1
|
Fu Q, Peng S, Zhu C, Chen L, Sun Y, Li W. Ghrelin induced by ultraviolet B exposure promotes the restoration of diabetic cutaneous wound healing. Skin Res Technol 2024; 30:e13919. [PMID: 39113612 PMCID: PMC11306919 DOI: 10.1111/srt.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) presents impediment to wound healing. While ultraviolet B (UVB) exposure showed therapeutic potential in various skin conditions, its capacity to mediate diabetic wound healing remains unclear. To investigate the efficacy of UVB on wound healing and its underlying basis. MATERIALS AND METHODS Male C57BL/6 mice were subjected to the high-fat diet followed by streptozotocin administration to establish the diabetic model. Upon confirmation of diabetes, full-thickness wounds were inflicted and the treatment group received UVB radiation at 50 mJ/cm2 for 5 min every alternate day for 2 weeks. Wound healing rate was then assessed, accompanied by evaluations of blood glucose, lipid profiles, CD31 expression, and concentrations of ghrelin and leptin. Concurrently, in vitro studies were executed to evaluate the protective role of ghrelin on human umbilical vein endothelial cells (HUVEC) under high glucose (HG) conditions. RESULTS Post UVB exposure, there was a marked acceleration in wound healing in DM mice without alterations in hyperglycemia and lipid profiles. Compared to non-UVB-exposed mice, the UVB group showed enhanced angiogenesis manifested by a surge in CD31 expression. This trend appeared to be in harmony with the elevated ghrelin levels. In vitro experiments indicated that ghrelin significantly enhanced the migratory pace and angiogenic properties of HUVEC under HG-induced stress, potentially mediated by an upregulation in vascular endothelial growth factor expression. CONCLUSION UVB exposure bolstered wound healing in diabetic mice, plausibly mediated through augmented angiogenesis induced by ghrelin secretion. Such findings underscore the vast potential of UVB-induced ghrelin in therapeutic strategies targeting diabetic wound healing.
Collapse
Affiliation(s)
- Qi‐Rui Fu
- Department of EndocrinologyGuangzhou Twelfth People’ s Hospital (Guangzhou Occupational Disease Prevention and Treatment HospitalGuangzhou Otolaryngology‐Head and Neck Surgery Hospital)GuangzhouChina
| | - Sha Peng
- Department of PediatricsAir Force Hospital of PLA Southern TheaterGuangzhouChina
| | - Chang‐Qing Zhu
- Department of EndocrinologyGuangzhou Twelfth People’ s Hospital (Guangzhou Occupational Disease Prevention and Treatment HospitalGuangzhou Otolaryngology‐Head and Neck Surgery Hospital)GuangzhouChina
| | - Lu‐Si Chen
- Department of EndocrinologyGuangzhou Twelfth People’ s Hospital (Guangzhou Occupational Disease Prevention and Treatment HospitalGuangzhou Otolaryngology‐Head and Neck Surgery Hospital)GuangzhouChina
| | - Yan Sun
- Department of EndocrinologyGuangzhou Twelfth People’ s Hospital (Guangzhou Occupational Disease Prevention and Treatment HospitalGuangzhou Otolaryngology‐Head and Neck Surgery Hospital)GuangzhouChina
| | - Wan‐Mei Li
- Department of EndocrinologyGuangzhou Twelfth People’ s Hospital (Guangzhou Occupational Disease Prevention and Treatment HospitalGuangzhou Otolaryngology‐Head and Neck Surgery Hospital)GuangzhouChina
| |
Collapse
|
2
|
Miceli G, Basso MG, Pintus C, Pennacchio AR, Cocciola E, Cuffaro M, Profita M, Rizzo G, Tuttolomondo A. Molecular Pathways of Vulnerable Carotid Plaques at Risk of Ischemic Stroke: A Narrative Review. Int J Mol Sci 2024; 25:4351. [PMID: 38673936 PMCID: PMC11050267 DOI: 10.3390/ijms25084351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The concept of vulnerable carotid plaques is pivotal in understanding the pathophysiology of ischemic stroke secondary to large-artery atherosclerosis. In macroscopic evaluation, vulnerable plaques are characterized by one or more of the following features: microcalcification; neovascularization; lipid-rich necrotic cores (LRNCs); intraplaque hemorrhage (IPH); thin fibrous caps; plaque surface ulceration; huge dimensions, suggesting stenosis; and plaque rupture. Recognizing these macroscopic characteristics is crucial for estimating the risk of cerebrovascular events, also in the case of non-significant (less than 50%) stenosis. Inflammatory biomarkers, such as cytokines and adhesion molecules, lipid-related markers like oxidized low-density lipoprotein (LDL), and proteolytic enzymes capable of degrading extracellular matrix components are among the key molecules that are scrutinized for their associative roles in plaque instability. Through their quantification and evaluation, these biomarkers reveal intricate molecular cross-talk governing plaque inflammation, rupture potential, and thrombogenicity. The current evidence demonstrates that plaque vulnerability phenotypes are multiple and heterogeneous and are associated with many highly complex molecular pathways that determine the activation of an immune-mediated cascade that culminates in thromboinflammation. This narrative review provides a comprehensive analysis of the current knowledge on molecular biomarkers expressed by symptomatic carotid plaques. It explores the association of these biomarkers with the structural and compositional attributes that characterize vulnerable plaques.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
3
|
Tucci M, Cosmai L, Pirovano M, Campisi I, Re SGV, Porta C, Gallieni M, Piergiorgio M. How to deal with renal toxicities from immune-based combination treatments in metastatic renal cell carcinoma. A nephrological consultation for Oncologists. Cancer Treat Rev 2024; 125:102692. [PMID: 38492515 DOI: 10.1016/j.ctrv.2024.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
We are witnessing a revolution in the treatment of metastatic renal cell carcinoma (mRCC). Indeed, several immune-based combinations (ICI [immune checkpoint inhibitor] + ICI, or ICI + antiangiogenic agents) have been approved as first-line therapy for mRCC after demonstrating superior efficacy over the previous standard. Despite all the improvements made, safety remains a critical issue, adverse events (AEs) being the main reason for drug discontinuations or dose reductions, ultimately resulting in an increased risk of losing efficacy. Thus, a good understanding of the AEs associated with the use of immune-based combinations, their prevention, and management, are key in order to maximize therapeutic effectiveness. Among these AEs, renal ones are relatively frequent, but always difficult to be diagnosed, not to take into account that it is often difficult to determine which drug is to blame for such toxicities. Chronic kidney disease (CKD) is a common finding in patients with RCC, either as a pre-existing condition and/or as a consequence of cancer and its treatment; furthermore, CKD, especially in advanced stages and in patients undergoing dialysis, may influence the pharmacokinetics and pharmacodynamics properties of anticancer agents. Finally, managing cancer therapy in kidney transplanted patients is another challenge. In this review, we discuss the therapy management of immune-based combinations in patients with CKD, on dialysis, or transplanted, as well as their renal toxicities, with a focus on their prevention, detection and practical management, taking into account the crucial role of the consulting nephrologist within the multidisciplinary care of these patients.
Collapse
Affiliation(s)
- Marcello Tucci
- Division of Medical Oncology, "Cardinal Massaia" Hospital, Asti, Italy
| | - Laura Cosmai
- Onconephrology Outpatient Clinic, ASST Fatebenefratelli-Sacco, Milan, Italy; Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy.
| | - Marta Pirovano
- Onconephrology Outpatient Clinic, ASST Fatebenefratelli-Sacco, Milan, Italy; Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ilaria Campisi
- Department of Oncology, University of Turin, Turin, Italy.
| | - Sartò Giulia Vanessa Re
- Onconephrology Outpatient Clinic, ASST Fatebenefratelli-Sacco, Milan, Italy; Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy.
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.
| | - Maurizio Gallieni
- Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Messa Piergiorgio
- Division of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Le Moal E, Liu Y, Collerette-Tremblay J, Dumontier S, Fabre P, Molina T, Dort J, Orfi Z, Denault N, Boutin J, Michaud J, Giguère H, Desroches A, Trân K, Ellezam B, Vézina F, Bedard S, Raynaud C, Balg F, Sarret P, Boudreault PL, Scott MS, Denault JB, Marsault E, Feige JN, Auger-Messier M, Dumont NA, Bentzinger CF. Apelin stimulation of the vascular skeletal muscle stem cell niche enhances endogenous repair in dystrophic mice. Sci Transl Med 2024; 16:eabn8529. [PMID: 38507466 DOI: 10.1126/scitranslmed.abn8529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jasmin Collerette-Tremblay
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nicolas Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Hugo Giguère
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Desroches
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Kien Trân
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Benjamin Ellezam
- CHU Sainte-Justine Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - François Vézina
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sonia Bedard
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Catherine Raynaud
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frederic Balg
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Bernard Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Eric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mannix Auger-Messier
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - C Florian Bentzinger
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
5
|
Metwally K, Abo-Dya NE. Pyrrolo[2,3-D]Pyrimidines as EGFR and VEGFR Kinase Inhibitors: A Comprehensive SAR Review. Curr Med Chem 2024; 31:5918-5936. [PMID: 37581522 DOI: 10.2174/0929867331666230815115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Tyrosine kinases are implicated in a wide array of cellular physiological processes, including cell signaling. The discovery of the BCR-ABL tyrosine kinase inhibitor imatinib and its FDA approval in 2001 paved the way for the development of small molecule chemical entities of diverse structural backgrounds as tyrosine kinase inhibitors for the treatment of various ailments. Two of the most prominent tyrosine kinases as drug targets are the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), as evidenced by the clinical success of their many inhibitors in the drug market. Among several other physiological roles, EGFR regulates epithelial tissue development and homeostasis, while VEGFR regulates tumor-induced angiogenesis. The pyrrolo[2,3-d]pyrimidine nucleus represents a deaza-isostere of adenine, the nitrogenous base of ATP. The recent introduction of many pyrrolo[2,3-d]pyrimidines to the drug market as tyrosine kinase inhibitors makes them a hot topic in the medicinal chemistry research area at the present time. This review article comprehensively sheds light on the structure-activity relationship (SAR) of pyrrolo[2,3-d]pyrimidines as EGFR and VEGFR tyrosine kinase inhibitors, aiming to provide help medicinal chemists in the design of future pyrrolopyrimidine kinase inhibitors.
Collapse
Affiliation(s)
- Kamel Metwally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk 71491, Saudi Arabia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
6
|
Le Guennec L, Weiss N. Blood-brain barrier dysfunction in intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2023; 3:303-312. [PMID: 38028637 PMCID: PMC10658046 DOI: 10.1016/j.jointm.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 12/01/2023]
Abstract
The central nervous system is characterized by a peculiar vascularization termed blood-brain barrier (BBB), which regulates the exchange of cells and molecules between the cerebral tissue and the whole body. BBB dysfunction is a life-threatening condition since its presence corresponds to a marker of severity in most diseases encountered in the intensive care unit (ICU). During critical illness, inflammatory response, cytokine release, and other phenomena activating the brain endothelium contribute to alterations in the BBB and increase its permeability to solutes, cells, nutrients, and xenobiotics. Moreover, patients in the ICU are often old, with underlying acute or chronic diseases, and overly medicated due to their critical condition; these factors could also contribute to the development of BBB dysfunction. An accurate diagnostic approach is critical for the identification of the mechanisms underlying BBB alterations, which should be rapidly managed by intensivists. Several methods were developed to investigate the BBB and assess its permeability. Nevertheless, in humans, exploration of the BBB requires the use of indirect methods. Imaging and biochemical methods can be used to study the abnormal passage of molecules through the BBB. In this review, we describe the structural and functional characteristics of the BBB, present tools and methods for probing this interface, and provide examples of the main diseases managed in the ICU that are related to BBB dysfunction.
Collapse
Affiliation(s)
- Loic Le Guennec
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
| | - Nicolas Weiss
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, Biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris 75013, France
| |
Collapse
|
7
|
Karatsai O, Lehka L, Wojton D, Grabowska AI, Duda MK, Lenartowski R, Redowicz MJ. Unconventional myosin VI in the heart: Involvement in cardiac dysfunction progressing with age. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166748. [PMID: 37169038 DOI: 10.1016/j.bbadis.2023.166748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Hypertrophic cardiomyopathy is the most common cardiovascular disease, which is characterized by structural and functional myocardial abnormalities. It is caused predominantly by autosomal dominant mutations, mainly in genes encoding cardiac sarcomeric proteins, resulting in diverse phenotypical patterns and a heterogenic clinical course. Unconventional myosin VI (MVI) is one of the proteins important for heart function, as it was shown that a point mutation within MYO6 is associated with left ventricular hypertrophy. Previously, we showed that MVI is expressed in the cardiac muscle, where it localizes to the sarcoplasmic reticulum and intercalated discs. Here, we addressed the mechanisms of its involvement in cardiac dysfunction in Snell's waltzer mice (natural MVI knockouts) during heart development. We showed that heart enlargement was already seen in the E14.5 embryos and newborn animals (P0), and was maintained throughout the examined lifespan (up to 12 months). The higher levels of MVI were observed in the hearts of E14.5 embryos and P0 of control heterozygous mice. A search for the mechanisms behind the observed phenotype revealed several changes, accumulation of which resulted in age-progressing heart dysfunction. The main changes that mostly contribute to this functional impairment are the increase in cardiomyocyte proliferation in newborns, disorganization of intercalated discs, and overexpression of SERCA2 in hearts isolated from 12-month-old mice, indicative of functional alterations of sarcoplasmic reticulum. Also, possible aberrations in the heart vascularization, observed in 12-month-old animals could be additional factors responsible for MVI-associated heart dysfunction.
Collapse
Affiliation(s)
- Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Dominika Wojton
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Izabela Grabowska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Monika Katarzyna Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka St., 01-813 Warsaw, Poland.
| | - Robert Lenartowski
- Faculty of Biological and Veterinary Sciences, The Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland.
| | - Maria Jolanta Redowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
8
|
Loilome W, Namwat N, Jusakul A, Techasen A, Klanrit P, Phetcharaburanin J, Wangwiwatsin A. The Hallmarks of Liver Fluke Related Cholangiocarcinoma: Insight into Drug Target Possibility. Recent Results Cancer Res 2023; 219:53-90. [PMID: 37660331 DOI: 10.1007/978-3-031-35166-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor of the biliary tree that is classified into three groups based on its anatomic location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Perihilar CCA is the most common type and accounts for 50-60% of CCA cases. It is followed by distal CCA and then intrahepatic CCA that account for 20-30% and 10-20% of cases, respectively. This chapter discusses the hallmarks of liver fluke related CCA and explores insights into drug target possibilities.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nisana Namwat
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
9
|
Yamaguchi S, Yoshida M, Horie N, Satoh K, Fukuda Y, Ishizaka S, Ogawa K, Morofuji Y, Hiu T, Izumo T, Kawakami S, Nishida N, Matsuo T. Stem Cell Therapy for Acute/Subacute Ischemic Stroke with a Focus on Intraarterial Stem Cell Transplantation: From Basic Research to Clinical Trials. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010033. [PMID: 36671605 PMCID: PMC9854681 DOI: 10.3390/bioengineering10010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Stem cell therapy for ischemic stroke holds great promise for the treatment of neurological impairment and has moved from the laboratory into early clinical trials. The mechanism of action of stem cell therapy includes the bystander effect and cell replacement. The bystander effect plays an important role in the acute to subacute phase, and cell replacement plays an important role in the subacute to chronic phase. Intraarterial (IA) transplantation is less invasive than intraparenchymal transplantation and can provide more cells in the affected brain region than intravenous transplantation. However, transplanted cell migration was reported to be insufficient, and few transplanted cells were retained in the brain for an extended period. Therefore, the bystander effect was considered the main mechanism of action of IA stem cell transplantation. In most clinical trials, IA transplantation was performed during the acute and subacute phases. Although clinical trials of IA transplantation demonstrated safety, they did not demonstrate satisfactory efficacy in improving patient outcomes. To increase efficacy, increased migration of transplanted cells and production of long surviving and effective stem cells would be crucial. Given the lack of knowledge on this subject, we review and summarize the mechanisms of action of transplanted stem cells and recent advancements in preclinical and clinical studies to provide information and guidance for further advancement of acute/subacute phase IA stem cell transplantation therapy for ischemic stroke.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
- Correspondence: ; Tel.: +81-095-819-7375
| | - Michiharu Yoshida
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Hiroshima University, Hiroshima 734-8551, Japan
| | - Katsuya Satoh
- Department of Occupational Therapy Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yuutaka Fukuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shunsuke Ishizaka
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Takeshi Hiu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
10
|
Human Adipose-Derived Stem Cell-Conditioned Medium Promotes Vascularization of Nanostructured Scaffold Transplanted into Nude Mice. NANOMATERIALS 2022; 12:nano12091521. [PMID: 35564230 PMCID: PMC9100239 DOI: 10.3390/nano12091521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022]
Abstract
Several studies have been conducted on the interaction between three-dimensional scaffolds and mesenchymal stem cells for the regeneration of damaged tissues. Considering that stem cells do not survive for sufficient time to directly sustain tissue regeneration, it is essential to develop cell-free systems to be applied in regenerative medicine. In this work, by in vivo experiments, we established that a collagen-nanostructured scaffold, loaded with a culture medium conditioned with mesenchymal stem cells derived from adipose tissue (hASC-CM), exerts a synergic positive effect on angiogenesis, fundamental in tissue regeneration. To this aim, we engrafted athymic BALB-C nude mice with four different combinations: scaffold alone; scaffold with hASCs; scaffold with hASC crude protein extract; scaffold with hASC-CM. After their removal, we verified the presence of blood vessels by optical microscopy and confirmed the vascularization evaluating, by real-time PCR, several vascular growth factors: CD31, CD34, CD105, ANGPT1, ANGPT2, and CDH5. Our results showed that blood vessels were absent in the scaffold grafted alone, while all the other systems appeared vascularized, a finding supported by the over-expression of CD31 and CDH5 mRNA. In conclusion, our data sustain the capability of hASC-CM to be used as a therapeutic cell-free approach for damaged tissue regeneration.
Collapse
|
11
|
Zhou SY, Guo ZN, Zhang DH, Qu Y, Jin H. The Role of Pericytes in Ischemic Stroke: Fom Cellular Functions to Therapeutic Targets. Front Mol Neurosci 2022; 15:866700. [PMID: 35493333 PMCID: PMC9043812 DOI: 10.3389/fnmol.2022.866700] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease causing high rates of disability and fatality. In recent years, the concept of the neurovascular unit (NVU) has been accepted by an increasing number of researchers and is expected to become a new paradigm for exploring the pathogenesis and treatment of IS. NVUs are composed of neurons, endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix. As an important part of the NVU, pericytes provide support for other cellular components and perform a variety of functions, including participating in the maintenance of the normal physiological function of the blood–brain barrier, regulating blood flow, and playing a role in inflammation, angiogenesis, and neurogenesis. Therefore, treatment strategies targeting pericyte functions, regulating pericyte epigenetics, and transplanting pericytes warrant exploration. In this review, we describe the reactions of pericytes after IS, summarize the potential therapeutic targets and strategies targeting pericytes for IS, and provide new treatment ideas for ischemic stroke.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dian-Hui Zhang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Hang Jin,
| |
Collapse
|
12
|
Virumbrales-Muñoz M, Ayuso JM, Loken JR, Denecke KM, Rehman S, Skala MC, Abel EJ, Beebe DJ. Microphysiological model of the renal cell carcinoma to inform anti-angiogenic therapy. Biomaterials 2022; 283:121454. [PMID: 35299086 PMCID: PMC9254636 DOI: 10.1016/j.biomaterials.2022.121454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Renal cell carcinomas are common genitourinary tumors characterized by high vascularization and strong reliance on glycolysis. Despite the many available therapies for renal cell carcinomas, first-line targeted therapies, such as cabozantinib, and durable reaponses are seen in only a small percentage of patients. Yet, little is known about the mechanisms that drive response (or lack thereof). This dearth of knowledge can be explained by the dynamic and complex microenvironment of renal carcinoma, which remains challenging to recapitulate in vitro. Here, we present a microphysiological model of renal cell carcinoma, including a tubular blood vessel model of induced pluripotent stem cell-derived endothelial cells and an adjacent 3D carcinoma model. Our model recapitulated hypoxia, glycolic metabolism, and sprouting angiogenesis. Using our model, we showed that cabozantinib altered cancer cell metabolism and decreased sprouting angiogenesis but did not restore barrier function. This microphysiological model could be helpful to elucidate, through multiple endpoints, the contributions of the relevant environmental components in eliciting a functional response or resistance to therapy in renal cell carcinoma.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jose M Ayuso
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jack R Loken
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Kathryn M Denecke
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Shujah Rehman
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - E Jason Abel
- Department of Urology University of Wisconsin School of Medicine and Public Health, Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
13
|
Xu P, Yang Q, Zhang L, Wu K, Bai Y, Yang H, Zhou H, Lin X, Yang L. Multi-functional SiO 32--releasing hydrogel with bioinspired mechanical properties and biodegradability for vascularized skeletal muscle regeneration. J Mater Chem B 2022; 10:7540-7555. [PMID: 35522939 DOI: 10.1039/d2tb00388k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vascularized skeletal muscle regeneration remains a great medical need but significant challenge. Biomaterial strategies that can facilitate the regeneration of muscle fibers and blood vessels are unavailable. Herein, we report...
Collapse
Affiliation(s)
- Pengcheng Xu
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Qiang Yang
- Center for Health Science and Engineering (CHSE), School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Lin Zhang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Kang Wu
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Yanjie Bai
- Department of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Huilin Yang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Huan Zhou
- Center for Health Science and Engineering (CHSE), School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xiao Lin
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Lei Yang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
- Center for Health Science and Engineering (CHSE), School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
14
|
Feng Y, Deng L, Guo H, Zhao Y, Peng F, Wang G, Yu C. The Anti-Colon Cancer Effects of Essential Oil of Curcuma phaeocaulis Through Tumour Vessel Normalisation. Front Oncol 2021; 11:728464. [PMID: 34765545 PMCID: PMC8576404 DOI: 10.3389/fonc.2021.728464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Background Normalising tumour vessels had become a significant research focus in tumour treatment research in recent years. Curcumae rhizoma (CR) is an essential plant in traditional Chinese medicine as it promotes blood circulation and removes blood stasis. Similarly, CR improves local blood circulation. Purpose We explored the anti-colon cancer effects of essential oil from CR (OCR) by investigating its role in normalising tumour vessels. We also provided a basis for research and development into new anti-cancer drugs. Methods We used colon cancer as a research focus to investigate OCR. We established an in vitro co-culture model of colon cancer cells and human umbilical vein endothelial cells (HUVEC). We also established an in vivo subcutaneous implant colon cancer model in nude mice. These studies allowed us to evaluate the comprehensive effects of OCR in in vivo and in vitro colon cancer and its role in normalising tumour blood vessels. Results In vitro, we found that OCR inhibited Human colon cancer cells (HCT116) and HUVEC cell proliferation and inhibited vascular endothelial growth factor-a (VEGFa) mRNA and protein expression in HUVECs in a co-culture system. Our in vivo studies showed that OCR inhibited colon cancer tumour growth, reduced angiogenesis in tumours and increased vascular endothelial (VE)-cadherin and pericyte coverage in tumour vessels. Conclusions OCR inhibited colon cancer growth both in in vivo and in vitro models, reduced angiogenesis in tumours, improved tumour vessel structures and normalised tumour vessels.
Collapse
Affiliation(s)
- Yewen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hengrui Guo
- Southwest Jiaotong University, Chengdu, China
| | - Yumin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Chenghao Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Derseh HB, Perera KUE, Dewage SNV, Stent A, Koumoundouros E, Organ L, Pagel CN, Snibson KJ. Tetrathiomolybdate Treatment Attenuates Bleomycin-Induced Angiogenesis and Lung Pathology in a Sheep Model of Pulmonary Fibrosis. Front Pharmacol 2021; 12:700902. [PMID: 34744706 PMCID: PMC8570673 DOI: 10.3389/fphar.2021.700902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive chronic lung disease characterized by excessive extracellular matrix (ECM) deposition in the parenchyma of the lung. Accompanying the fibrotic remodeling, dysregulated angiogenesis has been observed and implicated in the development and progression of pulmonary fibrosis. Copper is known to be required for key processes involved in fibrosis and angiogenesis. We therefore hypothesized that lowering bioavailable serum copper with tetrathiomolybdate could be of therapeutic value for treating pulmonary fibrosis. This study aimed to investigate the effect of tetrathiomolybdate on angiogenesis and fibrosis induced in sheep lung segments infused with bleomycin. Twenty sheep received two fortnightly infusions of either bleomycin (3U), or saline (control) into two spatially separate lung segments. A week after the final bleomycin/saline infusions, sheep were randomly assigned into two groups (n = 10 per group) and received twice-weekly intravenous administrations of either 50 mg tetrathiomolybdate, or sterile saline (vehicle control), for 6 weeks. Vascular density, expressed as the percentage of capillary area to the total area of parenchyma, was determined in lung tissue sections immuno-stained with antibodies against CD34 and collagen type IV. The degree of fibrosis was assessed by histopathology scoring of H&E stained sections and collagen content using Masson's trichrome staining. Lung compliance was measured via a wedged bronchoscope procedure prior to and 7 weeks following final bleomycin infusion. In this large animal model, we show that copper lowering by tetrathiomolybdate chelation attenuates both bleomycin-induced angiogenesis and pulmonary fibrosis. Moreover, tetrathiomolybdate treatment downregulates vascular endothelial growth factor (VEGF) expression, and improved lung function in bleomycin-induced pulmonary fibrosis. Tetrathiomolybdate also suppressed the accumulation of inflammatory cells in bronchoalveolar lavage fluid 2 weeks after bleomycin injury. The molecular mechanism(s) underpinning copper modulation of fibrotic pathways is an important area for future investigation, and it represents a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Habtamu B Derseh
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Sasika N Vithana Dewage
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Andrew Stent
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia
| | - Emmanuel Koumoundouros
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Louise Organ
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Charles N Pagel
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ken J Snibson
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Lugo-Cintrón KM, Ayuso JM, Humayun M, Gong MM, Kerr SC, Ponik SM, Harari PM, Virumbrales-Muñoz M, Beebe DJ. Primary head and neck tumour-derived fibroblasts promote lymphangiogenesis in a lymphatic organotypic co-culture model. EBioMedicine 2021; 73:103634. [PMID: 34673450 PMCID: PMC8528684 DOI: 10.1016/j.ebiom.2021.103634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In head and neck cancer, intratumour lymphatic density and tumour lymphangiogenesis have been correlated with lymphatic metastasis, making lymphangiogenesis a promising therapeutic target. However, inter-patient tumour heterogeneity makes it challenging to predict tumour progression and lymph node metastasis. Understanding the lymphangiogenic-promoting factors leading to metastasis (e.g., tumour-derived fibroblasts or TDF), would help develop strategies to improve patient outcomes. METHODS A microfluidic in vitro model of a tubular lymphatic vessel was co-cultured with primary TDF from head and neck cancer patients to evaluate the effect of TDF on lymphangiogenesis. We assessed the length and number of lymphangiogenic sprouts and vessel permeability via microscopy and image analysis. Finally, we characterised lymphatic vessel conditioning by TDF via RT-qPCR. FINDINGS Lymphatic vessels were conditioned by the TDF in a patient-specific manner. Specifically, the presence of TDF induced sprouting, altered vessel permeability, and increased the expression of pro-lymphangiogenic genes. Gene expression and functional responses in the fibroblast-conditioned lymphatic vessels were consistent with the patient tumour stage and lymph node status. IGF-1, upregulated among patients, was targeted to validate our personalised medicine approach. Interestingly, IGF-1 blockade was not effective across different patients. INTERPRETATION The use of lymphatic organotypic models incorporating head and neck TDF provides insight into the pathways leading to lymphangiogenesis in each patient. This model provided a platform to test anti-angiogenic therapeutics and inform of their effectiveness for individual patients. FUNDING NIH R33CA225281. Wisconsin Head and Neck SPORE NIH P50DE026787. NIH R01AI34749.
Collapse
Affiliation(s)
- Karina M Lugo-Cintrón
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - José M Ayuso
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Max M Gong
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, Trine University, Angola, IN, USA
| | - Sheena C Kerr
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - María Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
17
|
Nasution I, Sjahrir H, Ilyas S, Ichwan M. The Effect of Ophiocephalus striatus sp. Extract on Nitric Oxide in Ischemic Stroke Model. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: One of alternative medicine in stroke therapy is Ophiocephalus striatus sp. extract. The nutrients contained in the O. striatus sp. extract, namely amino acids, fatty acids, cuprum, and zinc, are useful for the process of angiogenesis in poststroke patients through increased endothelial nitric oxide synthase.
AIM: We hypothesized that there was an effect of giving O. striatus sp. extract to cerebral angiogenesis process of Sprague Dawley rats ischemic stroke models through the level of NO.
METHODS: This was evidenced by conducting experimental studies on rats ischemic stroke models which were divided into five groups, (a) K (−) group (no ligation, no treatment), (b) K (+) group (ligation, no treatment), (c) P1 group (ligation, 200 mg extract), (d) P2 group (ligation, 400 mg extract), and (e) P3 group (ligation, 800 mg extract). Then blood sample was taken on day 3 to assess levels of NO.
RESULTS: There was increased level of NO in P1 (p = 0.001), P2 (p < 0.001), and P3 (p < 0.001) groups compared to K (+) group. The level of NO increases along with the increasing dose of O. striatus sp. extract. Histological examination revealed that there was formation of new blood vessel in the P1, P2, and P3 groups compared to K (+) group.
CONCLUSION: Our study showed that O. striatus sp. extract improves cerebral angiogenesis in rat models of ischemic stroke.
Collapse
|
18
|
Zhou F, Zhang X, Jiang L, Li S, Chen Y, Wu J. Pseudoginsenoside F11 Enhances the Viability of Random-Pattern Skin Flaps by Promoting TFEB Nuclear Translocation Through AMPK-mTOR Signal Pathway. Front Pharmacol 2021; 12:667524. [PMID: 33995096 PMCID: PMC8116945 DOI: 10.3389/fphar.2021.667524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Random-pattern skin flap is widely used in tissue reconstruction. However, necrosis occurring in the distal part of the flap limits its clinical application to some extent. Activation of autophagy has been considered as an effective approach to enhance the survival of skin flaps. Pseudoginsenoside F11 (PF11), an ocotillol-type saponin, is an important component of Panax quinquefolium which has been shown to confer protection against cerebral ischemia and alleviate oxidative stress. However, it is currently unknown whether PF11 induces autophagy to improve the survival of skin flaps. In this study, we investigated the effects of PF11 on blood flow and tissue edema. The results of histological examination and western blotting showed that PF11 enhanced angiogenesis, alleviated apoptosis and oxidative stress, thereby improving the survival of the flap. Further experiments showed that PF11 promoted nuclear translocation of TFEB and by regulating the phosphorylation of AMPK. In summary, this study demonstrates that PF11 activates autophagy through the AMPK-TFEB signal pathway in skin flaps and it could be a promising strategy for enhancing flap viability.
Collapse
Affiliation(s)
- Feiya Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xian Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liangfu Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Shi Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yiheng Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jianbin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Zhu H, Zhang Y, Zhong Y, Ye Y, Hu X, Gu L, Xiong X. Inflammation-Mediated Angiogenesis in Ischemic Stroke. Front Cell Neurosci 2021; 15:652647. [PMID: 33967696 PMCID: PMC8096981 DOI: 10.3389/fncel.2021.652647] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is the leading cause of disability and mortality in the world, but the pathogenesis of ischemic stroke (IS) is not completely clear and treatments are limited. Mounting evidence indicate that neovascularization is a critical defensive reaction to hypoxia that modulates the process of long-term neurologic recovery after IS. Angiogenesis is a complex process in which the original endothelial cells in blood vessels are differentiated, proliferated, migrated, and finally remolded into new blood vessels. Many immune cells and cytokines, as well as growth factors, are directly or indirectly involved in the regulation of angiogenesis. Inflammatory cells can affect endothelial cell proliferation, migration, and activation by secreting a variety of cytokines via various inflammation-relative signaling pathways and thus participate in the process of angiogenesis. However, the mechanism of inflammation-mediated angiogenesis has not been fully elucidated. Hence, this review aimed to discuss the mechanism of inflammation-mediated angiogenesis in IS and to provide new ideas for clinical treatment of IS.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Tian J, Li J, Yin H, Ma L, Zhang J, Zhai Q, Duan S, Zhang L. In vitro and in vivo uterine metabolic disorders induced by silica nanoparticle through the AMPK signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143152. [PMID: 33139001 DOI: 10.1016/j.scitotenv.2020.143152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Exposure to silica nanoparticles (SiNPs) has been suggested to cause physical disorders, yet the effects of SiNPs on female reproduction have not been illustrated. This study was implemented to explore the reproductive toxicity of SiNPs on female and reveal its underlying mechanisms. Methodologically, the fluorescein isothiocyanate (FITC)-SiNPs were synthesized by coupling with FITC and then used to track the biodistribution of SiNPs in vitro and in vivo. In total, 30 mice were intratracheally injected 0.25 g of FITC-SiNPs, and 6 mice injected with the same volume of saline were used as controls. The results showed that SiNPs penetrated the cellular membrane, triggering apoptosis and inhibiting proliferation, tube formation, and invasion of trophoblast. Mechanistically, SiNPs was demonstrated to dysregulate Fbp2, Cpt1a, Scd1, and Pfkl, and further induced accumulation of pyruvate and fatty acid in mitochondria through the AMPK signaling pathway, which finally activated the Caspase-3-dependent apoptosis. Consistently, the similar alterations of these genes were detected in vivo, and the uterine inflammatory infiltration aggravated with the extension of the observation duration. These results suggested that SiNPs induced trophoblast apoptosis and uterine inflammation, and ultimately caused acute reproductive toxicity on female. The underlying mechanism might be explained by the dysregulation of Fbp2/Cpt1a/Pfkl/Scd1 axis, which promoted the overload of glucose and lipid through the AMPK signaling pathway. These findings were of great significance to guide a comprehensive understanding of the reproductive toxicity of SiNPs as well as the development of environmental standards.
Collapse
Affiliation(s)
- Jiaqi Tian
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Junxia Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Haoyu Yin
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Lan Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Qingfeng Zhai
- School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
21
|
In Vivo Molecular Imaging of the Efficacy of Aminopeptidase N (APN/CD13) Receptor Inhibitor Treatment on Experimental Tumors Using 68Ga-NODAGA-c(NGR) Peptide. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6642973. [PMID: 33778075 PMCID: PMC7972841 DOI: 10.1155/2021/6642973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
Introduction The aminopeptidase N (APN/CD13) receptor plays an important role in the neoangiogenic process and metastatic tumor cell invasion. Clinical and preclinical studies reported that bestatin and actinonin are cytotoxic to APN/CD13-positive tumors and metastases due to their APN/CD13-specific inhibitor properties. Our previous studies have already shown that 68Ga-labeled NGR peptides bind specifically to APN/CD13 expressing tumor cells. The APN/CD13 specificity of 68Ga-NGR radiopharmaceuticals enables the following of the efficacy of antiangiogenic therapy with APN/CD13-specific inhibitors using positron emission tomography (PET). The aim of this in vivo study was to assess the antitumor effect of bestatin and actinonin treatment in subcutaneous transplanted HT1080 and B16-F10 tumor-bearing animal models using 68Ga-NODAGA-c(NGR). Materials and Methods Three days after the inoculation of HT1080 and B16-F10 cells, mice were treated with intraperitoneal injection of bestatin (15 mg/kg) or actinonin (5 mg/kg) for 7 days. On the 5th and 10th day, in vivo PET scans and ex vivo biodistribution studies were performed 90 min after intravenous injection of 5.5 ± 0.2 MBq68Ga-NODAGA-c(NGR). Results Control-untreated HT1080 and B16-F10 tumors were clearly visualized by the APN/CD13-specific 68Ga-NODAGA-c(NGR) radiopharmaceutical. The western blot analysis also confirmed the strong APN/CD13 positivity in the investigated tumors. We found significantly (p ≤ 0.05) lower radiopharmaceutical uptake after bestatin treatment and higher radiotracer accumulation in the actinonin-treated HT1080 tumors. In contrast, significantly lower (p ≤ 0.01) 68Ga-NODAGA-c(NGR) accumulation was observed in both bestatin- and actinonin-treated B16-F10 melanoma tumors compared to the untreated-control tumors. Bestatin inhibited tumor growth and 68Ga-NODAGA-c(NGR) uptake in both tumor models. Conclusion The bestatin treatment is suitable for suppressing the neoangiogenic process and APN/CD13 expression of experimental HT1080 and B16-F10 tumors; furthermore, 68Ga-NODAGA-c(NGR) is an applicable radiotracer for the in vivo monitoring of the efficacy of the APN/CD13 inhibition-based anticancer therapies.
Collapse
|
22
|
Cifarelli V, Beeman SC, Smith GI, Yoshino J, Morozov D, Beals JW, Kayser BD, Watrous JD, Jain M, Patterson BW, Klein S. Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J Clin Invest 2021; 130:6688-6699. [PMID: 33164985 DOI: 10.1172/jci141828] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDData from studies conducted in rodent models have shown that decreased adipose tissue (AT) oxygenation is involved in the pathogenesis of obesity-induced insulin resistance. Here, we evaluated the potential influence of AT oxygenation on AT biology and insulin sensitivity in people.METHODSWe evaluated subcutaneous AT oxygen partial pressure (pO2); liver and whole-body insulin sensitivity; AT expression of genes and pathways involved in inflammation, fibrosis, and branched-chain amino acid (BCAA) catabolism; systemic markers of inflammation; and plasma BCAA concentrations, in 3 groups of participants that were rigorously stratified by adiposity and insulin sensitivity: metabolically healthy lean (MHL; n = 11), metabolically healthy obese (MHO; n = 15), and metabolically unhealthy obese (MUO; n = 20).RESULTSAT pO2 progressively declined from the MHL to the MHO to the MUO group, and was positively associated with hepatic and whole-body insulin sensitivity. AT pO2 was positively associated with the expression of genes involved in BCAA catabolism, in conjunction with an inverse relationship between AT pO2 and plasma BCAA concentrations. AT pO2 was negatively associated with AT gene expression of markers of inflammation and fibrosis. Plasma PAI-1 increased from the MHL to the MHO to the MUO group and was negatively correlated with AT pO2, whereas the plasma concentrations of other cytokines and chemokines were not different among the MHL and MUO groups.CONCLUSIONThese results support the notion that reduced AT oxygenation in individuals with obesity contributes to insulin resistance by increasing plasma PAI-1 concentrations and decreasing AT BCAA catabolism and thereby increasing plasma BCAA concentrations.TRIAL REGISTRATIONClinicalTrials.gov NCT02706262.FUNDINGThis study was supported by NIH grants K01DK109119, T32HL130357, K01DK116917, R01ES027595, P42ES010337, DK56341 (Nutrition Obesity Research Center), DK20579 (Diabetes Research Center), DK052574 (Digestive Disease Research Center), and UL1TR002345 (Clinical and Translational Science Award); NIH Shared Instrumentation Grants S10RR0227552, S10OD020025, and S10OD026929; and the Foundation for Barnes-Jewish Hospital.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Scott C Beeman
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gordon I Smith
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Jun Yoshino
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Darya Morozov
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph W Beals
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Brandon D Kayser
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Bruce W Patterson
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Samuel Klein
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| |
Collapse
|
23
|
VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci 2020; 21:ijms21155294. [PMID: 32722551 PMCID: PMC7432634 DOI: 10.3390/ijms21155294] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Collapse
|
24
|
Monsef F, Artimani T, Ramazani M, Alizadeh Z, Solgi G, Yavangi M, Soleimani Asl S. Effects of adipose- derived stromal vascular fraction on asherman syndrome model. Acta Histochem 2020; 122:151556. [PMID: 32622423 DOI: 10.1016/j.acthis.2020.151556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
Asherman's syndrome (AS) is an endometrial damage that results in infertility in women. Although stem cell therapy has been introduced as a potential treatment for this syndrome, its use in clinical settings remains challenging because of the likelihood of contamination and cell differentiation. Herein, we investigated the effects of adipose-derived stromal vascular fraction (SVF) transplantation on proliferation and angiogenesis in the endometrium in an AS model. The AS model was induced using scratch method in adult male Wistar rats, and SVF (5 × 10 (Simsir et al., 2019) cells) was locally administered into the damaged horns. Two weeks after cell transplantation, endometrial thickness, fibrosis, and expression of vascular endothelial growth factor (VEGF) were assessed by Hematoxylin & Eosin, Masson's trichrome, and immunofluorescence staining, respectively. We found thin endometrium, increased fibrosis, and decreased VEGF following AS induction all of which were reversed after SVF transplantation. We concluded that the local injection of SVF may serve as an effective alternative therapy for AS.
Collapse
|
25
|
Exposure to Zinc Oxide Nanoparticles Disrupts Endothelial Tight and Adherens Junctions and Induces Pulmonary Inflammatory Cell Infiltration. Int J Mol Sci 2020; 21:ijms21103437. [PMID: 32414036 PMCID: PMC7279309 DOI: 10.3390/ijms21103437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) are frequently encountered nanomaterials in our daily lives. Despite the benefits of ZnONPs in a variety of applications, many studies have shown potential health hazards of exposure to ZnONPs. We have shown that oropharyngeal aspiration of ZnONPs in mice increases lung inflammation. However, the detailed mechanisms underlying pulmonary inflammatory cell infiltration remain to be elucidated. Endothelium functions as a barrier between the blood stream and the blood vessel wall. Endothelial barrier dysfunction may increase infiltration of immune cells into the vessel wall and underlying tissues. This current study examined the effects of ZnONPs exposure on endothelial barriers. ZnONPs exposure increased leukocyte infiltration in the mouse lungs. In endothelial cells, ZnONPs reduced the continuity of tight junction proteins claudin-5 and zonula occludens-1 (ZO-1) at the cell junctions. ZnONPs induced adherens junction protein VE-cadherin internalization from membrane to cytosol and dissociation with β-catenin, leading to reduced and diffused staining of VE-cadherin and β-catenin at cell junctions. Our results demonstrated that ZnONPs disrupted both tight and adherens junctions, compromising the integrity and stability of the junction network, leading to inflammatory cell infiltration. Thus, ZnONPs exposure in many different settings should be carefully evaluated for vascular effects and subsequent health impacts.
Collapse
|
26
|
Jana S, Madhu Krishna B, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. SOX9: The master regulator of cell fate in breast cancer. Biochem Pharmacol 2020; 174:113789. [PMID: 31911091 PMCID: PMC9048250 DOI: 10.1016/j.bcp.2019.113789] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
SRY-related high-mobility group box 9 (SOX9) is an indispensable transcription factor that regulates multiple developmental pathways related to stemness, differentiation, and progenitor development. Previous studies have demonstrated that the SOX9 protein directs pathways involved in tumor initiation, proliferation, migration, chemoresistance, and stem cell maintenance, thereby regulating tumorigenesis as an oncogene. SOX9 overexpression is a frequent event in breast cancer (BC) subtypes. Of note, the molecular mechanisms and functional regulation underlying SOX9 upregulation during BC progression are still being uncovered. The focus of this review is to appraise recent advances regarding the involvement of SOX9 in BC pathogenesis. First, we provide a general overview of SOX9 structure and function, as well as its involvement in various kinds of cancer. Next, we discuss pathways of SOX9 regulation, particularly its miRNA-mediated regulation, in BC. Finally, we describe the involvement of SOX9 in BC pathogenesis via its regulation of pathways involved in regulating cancer hallmarks, as well as its clinical and therapeutic importance. In general, this review article aims to serve as an ample source of knowledge on the involvement of SOX9 in BC progression. Targeting SOX9 activity may improve therapeutic strategies to treat BC, but precisely inhibiting SOX9 using drugs and/or small peptides remains a huge challenge for forthcoming cancer research.
Collapse
Affiliation(s)
- Samir Jana
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
27
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
28
|
Zhou K, Chen H, Lin J, Xu H, Wu H, Bao G, Li J, Deng X, Shui X, Gao W, Ding J, Xiao J, Xu H. FGF21 augments autophagy in random-pattern skin flaps via AMPK signaling pathways and improves tissue survival. Cell Death Dis 2019; 10:872. [PMID: 31740658 PMCID: PMC6861244 DOI: 10.1038/s41419-019-2105-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Random-pattern skin flap is commonly used for surgical tissue reconstruction due to its ease and lack of axial vascular limitation. However, ischemic necrosis is a common complication, especially in distal parts of skin flaps. Previous studies have shown that FGF21 can promote angiogenesis and protect against ischemic cardiovascular disease, but little is known about the effect of FGF21 on flap survival. In this study, using a rat model of random skin flaps, we found that the expression of FGF21 is significantly increased after establishment skin flaps, suggesting that FGF21 may exert a pivotal effect on flap survival. We conducted experiments to elucidate the role of FGF21 in this model. Our results showed that FGF21 directly increased the survival area of skin flaps, blood flow intensity, and mean blood vessel density through enhancing angiogenesis, inhibiting apoptosis, and reducing oxidative stress. Our studies also revealed that FGF21 administration leads to an upregulation of autophagy, and the beneficial effects of FGF21 were reversed by 3-methyladenine (3MA), which is a well-known inhibitor of autophagy, suggesting that autophagy plays a central role in FGF21’s therapeutic benefit on skin flap survival. In our mechanistic investigation, we found that FGF21-induced autophagy enhancement is mediated by the dephosphorylation and nuclear translocation of TFEB; this effect was due to activation of AMPK-FoxO3a-SPK2-CARM1 and AMPK-mTOR signaling pathways. Together, our data provides novel evidence that FGF21 is a potent modulator of autophagy capable of significantly increasing random skin flap viability, and thus may serve as a promising therapy for clinical use.
Collapse
Affiliation(s)
- Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Huanwen Chen
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jinti Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Guodong Bao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaolong Shui
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
29
|
Wang L, Law HKW. Immune Complexes Impaired Glomerular Endothelial Cell Functions in Lupus Nephritis. Int J Mol Sci 2019; 20:ijms20215281. [PMID: 31652980 PMCID: PMC6862593 DOI: 10.3390/ijms20215281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Lupus nephritis (LN) is one of the most common and severe complications of lupus. However, the mechanisms for renal damage have not been well elucidated. There are evidences show that glomerular endothelial cells (GECs) are damaged in LN. Immune complexes can deposit in subendothelial area and could affect GEC functions. In the present study, we used heat-aggregated gamma globulin (HAGG) to simulate immune complexes and investigated their effects on GEC functions. Our results revealed that HAGG impaired different aspect of the GEC functions. HAGG changed cell morphology, upregulated the expression of active caspase-3, inhibited angiogenesis, and increased NO production in GECs. These results provide new clues for the mechanisms of renal damage and the pathology of LN.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
30
|
Duran EK, Cook NR, Bobadilla M, Kim E, Manson JE, Buring JE, Ridker PM, Pradhan AD. Plasma Placental Growth Factor Concentrations Are Elevated Well in Advance of Type 2 Diabetes Mellitus Onset: Prospective Data From the WHS. J Am Heart Assoc 2019; 8:e012790. [PMID: 31322059 PMCID: PMC6761678 DOI: 10.1161/jaha.119.012790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Pathologic angiogenesis is a hallmark of type 2 diabetes mellitus (T2DM) microvascular complications and may modulate adipogenesis and precede the onset of clinical diabetes mellitus; however, longitudinal data are unavailable. Placental growth factor is a potent proangiogenic factor that stimulates the formation of mature and durable vessels but is understudied in human diseases. Methods and Results We conducted a prospective case‐cohort study of baseline placental growth factor and incident T2DM within the WHS (Women's Health Study). A random sample of incident T2DM cases (n=491) occurring over a 15‐year follow‐up period was selected and compared with a reference subcohort (n=561). Case subjects were matched to the reference risk set on 5‐year age groups and race. All subjects in this analysis were required to have a hemoglobin A1c <6.5% at WHS enrollment. Median baseline levels of placental growth factor were higher in case subjects compare to the reference subcohort (18.0 pg/mL versus 17.2 pg/mL) but were only weakly correlated with glycemic measures and not associated with obesity. The risk of diabetes mellitus increased across placental growth factor quartile in the base model (hazard ratios, 1.00, 1.14, 1.46, and 2.14; P‐trend<0.001) and in multivariable‐adjusted models accounting for clinical T2DM risk factors (hazard ratios, 1.00, 1.17, 1.45, and 2.61; P‐trend<0.001). These findings were not substantially altered by further adjustment for high‐sensitivity C‐reactive protein, hemoglobin A1c, or fasting insulin and remained robust in sensitivity analyses excluding those diagnosed within 2 years of enrollment and those with baseline hemoglobin A1c ≥6.0%. Conclusions Elevated placental growth factor levels are associated with future T2DM independent of traditional risk factors, measures of glycemia, insulin resistance, and high‐sensitivity C‐reactive protein. These prospective data suggest that pathologic angiogenesis may occur well before the clinical onset of T2DM and thus may have relevance to vascular complications of this disease. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00000479.
Collapse
Affiliation(s)
- Edward K Duran
- Division of Preventive Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Nancy R Cook
- Division of Preventive Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | | | - Eunjung Kim
- Division of Preventive Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - JoAnn E Manson
- Division of Preventive Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Julie E Buring
- Division of Preventive Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Paul M Ridker
- Division of Preventive Medicine Brigham and Women's Hospital Harvard Medical School Boston MA.,Division of Cardiovascular Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Aruna D Pradhan
- Division of Preventive Medicine Brigham and Women's Hospital Harvard Medical School Boston MA.,Division of Cardiovascular Medicine VA Boston Medical Center Boston MA
| |
Collapse
|
31
|
Nguyen T, Duchesne L, Sankara Narayana GHN, Boggetto N, Fernig DD, Uttamrao Murade C, Ladoux B, Mège RM. Enhanced cell-cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk. Oncogene 2019; 38:6283-6300. [PMID: 31312021 DOI: 10.1038/s41388-019-0875-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
N-cadherin adhesion has been reported to enhance cancer and neuronal cell migration either by mediating actomyosin-based force transduction or initiating fibroblast growth factor receptor (FGFR)-dependent biochemical signalling. Here we show that FGFR1 reduces N-cadherin-mediated cell migration. Both proteins are co-stabilised at cell-cell contacts through direct interaction. As a consequence, cell adhesion is strengthened, limiting the migration of cells on N-cadherin. Both the inhibition of migration and the stabilisation of cell adhesions require the FGFR activity stimulated by N-cadherin engagement. FGFR1 stabilises N-cadherin at the cell membrane through a pathway involving Src and p120. Moreover, FGFR1 stimulates the anchoring of N-cadherin to actin. We found that the migratory behaviour of cells depends on an optimum balance between FGFR-regulated N-cadherin adhesion and actin dynamics. Based on these findings we propose a positive feed-back loop between N-cadherin and FGFR at adhesion sites limiting N-cadherin-based single-cell migration.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000, Rennes, France
| | | | - Nicole Boggetto
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - David D Fernig
- Department of Biochemistry, Institute of Integrated Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Benoit Ladoux
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France.
| |
Collapse
|
32
|
Ziegler CG, Van Sloun R, Gonzalez S, Whitney KE, DePhillipo NN, Kennedy MI, Dornan GJ, Evans TA, Huard J, LaPrade RF. Characterization of Growth Factors, Cytokines, and Chemokines in Bone Marrow Concentrate and Platelet-Rich Plasma: A Prospective Analysis. Am J Sports Med 2019; 47:2174-2187. [PMID: 31034242 DOI: 10.1177/0363546519832003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) and bone marrow concentrate (BMC) are orthobiologic therapies with numerous growth factors and other bioactive molecules. Before the clinical utility of PRP and BMC is optimized as a combined therapy or monotherapy, an improved understanding of the components and respective concentrations is necessary. PURPOSE To prospectively measure and compare anabolic, anti-inflammatory, and proinflammatory growth factors, cytokines, and chemokines in bone marrow aspirate (BMA), BMC, whole blood, leukocyte-poor PRP (LP-PRP), and leukocyte-rich PRP (LR-PRP) from samples collected and processed concurrently on the same day from patients presenting for elective knee surgery. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Patients presenting for elective knee surgery were prospectively enrolled over a 3-week period. Whole blood from peripheral venous draw and BMA from the posterior iliac crest were immediately processed via centrifugation and manual extraction methods to prepare LR-PRP, LP-PRP, and BMC samples, respectively. BMA, BMC, whole blood, LR-PRP, and LP-PRP samples were immediately assayed and analyzed to measure protein concentrations. RESULTS BMC had a significantly higher interleukin 1 receptor antagonist (IL-1Ra) concentration than all other preparations (all P < .0009). LR-PRP also had a significantly higher IL-1Ra concentration than LP-PRP (P = .0006). There were no significant differences in IL-1Ra concentration based on age, sex, body mass index, or chronicity of injury in all preparations. LR-PRP had significantly higher concentrations of platelet-derived growth factor AA (PDGF-AA) and PDGF-AB/BB than all other preparations (all P < .0006). LR-PRP also had significantly higher concentrations of matrix metalloproteinase 1 (MMP-1) and soluble CD40 ligand than all other preparations (all P < .004). LP-PRP had significantly higher concentrations of MMPs, namely MMP-2, MMP-3, and MMP-12, than all other preparations (all P < .007). CONCLUSION BMC is a clinically relevant source of anti-inflammatory biologic therapy that may be more effective in treating osteoarthritis and for use as an intra-articular biologic source for augmented healing in the postsurgical inflammatory and healing phases, owing to its significantly higher concentration of IL-1Ra as compared with LR-PRP and LP-PRP. Additionally, LR-PRP had a significantly higher concentration of IL-1Ra than LP-PRP. In cases where increased vascularity and healing are desired for pathological or injured tissues, including muscle and tendon, LR-PRP may be optimal given its higher overall concentrations of PDGF, TGF-β, EGF, VEGF, and soluble CD40 ligand.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grant J Dornan
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | | - Johnny Huard
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | |
Collapse
|
33
|
Le BT, Raguraman P, Kosbar TR, Fletcher S, Wilton SD, Veedu RN. Antisense Oligonucleotides Targeting Angiogenic Factors as Potential Cancer Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:142-157. [PMID: 30594893 PMCID: PMC6307321 DOI: 10.1016/j.omtn.2018.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of death worldwide, and conventional cancer therapies such as surgery, chemotherapy, and radiotherapy do not address the underlying molecular pathologies, leading to inadequate treatment and tumor recurrence. Angiogenic factors, such as EGF, PDGF, bFGF, TGF-β, TGF-α, VEGF, endoglin, and angiopoietins, play important roles in regulating tumor development and metastasis, and they serve as potential targets for developing cancer therapeutics. Nucleic acid-based therapeutic strategies have received significant attention in the last two decades, and antisense oligonucleotide-mediated intervention is a prominent therapeutic approach for targeted manipulation of gene expression. Clinical benefits of antisense oligonucleotides have been recognized by the U.S. Food and Drug Administration, with full or conditional approval of Vitravene, Kynamro, Exondys51, and Spinraza. Herein we review the scope of antisense oligonucleotides that target angiogenic factors toward tackling solid cancers.
Collapse
Affiliation(s)
- Bao T Le
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Prithi Raguraman
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Tamer R Kosbar
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Susan Fletcher
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia.
| |
Collapse
|
34
|
Imaging the Proangiogenic Effects of Cardiovascular Drugs in a Diabetic Model of Limb Ischemia. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:2538909. [PMID: 30863219 PMCID: PMC6378011 DOI: 10.1155/2019/2538909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/03/2018] [Accepted: 10/18/2018] [Indexed: 02/02/2023]
Abstract
Purpose Peripheral artery disease (PAD) causes narrowing of arteries in the limbs, leading to tissue ischemia, gangrene, and eventually limb amputation. The presence of diabetes greatly exacerbates the course of PAD, accounting for the majority of lower limb amputations. Therapeutic strategies focussing on macrovascular repair are less effective in diabetic patients where smaller vessels are affected, and proangiogenic therapies offer a viable adjunct to improve vascularisation in these at risk individuals. The purpose of the current study was to assess the proangiogenic effects of drugs routinely used to treat cardiovascular disease in a diabetic murine model of hind limb ischemia longitudinally using multimodal imaging. Procedures Diabetic mice underwent surgical intervention to induce hind limb ischemia and were treated with simvastatin, metformin, or a combination orally for 28 days and compared to diabetic and nondiabetic mice. Neovascularisation was assessed using [18F]FtRGD PET imaging, and macrovascular volume was assessed by quantitative time of flight MRI. At each imaging time point, VEGF expression and capillary vessel density were quantified using immunohistochemical analysis, and functional recovery and disease progression were assessed. Results Combined use of simvastatin and metformin significantly increased neovascularisation above levels measured with either treatment alone. Early angiogenic events were accurately assessed using PET [18F]FtRGD, showing maximal retention in the ischemic hind limb by day 8, which translated to a sustained increase in vascular volume at later time points. Immunohistochemical analysis shows that combined therapy significantly increased VEGF expression and capillary density (CD31+) in a similar time course and also slowed disease progression while simultaneously improving functional foot use. Conclusions Combined treatment with simvastatin and metformin led to a significant improvement in limb angiogenesis, vascular volume, and sustained functional recovery in a diabetic murine model of HLI. PET imaging with [18F]FtRGD provides a robust method for early detection of these proangiogenic effects preclinically and may be useful for the assessment of proangiogenic therapies used clinically to treat diabetic PAD patients.
Collapse
|
35
|
Yang J. The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc Res 2018; 123:62-67. [PMID: 30594490 DOI: 10.1016/j.mvr.2018.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress, which is defined as an imbalance between proxidant and antioxidant systems, is the essential mechanism involving in the ischemic process. During the early stage of brain ischemia, reactive oxygen species (ROS) are increased. Increased ROS are thought of a consequence of brain ischemia and exacerbating disease due to inducing cell death, apoptosis and senescence by oxidative stress. During brain tissue repair, ROS are act as signaling molecules and may be benefical for regulating angiogenesis and preventing tissue injury. New blood vessel formation is essentially required for rescuing tissue from brain ischemia. In ischemic conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products. ROS-induced angiogenesis involves several signaling pathways. This paper reviewed current understanding of the role of ROS as a mediator and modulator of angiogenesis in brain ischemia.
Collapse
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang 050000, Hebei Province, China.
| |
Collapse
|
36
|
Huang Q, Zhong W, Hu Z, Tang X. A review of the role of cav-1 in neuropathology and neural recovery after ischemic stroke. J Neuroinflammation 2018; 15:348. [PMID: 30572925 PMCID: PMC6302517 DOI: 10.1186/s12974-018-1387-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke starts a series of pathophysiological processes that cause brain injury. Caveolin-1 (cav-1) is an integrated protein and locates at the caveolar membrane. It has been demonstrated that cav-1 can protect blood–brain barrier (BBB) integrity by inhibiting matrix metalloproteases (MMPs) which degrade tight junction proteins. This article reviews recent developments in understanding the mechanisms underlying BBB dysfunction, neuroinflammation, and oxidative stress after ischemic stroke, and focuses on how cav-1 modulates a series of activities after ischemic stroke. In general, cav-1 reduces BBB permeability mainly by downregulating MMP9, reduces neuroinflammation through influencing cytokines and inflammatory cells, promotes nerve regeneration and angiogenesis via cav-1/VEGF pathway, reduces apoptosis, and reduces the damage mediated by oxidative stress. In addition, we also summarize some experimental results that are contrary to the above and explore possible reasons for these differences.
Collapse
Affiliation(s)
- Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China.
| |
Collapse
|
37
|
Poelmann RE, Gittenberger-de Groot AC. Hemodynamics in Cardiac Development. J Cardiovasc Dev Dis 2018; 5:jcdd5040054. [PMID: 30404214 PMCID: PMC6306789 DOI: 10.3390/jcdd5040054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022] Open
Abstract
The beating heart is subject to intrinsic mechanical factors, exerted by contraction of the myocardium (stretch and strain) and fluid forces of the enclosed blood (wall shear stress). The earliest contractions of the heart occur already in the 10-somite stage in the tubular as yet unsegmented heart. With development, the looping heart becomes asymmetric providing varying diameters and curvatures resulting in unequal flow profiles. These flow profiles exert various wall shear stresses and as a consequence different expression patterns of shear responsive genes. In this paper we investigate the morphological alterations of the heart after changing the blood flow by ligation of the right vitelline vein in a model chicken embryo and analyze the extended expression in the endocardial cushions of the shear responsive gene Tgfbeta receptor III. A major phenomenon is the diminished endocardial-mesenchymal transition resulting in hypoplastic (even absence of) atrioventricular and outflow tract endocardial cushions, which might be lethal in early phases. The surviving embryos exhibit several cardiac malformations including ventricular septal defects and malformed semilunar valves related to abnormal development of the aortopulmonary septal complex and the enclosed neural crest cells. We discuss the results in the light of the interactions between several shear stress responsive signaling pathways including an extended review of the involved Vegf, Notch, Pdgf, Klf2, eNos, Endothelin and Tgfβ/Bmp/Smad networks.
Collapse
Affiliation(s)
- Robert E Poelmann
- Department of Animal Sciences and Health, Institute of Biology, Sylvius Laboratory, University of Leiden, Sylviusweg 72, 2333BE Leiden, The Netherlands.
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 20, 2300RC Leiden, The Netherlands.
| | | |
Collapse
|
38
|
Sweeney M, Foldes G. It Takes Two: Endothelial-Perivascular Cell Cross-Talk in Vascular Development and Disease. Front Cardiovasc Med 2018; 5:154. [PMID: 30425990 PMCID: PMC6218412 DOI: 10.3389/fcvm.2018.00154] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
The formation of new blood vessels is a crucial step in the development of any new tissue both during embryogenesis and in vitro models as without sufficient perfusion the tissue will be unable to grow beyond the size where nutrition and oxygenation can be managed by diffusion alone. Endothelial cells are the primary building block of blood vessels and are capable of forming tube like structures independently however they are unable to independently form functional vasculature which is capable of conducting blood flow. This requires support from other structures including supporting perivascular cells and the extracellular matrix. The crosstalk between endothelial cells and perivascular cells is vital in regulating vasculogenesis and angiogenesis and the consequences when this is disrupted can be seen in a variety of congenital and acquired disease states. This review details the mechanisms of vasculogenesis in vivo during embryogenesis and compares this to currently employed in vitro techniques. It also highlights clinical consequences of defects in the endothelial cell-pericyte cross-talk and highlights therapies which are being developed to target this pathway. Improving the understanding of the intricacies of endothelial-pericyte signaling will inform pathophysiology of multiple vascular diseases and allow the development of effective in vitro models to guide drug development and assist with approaches in tissue engineering to develop functional vasculature for regenerative medicine applications.
Collapse
Affiliation(s)
- Mark Sweeney
- Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gabor Foldes
- Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
39
|
Walpole J, Mac Gabhann F, Peirce SM, Chappell JC. Agent-based computational model of retinal angiogenesis simulates microvascular network morphology as a function of pericyte coverage. Microcirculation 2018; 24. [PMID: 28791758 DOI: 10.1111/micc.12393] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Define a role for perivascular cells during developmental retinal angiogenesis in the context of EC Notch1-DLL4 signaling at the multicellular network level. METHODS The retinal vasculature is highly sensitive to growth factor-mediated intercellular signaling. Although EC signaling has been explored in detail, it remains unclear how PC function to modulate these signals that lead to a diverse set of vascular network patterns in health and disease. We have developed an ABM of retinal angiogenesis that incorporates both ECs and PCs to investigate the formation of vascular network patterns as a function of pericyte coverage. We use our model to test the hypothesis that PC modulate Notch1-DLL4 signaling in endothelial cell-endothelial cell interactions. RESULTS Agent-based model (ABM) simulations that include PCs more accurately predict experimentally observed vascular network morphologies than simulations that lack PCs, suggesting that PCs may influence sprouting behaviors through physical blockade of endothelial intercellular connections. CONCLUSIONS This study supports a role for PCs as a physical buffer to signal propagation during vascular network formation-a barrier that may be important for generating healthy microvascular network patterns.
Collapse
Affiliation(s)
- Joseph Walpole
- Department of Biomedical Engineering, University of Virginia, Charlottesvile, VA, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesvile, VA, USA
| | - John C Chappell
- Virginia Tech Carilion Research Institute, Department of Biomedical Engineering and Mechanics, Roanoke, VA, USA
| |
Collapse
|
40
|
Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu L, Hu B. Diverse Functions and Mechanisms of Pericytes in Ischemic Stroke. Curr Neuropharmacol 2018; 15:892-905. [PMID: 28088914 PMCID: PMC5652032 DOI: 10.2174/1570159x15666170112170226] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Every year, strokes take millions of lives and leave millions of individuals living with permanent disabilities. Recently more researchers embrace the concept of the neurovascular unit (NVU), which encompasses neurons, endothelial cells (ECs), pericytes, astrocyte, microglia, and the extracellular matrix. It has been well-documented that NVU emerged as a new paradigm for the exploration of mechanisms and therapies in ischemic stroke. To better understand the complex NVU and broaden therapeutic targets, we must probe the roles of multiple cell types in ischemic stroke. The aims of this paper are to introduce the biological characteristics of brain pericytes and the available evidence on the diverse functions and mechanisms involving the pericytes in the context of ischemic stroke. Methods: Research and online content related to the biological characteristics and pathophysiological roles of pericytes is review. The new research direction on the Pericytes in ischemic stroke, and the potential therapeutic targets are provided. Results: During the different stages of ischemic stroke, pericytes play different roles: 1) On the hyperacute phase of stroke, pericytes constriction and death may be a cause of the no-reflow phenomenon in brain capillaries; 2) During the acute phase, pericytes detach from microvessels and participate in inflammatory-immunological response, resulting in the BBB damage and brain edema. Pericytes also provide benefit for neuroprotection by protecting endothelium, stabilizing BBB and releasing neurotrophins; 3) Similarly, during the later recovery phase of stroke, pericytes also contribute to angiogenesis, neurogenesis, and thereby promote neurological recovery. Conclusion: This emphasis on the NVU concept has shifted the focus of ischemic stroke research from neuro-centric views to the complex interactions within NVU. With this new perspective, pericytes that are centrally positioned in the NVU have been widely studied in ischemic stroke. More work is needed to elucidate the beneficial and detrimental roles of brain pericytes in ischemic stroke that may serve as a basis for potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Elvis Nana Opoku
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingqiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
41
|
Qiu F, Shin Y, Chen D, Cheng R, Chen Q, Zhou K, Larrick JW, Mendelson AR, Ma JX. Anti-angiogenic effect of a humanized antibody blocking the Wnt/β-catenin signaling pathway. Microvasc Res 2018; 119:29-37. [PMID: 29630973 DOI: 10.1016/j.mvr.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/14/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Our previous study demonstrated that Mab2F1, a murine monoclonal antibody blocking the Wnt/β-catenin signaling pathway, has beneficial effects on experimental diabetic retinopathy and choroidal neovascularization (NV). The aforementioned antibody has been humanized. This study evaluated effects of the humanized antibody, H1L1, on NV. METHODS H1L1 was evaluated in the alkali burn-induced corneal NV rat model. Rats with corneal NV were injected subconjunctivally with Mab2F1 or H1L1 using non-specific mouse or human IgG as controls. Corneal NV and opacity were evaluated using corneal NV area and inflammatory index. Expression of angiogenic and inflammatory factors and components of the Wnt/β-catenin pathway in both the corneas of the animal model and human corneal epithelial (HCE) cells exposed to Wnt3a conditioned medium (WCM) were determined by Western blotting and a luciferase-based promoter assay. Cytotoxicities of these antibodies were evaluated by MTT assay. RESULTS H1L1 reduced the area of corneal NV and opacity, similar to Mab2F1. Both Mab2F1 and H1L1 down-regulated the overexpression of angiogenic and inflammatory factors including VEGF, TNF-α and ICAM-1, and blocked the aberrant activation of the Wnt/β-catenin pathway as shown by down-regulation of phosphorylated LRP6, total LRP6 and non-phosphorylated β-catenin in the cornea of the NV model and cultured HCE cells exposed to WCM. Both antibodies also inhibited the transcriptional activity of β-catenin induced by WCM in HCE cells. No toxic effects of the antibodies were observed in cultured HCE cells. CONCLUSIONS H1L1 exhibits anti-angiogenic activities through blocking the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fangfang Qiu
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Younghwa Shin
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | - Rui Cheng
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Qian Chen
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kelu Zhou
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
42
|
Wang C, Wang Q, Gao W, Zhang Z, Lou Y, Jin H, Chen X, Lei B, Xu H, Mao C. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing. Acta Biomater 2018; 69:156-169. [PMID: 29397318 DOI: 10.1016/j.actbio.2018.01.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023]
Abstract
Wound therapy with a rapid healing performance remains a critical clinical challenge. Cellular delivery is considered to be a promising approach to improve the efficiency of healing, yet problems such as compromised cell viability and functionality arise due to the inefficient delivery. Here, we report the efficient delivery of endothelial progenitor cells (EPCs) with a bioactive nanofibrous scaffold (composed of collagen and polycaprolactone and bioactive glass nanoparticles, CPB) for enhancing wound healing. Under the stimulation of CPB nanofibrous system, the viability and angiogenic ability of EPCs were significantly enhanced through the activation of Hif-1α/VEGF/SDF-1α signaling. In vivo, CPB/EPC constructs significantly enhanced the formation of high-density blood vessels by greatly upregulating the expressions of Hif-1α, VEGF, and SDF-1α. Moreover, owing to the increased local delivery of cells and fast neovascularization within the wound site, cell proliferative activity, granulation tissue formation, and collagen synthesis and deposition were greatly promoted by CPB/EPC constructs resulting in rapid re-epithelialization and regeneration of skin appendages. As a result, the synergistic enhancement of wound healing was observed from CPB/EPC constructs, which suggests the highly efficient delivery of EPCs. CPB/EPC constructs may become highly competitive cell-based therapeutic products for efficient impaired wound healing application. This study may also provide a novel strategy to develop bioactive cell therapy constructs for angiogenesis-related regenerative medicine. STATEMENT OF SIGNIFICANCE This paper reported a highly efficient local delivery of EPCs using bioactive glass-based CPB nanofibrous scaffold for enhancing angiogenesis and wound regeneration. In vitro study showed that CPB can promote the proliferation, migration, and tube formation of EPCs through upregulation of the Hif-1α/VEGF/SDF-1α signaling pathway, indicating that the bioactivity and angiogenic ability of EPCs can be highly maintained and promoted by the CPB scaffold. Moreover, CPB/EPC constructs effectively stimulated the regeneration of diabetic wounds with satisfactory vascularization and better healing outcomes in a full-thickness wound model, suggesting that the highly efficient delivery of EPCs to wound site facilitates angiogenesis and further leads to wound healing. The high angiogenic capacity and excellent healing ability make CPB/EPC constructs highly competitive in cell-based therapeutic products for efficient wound repair application.
Collapse
|
43
|
Duran CL, Abbey CA, Bayless KJ. Establishment of a three-dimensional model to study human uterine angiogenesis. Mol Hum Reprod 2018; 24:74-93. [PMID: 29329415 PMCID: PMC6454809 DOI: 10.1093/molehr/gax064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/25/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Can primary human uterine microvascular endothelial cells (UtMVECs) be used as a model to study uterine angiogenic responses in vitro that are relevant in pregnancy? SUMMARY ANSWER UtMVECs demonstrated angiogenic responses when stimulated with proangiogenic factors, including sphingosine 1-phosphate (S1P), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), physiological levels of wall shear stress (WSS), human chorionic gonadotropin (hCG) and various combinations of estrogen and progesterone. WHAT IS KNOWN ALREADY During sprouting angiogenesis, signaling from growth factors and cytokines induces a monolayer of quiescent endothelial cells (ECs) lining the vasculature to degrade the extracellular matrix and invade the surrounding tissue to form new capillaries. During pregnancy and the female reproductive cycle, the uterine endothelium becomes activated and undergoes sprouting angiogenesis to increase the size and number of blood vessels in the endometrium. STUDY DESIGN, SIZE, DURATION The study was designed to examine the angiogenic potential of primary human UtMVECs using the well-characterized human umbilical vein EC (HUVEC) line as a control to compare angiogenic potential. ECs were seeded onto three-dimensional (3D) collagen matrices, supplemented with known proangiogenic stimuli relevant to pregnancy and allowed to invade for 24 h. Sprouting responses were analyzed using manual and automated methods for quantification. PARTICIPANTS/MATERIALS, SETTING, METHODS RT-PCR, Western blot analysis and immunostaining were used to characterize UtMVECs. Angiogenic responses were examined using 3D invasion assays. Western blotting was used to confirm signaling responses after proangiogenic lipid, pharmacological inhibitor, and recombinant lentiviral treatments. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE After ensuring that UtMVECs expressed the proper endothelial markers, we found that UtMVECs invade 3D collagen matrices dose-dependently in response to known proangiogenic stimuli (e.g. S1P, VEGF, bFGF, hCG, estrogen, progesterone and WSS) present during early pregnancy. Invasion responses were positively correlated with phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p42/p44 mitogen-activated protein kinase (ERK). Inhibition of these second messengers significantly impaired sprouting (P < 0.01). Gene silencing of membrane type 1-matrix metalloproteinase using multiple approaches completely abrogated sprouting (P < 0.001). Finally, UtMVECs displayed a unique ability to undergo sprouting in response to hCG, and combined estrogen and progesterone treatment. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The study of uterine angiogenesis in vitro has limitations and any findings many not fully represent the in vivo state. However, these experiments do provide evidence for the ability of UtMVECs to be used in functional sprouting assays in a 3D environment, stimulated by physiological factors that are produced locally within the uterus during early pregnancy. WIDER IMPLICATIONS OF THE FINDINGS We show that UtMVECs can be used reliably to investigate how growth factors, hormones, lipids and other factors, such as flow, affect angiogenesis in the uterus. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH award HL095786 to K.J.B. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
- Interdisciplinary Faculty of Reproductive Biology, Texas A&M University, Mail Stop 2471, College Station, TX 77843, USA
| |
Collapse
|
44
|
Lee JS, Song DW, Park JH, Kim JO, Cho C, Kim DH. miR-374 promotes myocardial hypertrophy by negatively regulating vascular endothelial growth factor receptor-1 signaling. BMB Rep 2018; 50:208-213. [PMID: 27802840 PMCID: PMC5437965 DOI: 10.5483/bmbrep.2017.50.4.165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is an essential cytokine that has functions in the formation of new blood vessels and regression of cardiac hypertrophy. VEGF/VEGF-receptor-1 (VEGFR1) signaling plays a key role in the regression of cardiac hypertrophy, whereas VEGF/VEGFR2 signaling leads to cardiac hypertrophy. In this study, we identified the prohypertrophic role of miR-374 using neonatal rat ventricular myocytes (NRVMs). Our results showed that overexpression of miR-374 activated G protein-coupled receptor-mediated prohypertrophic pathways by the inhibition of VEGFR1-dependent regression pathways. Luciferase assays revealed that miR-374 could directly target the 3'-untranslated regions of VEGFR1 and cGMP-dependent protein kinase-1. Collectively, these findings demonstrated that miR-374 was a novel pro-hypertrophic microRNA functioning to suppress the VEGFR1-mediated regression pathway. [BMB Reports 2017; 50(4): 208-213].
Collapse
Affiliation(s)
- Jong Sub Lee
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Dong Woo Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jei Hyoung Park
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jin Ock Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Chunghee Cho
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
45
|
Lebaschi A, Nakagawa Y, Wada S, Cong GT, Rodeo SA. Tissue-specific endothelial cells: a promising approach for augmentation of soft tissue repair in orthopedics. Ann N Y Acad Sci 2018; 1410:44-56. [PMID: 29265420 DOI: 10.1111/nyas.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Biologics are playing an increasingly significant role in the practice of modern medicine and surgery in general and orthopedics in particular. Cell-based approaches are among the most important and widely used modalities in orthopedic biologics, with mesenchymal stem cells and other multi/pluripotent cells undergoing evaluation in numerous preclinical and clinical studies. On the other hand, fully differentiated endothelial cells (ECs) have been found to perform critical roles in homeostasis of visceral tissues through production of an adaptive panel of so-called "angiocrine factors." This newly discovered function of ECs renders them excellent candidates for novel approaches in cell-based biologics. Here, we present a review of the role of ECs and angiocrine factors in some visceral tissues, followed by an overview of current cell-based approaches and a discussion of the potential applications of ECs in soft tissue repair.
Collapse
Affiliation(s)
- Amir Lebaschi
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Yusuke Nakagawa
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Susumu Wada
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Guang-Ting Cong
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York
| |
Collapse
|
46
|
Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. Int J Mol Sci 2017; 18:ijms18112478. [PMID: 29160845 PMCID: PMC5713444 DOI: 10.3390/ijms18112478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.
Collapse
|
47
|
Paquin-Veillette J, Lizotte F, Robillard S, Béland R, Breton MA, Guay A, Despatis MA, Geraldes P. Deletion of AT2 Receptor Prevents SHP-1-Induced VEGF Inhibition and Improves Blood Flow Reperfusion in Diabetic Ischemic Hindlimb. Arterioscler Thromb Vasc Biol 2017; 37:2291-2300. [PMID: 29074590 DOI: 10.1161/atvbaha.117.309977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/05/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Ischemia caused by narrowing of femoral artery is a major cause of peripheral arterial disease and morbidity affecting patients with diabetes mellitus. We have previously reported that the inhibition of the angiogenic response to VEGF (vascular endothelial growth factor) in diabetic mice was associated with the increased expression of SHP-1 (SH2 domain-containing phosphatase 1), a protein that can be activated by the AT2 (angiotensin II type 2) receptor. Deletion of AT2 receptor has been shown to promote angiogenesis within the ischemic muscle. However, the relative impact of AT2 receptor in diabetic condition remains unknown. APPROACH AND RESULTS Nondiabetic and diabetic AT2 null (Atgr2-/Y) mice underwent femoral artery ligation after 2 months of diabetes mellitus. Blood perfusion was measured every week ≤4 weeks post-surgery. Expression of the VEGF, SHP-1, and renin-angiotensin pathways was evaluated. Blood flow in the ischemic muscle of diabetic Atgr2-/Y mice recovered faster and ≤80% after 4 weeks compared with 51% recovery in diabetic control littermates. Diabetic Atgr2-/Y had reduced apoptotic endothelial cells and elevated small vessel formation compared with diabetic Atgr2+/Y mice, as well as increased SHP-1 expression and reduced VEGF receptor activity. In endothelial cells, high glucose levels and AT2 agonist treatment did not change SHP-1, VEGF, and VEGF receptor expression. However, the activity of SHP-1 and its association with the VEGF receptors were increased, causing inhibition of the VEGF action in endothelial cell proliferation and migration. CONCLUSIONS Our results suggest that the deletion of AT2 receptor reduced SHP-1 activity and restored VEGF actions, leading to an increased blood flow reperfusion after ischemia in diabetes mellitus.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cattle
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/physiopathology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Gene Deletion
- Genotype
- Hindlimb
- Ischemia/genetics
- Ischemia/metabolism
- Ischemia/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/blood supply
- Neovascularization, Physiologic
- Phenotype
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Recovery of Function
- Regional Blood Flow
- Renin-Angiotensin System
- Signal Transduction
- Time Factors
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Judith Paquin-Veillette
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke (J.P.-V., F.L., S.R., R.B., M.-A.B., A.G., P.G.), Québec, Canada; and Departments of Surgery (M.-A.D.) and Medicine (P.G.), Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - Farah Lizotte
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke (J.P.-V., F.L., S.R., R.B., M.-A.B., A.G., P.G.), Québec, Canada; and Departments of Surgery (M.-A.D.) and Medicine (P.G.), Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - Stéphanie Robillard
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke (J.P.-V., F.L., S.R., R.B., M.-A.B., A.G., P.G.), Québec, Canada; and Departments of Surgery (M.-A.D.) and Medicine (P.G.), Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - Raphaël Béland
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke (J.P.-V., F.L., S.R., R.B., M.-A.B., A.G., P.G.), Québec, Canada; and Departments of Surgery (M.-A.D.) and Medicine (P.G.), Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - Marc-André Breton
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke (J.P.-V., F.L., S.R., R.B., M.-A.B., A.G., P.G.), Québec, Canada; and Departments of Surgery (M.-A.D.) and Medicine (P.G.), Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - Andréanne Guay
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke (J.P.-V., F.L., S.R., R.B., M.-A.B., A.G., P.G.), Québec, Canada; and Departments of Surgery (M.-A.D.) and Medicine (P.G.), Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - Marc-Antoine Despatis
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke (J.P.-V., F.L., S.R., R.B., M.-A.B., A.G., P.G.), Québec, Canada; and Departments of Surgery (M.-A.D.) and Medicine (P.G.), Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- From the Research Center of the Centre Hospitalier Universitaire de Sherbrooke (J.P.-V., F.L., S.R., R.B., M.-A.B., A.G., P.G.), Québec, Canada; and Departments of Surgery (M.-A.D.) and Medicine (P.G.), Division of Endocrinology, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
48
|
Marona P, Górka J, Mazurek Z, Wilk W, Rys J, Majka M, Jura J, Miekus K. MCPIP1 Downregulation in Clear Cell Renal Cell Carcinoma Promotes Vascularization and Metastatic Progression. Cancer Res 2017; 77:4905-4920. [PMID: 28716897 DOI: 10.1158/0008-5472.can-16-3190] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/31/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer and it forms highly vascularized tumors. The monocyte endoribonuclease MCPIP1 negatively regulates inflammation by degrading mRNA encoding proinflammatory cytokines, such as IL6, IL1, and IL12. MCPIP1 is also a negative regulator of NFκB and AP1 activity and it influences a broad range of miRNA activities. Here we report that MCPIP1 protein levels are decreased during renal cancer progression. In patient-derived tumors and xenografts established in NOD-SCID or nude mice, low MCPIP1 levels correlated strongly with increased proliferation, tumor outgrowth, and vascularity. MCPIP1 activity regulated secretion of VEGF, IL8, and CXCL12 leading to chemotaxis of microvascular endothelial cells, phosphorylation of VE-cadherin, and increased vascular permeability. Mechanistic investigations showed that MCPIP1 regulated ccRCC cell motility, lung metastasis, and mesenchymal phenotype by regulating key elements in the EMT signaling axis. Overall, our results illuminate how MCPIP1 serves as a key nodal point in coordinating tumor growth, angiogenesis, and metastatic spread in ccRCC. Cancer Res; 77(18); 4905-20. ©2017 AACR.
Collapse
Affiliation(s)
- Paulina Marona
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Judyta Górka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zofia Mazurek
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Waclaw Wilk
- Department of Tumor Pathology, Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Cracow Branch, Krakow, Poland
| | - Janusz Rys
- Department of Tumor Pathology, Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Cracow Branch, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Jagiellonian University Medical College, Krakow, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Miekus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
49
|
Goggi JL, Ng M, Shenoy N, Boominathan R, Cheng P, Sekar S, Bhakoo KK. Simvastatin augments revascularization and reperfusion in a murine model of hind limb ischemia – Multimodal imaging assessment. Nucl Med Biol 2017; 46:25-31. [DOI: 10.1016/j.nucmedbio.2016.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/27/2016] [Accepted: 11/12/2016] [Indexed: 10/20/2022]
|
50
|
Hadjizadeh A, Ghasemkhah F, Ghasemzaie N. Polymeric Scaffold Based Gene Delivery Strategies to Improve Angiogenesis in Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1292402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farzaneh Ghasemkhah
- Institute of Nanotechnology, Amirkabir University of Technology, Tehran, Iran
| | - Niloofar Ghasemzaie
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|