1
|
Kodirov SA. Roles of funny HCN. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110205. [PMID: 40233889 DOI: 10.1016/j.cbpc.2025.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
To some extent, the main role of hyperpolarization-activated cyclic nucleotide-gated non-selective cation channels (HCN, Ih, or If), pace-making, is dogmatized as a functional expression of one or another alpha subunit of HCN channels does not make every region of the brain or heart a pacemaker one. Recent research hints at the role of HCN in arrhythmias and seizures that are often caused by voltage-dependent K and Na channels (Kv and Nav) and neurotransmitters, respectively. There are many parallels between the HCN and K channels. Similar to Kv channels, an altered HCN function also leads to long QT interval. Moreover, a mutation in HCN is believed to trigger correlated arrhythmias and, e.g., epilepsy, among many other brain pathologies. Unlike Kv channels, although no dedicated ancillary beta subunit has been discovered for HCN, the Ih properties are also influenced by other elements and factors. A new interaction has been discovered between HCN and the vesicle-associated membrane protein (VAMP). The prevailing interaction occurs via the subtype VAMP-associated protein B (VAPB). However, this interaction is not unique but universal, since there is also a link between Kv2.1 and VAMP2 (vesicular SNARE). The most remarkable similitude is the fact that a selective antagonist of HCN and medication ivabradine prevents the IKr via the cloned human ether-à-go-go-related gene (HERG) channels, also known as KvLQT and Kv11.1 alpha subunit.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia; Institute of Physiology and Pathophysiology, University of Mainz, Germany; University of Texas at Brownsville, Department of Biological Sciences, TX 78520, USA; Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal; Institute of Biophysics, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
2
|
Benndorf K, Enke U, Tewari D, Kusch J, Liu H, Sun H, Schmauder R, Sattler C. Subunit-specific conductance of single homomeric and heteromeric HCN pacemaker channels at femtosiemens resolution. Proc Natl Acad Sci U S A 2025; 122:e2422533122. [PMID: 39879240 PMCID: PMC11804576 DOI: 10.1073/pnas.2422533122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, γ, of HCN channels is highly controversial. We analyzed the unitary conductance at femtosiemens resolution of all four homotetrameric channels of the mouse, mHCN1-4. All conductance values are in the range of 1 pS which is exceptionally small compared to most other ion channels. Surprisingly, the conductance among the isoforms differs up to threefold (γmHCN2 = 1.54 pS > γmHCN1 = 0.84 pS > γmHCN3 = 0.54 pS ≈ γmHCN4 = 0.51 pS) though the residues in the two narrow parts of the pore, the selectivity filter and the inner gate, are conserved. Mutagenesis and all-atom molecular dynamics simulations demonstrate that the differences in the conductance are generated by different amounts of negative charges in the outer channel vestibule, which control ion accumulation. In line with these results, heterotetrameric channels exhibit intermediate unitary conductance values with respect to the homotetrameric channels. Our approach demonstrates how HCN channels can be functionally differentiated at the single-channel level, paving the way to target specific channels with selective drugs.
Collapse
Affiliation(s)
- Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Debanjan Tewari
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Haoran Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin10623, Germany
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin10623, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Christian Sattler
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| |
Collapse
|
3
|
Sledzieski S, Versavel C, Singh R, Ocitti F, Devkota K, Kumar L, Shpilker P, Roger L, Yang J, Lewinski N, Putnam H, Berger B, Klein-Seetharaman J, Cowen L. Decoding the Functional Interactome of Non-Model Organisms with PHILHARMONIC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.25.620267. [PMID: 39553947 PMCID: PMC11565725 DOI: 10.1101/2024.10.25.620267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein-protein interaction (PPI) networks are a fundamental resource for modeling cellular and molecular function, and a large and sophisticated toolbox has been developed to leverage their structure and topological organization to predict the functional roles of under-studied genes, proteins, and pathways. However, the overwhelming majority of experimentally-determined interactions from which such networks are constructed come from a small number of well-studied model organisms. Indeed, most species lack even a single experimentally-determined interaction in these databases, much less a network to enable the analysis of cellular function, and methods for computational PPI prediction are too noisy to apply directly. We introduce PHILHARMONIC, a novel computational approach that couples deep learning de novo network inference with robust unsupervised spectral clustering algorithms to uncover functional relationships and high-level organization in non-model organisms. Our clustering approach allows us to de-noise the predicted network, producing highly informative functional modules. We also develop a novel algorithm called ReCIPE, which aims to reconnect disconnected clusters, increasing functional enrichment and biological interpretability. We perform remote homology-based functional annotation by leveraging hmmscan and GODomainMiner to assign initial functions to proteins at large evolutionary distances. Our clusters enable us to newly assign functions to uncharacterized proteins through "function by association." We demonstrate the ability of PHILHARMONIC to recover clusters with significant functional coherence in the reef-building coral P. damicornis, its algal symbiont C. goreaui, and the well-annotated fruit fly D. melanogaster. We perform a deeper analysis of the P. damicornis network, where we show that PHILHARMONIC clusters correlate strongly with gene co-expression and investigate several clusters that participate in temperature regulation in the coral, including the first putative functional annotation of several previously uncharacterized proteins. Easy to run end-to-end and requiring only a sequenced proteome, PHILHARMONIC is an engine for biological hypothesis generation and discovery in non-model organisms.
Collapse
Affiliation(s)
- Samuel Sledzieski
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Rohit Singh
- Departments of Biostatistics & Bioinformatics and Cell Biology, Duke University, Durham, NC, USA
| | - Faith Ocitti
- Department of Computer Science, Tufts University, Medford MA, USA
| | - Kapil Devkota
- Departments of Biostatistics & Bioinformatics and Cell Biology, Duke University, Durham, NC, USA
| | - Lokender Kumar
- Shoolini University, Solan, Himachal Pradesh-173229- India
| | - Polina Shpilker
- Department of Computer Science, Tufts University, Medford MA, USA
| | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Jinkyu Yang
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Hollie Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Bonnie Berger
- Computer Science & Artificial Intelligence Laboratory and Department of Mathematics, MIT Cambridge, MA, USA
| | | | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford MA, USA
| |
Collapse
|
4
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
5
|
Yu B, Lu Q, Li J, Cheng X, Hu H, Li Y, Che T, Hua Y, Jiang H, Zhang Y, Xian C, Yang T, Fu Y, Chen Y, Nan W, McCormick PJ, Xiong B, Duan J, Zeng B, Li Y, Fu Y, Zhang J. Cryo-EM structure of human HCN3 channel and its regulation by cAMP. J Biol Chem 2024; 300:107288. [PMID: 38636662 PMCID: PMC11126801 DOI: 10.1016/j.jbc.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
HCN channels are important for regulating heart rhythm and nerve activity and have been studied as potential drug targets for treating depression, arrhythmia, nerve pain, and epilepsy. Despite possessing unique pharmacological properties, HCN channels share common characteristics in that they are activated by hyperpolarization and modulated by cAMP and other membrane lipids. However, the mechanisms of how these ligands bind and modulate HCN channels are unclear. In this study, we solved structures of full-length human HCN3 using cryo-EM and captured two different states, including a state without any ligand bound and a state with cAMP bound. Our structures reveal the novel binding sites for cholesteryl hemisuccinate in apo state and show how cholesteryl hemisuccinate and cAMP binding cause conformational changes in different states. These findings explain how these small modulators are sensed in mammals at the molecular level. The results of our study could help to design more potent and specific compounds to influence HCN channel activity and offer new therapeutic possibilities for diseases that lack effective treatment.
Collapse
Affiliation(s)
- Bo Yu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiuyuan Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Han Hu
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Yuanshuo Li
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tong Che
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yaoguang Hua
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Cuiling Xian
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Fu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yixiang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peter J McCormick
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanyan Li
- Department of Chemical Biology, School of Life Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, Guangdong, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Zhao K, Li Y, Lai H, Niu R, Li H, He S, Su Z, Gui Y, Ren L, Yang X, Zhou L. Alterations in HCN1 expression and distribution during epileptogenesis in rats. Epilepsy Res 2024; 202:107355. [PMID: 38555654 DOI: 10.1016/j.eplepsyres.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN1) is predominantly located in key regions associated with epilepsy, such as the neocortex and hippocampus. Under normal physiological conditions, HCN1 plays a crucial role in the excitatory and inhibitory regulation of neuronal networks. In temporal lobe epilepsy, the expression of HCN1 is decreased in the hippocampi of both animal models and patients. However, whether HCN1 expression changes during epileptogenesis preceding spontaneous seizures remains unclear. OBJECTIVE The aim of this study was to determine whether the expression of HCN1 is altered during the epileptic prodromal phase, thereby providing evidence for its role in epileptogenesis. METHODS We utilized a cobalt wire-induced rat epilepsy model to observe changes in HCN1 during epileptogenesis and epilepsy. Additionally, we also compared HCN1 alterations in epileptogenic tissues between cobalt wire- and pilocarpine-induced epilepsy rat models. Long-term video EEG recordings were used to confirm seizures development. Transcriptional changes, translation, and distribution of HCN1 were assessed using high-throughput transcriptome sequencing, total protein extraction, membrane and cytoplasmic protein fractionation, western blotting, immunohistochemistry, and immunofluorescence techniques. RESULTS In the cobalt wire-induced rat epilepsy model during the epileptogenesis phase, total HCN1 mRNA and protein levels were downregulated. Specifically, the membrane expression of HCN1 was decreased, whereas cytoplasmic HCN1 expression showed no significant change. The distribution of HCN1 in the distal dendrites of neurons decreased. During the epilepsy period, similar HCN1 alterations were observed in the neocortex of rats with cobalt wire-induced epilepsy and hippocampus of rats with lithium pilocarpine-induced epilepsy, including downregulation of mRNA levels, decreased total protein expression, decreased membrane expression, and decreased distal dendrite expression. CONCLUSIONS Alterations in HCN1 expression and distribution are involved in epileptogenesis beyond their association with seizure occurrence. Similarities in HCN1 alterations observed in epileptogenesis-related tissues from different models suggest a shared pathophysiological pathway in epileptogenesis involving HCN1 dysregulation. Therefore, the upregulation of HCN1 expression in neurons, maintenance of the HCN1 membrane, and distal dendrite distribution in neurons may represent promising disease-modifying strategies in epilepsy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangzhou National Laboratory, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | | | - Ruili Niu
- Guangzhou National Laboratory, Guangzhou, China
| | - Huifeng Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Shipei He
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhengwei Su
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yue Gui
- Guangzhou National Laboratory, Guangzhou, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | | | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
7
|
Li H, Tang Q, Yang T, Wang Z, Li D, Wang L, Li L, Chen Y, Huang H, Zhang Y, Chen Y. Segregation of morphogenetic regulatory function of Shox2 from its cell fate guardian role in sinoatrial node development. Commun Biol 2024; 7:385. [PMID: 38553636 PMCID: PMC10980793 DOI: 10.1038/s42003-024-06039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Shox2 plays a vital role in the morphogenesis and physiological function of the sinoatrial node (SAN), the primary cardiac pacemaker, manifested by the formation of a hypoplastic SAN and failed differentiation of pacemaker cells in Shox2 mutants. Shox2 and Nkx2-5 are co-expressed in the developing SAN and regulate the fate of the pacemaker cells through a Shox2-Nkx2-5 antagonistic mechanism. Here we show that simultaneous inactivation of Nkx2-5 in the SAN of Shox2 mutants (dKO) rescued the pacemaking cell fate but not the hypoplastic defects, indicating uncoupling of SAN cell fate determination and morphogenesis. Single-cell RNA-seq revealed that the presumptive SAN cells of Shox2-/- mutants failed to activate pacemaking program but remained in a progenitor state preceding working myocardium, while both wildtype and dKO SAN cells displayed normal pacemaking cell fate with similar cellular state. Shox2 thus acts as a safeguard but not a determinant to ensure the pacemaking cell fate through the Shox2-Nkx2-5 antagonistic mechanism, which is segregated from its morphogenetic regulatory function in SAN development.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, 350108, PR China.
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, 14214, USA
| | - Tianfang Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Zhengsen Wang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, 350108, PR China
| | - Dainan Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Linyan Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, 610021, PR China
| | - Liwen Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Yaoyi Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, 350108, PR China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
8
|
Yang Z, Kuang Z, Liao H, Gan S, Peng X, Yang H, Wu L. HCN1 pathogenic variants associated with childhood epilepsy in a cohort of Chinese patients. Epileptic Disord 2024; 26:90-97. [PMID: 38009841 DOI: 10.1002/epd2.20182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE HCN ion channel family has a widespread expression in neurons, and recently, increasing studies have demonstrated their roles in epilepsies. METHODS Clinical data of the patients were gathered in a retrospective study. Exon sequencing was used for the patients with unexplained recurrent seizures and varying levels of developmental delay. RESULTS In this study, eight de novo variants of HCN1 genes were uncovered in eight patients, including six missense variants, one nonsense variant and one frameshift insertion variant; five of them were reported for the first time. The onset age for eight patients ranges from one month to one year. Their main clinical manifestations are epilepsy and varying degrees of developmental delay, and the main type of seizure is focal secondary generalized tonic-clonic seizure. Importantly, in our study, one case presented with a form of migrating focal seizure that has not been reported in the literature. Seizures from five of the eight children were effectively controlled with antiepileptic drugs including valproic acid, levetiracetam and oxcarbazepine. One child developed normally and four children developed mild delay. One child was treated with topiramate, and the convulsion was partially controlled and showed moderate to severe developmental delay. The antiepileptic treatment failed for the other two children, and the two children were treated with sodium valproate, oxcarbazepine, lamotrigine, chlorbazan, levetiracetam and nitrodiazepam successively, but their convulsions were not controlled and showed moderate to severe developmental delay. SIGNIFICANCE Our research reported eight variants in HCN1 gene causing epilepsy; among these variants, five variants were never reported before. HCN1-related epilepsy usually starts infantile period, and focal secondary generalized tonic-clonic seizure is the most common seizure type. Importantly, we reported the case with migrating focal seizure was rarely reported. Our study expanded both genotype and phenotype for HCN1-related epilepsy.
Collapse
Affiliation(s)
- Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuo Kuang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Siyi Gan
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Xiaomei Peng
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Haiyan Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
9
|
DiFrancesco JC, Ragona F, Murano C, Frosio A, Melgari D, Binda A, Calamaio S, Prevostini R, Mauri M, Canafoglia L, Castellotti B, Messina G, Gellera C, Previtali R, Veggiotti P, Milanesi R, Barbuti A, Solazzi R, Freri E, Granata T, Rivolta I. A novel de novo HCN2 loss-of-function variant causing developmental and epileptic encephalopathy treated with a ketogenic diet. Epilepsia 2023; 64:e222-e228. [PMID: 37746765 DOI: 10.1111/epi.17777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Missense variants of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels cause variable phenotypes, ranging from mild generalized epilepsy to developmental and epileptic encephalopathy (DEE). Although variants of HCN1 are an established cause of DEE, those of HCN2 have been reported in generalized epilepsies. Here we describe the first case of DEE caused by the novel de novo heterozygous missense variant c.1379G>A (p.G460D) of HCN2. Functional characterization in transfected HEK293 cells and neonatal rat cortical neurons revealed that HCN2 p.G460D currents were strongly reduced compared to wild-type, consistent with a dominant negative loss-of-function effect. Immunofluorescence staining showed that mutant channels are retained within the cell and do not reach the membrane. Moreover, mutant HCN2 also affect HCN1 channels, by reducing the Ih current expressed by the HCN1-HCN2 heteromers. Due to the persistence of frequent seizures despite pharmacological polytherapy, the patient was treated with a ketogenic diet, with a significant and long-lasting reduction of episodes. In vitro experiments conducted in a ketogenic environment demonstrated that the clinical improvement observed with this dietary regimen was not mediated by a direct action on HCN2 activity. These results expand the clinical spectrum related to HCN2 channelopathies, further broadening our understanding of the pathogenesis of DEE.
Collapse
Affiliation(s)
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carmen Murano
- School of Medicine and Surgery, University of Milano-Bicocca, Milan Center for Neuroscience (NeuroMI), Monza, Italy
| | - Anthony Frosio
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| | - Dario Melgari
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Milan Center for Neuroscience (NeuroMI), Monza, Italy
| | - Serena Calamaio
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| | - Rachele Prevostini
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| | - Mario Mauri
- School of Medicine and Surgery, University of Milano-Bicocca, Milan Center for Neuroscience (NeuroMI), Monza, Italy
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuliana Messina
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberto Previtali
- Pediatric Neurology Unit, V. Buzzi Hospital, University of Milan, Milan, Italy
| | | | - Raffaella Milanesi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, University of Milano, Milan, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Milan Center for Neuroscience (NeuroMI), Monza, Italy
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| |
Collapse
|
10
|
Vasylyev DV, Liu S, Waxman SG. I h current stabilizes excitability in rodent DRG neurons and reverses hyperexcitability in a nociceptive neuron model of inherited neuropathic pain. J Physiol 2023; 601:5341-5366. [PMID: 37846879 PMCID: PMC10843455 DOI: 10.1113/jp284999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
We show here that hyperpolarization-activated current (Ih ) unexpectedly acts to inhibit the activity of dorsal root ganglion (DRG) neurons expressing WT Nav1.7, the largest inward current and primary driver of DRG neuronal firing, and hyperexcitable DRG neurons expressing a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain. In this study we created a kinetic model of Ih and used it, in combination with dynamic-clamp, to study Ih function in DRG neurons. We show, for the first time, that Ih increases rheobase and reduces the firing probability in small DRG neurons, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . Our results show that Ih , due to slow gating, is not deactivated during action potentials (APs) and has a striking damping action, which reverses from depolarizing to hyperpolarizing, close to the threshold for AP generation. Moreover, we show that Ih reverses the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. In the aggregate, our results show that Ih unexpectedly has strikingly different effects in DRG neurons as compared to previously- and well-studied cardiac cells. Within DRG neurons where Nav1.7 is present, Ih reduces depolarizing sodium current inflow due to enhancement of Nav1.7 channel fast inactivation and creates additional damping action by reversal of Ih direction from depolarizing to hyperpolarizing close to the threshold for AP generation. These actions of Ih limit the firing of DRG neurons expressing WT Nav1.7 and reverse the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. KEY POINTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the molecular determinants of hyperpolarization-activated current (Ih ) have been characterized as a 'pain pacemaker', and thus considered to be a potential molecular target for pain therapeutics. Dorsal root ganglion (DRG) neurons express Nav1.7, a channel that is not present in central neurons or cardiac tissue. Gain-of-function mutations (GOF) of Nav1.7 identified in inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, produce DRG neuron hyperexcitability, which in turn produces severe pain. We found that Ih increases rheobase and reduces firing probability in small DRG neurons expressing WT Nav1.7, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . We also demonstrate that Ih reverses the hyperexcitability of DRG neurons expressing a GOF Nav1.7 mutation (L858H) that causes IEM. Our results show that, in contrast to cardiac cells and CNS neurons, Ih acts to stabilize DRG neuron excitability and prevents excessive firing.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
11
|
Shemarova I. The Dysfunction of Ca 2+ Channels in Hereditary and Chronic Human Heart Diseases and Experimental Animal Models. Int J Mol Sci 2023; 24:15682. [PMID: 37958665 PMCID: PMC10650855 DOI: 10.3390/ijms242115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.
Collapse
Affiliation(s)
- Irina Shemarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
12
|
Kassab NED, Mehlfeld V, Kass J, Biel M, Schneider G, Rammes G. Xenon's Sedative Effect Is Mediated by Interaction with the Cyclic Nucleotide-Binding Domain (CNBD) of HCN2 Channels Expressed by Thalamocortical Neurons of the Ventrobasal Nucleus in Mice. Int J Mol Sci 2023; 24:ijms24108613. [PMID: 37239964 DOI: 10.3390/ijms24108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 channels are dually gated by the membrane voltage and via cyclic nucleotides binding to the cyclic nucleotide-binding domain (CNBD) on the channel. In this study, we hypothesize that xenon interferes with the HCN2 CNBD to mediate its effect. Using the transgenic mice model HCN2EA, in which the binding of cAMP to HCN2 was abolished by two amino acid mutations (R591E, T592A), we performed ex-vivo patch-clamp recordings and in-vivo open-field test to prove this hypothesis. Our data showed that xenon (1.9 mM) application to brain slices shifts the V1/2 of Ih to more hyperpolarized potentials in wild-type thalamocortical neurons (TC) (V1/2: -97.09 [-99.56--95.04] mV compared to control -85.67 [-94.47--82.10] mV; p = 0.0005). These effects were abolished in HCN2EA neurons (TC), whereby the V1/2 reached only -92.56 [-93.16- -89.68] mV with xenon compared to -90.03 [-98.99--84.59] mV in the control (p = 0.84). After application of a xenon mixture (70% xenon, 30% O2), wild-type mice activity in the open-field test decreased to 5 [2-10] while in HCN2EA mice it remained at 30 [15-42]%, (p = 0.0006). In conclusion, we show that xenon impairs HCN2 channel function by interfering with the HCN2 CNBD site and provide in-vivo evidence that this mechanism contributes to xenon-mediated hypnotic properties.
Collapse
Affiliation(s)
- Nour El Dine Kassab
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Verena Mehlfeld
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Jennifer Kass
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Martin Biel
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
13
|
Bi-directional modulation of hyperpolarization-activated cation currents (I h) by ethanol in rat hippocampal CA3 pyramidal neurons. Neuropharmacology 2023; 227:109423. [PMID: 36690323 DOI: 10.1016/j.neuropharm.2023.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
It is widely acknowledged that ethanol (EtOH) can alter many neuronal functions, including synaptic signaling, firing discharge, and membrane excitability, through its interaction with multiple membrane proteins and intracellular pathways. Previous work has demonstrated that EtOH enhances the firing rate of hippocampal GABAergic interneurons and thus the presynaptic GABA release at CA1 and CA3 inhibitory synapses through a positive modulation of the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. Activation of HCN channels produce an inward current, commonly called Ih, which plays an essential role in generating/regulating specific neuronal activities in GABAergic interneurons and principal glutamatergic pyramidal neurons such as those in the CA3 subregion. Since the direct effect of EtOH on HCN channels expressed in CA3 pyramidal neurons was not thoroughly elucidated, we investigated the possible interaction between EtOH and HCN channels and the impact on excitability and postsynaptic integration of these neurons. Patch-clamp recordings were performed in single CA3 pyramidal neurons from acute male rat coronal hippocampal slices. Our results show that EtOH modulates HCN-mediated Ih in a concentration-dependent and bi-directional manner, with a positive modulation at lower (20 mM) and an inhibitory action at higher (60-80 mM) concentrations. The modulation of Ih by EtOH was mimicked by forskolin, antagonized by different drugs that selectively interfere with the AC/cAMP/PKA intracellular pathway, as well as by the selective HCN inhibitor ZD7288. Altogether, these data further support the evidence that HCN channels may represent an important molecular target through which EtOH may regulate neuronal activity.
Collapse
|
14
|
Lin Z. More than a key-the pathological roles of SARS-CoV-2 spike protein in COVID-19 related cardiac injury. SPORTS MEDICINE AND HEALTH SCIENCE 2023:S2666-3376(23)00024-0. [PMID: 37361919 PMCID: PMC10062797 DOI: 10.1016/j.smhs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 06/28/2023] Open
Abstract
Cardiac injury is common in hospitalized coronavirus disease 2019 (COVID-19) patients and cardiac abnormalities have been observed in a significant number of recovered COVID-19 patients, portending long-term health issues for millions of infected individuals. To better understand how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, CoV-2 for short) damages the heart, it is critical to fully comprehend the biology of CoV-2 encoded proteins, each of which may play multiple pathological roles. For example, CoV-2 spike glycoprotein (CoV-2-S) not only engages angiotensin converting enzyme II (ACE2) to mediate virus infection but also directly activates immune responses. In this work, the goal is to review the known pathological roles of CoV-2-S in the cardiovascular system, thereby shedding lights on the pathogenesis of COVID-19 related cardiac injury.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA
| |
Collapse
|
15
|
Zhao K, Li Y, Yang X, Zhou L. The Impact of Altered HCN1 Expression on Brain Function and Its Relationship with Epileptogenesis. Curr Neuropharmacol 2023; 21:2070-2078. [PMID: 37366350 PMCID: PMC10556362 DOI: 10.2174/1570159x21666230214110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) is predominantly expressed in neurons from the neocortex and hippocampus, two important regions related to epilepsy. Both animal models for epilepsy and epileptic patients show decreased HCN1 expression and HCN1-mediated Ih current. It has been shown in neuroelectrophysiological experiments that a decreased Ih current can increase neuronal excitability. However, some studies have shown that blocking the Ih current in vivo can exert antiepileptic effects. This paradox raises an important question regarding the causal relationship between HCN1 alteration and epileptogenesis, which to date has not been elucidated. In this review, we summarize the literature related to HCN1 and epilepsy, aiming to find a possible explanation for this paradox, and explore the correlation between HCN1 and the mechanism of epileptogenesis. We analyze the alterations in the expression and distribution of HCN1 and the corresponding impact on brain function in epilepsy. In addition, we also discuss the effect of blocking Ih on epilepsy symptoms. Addressing these issues will help to inspire new strategies to explore the relationship between HCN1 and epileptogenesis, and ultimately promote the development of new targets for epilepsy therapy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Xiaofeng Yang
- Guangzhou Laboratory, Guangzhou, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| |
Collapse
|
16
|
Schmidpeter PAM, Wu D, Rheinberger J, Riegelhaupt PM, Tang H, Robinson CV, Nimigean CM. Anionic lipids unlock the gates of select ion channels in the pacemaker family. Nat Struct Mol Biol 2022; 29:1092-1100. [PMID: 36352139 PMCID: PMC10022520 DOI: 10.1038/s41594-022-00851-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
Lipids play important roles in regulating membrane protein function, but the molecular mechanisms used are elusive. Here we investigated how anionic lipids modulate SthK, a bacterial pacemaker channel homolog, and HCN2, whose activity contributes to pacemaking in the heart and brain. Using SthK allowed the reconstitution of purified channels in controlled lipid compositions for functional and structural assays that are not available for the eukaryotic channels. We identified anionic lipids bound tightly to SthK and their exact binding locations and determined that they potentiate channel activity. Cryo-EM structures in the most potentiating lipids revealed an open state and identified a nonannular lipid bound with its headgroup near an intersubunit salt bridge that clamps the intracellular channel gate shut. Breaking this conserved salt bridge abolished lipid modulation in SthK and eukaryotic HCN2 channels, indicating that anionic membrane lipids facilitate channel opening by destabilizing these interactions. Our findings underline the importance of state-dependent protein-lipid interactions.
Collapse
Affiliation(s)
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jan Rheinberger
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | - Haiping Tang
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Uygun DS, Basheer R. Circuits and components of delta wave regulation. Brain Res Bull 2022; 188:223-232. [PMID: 35738502 DOI: 10.1016/j.brainresbull.2022.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Sleep is vital and the deepest stages of sleep occur within Non-rapid-eye-movement sleep (NREM), defined by high electroencephalographic power in the delta (~0.5-4Hz) wave frequency range. Delta waves are thought to facilitate a myriad of physical and mental health functions. This review aims to comprehensively cover the historical and recent advances in the understanding of the mechanisms orchestrating NREM delta waves. We discuss a complete neurocircuit - focusing on one leg of the circuit at a time - and delve deeply into the molecular mechanistic components that contribute to NREM delta wave regulation. We also discuss the relatively localized nature in which these mechanisms have been defined, and how likely they might generalize across distinct sensory and higher order modalities in the brain.
Collapse
Affiliation(s)
- David S Uygun
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| |
Collapse
|
18
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
19
|
Cai W, Liu SS, Li BM, Zhang XH. Presynaptic HCN channels constrain GABAergic synaptic transmission in pyramidal cells of the medial prefrontal cortex. Biol Open 2021; 11:272636. [PMID: 34709375 PMCID: PMC8966777 DOI: 10.1242/bio.058840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in neurons in the central nervous system. It has been documented that HCN channels regulate the intrinsic excitability of pyramidal cells in the medial prefrontal cortex (mPFC) of rodents. Here, we report that HCN channels limited GABAergic transmission onto pyramidal cells in rat mPFC. The pharmacological blockade of HCN channels resulted in a significant increase in the frequency of both spontaneous and miniature inhibitory postsynaptic currents (IPSCs) in mPFC pyramidal cells, whereas potentiation of HCN channels reversely decreases the frequency of mIPSCs. Furthermore, such facilitation effect on mIPSC frequency required presynaptic Ca2+ influx. Immunofluorescence staining showed that HCN channels expressed in presynaptic GABAergic terminals, as well as in both soma and neurite of parvalbumin-expressing (PV-expressing) basket cells in mPFC. The present results indicate that HCN channels in GABAergic interneurons, most likely PV-expressing basket cells, constrain inhibitory control over layer 5-6 pyramidal cells by restricting presynaptic Ca2+ entry.
Collapse
Affiliation(s)
- Wei Cai
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Shu-Su Liu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Bao-Ming Li
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xue-Han Zhang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Rodríguez-Ortiz R, Matínez-Torres A. Mutants of the Zebrafish K + Channel Hcn2b Exhibit Epileptic-like Behaviors. Int J Mol Sci 2021; 22:ijms222111471. [PMID: 34768904 PMCID: PMC8584164 DOI: 10.3390/ijms222111471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 02/02/2023] Open
Abstract
Epilepsy is a chronic neurological disorder that affects 50 million people worldwide. The most common form of epilepsy is idiopathic, where most of the genetic defects of this type of epilepsy occur in ion channels. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarization, and are mainly expressed in the heart and central and peripheral nervous systems. In humans, four HCN genes have been described, and emergent clinical data shows that dysfunctional HCN channels are involved in epilepsy. Danio rerio has become a versatile organism to model a wide variety of diseases. In this work, we used CRISPR/Cas9 to generate hcn2b mutants in zebrafish, and characterized them molecularly and behaviorally. We obtained an hcn2b mutant allele with an 89 bp deletion that produced a premature stop codon. The mutant exhibited a high mortality rate in its life span, probably due to its sudden death. We did not detect heart malformations or important heart rate alterations. Absence seizures and moderate seizures were observed in response to light. These seizures rarely caused instant death. The results show that mutations in the Hcn2b channel are involved in epilepsy and provide evidence of the advantages of zebrafish to further our understanding of the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Roberto Rodríguez-Ortiz
- Cátedras CONACyT—Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México, Querétaro CP 76230, Mexico
- Correspondence: (R.R.-O.); (A.M.-T.); Tel.: +52-442-238-1064 (R.R.-O. & A.M.-T.)
| | - Ataúlfo Matínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México, Querétaro CP 76230, Mexico
- Correspondence: (R.R.-O.); (A.M.-T.); Tel.: +52-442-238-1064 (R.R.-O. & A.M.-T.)
| |
Collapse
|
21
|
Yu H, Gall B, Newman M, Hathaway Q, Brundage K, Ammer A, Mathers P, Siderovski D, Hull RW. Contribution of HCN1 variant to sinus bradycardia: A case report. J Arrhythm 2021; 37:1337-1347. [PMID: 34621433 PMCID: PMC8485797 DOI: 10.1002/joa3.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Missense mutations in the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channel 4 (HCN4) are one of the genetic causes of cardiac sinus bradycardia. OBJECTIVE To investigate possible HCN4 channel mutation in a young patient with profound sinus bradycardia. METHODS Direct sequencing of HCN4 and whole-exome sequencing were performed on DNA samples from the indexed patient (P), the patient's son (PS), and a family unrelated healthy long-distance running volunteer (V). Resting heart rate was 31 bpm for P, 67 bpm for PS, and 50 bpm for V. Immunoblots, flow cytometry, and immunocytofluorescence confocal imaging were used to study cellular distribution of channel variants. Patch-clamp electrophysiology was used to investigate the properties of mutant HCN1 channels. RESULTS In P no missense mutations were found in the HCN4 gene; instead, we found two heterozygous variants in the HCN1 gene: deletion of an N-terminal glycine triplet (72GGG74, "N-del") and a novel missense variant, P851A, in the C-terminal region. N-del variant was found before and shared by PS. These two variations were not found in V. Compared to wild type, N-del and P851A reduced cell surface expression and negatively shifted voltage-activation with slower activation kinetics. CONCLUSION Decreased channel activity HCN1 mutant channel makes it unable to contribute to early depolarization of sinus node action potential, thus likely a main cause of the profound sinus bradycardia in this patient.
Collapse
Affiliation(s)
- Hangang Yu
- Department of Physiology and PharmacologySchool of MedicineWest Virginia UniversityMorgantownWVUSA
| | - Bryan Gall
- Department of Physiology and PharmacologySchool of MedicineWest Virginia UniversityMorgantownWVUSA
- Present address:
Variant Curator at NateraSan CarlosCAUSA
| | - Mackenzie Newman
- Department of Physiology and PharmacologySchool of MedicineWest Virginia UniversityMorgantownWVUSA
| | - Quincy Hathaway
- Department of Exercise PhysiologySchool of MedicineWest Virginia UniversityMorgantownWVUSA
| | - Kathleen Brundage
- Department of Microbiology, Immunology & Cell BiologySchool of MedicineWest Virginia UniversityMorgantownWVUSA
| | - Amanda Ammer
- Department of Microbiology, Immunology & Cell BiologySchool of MedicineWest Virginia UniversityMorgantownWVUSA
| | - Peter Mathers
- Department of NeuroscienceSchool of MedicineWest Virginia UniversityMorgantownWVUSA
| | - David Siderovski
- Department of Physiology and PharmacologySchool of MedicineWest Virginia UniversityMorgantownWVUSA
- Present address:
Pharmacology & NeuroscienceUniversity of North TexasDentonTXUSA
| | - Robert W. Hull
- Department of CardiologySchool of MedicineWest Virginia UniversityMorgantownWVUSA
- Present address:
Department of CardiologyMon General HospitalMorgantownWVUSA
| |
Collapse
|
22
|
Beemelmanns A, Zanuzzo FS, Sandrelli RM, Rise ML, Gamperl AK. The Atlantic salmon's stress- and immune-related transcriptional responses to moderate hypoxia, an incremental temperature increase, and these challenges combined. G3 (BETHESDA, MD.) 2021; 11:jkab102. [PMID: 34015123 PMCID: PMC8613830 DOI: 10.1093/g3journal/jkab102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
The marine environment is predicted to become warmer, and more hypoxic, and these conditions may negatively impact the health and survival of coastal fish species, including wild and farmed Atlantic salmon (Salmo salar). Thus, we examined how: (1) moderate hypoxia (∼70% air saturation) at 12°C for 3 weeks; (2) an incremental temperature increase from 12°C to 20°C (at 1°C week-1) followed by 4 weeks at 20°C; and (3) treatment "2" combined with moderate hypoxia affected transcript expression in the liver of post-smolts as compared to control conditions (normoxia, 12°C). Specifically, we assessed the expression of 45 genes related to the heat shock response, oxidative stress, apoptosis, metabolism and immunity using a high-throughput qPCR approach (Fluidigm Biomark™ HD). The expression profiles of 27 "stress"-related genes indicated that: (i) moderate hypoxia affected the expression of several stress genes at 12°C; (ii) their expression was impacted by 16°C under normoxic conditions, and this effect increased until 20°C; (iii) the effects of moderate hypoxia were not additive to those at temperatures above 16°C; and (iv) long-term (4 weeks) exposure to 20°C, with or without hypoxia, resulted in a limited acclimatory response. In contrast, the expression of 15 immune-related genes was not greatly affected until temperatures reached 20°C, and this effect was particularly evident in fish exposed to the added challenge of hypoxia. These results provide valuable information on how these two important environmental factors affect the "stress" physiology and immunology of Atlantic salmon, and we identify genes that may be useful as hypoxia and/or temperature biomarkers in salmonids and other fishes.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
23
|
Regulation of sinus node pacemaking and atrioventricular node conduction by HCN channels in health and disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:61-85. [PMID: 34197836 DOI: 10.1016/j.pbiomolbio.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
The funny current, If, was first recorded in the heart 40 or more years ago by Dario DiFrancesco and others. Since then, we have learnt that If plays an important role in pacemaking in the sinus node, the innate pacemaker of the heart, and more recently evidence has accumulated to show that If may play an important role in action potential conduction through the atrioventricular (AV) node. Evidence has also accumulated to show that regulation of the transcription and translation of the underlying Hcn genes plays an important role in the regulation of sinus node pacemaking and AV node conduction under normal physiological conditions - in athletes, during the circadian rhythm, in pregnancy, and during postnatal development - as well as pathological states - ageing, heart failure, pulmonary hypertension, diabetes and atrial fibrillation. There may be yet more pathological conditions involving changes in the expression of the Hcn genes. Here, we review the role of If and the underlying HCN channels in physiological and pathological changes of the sinus and AV nodes and we begin to explore the signalling pathways (microRNAs, transcription factors, GIRK4, the autonomic nervous system and inflammation) involved in this regulation. This review is dedicated to Dario DiFrancesco on his retirement.
Collapse
|
24
|
Nakashima K, Nakao K, Matsui H. Discovery of Novel HCN4 Blockers with Unique Blocking Kinetics and Binding Properties. SLAS DISCOVERY 2021; 26:896-908. [PMID: 34041946 PMCID: PMC8293762 DOI: 10.1177/24725552211013824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channel underlies the pacemaker currents, called “If,” in sinoatrial nodes (SANs), which regulate heart rhythm. Some HCN4 blockers such as ivabradine have been extensively studied for treating various heart diseases. Studies have shown that these blockers have diverse state dependencies and binding sites, suggesting the existence of potential chemical and functional diversity among HCN4 blockers. Here we report approaches for the identification of novel HCN4 blockers through a random screening campaign among 16,000 small-molecule compounds using an automated patch-clamp system. These molecules exhibited various blockade profiles, and their blocking kinetics and associating amino acids were determined by electrophysiological studies and site-directed mutagenesis analysis, respectively. The profiles of these blockers were distinct from those of the previously reported HCN channel blockers ivabradine and ZD7288. Notably, the mutagenesis analysis showed that blockers with potencies that were increased when the channel was open involved a C478 residue, located at the pore cavity region near the cellular surface of the plasma membrane, while those with potencies that were decreased when the channel was open involved residues Y506 and I510, located at the intracellular region of the pore gate. Thus, this study reported for the first time the discovery of novel HCN4 blockers by screening, and their profiling analysis using an automated patch-clamp system provided chemical tools that will be useful to obtain unique molecular insights into the drug-binding modes of HCN4 and may contribute to the expansion of therapeutic options in the future.
Collapse
Affiliation(s)
- Kosuke Nakashima
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kenji Nakao
- Biomolecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.,Seedsupply Inc., Fujisawa, Kanagawa, Japan
| | - Hideki Matsui
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
25
|
Concepcion FA, Khan MN, Ju Wang JD, Wei AD, Ojemann JG, Ko AL, Shi Y, Eng JK, Ramirez JM, Poolos NP. HCN Channel Phosphorylation Sites Mapped by Mass Spectrometry in Human Epilepsy Patients and in an Animal Model of Temporal Lobe Epilepsy. Neuroscience 2021; 460:13-30. [PMID: 33571596 DOI: 10.1016/j.neuroscience.2021.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Because hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels modulate the excitability of cortical and hippocampal principal neurons, these channels play a key role in the hyperexcitability that occurs during the development of epilepsy after a brain insult, or epileptogenesis. In epileptic rats generated by pilocarpine-induced status epilepticus, HCN channel activity is downregulated by two main mechanisms: a hyperpolarizing shift in gating and a decrease in amplitude of the current mediated by HCN channels, Ih. Because these mechanisms are modulated by various phosphorylation signaling pathways, we hypothesized that phosphorylation changes occur at individual HCN channel amino acid residues (phosphosites) during epileptogenesis. We collected CA1 hippocampal tissue from male Sprague Dawley rats made epileptic by pilocarpine-induced status epilepticus, and age-matched naïve controls. We also included resected human brain tissue containing epileptogenic zones (EZs) where seizures arise for comparison to our chronically epileptic rats. After enrichment for HCN1 and HCN2 isoforms by immunoprecipitation and trypsin in-gel digestion, the samples were analyzed by mass spectrometry. We identified numerous phosphosites from HCN1 and HCN2 channels, representing a novel survey of phosphorylation sites within HCN channels. We found high levels of HCN channel phosphosite homology between humans and rats. We also identified a novel HCN1 channel phosphosite S791, which underwent significantly increased phosphorylation during the chronic epilepsy stage. Heterologous expression of a phosphomimetic mutant, S791D, replicated a hyperpolarizing shift in Ih gating seen in neurons from chronically epileptic rats. These results show that HCN1 channel phosphorylation is altered in epilepsy and may be of pathogenic importance.
Collapse
Affiliation(s)
- F A Concepcion
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - M N Khan
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - J-D Ju Wang
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - A D Wei
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - J G Ojemann
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States; Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - A L Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Y Shi
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - J K Eng
- Proteomics Resource, University of Washington, Seattle, WA, United States
| | - J-M Ramirez
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States; Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - N P Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States.
| |
Collapse
|
26
|
Schmidpeter PAM, Rheinberger J, Nimigean CM. Prolyl isomerization controls activation kinetics of a cyclic nucleotide-gated ion channel. Nat Commun 2020; 11:6401. [PMID: 33328472 PMCID: PMC7744796 DOI: 10.1038/s41467-020-20104-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023] Open
Abstract
SthK, a cyclic nucleotide-modulated ion channel from Spirochaeta thermophila, activates slowly upon cAMP increase. This is reminiscent of the slow, cAMP-induced activation reported for the hyperpolarization-activated and cyclic nucleotide-gated channel HCN2 in the family of so-called pacemaker channels. Here, we investigate slow cAMP-induced activation in purified SthK channels using stopped-flow assays, mutagenesis, enzymatic catalysis and inhibition assays revealing that the cis/trans conformation of a conserved proline in the cyclic nucleotide-binding domain determines the activation kinetics of SthK. We propose that SthK exists in two forms: trans Pro300 SthK with high ligand binding affinity and fast activation, and cis Pro300 SthK with low affinity and slow activation. Following channel activation, the cis/trans equilibrium, catalyzed by prolyl isomerases, is shifted towards trans, while steady-state channel activity is unaffected. Our results reveal prolyl isomerization as a regulatory mechanism for SthK, and potentially eukaryotic HCN channels. This mechanism could contribute to electrical rhythmicity in cells.
Collapse
Affiliation(s)
- Philipp A. M. Schmidpeter
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA
| | - Jan Rheinberger
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA ,grid.4830.f0000 0004 0407 1981Present Address: University of Groningen, Groningen, Netherlands
| | - Crina M. Nimigean
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065 USA
| |
Collapse
|
27
|
Testing broad-spectrum and isoform-preferring HCN channel blockers for anticonvulsant properties in mice. Epilepsy Res 2020; 168:106484. [DOI: 10.1016/j.eplepsyres.2020.106484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
|
28
|
Fehsenfeld S, Wood CM. A potential role for hyperpolarization-activated cyclic nucleotide-gated sodium/potassium channels (HCNs) in teleost acid-base and ammonia regulation. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110469. [PMID: 32653509 DOI: 10.1016/j.cbpb.2020.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Increasing evidence suggests the involvement of hyperpolarization-activated cyclic nucleotide-gated sodium/potassium channels (HCNs) not only in cardiac and neural function, but also in more general physiological processes including acid-base and ammonia regulation. We have identified four different HCN paralogs/isoforms in the goldfish Carassius auratus (CaHCN1, CaHCN2b, CaHCN4a and CaHCN4b) as likely candidates to contribute to renal, branchial and intestinal acid-base and ammonia regulation in this teleost. Quantitative real-time PCR showed not only high mRNA abundance of all isoforms in heart and brain, but also detectable levels (particularly of CaHCN2b and CaHCN4b) in non-excitable tissues, including gills and kidneys. In response to an internal or external acid-base and/or ammonia disturbance caused by feeding or high environmental ammonia, respectively, we observed differential and tissue-specific changes in mRNA abundance of all isoforms except CaHCN4b. Furthermore, our data suggest that the functions of specific HCN channels are supplemented by certain Rhesus glycoprotein functions to help in the protection of tissues from elevated ammonia levels, or as potential direct routes for ammonia transport in gills, kidney, and gut. The present results indicate important individual roles for each HCN isoform in response to acid-base and ammonia disturbances.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Université du Quebec à Rimouski, Département de biologie, chimie et géographie, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; University of British Columbia, Department of Zoology, 4200 - 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Chris M Wood
- University of British Columbia, Department of Zoology, 4200 - 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
29
|
Li Y, Wang K, Li Q, Zhang H. Biological pacemaker: from biological experiments to computational simulation. J Zhejiang Univ Sci B 2020; 21:524-536. [PMID: 32633107 DOI: 10.1631/jzus.b1900632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pacemaking dysfunction has become a significant disease that may contribute to heart rhythm disorders, syncope, and even death. Up to now, the best way to treat it is to implant electronic pacemakers. However, these have many disadvantages such as limited battery life, infection, and fixed pacing rate. There is an urgent need for a biological pacemaker (bio-pacemaker). This is expected to replace electronic devices because of its low risk of complications and the ability to respond to emotion. Here we survey the contemporary development of the bio-pacemaker by both experimental and computational approaches. The former mainly includes gene therapy and cell therapy, whilst the latter involves the use of multi-scale computer models of the heart, ranging from the single cell to the tissue slice. Up to now, a bio-pacemaker has been successfully applied in big mammals, but it still has a long way from clinical uses for the treatment of human heart diseases. It is hoped that the use of the computational model of a bio-pacemaker may accelerate this process. Finally, we propose potential research directions for generating a bio-pacemaker based on cardiac computational modeling.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,Peng Cheng Laboratory, Shenzhen 518052, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.,Peng Cheng Laboratory, Shenzhen 518052, China
| |
Collapse
|
30
|
Chen H, Chen Y, Yang J, Wu P, Wang X, Huang C. Effect of Ginkgo biloba extract on pacemaker channels encoded by HCN gene. Herz 2020; 46:255-261. [PMID: 32435840 DOI: 10.1007/s00059-020-04933-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 04/25/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND In the present study, the electropharmacological activity of traditional Chinese medicine, Ginkgo biloba extract (GBE), on human hyperpolarization-activated nucleotide-gated (HCN) channels and the underlying "funny" currents was investigated. METHODS Standard two-electrode voltage-clamp recordings were employed to examine the properties of cloned HCN subunit currents expressed in Xenopus oocytes under controlled conditions and GBE administration. RESULTS We found that GBE irreversibly inhibited the HCN2 and HCN4 channel currents in a concentration-dependent fashion and that the HCN4 current was more sensitive to GBE compared with HCN2. In addition, GBE inhibition of the current amplitudes of HCN2 and HCN4 currents was accompanied by a decrease in the activation and deactivation kinetics. CONCLUSION The results of this study contribute toward illustrating the antiarrhythmic mechanism of GBE, which might be useful for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Yongjun Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Jing Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Pan Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China.
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China.
| |
Collapse
|
31
|
Page DA, Magee KEA, Li J, Jung M, Young EC. Cytoplasmic Autoinhibition in HCN Channels is Regulated by the Transmembrane Region. J Membr Biol 2020; 253:153-166. [PMID: 32146488 PMCID: PMC7150657 DOI: 10.1007/s00232-020-00111-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/16/2020] [Indexed: 12/25/2022]
Abstract
Hyperpolarization-activated cation-nonselective (HCN) channels regulate electrical activity in the brain and heart in a cAMP-dependent manner. The voltage-gating of these channels is mediated by a transmembrane (TM) region but is additionally regulated by direct binding of cAMP to a cyclic nucleotide-binding (CNB) fold in the cytoplasmic C-terminal region. Cyclic AMP potentiation has been explained by an autoinhibition model which views the unliganded CNB fold as an inhibitory module whose influence is disrupted by cAMP binding. However, the HCN2 subtype uses two other CNB fold-mediated mechanisms called open-state trapping and Quick-Activation to respectively slow the deactivation kinetics and speed the activation kinetics, against predictions of an autoinhibition model. To test how these multiple mechanisms are influenced by the TM region, we replaced the TM region of HCN2 with that of HCN4. This HCN4 TM-replacement preserved cAMP potentiation but augmented the magnitude of autoinhibition by the unliganded CNB fold; it moreover disrupted open-state trapping and Quick-Activation so that autoinhibition became the dominant mechanism contributed by the C-terminal region to determine kinetics. Truncation within the CNB fold partially relieved this augmented autoinhibition. This argues against the C-terminal region acting like a portable module with consistent effects on TM regions of different subtypes. Our findings provide evidence that functional interactions between the HCN2 TM region and C-terminal region govern multiple CNB fold-mediated mechanisms, implying that the molecular mechanisms of autoinhibition, open-state trapping, and Quick-Activation include participation of TM region structures.
Collapse
Affiliation(s)
- Dana A Page
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kaylee E A Magee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.,Department of Biology, Kwantlen Polytechnic University, 12666 72 Avenue, Surrey, BC, V3W 2M8, Canada
| | - Jessica Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Matthew Jung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Edgar C Young
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
32
|
Sokolova IV, Szucs A, Sanna PP. Reduced intrinsic excitability of CA1 pyramidal neurons in human immunodeficiency virus (HIV) transgenic rats. Brain Res 2019; 1724:146431. [PMID: 31491420 PMCID: PMC6939992 DOI: 10.1016/j.brainres.2019.146431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
The hippocampus is involved in key neuronal circuits that underlie cognition, memory, and anxiety, and it is increasingly recognized as a vulnerable structure that contributes to the pathogenesis of HIV-associated neurocognitive disorder (HAND). However, the mechanisms responsible for hippocampal dysfunction in neuroHIV remain unknown. The present study used HIV transgenic (Tg) rats and patch-clamp electrophysiological techniques to study the effects of the chronic low-level expression of HIV proteins on hippocampal CA1 pyramidal neurons. The dorsal and ventral areas of the hippocampus are involved in different neurocircuits and thus were evaluated separately. We found a significant decrease in the intrinsic excitability of CA1 neurons in the dorsal hippocampus in HIV Tg rats by comparing neuronal spiking induced by current step injections and by dynamic clamp to simulate neuronal spiking activity. The decrease in excitability in the dorsal hippocampus was accompanied by a higher rate of excitatory postsynaptic currents (EPSCs), whereas CA1 pyramidal neurons in the ventral hippocampus in HIV Tg rats had higher EPSC amplitudes. We also observed a reduction of hyperpolarization-activated nonspecific cationic current (Ih) in both the dorsal and ventral hippocampus. Neurotoxic HIV proteins have been shown to increase neuronal excitation. The lower excitability of CA1 pyramidal neurons that was observed herein may represent maladaptive homeostatic plasticity that seeks to stabilize baseline neuronal firing activity but may disrupt neural network function and contribute to HIV-associated neuropsychological disorders, such as HAND and depression.
Collapse
Affiliation(s)
- Irina V Sokolova
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States
| | - Attila Szucs
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States; University of California, San Diego, BioCircuits Institute, 9500 Gilman Drive, La Jolla, CA 92039-0328, United States; MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Lóránd University, Budapest, Hungary
| | - Pietro Paolo Sanna
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States.
| |
Collapse
|
33
|
Lee CH, Park JH, Won MH. Protein expression changes of HCN1 and HCN2 in hippocampal subregions of gerbils during the normal aging process. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1308-1313. [PMID: 32128096 PMCID: PMC7038419 DOI: 10.22038/ijbms.2019.35760.8520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/14/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play essential roles in various hippocampal functions, including regulation of long-term potentiation, synaptic plasticity, and hippocampal-dependent cognitive process. The objective of this study was to investigate age-related changes in HCN1 and HCN2 protein expressions in gerbil hippocampus at various ages. MATERIALS AND METHODS In this study, the protein expressions of HCN1 and HCN2 were compared in the hippocampus at the ages of 1, 3, 12, and 24 months using Western blot analysis and immunohistochemistry. RESULTS Immunoreactivity of both HCN1 and HCN2 was shown primarily in cells of the pyramidal cell layer in the hippocampus proper and in cells of the granule cell layer in the dentate gyrus. HCN1 and HCN2 protein expression levels and immunoreactivity were significantly increased at three months (3 M) of age compared with those at 1 M of age. After that, both HCN1 and HCN2 expression levels in the hippocampus were gradually decreased with age. CONCLUSION Our results show that the normal aging process affects the expression levels of HCN1 and HCN2 in hippocampal cells in gerbils. There are marked reductions in HCN1 and HCN2 expressions in the aged hippocampus compared to the young hippocampus. Such reductions might be related to aging in the hippocampus.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
34
|
Leypold T, Bonus M, Spiegelhalter F, Schwede F, Schwabe T, Gohlke H, Kusch J. N 6-modified cAMP derivatives that activate protein kinase A also act as full agonists of murine HCN2 channels. J Biol Chem 2019; 294:17978-17987. [PMID: 31615893 DOI: 10.1074/jbc.ra119.010246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/15/2019] [Indexed: 11/06/2022] Open
Abstract
cAMP acts as a second messenger in many cellular processes. Three protein types mainly mediate cAMP-induced effects: PKA, exchange protein directly activated by cAMP (Epac), and cyclic nucleotide-modulated channels (cyclic nucleotide-gated or hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels). Discrimination among these cAMP signaling pathways requires specific targeting of only one protein. Previously, cAMP modifications at position N 6 of the adenine ring (PKA) and position 2'-OH of the ribose (Epac) have been used to produce target-selective compounds. However, cyclic nucleotide-modulated ion channels were usually outside of the scope of these previous studies. These channels are widely distributed, so possible channel cross-activation by PKA- or Epac-selective agonists warrants serious consideration. Here we demonstrate the agonistic effects of three PKA-selective cAMP derivatives, N 6-phenyladenosine-3',5'-cyclic monophosphate (N 6-Phe-cAMP), N 6-benzyladenosine-3',5'-cyclic monophosphate (N 6-Bn-cAMP), and N 6-benzoyl-adenosine-3',5'-cyclic monophosphate (N 6-Bnz-cAMP), on murine HCN2 pacemaker channels. Electrophysiological characterization in Xenopus oocytes revealed that these derivatives differ in apparent affinities depending on the modification type but that their efficacy and effects on HCN2 activation kinetics are similar to those of cAMP. Docking experiments suggested a pivotal role of Arg-635 at the entrance of the binding pocket in HCN2, either causing stabilizing cation-π interactions with the aromatic ring in N 6-Phe-cAMP or N 6-Bn-cAMP or a steric clash with the aromatic ring in N 6-Bnz-cAMP. A reduced apparent affinity of N 6-Phe-cAMP toward the variants R635A and R635E strengthened that notion. We conclude that some PKA activators also effectively activate HCN2 channels. Hence, when studying PKA-mediated cAMP signaling with cAMP derivatives in a native environment, activation of HCN channels should be considered.
Collapse
Affiliation(s)
- Tim Leypold
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany
| | - Felix Spiegelhalter
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | | | - Tina Schwabe
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing, Jülich Supercomputing Centre and Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jana Kusch
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| |
Collapse
|
35
|
León-Aparicio D, Salvador C, Aparicio-Trejo OE, Briones-Herrera A, Pedraza-Chaverri J, Vaca L, Sampieri A, Padilla-Flores T, López-González Z, León-Contreras JC, Hernández-Pando R, Escobar LI. Novel Potassium Channels in Kidney Mitochondria: The Hyperpolarization-Activated and Cyclic Nucleotide-Gated HCN Channels. Int J Mol Sci 2019; 20:ijms20204995. [PMID: 31601020 PMCID: PMC6834191 DOI: 10.3390/ijms20204995] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022] Open
Abstract
Hyperpolarization-activated cationic HCN channels comprise four members (HCN1–4) that control dendritic integration, synaptic transmission and action potential firing. In the kidney, HCN1, HCN2 and HCN3 are differentially expressed and contribute to the transport of sodium, potassium (K+) and ammonium into the nephrons. HCN3 is regulated by K+ diets in the kidney. In this work we performed a proteomic analysis of HCN3 expressed in human embryonic kidney cells (HEK293 cells). More than 50% of the interacting proteins belonged to mitochondria. Therefore, we explored the presence of HCN channels in kidney mitochondria. By immunoblotting and immunogold electron microscopy HCN3 protein expression was found in rat kidney mitochondria; it was also confirmed in human kidney. Patch-clamp recordings of renal mitochondria and mitochondria from HEK293 cells overexpressing HCN1, HCN2 and HCN3 channels, stained with MitoTracker Green FM, indicated that only HCN3 could produce inwardly K+ currents that were inhibited by ZD7288, a specific blocker of HCN channels. Furthermore, ZD7288 caused inhibition of the oxygen consumption coupled to ATP synthesis and hyperpolarization of the inner mitochondrial membrane. In conclusion, we show for the first time that pacemaker HCN channels contribute to K+ transport in mitochondria facilitating the activity of the respiratory chain and ATP synthesis by controlling the inner mitochondrial membrane potential.
Collapse
Affiliation(s)
- Daniel León-Aparicio
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Carolina Salvador
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Alfredo Briones-Herrera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Teresa Padilla-Flores
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Zinaeli López-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Juan C León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| | - Laura I Escobar
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
36
|
Li H, Li D, Wang Y, Huang Z, Xu J, Yang T, Wang L, Tang Q, Cai CL, Huang H, Zhang Y, Chen Y. Nkx2-5 defines a subpopulation of pacemaker cells and is essential for the physiological function of the sinoatrial node in mice. Development 2019; 146:dev.178145. [PMID: 31320323 DOI: 10.1242/dev.178145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
Abstract
The sinoatrial node (SAN), the primary cardiac pacemaker, consists of a head domain and a junction/tail domain that exhibit different functional properties. However, the underlying molecular mechanism defining these two pacemaker domains remains elusive. Nkx2-5 is a key transcription factor essential for the formation of the working myocardium, but it was generally thought to be detrimental to SAN development. However, Nkx2-5 is expressed in the developing SAN junction, suggesting a role for Nkx2-5 in SAN junction development and function. In this study, we present unambiguous evidence that SAN junction cells exhibit unique action potential configurations intermediate to those manifested by the SAN head and the surrounding atrial cells, suggesting a specific role for the junction cells in impulse generation and in SAN-atrial exit conduction. Single-cell RNA-seq analyses support this concept. Although Nkx2-5 inactivation in the SAN junction did not cause a malformed SAN at birth, the mutant mice manifested sinus node dysfunction. Thus, Nkx2-5 defines a population of pacemaker cells in the transitional zone. Despite Nkx2-5 being dispensable for SAN morphogenesis during embryogenesis, its deletion hampers atrial activation by the pacemaker.
Collapse
Affiliation(s)
- Hua Li
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province 350108, PR China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Dainan Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yuzhi Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province 350108, PR China
| | - Jue Xu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Tianfang Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Linyan Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Chen-Leng Cai
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province 350108, PR China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
37
|
Miyake S, Higuchi H, Honda-Wakasugi Y, Fujimoto M, Kawai H, Nagatsuka H, Maeda S, Miyawaki T. Locally injected ivabradine inhibits carrageenan-induced pain and inflammatory responses via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. PLoS One 2019; 14:e0217209. [PMID: 31125368 PMCID: PMC6534329 DOI: 10.1371/journal.pone.0217209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Background Recently, attention has been focused on the role of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the mechanism of and as a treatment target for neuropathic and inflammatory pain. Ivabradine, a blocker of HCN channels, was demonstrated to have an effect on neuropathic pain in an animal model. Therefore, in the present study, we evaluated the effect of ivabradine on inflammatory pain, and under the hypothesis that ivabradine can directly influence inflammatory responses, we investigated its effect in in vivo and in vitro studies. Methods After approval from our institution, we studied male Sprague–Dawley rats aged 8 weeks. Peripheral inflammation was induced by the subcutaneous injection of carrageenan into the hindpaw of rats. The paw-withdrawal threshold (pain threshold) was evaluated by applying mechanical stimulation to the injected site with von Frey filaments. Ivabradine was subcutaneously injected, combined with carrageenan, and its effect on the pain threshold was evaluated. In addition, we evaluated the effects of ivabradine on the accumulation of leukocytes and TNF-alpha expression in the injected area of rats. Furthermore, we investigated the effects of ivabradine on LPS-stimulated production of TNF-alpha in incubated mouse macrophage-like cells. Results The addition of ivabradine to carrageenan increased the pain threshold lowered by carrageenan injection. Both lamotrigine and forskolin, activators of HCN channels, significantly reversed the inhibitory effect of ivabradine on the pain threshold. Ivabradine inhibited the carrageenan-induced accumulation of leukocytes and TNF-alpha expression in the injected area. Furthermore, ivabradine significantly inhibited LPS-stimulated production of TNF-alpha in the incubated cells. Conclusion The results of the present study demonstrated that locally injected ivabradine is effective against carrageenan-induced inflammatory pain via HCN channels. Its effect was considered to involve not only an action on peripheral nerves but also an anti-inflammatory effect.
Collapse
Affiliation(s)
- Saki Miyake
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Higuchi
- Department of Dental Anesthesiology, Okayama University Hospital, Okayama, Japan
| | - Yuka Honda-Wakasugi
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Maki Fujimoto
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shigeru Maeda
- Department of Dental Anesthesiology, Okayama University Hospital, Okayama, Japan
| | - Takuya Miyawaki
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|
38
|
Hydrophobic alkyl chains substituted to the 8-position of cyclic nucleotides enhance activation of CNG and HCN channels by an intricate enthalpy - entropy compensation. Sci Rep 2018; 8:14960. [PMID: 30297855 PMCID: PMC6175941 DOI: 10.1038/s41598-018-33050-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are tetrameric non-specific cation channels in the plasma membrane that are activated by either cAMP or cGMP binding to specific binding domains incorporated in each subunit. Typical apparent affinities of these channels for these cyclic nucleotides range from several hundred nanomolar to tens of micromolar. Here we synthesized and characterized novel cAMP and cGMP derivatives by substituting either hydrophobic alkyl chains or similar-sized more hydrophilic heteroalkyl chains to the 8-position of the purine ring with the aim to obtain full agonists of higher potency. The compounds were tested in homotetrameric CNGA2, heterotetrameric CNGA2:CNGA4:CNGB1b and homotetrameric HCN2 channels. We show that nearly all compounds are full agonists and that longer alkyl chains systematically increase the apparent affinity, at the best more than 30 times. The effects are stronger in CNG than HCN2 channels which, however, are constitutively more sensitive to cAMP. Kinetic analyses reveal that the off-rate is significantly slowed by the hydrophobic alkyl chains. Molecular dynamics simulations and free energy calculations suggest that an intricate enthalpy - entropy compensation underlies the higher apparent affinity of the derivatives with the longer alkyl chains, which is shown to result from a reduced loss of configurational entropy upon binding.
Collapse
|
39
|
Cao Y, Chen S, Liang Y, Wu T, Pang J, Liu S, Zhou P. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels by β-blocker carvedilol. Br J Pharmacol 2018; 175:3963-3975. [PMID: 30098004 DOI: 10.1111/bph.14469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/02/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Carvedilol is a clinically effective β-blocker broadly used for treating congestive heart failure (CHF), and several clinical trials have demonstrated that it shows a favourable effect compared with other β-blockers in patients with CHF. The mechanism underlying this beneficial effect of carvedilol compared to other β-blockers is not clearly understood. In addition to β-blockers, inhibitors of hyperpolarization-activated cyclic nucleotide (HCN)-gated channels, which play a critical role in spontaneous rhythmic activity in the heart, have also been proposed to be suitable drugs for reducing heart rate and, therefore, beneficial for treating CHF. In the present study, we investigated the effect of carvedilol on HCN channels. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings were used to assess the effect of carvedilol on currents from wild-type and mutant HCN1, HCN2 and HCN4 channels expressed in CHO cells. KEY RESULTS Carvedilol was the only β-blocker tested that showed inhibitory effects on the major sinoatrial HCN channel isoform HCN4. Carvedilol inhibited HCN4 in a concentration-dependent manner with an EC50 of 4.4 μM. In addition, carvedilol also inhibited HCN1 and HCN2 channels. Carvedilol blocked HCN channels by decelerating the rate of channel activation and increasing that of deactivation, and shifted the voltage-dependence of activation leftwards. Our data also showed that carvedilol, unlike other inhibitors of this channel (ivabradine and ZD7288), is not an 'open-channel' inhibitor of HCN4. CONCLUSIONS AND IMPLICATIONS Carvedilol is a negative gating modulator of HCN channels. It represents a novel structure for future drug design of HCN channel inhibitors.
Collapse
Affiliation(s)
- Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shujun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Tian G, Sun Y, Liu S, Li C, Chen S, Qiu R, Zhang X, Li Y, Li M, Shang H. Therapeutic Effects of Wenxin Keli in Cardiovascular Diseases: An Experimental and Mechanism Overview. Front Pharmacol 2018; 9:1005. [PMID: 30233380 PMCID: PMC6134428 DOI: 10.3389/fphar.2018.01005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the major public health problem and a leading cause of morbidity and mortality on a global basis. Wenxin Keli (WXKL), a formally classical Chinese patent medicine with obvious efficacy and favorable safety, plays a great role in the management of patients with CVDs. Accumulating evidence from various animal and cell studies has showed that WXKL could protect myocardium and anti-arrhythmia against CVDs. WXKL exhibited its cardioprotective roles by inhibiting inflammatory reaction, decreasing oxidative stress, regulating vasomotor disorders, lowering cell apoptosis, and protection against endothelial injure, myocardial ischemia, cardiac fibrosis, and cardiac hypertrophy. Besides, WXKL could effectively shorten the QRS and Q-T intervals, decrease the incidence of atrial/ventricular fibrillation and the number of ventricular tachycardia episodes, improve the severity of arrhythmias by regulating various ion channels with different potencies, mainly comprising peak sodium current (INa), late sodium current (INaL), transient outward potassium current (Ito), L-type calcium current (ICaL), and pacemaker current (If).
Collapse
Affiliation(s)
- Guihua Tian
- Chinese Cochrane Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chengyu Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shiqi Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruijin Qiu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Youping Li
- Chinese Cochrane Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Integration of Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
41
|
Insights into the molecular mechanism for hyperpolarization-dependent activation of HCN channels. Proc Natl Acad Sci U S A 2018; 115:E8086-E8095. [PMID: 30076228 DOI: 10.1073/pnas.1805596115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are both voltage- and ligand-activated membrane proteins that contribute to electrical excitability and pace-making activity in cardiac and neuronal cells. These channels are members of the voltage-gated Kv channel superfamily and cyclic nucleotide-binding domain subfamily of ion channels. HCN channels have a unique feature that distinguishes them from other voltage-gated channels: the HCN channel pore opens in response to hyperpolarizing voltages instead of depolarizing voltages. In the canonical model of electromechanical coupling, based on Kv channels, a change in membrane voltage activates the voltage-sensing domains (VSD) and the activation energy passes to the pore domain (PD) through a covalent linker that connects the VSD to the PD. In this investigation, the covalent linkage between the VSD and PD, the S4-S5 linker, and nearby regions of spHCN channels were mutated to determine the functional role each plays in hyperpolarization-dependent activation. The results show that: (i) the S4-S5 linker is not required for hyperpolarization-dependent activation or ligand-dependent gating; (ii) the S4 C-terminal region (S4C-term) is not necessary for ligand-dependent gating but is required for hyperpolarization-dependent activation and acts like an autoinhibitory domain on the PD; (iii) the S5N-term region is involved in VSD-PD coupling and holding the pore closed; and (iv) spHCN channels have two voltage-dependent processes, a hyperpolarization-dependent activation and a depolarization-dependent recovery from inactivation. These results are inconsistent with the canonical model of VSD-PD coupling in Kv channels and elucidate the mechanism for hyperpolarization-dependent activation of HCN channels.
Collapse
|
42
|
Sunkara MR, Schwabe T, Ehrlich G, Kusch J, Benndorf K. All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner. J Gen Physiol 2018; 150:1261-1271. [PMID: 29959170 PMCID: PMC6122924 DOI: 10.1085/jgp.201711935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023] Open
Abstract
HCN pacemaker channels are dually gated by hyperpolarizing voltages and cyclic nucleotide binding. Sunkara et al. show that each of the four binding sites promotes channel opening, most likely by exerting a turning momentum on the tetrameric intracellular gating ring. Hyperpolarization-activated cyclic nucleotide–modulated (HCN) channels are tetramers that elicit electrical rhythmicity in specialized brain neurons and cardiomyocytes. The channels are dually activated by voltage and binding of cyclic adenosine monophosphate (cAMP) to their four cyclic nucleotide-binding domains (CNBDs). Here we analyze the effects of cAMP binding to different concatemers of HCN2 channel subunits, each having a defined number of functional CNBDs. We show that each liganded CNBD promotes channel activation in an additive manner and that, in the special case of two functional CNBDs, functionality does not depend on the arrangement of the subunits. Correspondingly, the reverse process of deactivation is slowed by progressive liganding, but only if four and three ligands as well as two ligands in trans position (opposite to each other) are bound. In contrast, two ligands bound in cis positions (adjacent to each other) and a single bound ligand do not affect channel deactivation. These results support an activation mechanism in which each single liganded CNBD causes a turning momentum on the tetrameric ring-like structure formed by all four CNBDs and that at least two liganded subunits in trans positions are required to maintain activation.
Collapse
Affiliation(s)
- Mallikarjuna Rao Sunkara
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tina Schwabe
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gunter Ehrlich
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
43
|
Gross C, Saponaro A, Santoro B, Moroni A, Thiel G, Hamacher K. Mechanical transduction of cytoplasmic-to-transmembrane-domain movements in a hyperpolarization-activated cyclic nucleotide-gated cation channel. J Biol Chem 2018; 293:12908-12918. [PMID: 29936413 PMCID: PMC6102142 DOI: 10.1074/jbc.ra118.002139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/05/2018] [Indexed: 01/26/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide–gated cation (HCN) channels play a critical role in the control of pacemaking in the heart and repetitive firing in neurons. In HCN channels, the intracellular cyclic nucleotide–binding domain (CNBD) is connected to the transmembrane portion of the channel (TMPC) through a helical domain, the C-linker. Although this domain is critical for mechanical signal transduction, the conformational dynamics in the C-linker that transmit the nucleotide-binding signal to the HCN channel pore are unknown. Here, we use linear response theory to analyze conformational changes in the C-linker of the human HCN1 protein, which couple cAMP binding in the CNBD with gating in the TMPC. By applying a force to the tip of the so-called “elbow” of the C-linker, the coarse-grained calculations recapitulate the same conformational changes triggered by cAMP binding in experimental studies. Furthermore, in our simulations, a displacement of the C-linker parallel to the membrane plane (i.e. horizontally) induced a rotational movement resulting in a distinct tilting of the transmembrane helices. This movement, in turn, increased the distance between the voltage-sensing S4 domain and the surrounding transmembrane domains and led to a widening of the intracellular channel gate. In conclusion, our computational approach, combined with experimental data, thus provides a more detailed understanding of how cAMP binding is mechanically coupled over long distances to promote voltage-dependent opening of HCN channels.
Collapse
Affiliation(s)
- Christine Gross
- Computational Biology and Simulation Group, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Andrea Saponaro
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Bina Santoro
- Department of Neuroscience, Columbia University, New York, New York 10032
| | - Anna Moroni
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Gerhard Thiel
- Membrane Biophysics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Kay Hamacher
- Computational Biology and Simulation Group, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
44
|
Hummert S, Thon S, Eick T, Schmauder R, Schulz E, Benndorf K. Activation gating in HCN2 channels. PLoS Comput Biol 2018; 14:e1006045. [PMID: 29565972 PMCID: PMC5863937 DOI: 10.1371/journal.pcbi.1006045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control electrical rhythmicity in specialized brain and heart cells. We quantitatively analysed voltage-dependent activation of homotetrameric HCN2 channels and its modulation by the second messenger cAMP using global fits of hidden Markovian models to complex experimental data. We show that voltage-dependent activation is essentially governed by two separable voltage-dependent steps followed by voltage-independent opening of the pore. According to this model analysis, the binding of cAMP to the channels exerts multiple effects on the voltage-dependent gating: It stabilizes the open pore, reduces the total gating charge from ~8 to ~5, makes an additional closed state outside the activation pathway accessible and strongly accelerates the ON-gating but not the OFF-gating. Furthermore, the open channel has a much slower computed OFF-gating current than the closed channel, in both the absence and presence of cAMP. Together, these results provide detailed new insight into the voltage- and cAMP-induced activation gating of HCN channels. Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric voltage-controlled ion channels in the cell membrane of specialized nerve and heart cells. Their main function is to generate a so-called pacemaker current which plays a key role in the generation of electrical rhythmicity. A special messenger molecule, cAMP, synthesized within these cells at sympathetic stimulation, can bind to these channels, thereby enhancing channel opening evoked by voltage. The mechanism of this dual activation is still poorly understood. Here we quantified this duality of activation for HCN2 channels by globally fitting hidden Markovian state models to extensive sets of data. We propose that activation of this tetrameric channel requires for a full description only two voltage-dependent steps that are followed by a voltage-independent opening step of the channel pore. According to this model analysis cAMP exerts multiple effects on channel activation: It notably accelerates the charge movement of the voltage-dependent steps and reduces the number of the involved electrical charges. Furthermore, it introduces an additional closed state and stabilizes the open pore. Together, our results provide new insight into the duality of voltage- and cAMP-induced activation of HCN channels.
Collapse
Affiliation(s)
- Sabine Hummert
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Susanne Thon
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Thomas Eick
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Eckhard Schulz
- Fachhochschule Schmalkalden, Fakultät Elektrotechnik, Blechhammer, Schmalkalden, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
45
|
Abstract
Electronic pacemakers have been used in patients with heart rhythm disorders for device-supported pacing. While effective, there are such shortcomings as limited battery life, permanent implantation of catheters, the lack of autonomic neurohumoral responses, and risks of lead dislodging. Here we describe protocols for establishing porcine models of sick sinus syndrome and complete heart block, and the generation of bioartificial pacemaker by delivering a strategically engineered form of hyperpolarization-activated cyclic nucleotide-gated pacemaker channel protein via somatic gene transfer to convert atrial or ventricular muscle cardiomyocytes into nodal-like cells that rhythmically fire action potentials.
Collapse
|
46
|
AAV-mediated conversion of human pluripotent stem cell-derived pacemaker. Biochem Biophys Res Commun 2017; 494:346-351. [DOI: 10.1016/j.bbrc.2017.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
|
47
|
Tae HS, Smith KM, Phillips AM, Boyle KA, Li M, Forster IC, Hatch RJ, Richardson R, Hughes DI, Graham BA, Petrou S, Reid CA. Gabapentin Modulates HCN4 Channel Voltage-Dependence. Front Pharmacol 2017; 8:554. [PMID: 28871229 PMCID: PMC5566583 DOI: 10.3389/fphar.2017.00554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Gabapentin (GBP) is widely used to treat epilepsy and neuropathic pain. There is evidence that GBP can act on hyperpolarization-activated cation (HCN) channel-mediated Ih in brain slice experiments. However, evidence showing that GBP directly modulates HCN channels is lacking. The effect of GBP was tested using two-electrode voltage clamp recordings from human HCN1, HCN2, and HCN4 channels expressed in Xenopus oocytes. Whole-cell recordings were also made from mouse spinal cord slices targeting either parvalbumin positive (PV+) or calretinin positive (CR+) inhibitory neurons. The effect of GBP on Ih was measured in each inhibitory neuron population. HCN4 expression was assessed in the spinal cord using immunohistochemistry. When applied to HCN4 channels, GBP (100 μM) caused a hyperpolarizing shift in the voltage of half activation (V1/2) thereby reducing the currents. Gabapentin had no impact on the V1/2 of HCN1 or HCN2 channels. There was a robust increase in the time to half activation for HCN4 channels with only a small increase noted for HCN1 channels. Gabapentin also caused a hyperpolarizing shift in the V1/2 of Ih measured from HCN4-expressing PV+ inhibitory neurons in the spinal dorsal horn. Gabapentin had minimal effect on Ih recorded from CR+ neurons. Consistent with this, immunohistochemical analysis revealed that the majority of CR+ inhibitory neurons do not express somatic HCN4 channels. In conclusion, GBP reduces HCN4 channel-mediated currents through a hyperpolarized shift in the V1/2. The HCN channel subtype selectivity of GBP provides a unique tool for investigating HCN4 channel function in the central nervous system. The HCN4 channel is a candidate molecular target for the acute analgesic and anticonvulsant actions of GBP.
Collapse
Affiliation(s)
- Han-Shen Tae
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Kelly M Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, CallaghanNSW, Australia.,Hunter Medical Research Institute, New Lambton HeightsNSW, Australia
| | - A Marie Phillips
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia.,School of BioSciences, The University of Melbourne, ParkvilleVIC, Australia
| | - Kieran A Boyle
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | - Melody Li
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Ian C Forster
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Robert J Hatch
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Robert Richardson
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - David I Hughes
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle, CallaghanNSW, Australia.,Hunter Medical Research Institute, New Lambton HeightsNSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
48
|
Liu DL, Wang X, Chu WG, Lu N, Han WJ, Du YK, Hu SJ, Bai ZT, Wu SX, Xie RG, Luo C. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( I h) in large-diameter dorsal root ganglion neurons. Mol Pain 2017; 13:1744806917707127. [PMID: 28587505 PMCID: PMC5466279 DOI: 10.1177/1744806917707127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cervical radiculopathic pain is a very common symptom that may occur with cervical
spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain
and is inadequately treated with current therapies. However, the precise mechanisms
underlying cervical radiculopathic pain-associated mechanical allodynia have remained
elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal
root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in
mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic
changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these
changes are yet to be known. With combination of patch-clamp recording,
immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon
chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root
ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability.
Quantitative analysis of hyperpolarization-activated cation current
(Ih) revealed that Ih was
greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic
pain rats. This increased Ih was supported by the enhanced
expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3
in large dorsal root ganglion neurons. Blockade of Ih with
selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated
with cervical radiculopathic pain. This study sheds new light on the functional plasticity
of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel
mechanism that could underlie the mechanical allodynia associated with cervical
radiculopathy.
Collapse
Affiliation(s)
- Da-Lu Liu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,2 Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Guang Chu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Na Lu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,4 ART Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Wen-Juan Han
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Yi-Kang Du
- 5 The First Brigade, Fourth Military Medical University, Xi'an, China
| | - San-Jue Hu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- 3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Rou-Gang Xie
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
49
|
Du J, Deng S, Pu D, Liu Y, Xiao J, She Q. Age-dependent down-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 4 causes deterioration of canine sinoatrial node function. Acta Biochim Biophys Sin (Shanghai) 2017; 49:400-408. [PMID: 28369243 DOI: 10.1093/abbs/gmx026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Indexed: 12/19/2022] Open
Abstract
The activity of pacemaker cells in the sinoatrial node (SAN) is an indicator of normal sinus rhythm. Clinical studies have revealed that the dysfunction of the SAN progressively increases with aging. In this study, we determined the changes in hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) expression and the relationship between aging and canine SAN dysfunction. The results of cardiac electrophysiological determination revealed that the intrinsic heart rate decreased from 168 ± 11 beats min-1 in young canines to 120 ± 9 beats min-1 in adults and to 88 ± 9 beats min-1 in aged canines. The sinus node recovery time (SNRT) increased from 412 ± 32 ms in young canines to 620 ± 56 ms in adults and to 838 ± 120 ms in aged canines. Corrected SNRT (CSNRT) increased from 55 ± 12 ms in young canines to 117 ± 27 ms in adults and to 171 ± 37 ms in aged canines. These results indicated that SAN function deteriorated with aging in the canine heart. However, histological staining illustrated that fibrosis was not significantly increased with aging in canine SAN. Real-time polymerase chain reaction indicated that the expression of HCN4 mRNA was downregulated in the elderly canine SAN. Similarly, we also verified that HCN4 protein expression within the SAN declined with aging via immunofluorescence staining and western blot analysis. Taken together, our data show that electrical remodeling, related to the down-regulation of HCN4, is responsible for the gradually increased incidence of SAN dysfunction with aging. Our results provide further evidence for explaining the mechanisms of age-related deterioration in the SAN.
Collapse
Affiliation(s)
- Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Di Pu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jun Xiao
- Department of Cardiology, Chongqing Medical Emergency Center, Chongqing 400014, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
50
|
Thon S, Schulz E, Kusch J, Benndorf K. Conformational Flip of Nonactivated HCN2 Channel Subunits Evoked by Cyclic Nucleotides. Biophys J 2016; 109:2268-76. [PMID: 26636938 PMCID: PMC4675818 DOI: 10.1016/j.bpj.2015.08.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric proteins that evoke electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are activated by hyperpolarizing voltage but are also receptors for the intracellular ligand adenosine-3',5'-cyclic monophosphate (cAMP) that enhances activation but is unable to activate the channels alone. Using fcAMP, a fluorescent derivative of cAMP, we analyzed the effect of ligand binding on HCN2 channels not preactivated by voltage. We identified a conformational flip of the channel as an intermediate state following the ligand binding and quantified it kinetically. Globally fitting the time courses of ligand binding and unbinding revealed modest cooperativity among the subunits in the conformational flip. The intensity of this cooperativity, however, was only moderate compared to channels preactivated by hyperpolarizing voltage. These data provide kinetic information about conformational changes proceeding in nonactivated HCN2 channels when cAMP binds. Moreover, our approach bears potential for analyzing the function of any other membrane receptor if a potent fluorescent ligand is available.
Collapse
Affiliation(s)
- Susanne Thon
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Eckhard Schulz
- Fachhochschule Schmalkalden, Fakultät Elektrotechnik, Blechhammer, Schmalkalden, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany.
| |
Collapse
|