of obesity and diabetes mellitus, linking these intertwined pathologies that share insulin resistance as a common denominator. High-resolution respirometry (HRR) is a state-of-the-art research method currently used to study mitochondrial respiration and its impairment in health and disease. Tissue samples, cells or isolated mitochondria are exposed to various substrate-uncoupler-inhibitor-titration protocols, which allows the measurement and calculation of several parameters of mitochondrial respiration. In this review, we discuss the alterations of mitochondrial bioenergetics in the main dysfunctional organs that contribute to the development of the obese and diabetic phenotypes in both animal models and human subjects. Herein we review data regarding the impairment of oxidative phosphorylation as integrated mitochondrial function assessed by means of HRR. We acknowledge the critical role of this method in determining the alterations in oxidative phosphorylation occurring in the early stages of metabolic pathologies. We conclude that there is a mutual two-way relationship between mitochondrial dysfunction and insulin insensitivity that characterizes these diseases.
Collapse
Affiliation(s)
- Vlad Florian Avram
- Department VII Internal Medicine—Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Petru Merce
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina Maria Hâncu
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina Doruța Bătrân
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Gabrielle Kennedy
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Mariana Georgeta Rosca
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Danina Mirela Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department III Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
4
|
Gilloteaux J, Nicaise C, Sprimont L, Bissler J, Finkelstein JA, Payne WR. Leptin receptor defect with diabetes causes skeletal muscle atrophy in female obese Zucker rats where peculiar depots networked with mitochondrial damages. Ultrastruct Pathol 2021; 45:346-375. [PMID: 34743665 DOI: 10.1080/01913123.2021.1983099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean muscles, based on histochemical-stained section's measurements in the sequence: oxidative slow twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative fiber's outskirts resembled 'ragged' fibers and, in these zones, ultrastructure revealed small clusters of endoplasm-like reticulum filled with unidentified electron contrasted compounds, contiguous and continuous with adjacent mitochondria envelope. The linings appeared crenated stabbed by circular patterns resembling those found of ceramides. The same fibers contained scattered degraded mitochondria that tethered electron contrasted droplets favoring larger depots while mitoptosis were widespread in FG fibers. Based on other interdisciplinary investigations on the lipid depots of diabetes 2 muscles made us to propose these accumulated contrasted contents to be made of peculiar lipids, including acyl-ceramides, as those were only found while diabetes 2 progresses in aging obese rats. These could interfere in NIDDM with mitochondrial oxidative energetic demands and muscle functions.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St George's University School of Medicine, K B Taylor Global Scholar's Program at the University of Northumbria, School of Health and Life Sciences, Newcastle upon Tyne, UK.,Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium.,Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Charles Nicaise
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - Lindsay Sprimont
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - John Bissler
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA.,Division of Nephrology at St. Jude Children's Research Hospital and Le Bonheur Children's Hospital, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Judith A Finkelstein
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Warren R Payne
- Institute for Sport and Health, Footscray Park Campus, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Fang H, Feng Q, Shi Y, Zhou J, Wang Q, Zhong L. Hepatic insulin resistance induced by mitochondrial oxidative stress can be ameliorated by sphingosine 1-phosphate. Mol Cell Endocrinol 2020; 501:110660. [PMID: 31759099 DOI: 10.1016/j.mce.2019.110660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/22/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
The bioactive lipid mediator sphingosine 1-phosphate (S1P) is considered to be involved in the development of insulin resistance (IR) via effects on oxidative stress; the mechanism however is not yet fully revealed. To this end, we investigated the role and mechanism of S1P on hepatic IR. We found that treatment of the normal human liver cell LO2 with 1000 nM insulin for 48 h reduced glucose uptake and increased serine phosphorylation of insulin receptor substrate-1, indicating a reduction in insulin receptor signaling. Moreover, the same concentration of insulin caused accumulation of reactive oxygen species (ROS) in the cytosol and mitochondria, and enhanced expression of the antioxidant transcription factor (Nrf2) and upregulated Nrf2 nuclear translocation. Using known inhibitors and donors of ROS (H2O2, ·O2-, ·OH), the results demonstrated the differential roles for the specific ROS in regulating IR in LO2 cells, with H2O2 having a more significant inhibitory role compared with ·O2- and ·OH. Cell treatment with S1P at 0.1-5.0 μM reversed the effects of high insulin concentrations on ROS generation, glucose uptake, and insulin signaling. H2O2 also reversed the beneficial effects of S1P in alleviating IR. These results show that H2O2 signaling plays a key determinant in hepatic IR induced by insulin. S1P can ameliorate hepatic IR by reducing mitochondrial ROS generation, and the possible anti-IR effect mechanism may be involved in H2O2 signaling.
Collapse
Affiliation(s)
- Hongjuan Fang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qiong Feng
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China
| | - Yunxiang Shi
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China
| | - Jiping Zhou
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China
| | - Qiang Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China.
| | - Liyong Zhong
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
6
|
Jian T, Wu Y, Ding X, Lv H, Ma L, Zuo Y, Ren B, Zhao L, Tong B, Chen J, Li W. A novel sesquiterpene glycoside from Loquat leaf alleviates oleic acid-induced steatosis and oxidative stress in HepG2 cells. Biomed Pharmacother 2017; 97:1125-1130. [PMID: 29136950 DOI: 10.1016/j.biopha.2017.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022] Open
Abstract
Loquat (Eriobotrya japonica) leaf has displayed beneficial effect on metabolic syndrome. In our previously study, total sesquiterpene glycosides (TSG) isolated from Loquat leaf exhibited therapeutic effect on Non-alcoholic fatty liver disease (NAFLD) in vivo, but the accurate active compound remains unknown. Sesquiterpene glycoside 1 (SG1) is a novel compound, which is exclusively isolated from Loquat leaf, but its biological activity has been rarely reported. The present study was designed to evaluate the pharmacological effect of SG1, the main component of TSG, in oleic acid (OA)-induced HepG2 cell model of NAFLD with its related mechanisms of action. In this study, both SG1 and TSG were found to significantly reduce the lipid deposition in the cell model. They could also decrease total cholesterol (TC), triglyceride (TG) and intracellular free fatty acid (FFA) contents. Compared with OA-treated cells, the superoxide dismutase (SOD) level increased, and the malondialdehyde (MDA) and 4-hydroxynonenal levels respectively decreased after the administration of SG1 or TSG. The high dose of SG1 (140 μg/mL) displayed a similar therapeutic effect as TSG at 200 μg/mL. Both SG1 and TSG were found to suppress the expression of cytochrome P450 2E1 (CYP2E1) and the phosphorylation of c-jun terminal kinase (JNK) and its downstream target c-Jun in OA-treated cell. These results demonstrate again that TSG are probably the main responsible chemical profiles of Loquat leaf for the treatment of NAFLD, for which it can effectively improve OA-induced steatosis and reduce oxidative stress, probably by downregulating of CYP2E1 expression and JNK/c-Jun phosphorylation, while SG1 may be the principle compound.
Collapse
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuexian Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Baek SH, Kim M, Kim M, Kang M, Yoo HJ, Lee NH, Kim YH, Song M, Lee JH. Metabolites distinguishing visceral fat obesity and atherogenic traits in individuals with overweight. Obesity (Silver Spring) 2017; 25:323-331. [PMID: 28000430 DOI: 10.1002/oby.21724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To screen the metabolomes of both overweight subjects with low visceral fat area (LFO) and high visceral fat area (HFO) to identify potential metabolites that are associated with the different metabolic characteristics. METHODS The metabolic characteristics of 112 overweight (25 kg/m2 ≤ BMI < 30 kg/m2 ) Korean individuals aged 30 to 65 years were examined. Plasma metabolomic profiling of HFO [visceral fat area (VFA) at L4 ≥ 100 cm2 ] and LFO (L4 VFA <100 cm2 ) individuals matched for age, gender, and BMI was performed. RESULTS HFO subjects showed higher VFA at L1 and L4 than LFO subjects. The HFO group showed higher blood pressure, lipid profile, high-sensitivity C-reactive protein, malondialdehyde, oxidized low-density lipoprotein (LDL), and homeostasis model assessment-insulin resistance and lower high-density lipoprotein-cholesterol levels. In plasma metabolite identification, the HFO group showed significantly higher levels of long-chain (C14:1, C16:1, C16) acylcarnitines (ACs), medium-chain (C12:1, C12) ACs, urobilinogen, docosahexaenoic acid (C22:6ω3), lysoPE (22:6), lysoPC (22:6), lysoPC (22:5), methoxybenzenepropanoic acid, and isodesmosine. All five ACs correlated positively with VFA and oxidized LDL levels and negatively with high-density lipoprotein-cholesterol levels and LDL particle size. CONCLUSIONS Twelve major metabolites, including three long-chain fatty acids and two medium-chain ACs, are important for distinguishing HFO and LFO. Chronic lipid surplus from visceral fat in HFO is likely associated with substantial increases in plasma medium-chain ACs and long-chain fatty acids, which are closely related to atherogenic traits.
Collapse
Affiliation(s)
- Seung Han Baek
- Institute of Convergence Technology, Yonsei University, Seoul, Korea
| | - Minkyung Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Miso Kang
- Department of Food and Nutrition, National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hye Jin Yoo
- Department of Food and Nutrition, National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Nan Hee Lee
- Department of Food and Nutrition, National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Yong Hwan Kim
- Department of Library and Information Science, Yonsei University, Seoul, Korea
| | - Min Song
- Department of Library and Information Science, Yonsei University, Seoul, Korea
| | - Jong Ho Lee
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
8
|
Li C, White SH, Warren LK, Wohlgemuth SE. Effects of aging on mitochondrial function in skeletal muscle of American American Quarter Horses. J Appl Physiol (1985) 2016; 121:299-311. [PMID: 27283918 PMCID: PMC5040552 DOI: 10.1152/japplphysiol.01077.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle function, aerobic capacity, and mitochondrial (Mt) function have been found to decline with age in humans and rodents. However, not much is known about age-related changes in Mt function in equine skeletal muscle. Here, we compared fiber-type composition and Mt function in gluteus medius and triceps brachii muscle between young (age 1.8 ± 0.1 yr, n = 24) and aged (age 17-25 yr, n = 10) American Quarter Horses. The percentage of myosin heavy chain (MHC) IIX was lower in aged compared with young muscles (gluteus, P = 0.092; triceps, P = 0.012), while the percentages of MHC I (gluteus; P < 0.001) and MHC IIA (triceps; P = 0.023) were increased. Mass-specific Mt density, indicated by citrate synthase activity, was unaffected by age in gluteus, but decreased in aged triceps (P = 0.023). Cytochrome-c oxidase (COX) activity per milligram tissue and per Mt unit decreased with age in gluteus (P < 0.001 for both) and triceps (P < 0.001 and P = 0.003, respectively). Activity of 3-hydroxyacyl-CoA dehydrogenase per milligram tissue was unaffected by age, but increased per Mt unit in aged gluteus and triceps (P = 0.023 and P < 0.001, respectively). Mt respiration of permeabilized muscle fibers per milligram tissue was unaffected by age in both muscles. Main effects of age appeared when respiration was normalized to Mt content, with increases in LEAK, oxidative phosphorylation capacity, and electron transport system capacity (P = 0.038, P = 0.045, and P = 0.007, respectively), independent of muscle. In conclusion, equine skeletal muscle aging was accompanied by a shift in fiber-type composition, decrease in Mt density and COX activity, but preserved Mt respiratory function.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - Sarah H White
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - Lori K Warren
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | | |
Collapse
|
9
|
Ojuka E, Andrew B, Bezuidenhout N, George S, Maarman G, Madlala HP, Mendham A, Osiki PO. Measurement of β-oxidation capacity of biological samples by respirometry: a review of principles and substrates. Am J Physiol Endocrinol Metab 2016; 310:E715-23. [PMID: 26908505 DOI: 10.1152/ajpendo.00475.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Oxidation of fatty acids is a major source of energy in the heart, liver, and skeletal muscle. It can be measured accurately using respirometry in isolated mitochondria, intact cells, and permeabilized cells or tissues. This technique directly measures the rate of oxygen consumption or flux at various respiratory states when appropriate substrates, uncouplers, and inhibitors are used. Acylcarnitines such as palmitoylcarnitine or octanoylcarnitine are the commonly used substrates. The β-oxidation pathway is prone to feedforward inhibition resulting from accumulation of short-chain acyl-CoA and depletion of CoA, but inclusion of malate or carnitine prevents accumulation of these intermediaries and CoA depletion.
Collapse
Affiliation(s)
- Edward Ojuka
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Brittany Andrew
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Nicole Bezuidenhout
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Siddiqah George
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Gerald Maarman
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Hlengiwe P Madlala
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Amy Mendham
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Prisca Ofure Osiki
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab (Lond) 2016; 13:27. [PMID: 27069498 PMCID: PMC4827240 DOI: 10.1186/s12986-016-0080-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 03/02/2016] [Indexed: 01/21/2023] Open
Abstract
Hydroxycinnamic acid derivatives are important class of polyphenolic compounds originated from the Mavolanate-Shikimate biosynthesis pathways in plants. Several simple phenolic compounds such as cinnamic acid, p-coumaric acid, ferulic acid, caffeic acid, chlorgenic acid, and rosmarinic acid belong to this class. These phenolic compounds possess potent antioxidant and anti-inflammatory properties. These compounds were also showed potential therapeutic benefit in experimental diabetes and hyperlipidemia. Recent evidences also suggest that they may serve as valuable molecule for the treatment of obesity related health complications. In adipose tissues, hydroxycinnamic acid derivatives inhibit macrophage infiltration and nuclear factor κB (NF-κB) activation in obese animals. Hydroxycinnamic acid derivatives also reduce the expression of the potent proinflammatory adipokines tumor necrosis factor-α (TNFα), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor type-1 (PAI-1), and they increase the secretion of an anti-inflammatory agent adiponectin from adipocytes. Furthermore, hydroxycinnamic acid derivatives also prevent adipocyte differentiation and lower lipid profile in experimental animals. Through these diverse mechanisms hydroxycinnamic acid derivatives reduce obesity and curtail associated adverse health complications.
Collapse
Affiliation(s)
- Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - Nusrat Subhan
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales Australia
| | - Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - M Obayed Ullah
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
11
|
Ann JY, Eo H, Lim Y. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice. GENES AND NUTRITION 2015; 10:46. [PMID: 26463593 DOI: 10.1007/s12263-015-0495-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/29/2015] [Indexed: 01/06/2023]
Abstract
Obesity is associated with chronic diseases such as fatty liver, type 2 diabetes, cardiovascular disease, and severe metabolic syndrome. Obesity causes metabolic impairment including excessive lipid accumulation and fibrosis in the hepatic tissue as well as the increase in oxidative stress. In order to investigate the effect of mulberry leaf (Morus alba L.) extract (MLE) on obesity-induced oxidative stress, lipogenesis, and fibrosis in liver, MLE has been gavaged for 12 weeks in high-fat diet (HFD)-induced obese mice. MLE treatment significantly ameliorated LXRα-mediated lipogenesis and hepatic fibrosis markers such as α-smooth muscle actin, while MLE up-regulated lipolysis-associated markers such as lipoprotein lipase in the HFD-fed mice. Moreover, MLE normalized the activities of antioxidant enzymes including heme oxygenase-1 and glutathione peroxidase in accordance with protein levels of 4-hydroxynonenal in the HFD-fed mice. MLE has beneficial effects on obesity-related fatty liver disease by regulation of hepatic lipid metabolism, fibrosis, and antioxidant defense system. MLE supplementation might be a potential therapeutic approach for obesity-related disease including non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ji-Young Ann
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Hyeyoon Eo
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
12
|
Kapravelou G, Martínez R, Andrade AM, Nebot E, Camiletti-Moirón D, Aparicio VA, Lopez-Jurado M, Aranda P, Arrebola F, Fernandez-Segura E, Bermano G, Goua M, Galisteo M, Porres JM. Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats. Appl Physiol Nutr Metab 2015; 40:1242-52. [PMID: 26509584 DOI: 10.1139/apnm-2015-0141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P < 0.0001) and suffered significant alterations in plasma lipid profile, area under the curve after oral glucose overload (P < 0.0001), liver histology and functionality, and antioxidant status. The AIT protocol reduced the severity of alterations related to glucose and lipid metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS.
Collapse
Affiliation(s)
- Garyfallia Kapravelou
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Rosario Martínez
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Ana M Andrade
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Elena Nebot
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Daniel Camiletti-Moirón
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Virginia A Aparicio
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Maria Lopez-Jurado
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Pilar Aranda
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Francisco Arrebola
- b Department of Histology, Institute of Neurosciences, University of Granada, Avenida de Madrid s/n, Granada 18071, Spain
| | - Eduardo Fernandez-Segura
- b Department of Histology, Institute of Neurosciences, University of Granada, Avenida de Madrid s/n, Granada 18071, Spain
| | - Giovanna Bermano
- c Institute for Health and Wellbeing Research, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Marie Goua
- c Institute for Health and Wellbeing Research, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Milagros Galisteo
- d Department of Pharmacology, School of Pharmacy, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Jesus M Porres
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
13
|
Hey-Mogensen M, Gram M, Jensen MB, Lund MT, Hansen CN, Scheibye-Knudsen M, Bohr VA, Dela F. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function. J Physiol 2015; 593:3991-4010. [PMID: 26096709 DOI: 10.1113/jp270204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022] Open
Abstract
The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60-70 or 20-30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I-V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2 O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell.
Collapse
Affiliation(s)
- Martin Hey-Mogensen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Martin Gram
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Present address: Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, USA
| | - Michael Taulo Lund
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Neigaard Hansen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Flemming Dela
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Pompeani N, Rybalka E, Latchman H, Murphy RM, Croft K, Hayes A. Skeletal muscle atrophy in sedentary Zucker obese rats is not caused by calpain-mediated muscle damage or lipid peroxidation induced by oxidative stress. J Negat Results Biomed 2014; 13:19. [PMID: 25547587 PMCID: PMC4296544 DOI: 10.1186/s12952-014-0019-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background Skeletal muscle undergoes significant atrophy in Type 2 diabetic patients and animal models. We aimed to determine if atrophy of Zucker rat skeletal muscle was due to the activation of intracellular damage pathways induced by excess reactive oxygen species production (specifically those associated with the peroxidation of lipid membranes) and calpain activity. 14 week old obese Zucker rats and littermate lean controls were injected with 1% Evan’s Blue Dye. Animals were anaesthetised and extensor digitorum longus and soleus muscles were dissected, snap frozen and analysed for ROS-mediated F2-isoprostane production and calpain activation/autolysis. Contralateral muscles were histologically analysed for markers of muscle membrane permeability and atrophy. Results Muscle mass was lower in extensor digitorum longus and soleus of obese compared with lean animals, concomitant with reduced fibre area. Muscles from obese rats had a higher proportional area of Evan’s Blue Dye fluorescence, albeit this was localised to the interstitium/external sarcolemma. There were no differences in F2-isoprostane production when expressed relative to arachidonic acid content, which was lower in the obese EDL and soleus muscles. There were no differences in the activation of either μ-calpain or calpain-3. Conclusions This study highlights that atrophy of Zucker rat skeletal muscle is not related to sarcolemmal damage, sustained hyperactivation of the calpain proteases or excessive lipid peroxidation. As such, establishing the correct pathways involved in atrophy is highly important so as to develop more specific treatment options that target the underlying cause. This study has eliminated two of the potential pathways theorised to be responsible.
Collapse
Affiliation(s)
- Nancy Pompeani
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia.
| | - Emma Rybalka
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia.
| | - Heidy Latchman
- Department of Zoology, La Trobe University, Melbourne, Australia.
| | - Robyn M Murphy
- Department of Zoology, La Trobe University, Melbourne, Australia.
| | - Kevin Croft
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| | - Alan Hayes
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia.
| |
Collapse
|
15
|
Bondke Persson A, Persson PB. The best years. Acta Physiol (Oxf) 2014; 211:539-40. [PMID: 24891299 DOI: 10.1111/apha.12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A Bondke Persson
- Institute of Vegetative Physiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
16
|
Zietzer A, Hillmeister P. Leucocyte telomere length as marker for cardiovascular ageing. Acta Physiol (Oxf) 2014; 211:251-6. [PMID: 24666613 DOI: 10.1111/apha.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. Zietzer
- Charité - Universitaetsmedizin Berlin; Center for Cardiovascular Research & Experimental and Clinical Research Center; Richard-Thoma-Laboratories for Arteriogenesis; Berlin Germany
| | - P. Hillmeister
- Charité - Universitaetsmedizin Berlin; Center for Cardiovascular Research & Experimental and Clinical Research Center; Richard-Thoma-Laboratories for Arteriogenesis; Berlin Germany
| |
Collapse
|
17
|
Schmerbach K, Patzak A. The metabolic syndrome: is it the mother's fault? Acta Physiol (Oxf) 2014; 210:702-4. [PMID: 24479946 DOI: 10.1111/apha.12230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- K. Schmerbach
- Charité-Universitätsmedizin Berlin; Institut für Vegetative Physiologie; Berlin Germany
| | - A. Patzak
- Charité-Universitätsmedizin Berlin; Institut für Vegetative Physiologie; Berlin Germany
| |
Collapse
|
18
|
Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol 2014; 220:T61-79. [PMID: 24323910 DOI: 10.1530/joe-13-0397] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.
Collapse
Affiliation(s)
- Nigel Turner
- Department of Pharmacology School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Diabetes and Obesity Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
19
|
vinh quốc Lu'o'ng K, Nguyễn LTH. The beneficial role of vitamin D in obesity: possible genetic and cell signaling mechanisms. Nutr J 2013; 12:89. [PMID: 23800102 PMCID: PMC3702462 DOI: 10.1186/1475-2891-12-89] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023] Open
Abstract
The prevalence rates of overweight and obesity are considered an important public issue in the United States, and both of these conditions are increasing among both children and adults. There is evidence of aberrations in the vitamin D-endocrine system in obese subjects. Vitamin D deficiency is highly prevalent in patients with obesity, and many studies have demonstrated the significant effect of calcitriol on adipocytes. Genetic studies have provided an opportunity to determine which proteins link vitamin D to obesity pathology, including the vitamin D receptor, toll-like receptors, the renin-angiotensin system, apolipoprotein E, vascular endothelial growth factor, and poly (ADP-ribose) polymerase-1. Vitamin D also exerts its effect on obesity through cell-signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the reduced form of nicotinamide adenine dinucleotide phosphate, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D may have a role in obesity. The best form of vitamin D for use in the obese individuals is calcitriol because it is the active form of the vitamin D3 metabolite, its receptors are present in adipocytes, and modulates inflammatory cytokine expression.
Collapse
Affiliation(s)
- Khanh vinh quốc Lu'o'ng
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA.
| | | |
Collapse
|
20
|
Affiliation(s)
- P. B. Persson and
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| | - A. Bondke Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| |
Collapse
|
21
|
Henriksen EJ. Effects of H2O2 on insulin signaling the glucose transport system in mammalian skeletal muscle. Methods Enzymol 2013; 528:269-78. [PMID: 23849871 DOI: 10.1016/b978-0-12-405881-1.00016-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen peroxide (H2O2) is an important regulator of cellular events leading to glucose transport activation in mammalian skeletal muscle. In the absence of insulin, H2O2 in the low micromolar range engages the canonical IRS-1/PI3K/Akt-dependent insulin signaling pathway, as well as other signaling elements (AMPK and p38 MAPK), to increase basal glucose transport activity. In contrast, in the presence of insulin, H2O2 antagonizes insulin signaling by recruitment of various deleterious serine/threonine kinases, producing a state of insulin resistance. Here, we describe the H2O2 enzymatic-generating system, utilizing glucose oxidase, that has been used to investigate the impact of H2O2 on cellular signaling mechanisms related to glucose transport activity in isolated rat skeletal muscle preparations, such as the soleus. By varying the glucose oxidase concentration in the medium, target ranges of steady-state H2O2 concentrations (30-90 μM) can be attained for up to 6h, with subsequent assessment of cellular signaling and glucose transport activity.
Collapse
Affiliation(s)
- Erik J Henriksen
- Department of Physiology, Muscle Metabolism Laboratory, University of Arizona College of Medicine, Tucson, Arizona, USA.
| |
Collapse
|